
ARG Technical Report
ARG-TR-01-2003

On Range Queries in Universal B-trees

Tomá̌s Skopal
Michal Krátký
Václav Sńǎsel
Jaroslav Pokorńy

c© Amphora Research Group, 2003.

On Range Queries in Universal B-trees

Tomá̌s Skopal, Michal Kŕatký, Václav Sńǎsel
Department of Computer Science,

VŠB-Technical University of Ostrava,
Czech Republic

{tomas.skopal, michal.kratky, vaclav.snasel}@vsb.cz

Jaroslav Pokorńy
Department of Software Engineering,

Charles University, Prague,
Czech Republic

pokorny@ksi.ms.mff.cuni.cz

Abstract
The Universal B-tree is a data structure for multidimen-

sional data indexing. In this paper we introduce a new algo-
rithm of processing the range query in UB-trees. This algo-
rithm performs very well, especially in high-dimensional in-
dexes and thus significantly reduces influence of the ”curse
of dimensionality”. We explain the algorithm using a geo-
metric model giving the reader understandable insight into
the problem. The geometric model is based on an interest-
ing fact that there exists a relation between the Z-curve and
generalized quad-trees. We also present promising experi-
mental results of our range query implementation.

1 Introduction

Indexing and querying data, that is the state of the art in
the area of database systems. Data can be indexed according
to a single attribute, e.g. with the B-tree. On the other side,
we intend to index some data according to several or many
independent attributes. We call this datamulti-dimensional
since an instance of that data is indexed as a vector of sim-
ple values. Collection of such vectors can be interpreted as a
set of points within a multidimensional vector space. Meth-
ods allowing indexing and querying multidimensional data
are calledSpatial Access Methods(SAM). For a synoptic
survey over various SAM we refer to [5].

In this paper we introduce a new range query algorithm
for the UB-tree. This algorithm performs very well, espe-
cially in large high-dimensional indexes. In Section 1, the
problem is described and existing solution is discussed. Our
algorithm is presented in Section 2. Geometric principles
behind the algorithm are elaborated in Section 3. Sections
4 and 5 analyse and conclude the experimental results.

1.1 Vector Spaces

Let us specify some necessary notations.
Definition 1 (vector space)
A discrete vector spaceΩ is determined as a Cartesian prod-

uct of finite domainsDi, Ω = D1 ×D2 × . . .×Dn. Every
vector space hasn dimensions. Each particular domainDi

is associated with thei-th dimension of the space. Apoint
(tuple) of the spaceo ∈ Ω is represented with a vector of
coordinateso = [o1, o2, . . . , on] whereoi ∈ Di.

We will assume for simplicity that the vector spaceΩ is a
hyper-cube determined as then-th power of a single domain
D, i.e. Ω = Dn, whereD is a linearly ordered interval of
natural numbersD = 〈0, 2p − 1〉 thus the cardinality ofD
is card(D) = 2p for somep.

1.2 General Concepts of the UB-trees

The Universal B-tree (UB-tree) was introduced in [1]
for indexing multidimensional data (a modification called
bounding UB-tree(BUB-tree) was recently introduced [4],
allowing to avoid indexing of the ”dead space”). Its main
characteristics reside in an elegant combination of the well-
known B+-tree and the Z-ordering. The power of B-trees
lies in ordering keys indexed by this data structure. In the
UB-tree we require to establish such ordering on a multidi-
mensional vector space and thus linearize the space onto
a single-dimensional interval. How to linearize a vector
space? Usually, space filling curves are used [12]. A space
filling curve orders all the points within an-dimensional
vector space. In other words, each point in the space can
be assigned to anaddress. This address is a unique num-
ber defining order of the point on the curve. This ordering
is then combined with the B+-tree. UB-tree was designed
to be used with the Z-ordering generated using the Z-curve.
Points (tuples) in the space are ordered according to their
Z-addresses.

An interval [α : β] (α is the lower bound,β is the upper
bound) on the Z-curve forms a region in the space which
is calledZ-region. An example of Z-curve and several Z-
regions is presented in Figure 1a.

Each Z-region is then mapped into a single page within
the underlying B+-tree. The UB-tree leafs represent the Z-
regions containing indexed tuples themselves while the in-

1

Figure 1. a) 2D space 8 ×8 filled with the Z-
curve, partitioned with six Z-regions. b) The
UB-tree nodes correspond to the Z-regions
and super Z-regions.

ner nodes represent the super Z-regions. Asuper Z-region
contains all the (super) Z-regions lying entirely inside the
super Z-region. Hence, the UB-tree structure is determined
by a nested Z-region hierarchy. An indexed vector space
and its appropriate UB-tree is depicted in Figure 1.

1.3 Range Queries

Realization of basic operations in the UB-tree (insertion,
deletion, point query) is analogous to the operations in the
”ordinary” B+-tree. The main difference is that in the UB-
tree we must at first compute the Z-address of the indexed
tuple as a key for the subsequent operation on the underly-
ing B+-tree.

Unfortunately, arange querycannot be so simply for-
warded to the B+-tree. This arises from the speciality
of the range query which is intended to be used on
multidimensional data. Range query (window query re-
spectively) in vector spaces is usually represented with
a hyper-box in a given spaceΩ. The ranges of a
query boxQB are defined by two boundary points, the
lower boundQBlow = [a1, a2, . . . , an] and the upper
bound QBup = [b1, b2, . . . , bn] where a1 ≤ b1, a2 ≤
b2, . . . , an ≤ bn. The purpose of a range query is to re-
turn all the tuples located inside the query box, i.e. to return
all the tupleso satisfyingai ≤ oi ≤ bi, for 1 ≤ i ≤ n (see
Figure 2a).

