
Two known algorithms for checking bisimilarity
of normed BPPs

Otmar Onderek, Martin Kot

Department of Computer Science, FEI, Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

onderek@volny.cz, martin.kot@volny.cz

Abstract. This paper brings two known algorithms for deciding bisim-
ilarity of processes in BPP with their time analysis. The first algorithm
was published in [1], the second one in [2]. While those materials aim
on detailed proof of correctivity of those algorithms, this paper tries to
explain them in an understandable form and describe them in a pseudo-
language so that they could be implemented easily. This material has
only limited amount of place, so the theorems are stated without proof
or with only a suggestion of proof.

Keywords: Basic Parallel Process, BPP, normed BPP, bisimilarity.

1 Introduction

Recently, big attention has been paid to the area of verification of potentially
infinite-state systems. Errors in computer and other systems are often very ex-
pensive. Therefore it is suitable to use formal methods to prove that some system
is correct.

An important question in verification is if two systems behave in the same
way – to be able to check equivalence between specification and implementation.
Bisimilarity was established as the most appropriate notion of general behavioral
equivalence. In short, bisimilar systems can perform the same actions in the same
situation.

There are many types of models of real systems which differ in expressive
power, that is, which properties are describable in concrete model. In this paper
BPP systems are used. They describe parallel systems without synchronization.

In this paper, two different polynomial time algorithms are described for
deciding bisimulation equivalence.

2 The basic concepts and notation

Definition 1. Basic Parallel Process (BPP) is given by a context-free grammar
in Greibach normal form (that is, each rule is of the form X → aY1 . . . Yn) whose
rules are denoted by X →a Y1 . . . Yn instead of X → aY1 . . . Yn. Its processes

are multisets of nonterminals. Nonterminals themselves are called elementary
processes. The notation α →a β means that the process β can be reached from the
process α by the letter a, that is, a nonterminal X ∈ α and a rule X →a γ exists
such that α \ {X} ∪ γ = β. If the letter does not matter, we can denote α → β
only. This notation can be naturally extended to α →w β where w ∈ A∗ is a word.
The notation |α|X denotes a number of occurences of the elementary process X
in the process α.

Definition 2. Bisimulation is a relation R on a set of processes of some BPP
such that for each (r1, r

′
1) ∈ R:

– ∀a, r2 : r1 →a r2 ⇒ (∃r′2 : r′1 →a r′2 ∧ (r2, r
′
2) ∈ R),

– ∀a, r′2 : r′1 →a r′2 ⇒ (∃r2 : r1 →a r2 ∧ (r2, r
′
2) ∈ R).

Definition 3. Bisimilarity ∼ is a maximal bisimulation (an union of all bisim-
ulations on that BPP).

Definition 4. Norm of process α of a BPP (norm α) is the length of the shortest
word w such that α →w ε. Norm with respect to a set Q ⊆ S (normQ α) is the
length of the shortest word w such that α →w β where β ∩ Q = ∅. If no such
word exists, then norm α = ω, resp. normQ α = ω. A BPP is normed iff
all its elementary processes have a finite norm. Norm-reducing rule is a rule
X →a α such that norm X > norm α. We denote α →NR β if α → β and
norm α > norm β.1

3 Hirshfeld-Jerrum-Moller algorithm

Definition 5. A decomposition of a BPP (Σ, Π, S, R) is a function D : Π∗ →
Π∗ such that:

– for each elementary process X, if there exist some elementary processes
P1, . . . , Pm and some x1, . . . , xm ∈ N such that P x1

1 . . . P xm
m ∼ X and for

each Pi is norm Pi < norm X and D(Pi) = Pi, then D(X) = P x1
1 . . . P xm

m ,
else D(X) = X,

– if α = Xx1
1 . . . Xxm

m is a non-elementary process, then

D(α) = (D(X1))x1 . . . (D(Xm))xm .

An elementary process X is called a prime iff D(X) = X. The set of all primes
in the decomposition D is denoted by Π(D).

Theorem 1. For each BPP:

1. There is one and only one decomposition D.
2. D(α ∪ β) = D(α) ∪ D(β).
3. D(α) ∼ α.
1 The algorithm for computing norm X is intuitive and has no influence on the com-

plexity of the whole algorithm, so it is not mentioned here.