Range query definition oriented to the UB-tree context
can be formulated as a search over all the Z-regions inter-
secting given query box (see Figure 2b). For an overview
on searching in high-dimensional spaces we refer to [2].

1.4 Existing Solution

Markl in [10] presents following range query algorithm
consecutively searching intersecting Z-regions.

Figure 2. a) 2D query box QB specified with
lower bound QBlow and upper bound QBup.
b) Space Ω partitioned to Z-regions.

1. Z-address of the query box’s lower bound is computed,
i.e. Zval = Zaddr(QBlow).

2. Repeat following steps while theZval is lower or
equal than Z-address of the query box upper bound,
i.e. whileZval ≤ Zaddr(QBup)

(a) At the deepest UB-tree level a pageP is re-
trieved, the Z-region of which containsZval, i.e.
α ≤ Zval ≤ β.

(b) PageP is searched for all the tuples lying inside
QB. These tuples go to the output as a part of the
result.

(c) Next intersecting Z-region must be determined.
The first Z-address greater thanβ and intersect-
ing the query box is found, i.e. a function
GetNextZaddress(β, QB) is called, and
the result is assigned toZval.

Figure 3. Bayer-Markl’s range query algo-
rithm.

In Figure 3, an example of range query algorithm run is
shown. At first, Z-address for the query box lower bound is
computed. Using this value a page from UB-tree is retrieved
and searched for relevant tuples. Next, subsequent Z-region
is retrieved and so on. The algorithm will finish as soon as
theβ of the active Z-region is greater than the Z-address of
query box upper bound, i.e.β > Zaddr(QBup).

So far, the algorithm was elegant and clear. But a prob-
lem arises when we look deeper into the functionGet-
NextZaddress . Computing the next Z-address lying
within the query box is not trivial operation since this proce-
dure is obviously dependent on the shape of Z-region. The
algorithm forGetNextZaddress presented in [10] is of
exponential time complexity according to the dimensional-
ity. Later, in [11], authors presented a version that is of
linear complexity according to the Z-address bit length.

1.4.1 Limitations

Unfortunately, all descriptions ofGetNextZaddress
published so far were mentioned very briefly. Moreover, the
explanations were always based on a pure algorithmic basis
using ”handling with bits” and hence lacking a geometric
model providing a little bit deeper abstract view. Finally,
original algorithms on UB-trees are protected with interna-
tional patents1.

1.4.2 Time Complexity

Let h be the height of the UB-tree,m be the number of
tuples stored in the UB-tree, andc ≥ 2 be a fixed node
capacity (arity of the UB-tree), i.e.logc(m) − 1 ≤ h ≤
log2(m) − 1. Let k be the number of Z-regions inter-
secting the query box. Complexity of theGetNextZad-
dress is linear according to the Z-address bit length, i.e.
O(n ∗ log(card(D))).

In each step, the algorithm retrieves the next of thek
intersecting Z-regions. This operation consists of one cal-
culation of theGetNextZaddress and of one UB-tree
downward pass (point query respectively) required for the
Z-region retrieval. Thus, the overall time complexity of the
range query is

O(k ∗ h ∗ n ∗ log(c) ∗ log(card(D)))

1.4.3 Disk Access Costs

The number of I/O operations performed during an algo-
rithm run has an important impact on the algorithm effi-
ciency. In the case of range query algorithm, the I/O op-
eration is represented as a disk page retrieval. During the
presented algorithm run, each Z-region is retrieved usingh
disk accesses. This retrieval is performedk times, thus the
disk access costs factor isDAC = k ∗ h.

1Deutsches Patentamt Nr. 197 09 041.9 and Nr. 196 35 429.3

1.5 Other Related Work

Almost the same algorithm for querying multidimen-
sional data is presented by Lawder and King in [9, 8], but
they have not applied the UB-tree as a framework. They
have applied two types of space filling curves on this algo-
rithm. In addition to the Z-curve they have mainly studied
the Hilbert curve. In consequence, only the particular algo-
rithm of appropriateGetNextCurveAddress operation
was modified for the Hilbert curve. Alas, the problem of
GetNextZAddress still remains, also these works ex-
plain it very vaguely.

2 Our Approach

We have focused on the basic straightforward idea that
range query processing must search only Z-regions inter-
secting the query box. This can be realized via a single
UB-tree downward pass. The UB-tree is passed in LIFO
(last-in-first-out) fashion while each visited node is exam-
ined whether the Z-regions of its child nodes intersect the
query box or not. Only intersecting nodes are further pro-
cessed. On the leaf level, all tuples lying inside the query
box are returned as a query result. The situation is outlined
in Figure 4.

Figure 4. Single-pass range query algorithm.
Only the intersecting Z-regions (nodes re-
spectively) are being processed. These
Z-regions (nodes) are grayed. The bold
branches are the only paths passed down.

Similarly to the existing solution, our algorithm is also
conditioned by a specific crucial operation. This particular
operation relies on testing whether a given Z-region is inter-
secting the query box or is not. We will closely analyze this
operation in Section 3.

2.1 Single-pass Algorithm Description
Algorithm 1 works according to the scheme outlined in

Figure 4 and passes the UB-tree in LIFO fashion.

Algorithm 1 (single-pass range query)

RangeQuery(UBTree tree, HyperBox qb)
{

recRangeQuery(tree.rootNode, qb, false)
}
recRangeQuery(UBNode node, Hbox qb, bool sFlag)
{

If (Not node.Leaf) Then {
If (Not sFlag) Then {

// restrict to relevant child nodes
start = GetStartNode(node, Zaddr(qb.lower))
end = GetEndNode(node, Zaddr(qb.upper)))

} Else {
start = 0
end = node.Capacity - 1

}
If (TupleInsideBox(node[start].Zregion.alpha, qb)) Then

node[start].flag = true
// test only relevant child nodes
For i = start To end {

// test Z-region intersection with qb
If (node[i].flag Or TestZRegionIntersection(

node[i].Zregion, qb)) Then {
If (i>start And i<end) Then sFlag = true
Else sFlag = false
// process the child nodes
recRangeQuery(node.ReadChildNode(i), qb, sFlag)
// minimizing intersection computations
If (TupleInsideBox(node[i].Zregion.beta+1, qb)) Then

node[i+1].flag = true
}

}
}
Else AddTuplesToResult(FilterTuplesWithBox(node.data, qb))

}

Notes to the pseudo-code:

• GetStartNode(node, qb) computes the index
of a child Z-region innode with greatestα smaller
than the Z-address of query box lower bound, i.e.
searchingindex satisfying
node[index].alpha ≤ Zaddr(qb.lower)
And
node[index+1].alpha > Zaddr(qb.lower) .
GetEndNode(node, qb) does the same dually.

• To prune someTestZRegionIntersection ex-
ecutions, thenode[i].flag for each Z-region is
used. After the processing ofnode[i] is finished,
the Z-addressnode[i].Zregion.beta+1 is ex-
amined (which is actually the first point in the next Z-
region, i.e. node[i+1].Zregion.alpha) and if
the Z-address lies inside the query box, the Z-region is
certainly intersecting and thenode[i].flag is set
to true. Thus theTestZRegionIntersection
can be skipped.

• TestZRegionIntersection(Zregion, qb)
evaluates whether a given Z-region is intersecting
(overlapping) the query box. For further details and
the algorithm see Sections 3.2 and 3.3.

• TupleInsideBox(Zaddress, qb) is used to
examine whether theZaddress lies inside the query

box. This operation works with Z-address representa-
tions thus it does not require any conversions from/to
Cartesian system (see [10]). Its complexity is linear
according to the Z-address bit length.

• FilterTuplesWithBox(Tuple[], qb)
returns tuples lying inside the query box.

The Algorithm 1 presented was designed to be simple
and understandable. We have developed also an advanced
version calledDRU algorithmwhich significantly reduces
the vertical UB-tree passing and thus minimizes disk ac-
cess costs as well as the intersection computations. This
improvement was feasible only due to the existence of the
TestZRegionIntersection operation. We specify
the DRU algorithm in Section 4 for understanding the ex-
perimental results.

2.2 Time Complexity

Complexity of theTestZRegionIntersection is
linear according to the Z-address bit length (see Sec-
tion 3.3), i.e. O(n ∗ log(card(D))). Had we compare
theTestZRegionIntersection and (as declared) the
GetNextZaddress operations, it is important to realize
that they are of the same complexity as is the complexity
of simple comparison of two Z-addresses. In other words,
they are very cheap.

The algorithm retrievesk intersecting Z-regions by
single LIFO pass. In each visited node, theTestZRe-
gionIntersection is called at mostlog2(c)-times
(using halving the interval). Thus, the overall range query
time complexity is the same as by the Bayer-Markl’s alg.,

O(k ∗ h ∗ n ∗ log(c) ∗ log(card(D)))

2.3 Disk Access Costs

In Algorithm 1, each intersecting node is retrieved only
once, which is a consequence of the single pass through the
UB-tree. The DAC factor isDAC ≤ k ∗ h.

3 Z-region Intersection

In this section we will discuss some properties of the Z-
curve which will help us to understand the shape of a Z-
region. Using this knowledge we can design an algorithm
for testing intersection between a Z-region and the query
box.

3.1 Geometric Properties of the Z-curve

We can easily say that a space filling curve defines on a
discrete spaceΩ a linear order of all the points within the

space. Three space filling curves are depicted in Figure 5.
Note that a curve is only geometric interpretation of a linear
order of points within a space. For more details about space
filling curves we refer to the monograph [12].

Figure 5. Space filling curves.

For the basic UB-tree operations (insertion, deletion,
point query) there is no reason to choose the Z-curve or an-
other specific space filling curve. The choice of the Z-curve
for the UB-tree was made due to the easier implementation
of range query along with the fast Z-address construction
algorithm.

The important property of the Z-curve is its highlocality.
The locality concept in the case of Z-curve says that points
that are ”close” in the space (using some metric) are also
”close” on the Z-curve (using the Z-order). In other words,
the Z-curve carries topological information about the space
– it localy preserves metric (we refer to [6]). Alternatively,
Markl classifies space filling curves according to theirsym-
metry(see [10]) – a self-similarity concept taken from frac-
tal geometry. For key retrieval using fractals see [3].

Thus, to understand the range query in the UB-tree we
must at first understand the nature of the Z-curve.

3.1.1 Z-address Construction

The simplest analytic description of the Z-address function
is the following definition.