4. α ∼ β iff D(α) = D(β).

In the following text, D denotes the decomposition defined above and D
denotes a temporary decomposition found by the algorithm. In time analysis,
we denote the number of variables of the grammar by m and the number of rules
of the grammar by n (we assume that for each variable there is at least one rule
with that variable on its left side, so m ≤ n). We assume that the right side of
each rule X → α is given by a binary vector (x1, . . . , xm) such that xi = |α|X .
The number of bits necessary to express each xi is denoted by k, so the greatest
possible number of the same variable in one right side is 2k and the greatest
possible size of the grammar is mnk.

3.1 Checking bisimilarity of two processes α, β in a BPP

find norms for elementary processes
sort the variables according to their norms (that is, Y < X iff norm Y ≤ norm X)
for each variable X, create the first decomposition D by algorithm 3.2
repeat: {

let b := false
denote the current decomposition by D′

for each variable X 6∈ Π(X): {
create a new decomposition D(X) by algorithm 3.3
if D(X) 6= D′(X), let b := true

}
} while b = true
if D(α) = D(β), then return true, else return false

3.2 Creating the first decomposition D(X) for a variable X if D(Y)
for each Y < X is known

choose a rule X →a NR α
for each P →a NR β such that P ∈ Π(D), P < X, D(β) ⊆ D(α) {

let D(X) := D(α) + D(P)−D(β)
if test of D(X) with algorithm 3.4 is successful, return D(X)

}
declare X as a prime and return D(X) := X

(If X is the first variable, there is no variable Y such that Y < X, so the
cycle “for” will be never performed and X will be declared as a prime.)

3.3 Creating the next decomposition D(X) if a previous
decomposition D′ is known

if test of D′(X) with algorithm 3.4 is successful, return D′(X)
choose a rule X →a NR α
for each P →a NR β such that P ∈ Π(D), P < X, D(β) ⊆ D(α) where:

either P ∈ Π(D) \Π(D′), or (D(α)−D(β)) ∩ (Π(D) \Π(D′)) 6= ∅:
{

let D(X) := D(α) + D(P)−D(β)
if test of D(X) with algorithm 3.4 is successful, return D(X)

}
declare X as a prime and return D(X) := X

3.4 Testing a possible decomposition D(X)

if we have a previous decomposition D′: {
for each rule X →a α: {

for each rule P →a β such that P ∈ D(X): {
if D′(D(X))−D′(P) + D′(β) = D′(α): {

mark the rule P →a β
go to (1)

}
}
return “fail”
(1):

}
for each unmarked rule P →a β such that P ∈ D(X): {

for each rule X →a α: {
if D′(D(X))−D′(P) + D′(β) = D′(α), go to (2)

}
return “fail”
(2):

}
unmark all marked rules

}
else: {

if norm X 6= norm D(X), return “fail”
}
for each rule X →a NR α: {

for each rule P →a NR β such that P ∈ D(X): {
if D(X)−D(P) + D(β) = D(α), mark P →a NR β and go to (3)

}
return “fail”
(3):

}
for each unmarked rule P →a NR β such that P ∈ D(X): {

for each rule X →a NR α: {
if D′(D(X))−D′(P) + D′(β) = D′(α), go to (4)

}
return “fail”
(4):

}

return “pass”

Theorem 2. The algorithm 3.4 is in O(m2n2k). The algorithms 3.2 and 3.3
are both in O(m2n3k). The algorithm 3.1 is in O(m4n3k).
Proof. Let us denote the variables A1, . . . , Am according to their ordering. The
variable A1 is surely a prime, that is, |D(A1)|=1. For each i > 1, Ai and for each
rule Ai →NR α, |D(Ai)| ≤ |D(α)|+1. Because α consists only from A1, . . . , Ai−1

and ∀j : |α|Aj ≤ 2k, |D(α)| ≤
∑i−1

j=1 2k|D(Aj)|. It follows that for each i,
|D(Ai)| ≤ (2k + 1)i−1. For each X → β and Y , |D(β)|Y ≤