Definition 2 (Z-address)
Let us have ann-dimensional pointo ∈ Ω where bi-
nary representation of each coordinateoi is denoted as
oi = oi,s−1oi,s−2 . . . oi,0. Then

Zaddr(o) =
s−1∑
j=0

n∑
i=1

oi,j2jn+i−1

is called Z-address ofo.
Anyhow simple this formula looks like, its imagination

value seems to be quite low. A little bit more information
about the Z-address construction is provided by thebit in-
terleavingalgorithm. Using this algorithm, the Z-address
is constructed from the coordinates, where in each step the

bits are ”sliced” from the coordinates (one bit from each co-
ordinate in each step) and ”glued together” into a single bit
string. The bit interleaving is depicted in Figure 6.

Figure 6. Bit interleaving algorithm for two-
dimensional point o = [5, 3].

We have tried to investigate some more characteristics
about the Z-curve shape, especially those usable for the
range query purposes. We took advantage of generalized
quad-trees as the geometric framework.

3.1.2 Hyper-Quad Trees

Generalized quad-trees and their modifications were ap-
plied many times in the areas of CAD and GIS as well as in
the area of SAM (see e.g. [13]). However, in our approach
we need to consider the generalized quad-tree a little bit
more abstractly since we will use it just as a formal tool for
studying the Z-curve.

In geometry, the termquadrantdoes reflect an exactly
defined quarter of atwo-dimensional space. Similarly, we
can divide theone-dimensional space on two halfs and
in three-dimensional space we distinguish eight octants
of a space. Common to all these geometric constructs
is a need topartition the space. This partition is always
realized using halving the space in all existing dimensions.
We can generalize such knowledge through definition of a
hyper-quadrant of ann-dimensional space.

Definition 3 (hyper-quadrant)
Let us have a vector spaceΩ = Dn. Thenhyper-quadrant
(hquad) HQ is a subspace inΩ, i.e. HQ⊂ Ω, such that
HQ = HD1×HD2 × ...×HDn where each domain HDi
is the lower or the upper half of the domainD, i.e.
HDi = low(D) or HDi = up(D).

Corollary 1
Each n-dimensional vector spaceΩ is formed by its2n

disjunct hquads.
However, the previous ”set definition” does not handle

with any identification of an hquad according to the
location in the space. Actually, we can establish up to(2n)!
orderings on the set of all hquads. Fortunately, there exists
one suitable hquad numbering (ordering) that will help us

to discover a relation between the hyper-quad trees and
the Z-curve. The desired hquad number – we call ithquad
code – is constructed using successive halving of each
dimension and testing whether the hquad is located in the
lower or in the upper half of the dimension.

Definition 4 (hquad code)
The hquad codeis represented as a binary string where
each bit indicates the hquad location relatively to one
dimension. Thei-th bit is set to0 if the hquad is located
(relative to thei-th dimension) in the lower half of domain
D, i.e. if HDi = low(D). The second case is dual, i.e. the
i-th bit is set to1 if HD i = up(D).

Figure 7. Hyper-quadrants and their codes.

The most significant bit (the left-most) indicates the lo-
cation within then-th dimension while the less significant
bit (the right-most) indicates the location within the first di-
mension. If all the hquad codes are sorted lexicographically
(left-to-right) we get the desirable ordering of hquads.

In Figure 7 the hquads and their codes are de-
picted. The bit length of the hquad code isn which is
obvious from the code construction.

Definition 5 (HQ-tree)
Hyper-quad tree (HQ-tree) is generalized quad-tree.
HQ-tree represents a simple hierarchical partition of an
n-dimensional vector space. Each inner node of the
HQ-tree contains a covering hquad and2n links to all its
sub-hquads. Covering hquad of the root node is the whole
spaceΩ while the leafs are all the points ofΩ. The links to
the sub-hquads are stored in ascending order according to
their hquad codes.

Corollary 2
Because the domainD of a given vector spaceΩ is a finite
set, height of the HQ-tree islog2(card(D)). Hquads in the
leafs of HQ-tree are points, i.e. the domains of the deepest
hquads contain single element. Arbitrary point of the space
Ω is always hquad located in a leaf in the appropriate
HQ-tree.

Examples for 1D, 2D and 3D spaces are the binary tree,
the quad-tree, and the octant-tree, see Figure 8.

Figure 8. HQ-trees – binary tree, quad-tree,
and octant-tree.

Finally, we need to establish unique identification of a
hquad within the HQ-tree hierarchy. This we can manage
using the downwardnavigation passthrough the HQ-tree.
During this passhquad navigation codeis constructed.
This code of variable length uniquely determines the hquad
position in the HQ-tree.

Definition 6 (hquad navigation code)
Let us have an hquadhq ⊂ Ω. Then binary string
navi(hq) = c0 · c1 · · · cl−1 is calledhquad navigation
code if each substringci is a code of hquad (on thei-th
level of the HQ-tree) that spatially containshq.

Corollary 3
The larger hquads have shorter navigation codes and
vice versa. The bit length of a point navigation code is
|navi(pt)| = n ∗ log2(card(D)).
Figure 9 shows the navigation code construction. In the
following we will present the relation between HQ-trees
and the Z-curve we have earlier announced.

Proposition 1
Navigation code ofo ∈ Ω is equivalent to the Z-address of
o, i.e. navi(o) = Zaddr(o).

Proof idea: If we realize, both of the Z-address con-
struction algorithms, i.e. navigation code construction and
the bit interleaving, do the same thing. However, the nav-
igation code construction does it in terms of hquad codes
concatenation. 2

Another relation between the Z-curve and the HQ-trees
is hidden in the LIFO HQ-tree pass. This pass will visit
the HQ-tree leafs (points in space) in the same order as by
filling the space with the Z-curve. Hence, we could sketch
simple recursive algorithm of drawing the Z-curve using the
HQ-tree pass. As a side effect, the ”drawing algorithm”
could serve as an effective tool for Z-ordering thewhole
universeΩ. This could be useful in various computer sci-
ence disciplines where every point of a space carries some

Figure 9. Navigation code construction for
point hquad located at coordinates [5,3].

information (e.g. in image processing or pattern recogni-
tion).