∑m
j=1 2k|D(Aj)|Y =

2k
∑m

j=1(2
k + 1)j−1 < 2k(2k + 1)m, so |D(β)|Y for each β can be written in

k + mk bits. The whole decomposition D(β) can be written as a binary vector
consisting of m elements (one for each Y), and so in mk(m + 1) bits. Thus,
D(X) − D(P) + D(β) can be computed in O(m2k). It easily follows that the
algorithm 3.4 is in O(m2n2k), the algorithms 3.2 and 3.3 are both in O(m2n3k),
and the algorithm 3.1 is in O(m4n3k). 2

4 Jančar algorithm

Definition 6. For a given BPP (Σ, Π, S, R) where Π = {X1, . . . , Xm}, a linear
function is a function c : Π∗ → Nω such that there exist coefficients cX1 , . . . , cXm

such that for each process α, c(α) =
∑m

i=1 cXi
· |α|Xi

.

Theorem 3. For each set of elementary processes Q ⊆ Π, the function normQ :
Π∗ → Nω which assigns to each process its norm with respect to Q is a linear
function.

4.1 Computing a norm with respect to a set of variables Q

for each variable X ∈ Q, let cX := ω
for each variable X 6∈ Q, let cX := 0
repeat: {

for each variable X ∈ Q, let dX := ω
for each rule X → α such that X ∈ Q: {

let d :=
∑

Y cY · |α|Y
if d < dX , let dX := d

}
let d := min{dX | X ∈ Q}
for each variable X ∈ Q such that dX = d: {

let cX := d + 1
remove X from the set Q

}
} while Q 6= ∅

Theorem 4. The algorithm 4.1 is in O(m3nk).
Proof. Let us denote the variables A1, . . . , Am in the same order as the algorithm

4.1 determines their norms. Then cA1 = 1 and cAi
≤

∑i−1
j=1 2kcAj

+ 1. It follows
that cAi ≤ (2k +1)i−1 ≤ (2k +1)m−1. Because |α|Y ≤ 2k for each Y , cY · |α|Y ≤
2k(2k + 1)m−1, and thus cY · |α|Y can be written in (m − 1)(k + 1) + k bits,
so it is in O(mk). Then the sum

∑
Y cY · |α|Y is in O(m2k). The outer cycle

“repeat” is repeated at most m times because at least one element is removed
from the set Q in each repeating. The inner cycle “for each rule” is repeated n
times. It follows that the whole algorithm is in O(m3nk). 2

4.2 Checking bisimilarity of processes α and β

decompose the set of all rules to subsets T1, . . . , Tn according to ≡:
X →a α ≡ Y →b β ⇐⇒ a = b
repeat: {

for each set Ti: {
compute the coefficients of the function normPre Ti

for each rule X → α:
let δi(X → α) := normPre Ti

α− normPre Ti
X

decompose Ti to subsets T ′
i,1, . . . , T

′
i,mi

according to ≡:
X → α ≡ Y → β ⇐⇒ ∀i : δi(X → α) = δi(Y → β)

}
denote all sets T ′

1,1, . . . , T
′
n,mn

as T1, . . . , Tm

} while m > n
for each decomposition set Ti: {

compute the coefficients of the function normPre Ti

if normPre Ti α 6= normPre Ti β, return false
}
return true

Theorem 5. The algorithm 4.2 is in O(m3n3k).
Proof. The cycles “repeat” and “for each set Ti” are repeated at most n times
because the decomposition can have at most n subsets and at least one new
subset is added in each repeating. Computation of the coefficients of function
norm is in O(m3nk). The cycle “for each rule X → α” is repeated n times
and the computation of δi(X → α) from normPre Ti

is in O(m2k), so the
computation of norm is strictly longer. Decomposing and the final step after
reaching the finest decomposition are also strictly shorter than the first step, so
the whole algorithm is in O(m3n3k). 2

References

1. Yoram Hirshfeld, Mark Jerrum, Faron Moller. A polynomial time algorithm for
deciding bisimulation equivalence of normed Basic Parallel Processes. Journal of
Mathematical Structures in Computer Science 6: 251–259, 1996.

2. Petr Jančar. Strong Bisimilarity on Basic Parallel Processes is PSPACE-complete.
Proc. 18th LiCS, pages 218–227. IEEE Computer Society, 2003.