3.1.3 Important Consequences

Let us summarize important consequences that will be im-
portant in further analysis. The consequences presented can
be also observed from Figure 10.

• The hquads define in the spaceΩ Z-regions which ac-
curately ”fit” the hquads.

• The hquads on a given HQ-tree level are Z-ordered rel-
ative to their navigation codes.

• Let us consider an hquad on ak-th level of an HQ-tree.
The Z-curve will visit its sub-hquads on(k+1)-th level
one-by-one, i.e. the hquad is entirely ”filled” before
the Z-curve will enter the next hquad on thek-th level.

3.2 Minimal Z-region Hquad Envelope

Now we can describe an algorithm for testing the query
box and a Z-region intersection. This algorithm follows the
presented geometric model and is based on a construction
of minimal Z-region hquad envelope.

Definition 7
Every Z-region can be assembled by some number of
hquads from various levels of the HQ-tree. A set of hquads
forming given Z-region we callZ-region hquad envelope.
Envelope formed by the smallest number of hquads we call
minimal Z-region hquad envelope.

Figure 10. Z-ordered hquads of the first and
third level of an HQ-tree.

First, we briefly sketch the algorithm for creating a
minimal Z-region hquad envelope (see also Figure 11).

Phase 1. Find the smallest hquadhqmin common to
both Z-region boundsα andβ.
Phase 2. Send all the sub-hquads ofhqmin lying between
the Z-region boundsα, β to the output.
Phase 3. Process separately the Z-region boundsα and
β. The sub-hquadhq of hqmin containing the respective
bound is processed using the HQ-tree downward pass
by one level in each step. The hquadhq is divided on
two groups of its sub-hquads. A sub-hquad ofhq which
contains the bound is denoted as ”dividing hquad”hqdiv.
The lower groupis formed by sub-hquads ofhq the hquad
codes of which are lower than hquad code ofhqdiv. Simi-
larly, theupper groupis formed by sub-hquads with codes
greater than code ofhqdiv. In the case ofα (β respectively)
processing, the upper (lower respectively) group is sent to
the output in each step. After the step,hq is set tohqdiv.
The steps are repeated untilhq becomes a point.

In the presented description we have assumed that ev-
ery minimal Z-region envelope must contain at least two
point hquads. There also exist Z-regions whose minimal
envelopes consist of only hquads located on the higher lev-
els of the HQ-tree, e.g. the envelope for the whole space
Ω consist of single hquad. Such ”simple” Z-regions can be
handled in the second and third phase of the algorithm but
for the sake of simplicity we can omit these cases.

Second, we present a more detailed algorithm.

Algorithm 2 (minimal hquad envelope construction)

CreateEnvelope(Hquad space, Zaddress alpha, Zaddress beta)
{

Hquad topHquad = space
i = 0
/* phase 1 */
While (alpha[i] = beta[i]) {

topHquad = topHquad.GetSubHquad(alpha[i])
i++

}

/* phase 2 */
// send all hquads betweenα andβ
For j=alpha[i]+1 To beta[i]-1

AddToEnvelope(topHquad.GetSubHquad(j))

/* phase 3 */
Hquad topAlphaHquad = topHquad.GetSubHquad(alpha[i])
Hquad topBetaHquad = topHquad.GetSubHquad(beta[i])
For j=i+1 To log2(card(D))-1 { // HQ-tree pass

// send all hquads afterα
For k=alpha[j]+1 To 2n-1

AddToEnvelope(topAlphaHquad.GetSubHquad(k))
topAlphaHquad = topAlphaHquad.GetSubHquad(alpha[j])
// send all hquads beforeβ
For k=0 To beta[j]-1

AddToEnvelope(topBetaHquad.GetSubHquad(k))
topBetaHquad = topBetaHquad.GetSubHquad(beta[j])

}
// send the point hquads ofα andβ
AddToEnvelope(topAlphaHquad)
AddToEnvelope(topBetaHquad)

}

Notes to the pseudo-code:

• alpha[i] , beta[i] returns thei-th hquad code in
the Z-address.

• topHquad.GetSubHquad(i) returns sub-hquad
of topHquad identified by hquad codei.

Using the Algorithm 2 an envelope is created. If we
replace the operationAddToEnvelope with operation
TestQueryBoxInHquad , we will get the desired func-
tion testing the intersection between a Z-region and the
query box.

Figure 11. Construction of the minimal Z-
region hquad envelope. The Z-region [α : β]
is formed by 13 hquads. The Z-region bounds
α, β determine the "dividing hquads" for each
step (HQ-tree level respectively) in the third
phase.

From another point of view, we can imagine the enve-
lope as a subtree in the HQ-tree. Figure 12 presents such a

subtree to the above mentioned example. We can see that
in the 3rd phase (levels 2-4) the left branch for theα bound
and right branch for theβ bound are passed down. In the
left branch the upper groups of sub-hquads are sent to the
output (the grayed parts) while in the right branch the lower
groups of sub-hquads are grayed and thus sent to the output.

Figure 12. The hquad envelope subtree.

3.2.1 Intersection of Hyper-Boxes

The operationTestQueryBoxInHquad is used for test-
ing whether the query box is intersecting a given hquad.
This test is evaluated as an intersection of two hyper-boxes.

As we can see in Figure 13a, two hyper-boxes are inter-
secting just in case that their ranges intersect inall dimen-
sions. For the ranges of a particular dimension three states
may occur, see Figure 13b. If we denote the first hyper-

Figure 13. Intersection of two hyper-boxes.

box range of thei-th dimension as an interval〈lowi
1, upi

1〉
and range of the other hyper-box as an interval〈lowi

2, upi
2〉

we can formulate a single condition when the two ranges
are intersecting:

|lowi
1− lowi

2|+ |upi
1−upi

2| ≤ |lowi
1−upi

1|+ |lowi
2−upi

2|

Furthermore, the two hyper-boxes are intersecting iff the
statement holds for alli.

3.2.2 Time Complexity

The first two phases of the ”envelope algorithm” we can
omit since their complexities are lower than complexity of
the third phase.

In the third phase there are four nested loops. The first
one is passing down the HQ-tree, i.e. the height of the tree
is h = log2(card(D)). The second one is sending up to
2n − 1 sub-hquads to the output in each level. Finally, the
third and fourth loop is hidden in the intersection test of
two hyper-boxes (testingn coordinates each consisting of
log2(card(D)) bits) – i.e.O(n ∗ log(card(D))).

The overall time complexity is a product of the particular
nested complexities:

O(n ∗ 2n ∗ log2(card(D)))

This complexity would be acceptable if we use vector space
with small dimensionality, e.g.n < 10. However, for high-
dimensional spaces this algorithm is not suitable. Fortu-
nately, there exists a solution reducing the complexity to
linear according to the Z-address bit length as we will see
in the next section.

3.3 Linear Intersection Algorithm

The greatest component of the ”envelope algorithm”
complexity is the exponential dependence onn. This fact
arises from the observation that thelower or the upper
group sent to the output can consist of up to2n − 1 hquads.

However, we have found out that the lower (upper re-
spectively) group can be spatially represented with at max-
imum n general hyper-boxes (not hquads yet). The idea
is based on successive elimination of all dimensions while
processing the hquad code of the ”dividing hquad”.

We will present the idea for the upper group construc-
tion. The lower group is constructed dually.

1. Active hyper-box is set to the parent hquad.

2. Bits are iteratively read from the hquad code of the ”di-
viding sub-hquad” from the most significant to the less
significant. We already know that each bit of the code
determines location of the hquad relative to appropri-
ate dimension.

In each step, we process next bit of the hquad code (the
steps are repeated until all bits, i.e. dimensions, are
processed). For each bit value, two cases can occur:

(a) If the bit is set to0 it means that the ”divid-
ing hquad” is located in the first (lower) half of
appropriate dimension. Since we construct the
upper group we can send to the output the up-
per (relative to the dimension) half of the active
hyper-box. The active hyper-box is then set to its
own lower half.

(b) If the bit is set to1 it means that the ”dividing
hquad” is located in the second (upper) half of
appropriate dimension. Since we construct the
upper group we can ignore the lower half and the
active hyper-box is set to its own upper half.

The algorithm will construct maximallyn hyper-boxes for
the upper group. In consequence, constructed hyper-box
can hold space consisting of up to2n−1 hquads, i.e. a half
of space. See examples in Figure 14.

Figure 14. a) 2D example of lower group con-
struction. b) 3D example of upper group con-
struction.

We will use this particular lower/upper group construc-
tions for the linear intersection algorithm.

Phase 1. The first phase is the same as by the exponential
algorithm. Smallest hquad entirely containing the Z-region
is determined. This hquad is bounded with some interval
[αhq : βhq] and further process is restricted into this hquad.
Phase 2. The second phase will construct so calledlower
and upper Z-region half-envelopes. Lower half-envelope
is created for the upper boundβ and upper half-envelope
is created for the lower boundα. This half-envelopes are
constructed using the above described upper/lower group
construction on each level of the HQ-tree. The algorithm
ensures that both half-envelopes are disjunct.

Geometric union of the two half-envelopes gives a
”hyper-box envelope” spatially matching the ”hquad enve-
lope”. This fact also states that if the query box intersect
the Z-region then it must also intersect at least one of the
the half-envelopes and vice versa.

Algorithm 3 (linear intersection algorithm)

bool TestZRegionIntersection(Zaddress alpha, Zaddress beta,
Hbox spaceBox, Hbox queryBox)
{

/* phase 1 - reduce thespaceBox to the smallest
hquad entirely containing the Z-region */

...(see phase 1 in Algorithm 3)...

/* phase 2 - intersection of half-envelopes */
If (TestUpperHalfEnvelope(spaceBox, queryBox, alpha) Or

TestLowerHalfEnvelope(spaceBox, queryBox, beta)) Then
return true

Else
return false

}

bool TestUpperHalfEnvelope(Hbox activeHBox,
Hbox queryBox, Zaddress alpha, Zaddress beta)
{

// HQ-tree downward pass
For i=0 To log2(card(D))-1 {

For j= n-1 To 0 { // process all dimensions
If (alpha[i].GetBit(j)) Then {

// set theactiveHBox to its upper half
activeHBox = activeHBox.GetUpperHalf(j)

}
Else {

// test the intersection with the query box
If (flag And TestQueryBox(activeHBox.GetUpperHalf(j),

queryBox)) Then
return true

If (TupleInsideBox(beta, activeHBox.GetUpperHalf(j))
flag = true

activeHBox = activeHBox.GetLowerHalf(j)
}

}
}
// test the last point (alpha)
return TestQueryBox(activeHBox, queryBox)

}

The linear algorithm is depicted in Figure 15.

Figure 15. The linear intersection algorithm.
Resultant envelope consists of 9 hyper-
boxes, i.e. max. 9 hyper-boxes are tested
for an intersection.

Note that hyper-boxes are sent to the output after detec-
tion that active hyper-box cannot contain the opposite Z-
region bound. Until then, boxes are ignored (see the light-
gray boxes in the Figure 15). This restriction (in the pseudo-
code provided using theflag variable) ensures that both
constructed envelopes are disjunct. It can be proved that the
”hyper-box envelope” constructed in such way is spatially
identical to the ”hquad envelope”.

3.3.1 Time Complexity

As we have said earlier the complexity was reduced. It is
nowO(n∗ log(card(D))). There are only two nested loops
while the first one is the HQ-tree pass and the second one is
testing all dimensions of a ”dividing hquad” code.

Note that the operationsTestQueryBox and Tu-
pleInsideBox can be realized inO(1) time because
only onedimension is checked in each step and the range
of the active hyper-box is alwayshalved.

Had we relate the complexity to the Z-address bit length,
i.e. to|Zaddr| = n ∗ log2(card(D)), it would be linear.

4 Experimental Results

Before we present the experiments2, we must specify
necessary details about the DRU algorithm – an optimized
version of the algorithm sketched in Section 2.

4.1 The Down-Right-Up Algorithm

The DRU (Down-Right-Up) algorithmexploits two
types of leaf optimizations reducing unnecessary disk ac-
cesses as well as the Z-region intersection computations.
The first optimization, calledneighbour first point, is used
for testing whether the first point of the right neighbour leaf
(its Z-region respectively) lies inside the query box. If it
does, the algorithm simply ”jumps right” (leafs are linked)
to the neighbour leaf and continues processing. This opti-
mization was already used in the Bayer-Markl’s algorithm.

The second optimization, calledneighbour region, is
specific to the DRU algorithm (to theTestZregionIn-
tersection operation respectively). It is used for testing
whether the neighbour leaf (its Z-region respectively) is
intersecting the query box. If it does, the algorithm ”jumps
right” similarly like by the first optimization. It should be
noticed that theneighbour regionoptimization is applicable
also on the original Bayer-Markl’s algorithm, but this fact
has never been published or even mentioned in previous
works and thus we do not deal with such an optimized
version of Bayer-Markl’s algorithm.

The DRU algorithm description:
The algorithm uses apath stackto keep the actual path in
the UB-tree. The path stack allows us to avoid disk accesses
to the nodes (and items in nodes) already processed.
DRU algorithm steps (input is the query boxQB):

1. Find a leaf the Z-region of which contains
Zaddr(QBlow). Store the path on the stack.

2. Search actual leaf for tuples lying insideQB. Return
these tuples as a part of the result.

3. Retrieve the neighbour leaf from disk and set it as the
actual leaf. If the first point of the actual leaf lies inside
QB then goto step 2. This is theneighbour first point
optimization.

2Comparison of the UB-tree with other multidimensional structures
was out of scope of this paper, we refer to [1, 10] where the superiority
of UB-tree (over R-tree, Grid-files, etc.) was already presented.

4. If the Z-region of the actual leaf intersectsQB goto
step 2. This is theneighbour regionoptimization.

5. The stack must recover after the ”optimization jumps”.
The UB-tree is passed (along the path in the stack) to
the next relevant node. After the recovery, on the top
of stack is a parent node of the leaf reached by the
preceding optimization.

6. (Right-Phase). Peek the node on the top of the stack
and try to find a link (using halving the interval) to the
next relevant node (i.e. to node the Z-region of which
intersectsQB). If no such node is found, pop a node
from the stack and repeat step 6 (Up-Phase). If a node
is found, retrieve the node from the disk and push it
onto the stack (Down-Phase). If a leaf is reached goto
step 2 otherwise repeat step 6.

The algorithm terminates until a Z-region is found such that
α ≥ Zaddr(QBup).

4.2 Testing a Synthetic Dataset

The set of tests was made on synthetic datasets of in-
creasing dimensionality. The tuples were generated into
randomly located clusters of fixed radius (using theL2 met-
ric) and indexed with the UB-tree. The number of tuples
was increasing with the number of dimensions.
UB-tree characteristics (synthetic datasets):
card(D) 232 dimensions 2–30
tuples 524,288–7,864,320 tree height 4
nodes 22,400–321,885 Z-regions 21,475–321,885
node capacity 35 utilization 69.7–69.8%
node size 580–4612B index file 12.4MB–1.44GB

Query boxes of various shapes were generated randomly
according to the distribution of tuples in space. Ranges of
query boxes were fixed for growing dimensionality thus the
volumes were increasing but the query box volume/space
volume ratio was decreasing. This query box construction
is typical for multidimensional applications. The number
of queries was increasing with the number of dimensions
(from 24 to 120 queries). The results are averaged.

Figure 16. a) Range query selectivity. b) Re-
altime range query test.

In Figure 16a, the range query selectivity is presented.
Note that the number of returned tuples is approximately
constant but the number of accessed Z-regions (retrieved
leafs respectively) rapidly grows with increasing dimen-
sionality. The Figure 16b shows real times of the range
query execution3. In Figure 17 the original Bayer-Markl’s

Figure 17. a) Disk access costs. b) Computa-
tions.

algorithm and the DRU algorithm are compared. Figure 17a
shows number of disk accesses and Figure 17b shows the
number of computations.

The results demonstrate that the DRU algorithm per-
forms better since the DAC and computation growth is
much less steep than by the Bayer-Markl’s algorithm. The
reason of that behaviour can be observed from Figure 18
where the force of leaf optimizations is presented.

Figure 18. a) Leaf optimizations. b) Leaf opti-
mizations effectivity.

Figure 18a shows how many times the optimizations
took an effect. For dimensionalityn = 2, the neighbour
first point optimization detected the majority of the rele-
vant neighbour regions. However, forn > 4 the neigh-
bour first pointoptimization became almost useless. This
was expectable since the shape of a Z-region is much more
complicated for the higher dimensionalities.

On the other side, the ”stronger”neighbour regionopti-
mization works for any dimensionality and thus saves many
unnecessary operations as well as disk accesses. Figure 18b
shows the effectivity of both optimizations. The effectivity

3Measured on Intel Pentiumr4 2.4Ghz, 512MB DDR333, WinXP

of the neighbour regionoptimization means that cca 80%
of tested neighbour Z-regions were intersecting the query
box. However, the effectivity of theneighbour first point
optimization says that forn > 10 the first points of the
neighbour regions are always outside the query box.

Presented results allow us to think about thecurse of di-
mensionality[2, 14] appearing in the UB-tree. With the
growing dimensionality of UB-trees grow also the costs,
even though less than exponentially. Figure 19a presents
a ratio of tuples inside the query box to the number of in-
tersecting Z-regions. Figure 19b shows ratio of intersect-
ing Z-regions containing at least one tuple inside the query
box to all of the intersecting Z-regions. This ratio says
that in higher dimensionalities more than 95% of relevant
Z-regions ”give” no tuples to the result. The reason is obvi-
ous – the topological properties of the Z-curve are worse for
higher dimensionalities. On the other side, the Figure 19b

Figure 19. a) Range query selectivity ratio. b)
Z-region ratio.

also shows a ratio of intersecting Z-regions to the Z-regions
lying in the interval[Zaddr(qblow) : Zaddr(qbup)] (i.e. in-
terval of the query box’s ”bounding Z-region”). One could
expect that the negative effect of the curse of dimension-
ality will ”raise” this ratio up to 100% which is the same
as a traversal through the majority of the UB-tree structure.
However, this test shows that (even for high dimensionali-
ties) the number of Z-regions intersecting the query box is
much lesser than the number of Z-regions within the above
mentioned interval. This particular result indicates that the
UB-tree together with the DRU algorithm is remarkably re-
sistant to the curse of dimensionality. For a comparison,
the well-knownR-tree[7] used in many applications is very
affected by the curse of dimensionality and its usage for
high-dimensional indexing is nearly impossible.

5 Conclusions And Outlook
The experimental results have shown that the DRU range

query algorithm makes the UB-tree applicable for effective
indexing and querying of high-dimensional feature spaces.
For the DRU algorithm, we have introduced the Z-region
intersection algorithm testing whether the Z-region is inter-
secting a given query box.

In the future, we are going to develop additional algo-
rithms for the UB-trees based on the Z-region intersection
algorithm. Furthermore, we would like to modify the Z-
region intersection algorithm for other space filling curves
with better clustering properties than the Z-curve.

References

[1] Bayer R. The Universal B-Tree for multidimensional
indexing: General Concepts. In:Proc. Of World-
Wide Computing and its Applications 97 (WWCA 97).
Tsukuba, Japan, LNCS 1274, Springer-Verlag, 1997.

[2] Böhm C., Berchtold S., Keim D. Searching in High-
Dimensional Spaces – Index Structures for Improving
the Performance of Multimedia Databases. In:ACM
Computing Surveys (33)3, pp. 322–373, 2001.

[3] Faloutsos C., Roseman S. Fractals for secondary key
retrieval. In: Proc. 8th ACM SIGACT-SIGMOD Symp.
on Principles of Database Systems, pp. 247-252, 1989.

[4] Fenk R. The BUB-Tree. In:Poster at the 28th Confer-
ence VLDB, Hongkong, 2002

[5] Gaede V., G̈unther O. Multidimensional Access Meth-
ods, In:ACM Computing Surveys (30)2, 1998.

[6] Gotsman C., Lindenbaum M. On the Metric Properties
of Discrete Space-Filling Curves, In:Proc. of IEEE Int.
Conference on Pattern Recognition, Vol III, pp. 98–102,
Jerusalem, Israel, 1994.

[7] Guttman A. R-Trees: A Dynamic Index Structure for
Spatial Searching, In:Proc. of ACM SIGMOD 1984, An-
nual Meeting, pp. 47–57, Boston, 1984.

[8] Lawder J., King P. Querying Multi-dimensional Data
Indexed Using the Hilbert Space-filling Curve.SIGMOD
Record 30(1), 2001.

[9] Lawder J., King P. Using Space-Filling Curves for
Multi-dimensional Indexing, In:Proc. of BNCOD 2000.

[10] Markl V. Mistral: Processing Relational Queries us-
ing a Multidimensional Access Technique, thesis, 1999.

[11] Ramsak F., Markl V., Fenk R., Zirkel M., Elhardt K.,
Bayer R. Integrating the UB-tree into a Database Sys-
tem Kernel. In:Proc. Of the 26th Int. Conference VLDB,
Cairo, Egypt, pp. 263–272, 2000.

[12] Sagan H.Space-Filling Curves, Springer, 1994.

[13] Samet H.The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1990.

[14] Yu C. High-Dimensional Indexing, Springer–Verlag,
LNCS 2341, pp. 9–33, 2002

