
Complexity of Equivalence Checking Problems

Zdeněk Sawa

Dept. of Computer Science, FEI,
Technical University of Ostrava,

17. listopadu 15,
CZ-708 33 Ostrava, Czech Republic

Zdenek.Sawa@vsb.cz

Abstract. The article summarizes the results of the author in the area
of automated verification of systems and concurrency theory. These re-
sults are concerning the computational complexity of equivalence check-
ing problems. The main aim of the paper is to present intuitive non-
formal overview of these results.

Keywords: verification, equivalence checking, computational complexity

1 Introduction

One of the main problems in a design of any complicated system is to ensure
the correctness of the design. Simulation and testing are the standard techniques
used for this purpose. While they are very useful in the early stages of devel-
opment and allow to discover many bugs in the system, they have a serious
drawback that one can never be sure that there are not some other more sub-
tle bugs in the system. This problem becomes more apparent in the design of
systems that are composed of many components that run concurrently and may
interact with each other in complicated ways. Examples of such systems are op-
erating systems, network communication protocols, microprocessors, distributed
and parallel algorithms, and traffic control systems.

It becomes obvious that some formal methods are necessary in the design
of such systems. While simulation and testing explore some of the possible be-
haviours of the system, the formal methods usually allow to verify all possible
behaviours of the system.

The formal methods provide the designer with the necessary mathematical
tools that can be used in the construction of rigorous mathematical proofs of
the correctness of the system. The construction of such proof can be done either
by hand or may be automated by use of some sort of verification software tools.
The latter approach is very attractive since the construction of proofs by hand
is very tedious and error prone.

The design and analysis of algorithms that can be used in such verification
tools is one the main research topics in the area of verification and concurrency



theory. These areas have their origins in more traditional areas of computer sci-
ence like automata theory, theory of formal languages, semantics of programming
languages, and Petri nets.

Formalisms based on relations between input and output are usually not
appropriate for modeling of systems with ongoing behaviour, so such systems
are usually modeled as labelled transition systems. This means that a system
has some set of possible states and a set of possible transitions between these
states. The set of states can be infinite. The transitions are often labelled with
actions from some finite set of actions. A labelled transition system can be viewed
as an abstraction of the behaviour of the systems, as the semantics of systems.

There are many possible ways how labelled transition systems can be pro-
duced and described. The most often used possibilities include:

– different types of automata, like finite state automata, pushdown automata,
counter machines, and so on,

– process algebras where a system in described by a set of algebraic equations,
examples of process algebras are CCS, CSP, and π-calculus,

– Petri nets.

There are two main types of problems studied in the concurrency theory —
model checking and equivalence checking:

– Model checking is a problem where we have given some system (resp. de-
scription of a system) and some desired property of the system expressed as
a formula in some temporal logic, and we are asked if the system satisfies
the given property. There are many different types of temporal and modal
logics such as LTL, CTL, CTL∗, µ-calculus, and different fragments of these
logics.

– Equivalence checking is a problem where we have given (descriptions of) two
systems and we are asked whether these systems are equivalent with respect
to some notion of equivalence. There are many possible ways how equivalence
of systems can be defined, and many different types of equivalence was pro-
posed in literature. These equivalences were organized into the linear-time
/ branching time spectrum (Fig. 1), see [8]. In fact, as equivalence check-
ing problems we can consider also problems where we decide some general
relations between systems, not necessarily equivalences.
One important application of equivalence checking is a situation where one
of the systems represents a specification and the other an implementation
and we want to check whether their behaviours are the same.

There are also other types of problems, for example one promising approach
is to try produce automatically a system that satisfies some given specification.

While most of these problems may be solved automatically for finite-state
systems, the problems become undecidable when we consider them in full gen-
erality. The interesting question is where exactly lies the borderline between
decidable and undecidable verification problems and what is the computational



Bisimulation equivalence

2−nested simulation equivalence

Ready simulation equivalence

Ready trace equivalence

Readiness equivalence

Failures equivalence

Completed trace equivalence

Trace equivalence

Simulation equivalence

Possible−futures equivalence

Failure trace equivalence

Fig. 1. Linear time / branching time spectrum

complexity of decidable problems, i.e., the question where are the limits of au-
tomated verification.

One of the most serious obstacles in the design of efficient verification algo-
rithms is the phenomenon known as a ‘state explosion’. This problem appears
when we have a system composed of many components. These components may
have small state spaces, but the state space of the whole system can be exponen-
tially larger than descriptions of its components. Unfortunately it shows up that
the state explosion is unavoidable in many cases and that algorithms solving
such problems require exponential time.

For more information about model checking and equivalence checking, see
for example [1] or [9].

The rest of the paper contains short informal descriptions of results obtained
by the author in the area.

2 Own results

2.1 EXPTIME-hardness of Equivalence Checking of Non-Flat

Systems

Let us consider systems composed by parallel composition from explicitly
given finite-state systems where some actions may be hidden in the resulting
system, i.e., they can be replaced by ‘invisible’ τ actions. Such systems are an
example of so called ‘non-flat’ systems. ‘Flat’ systems are systems with explic-
itly given sets of states and transitions, on the other hand, ‘non-flat’ systems
are build from flat systems and have some internal structure. The equivalence



checking problem for the above mentioned non-flat systems was considered by
A. Rabinovich in [5]. He proved there that the problem is PSPACE-hard for any
relation that lies between bisimulation equivalence and trace preorder. He men-
tioned that the problem is EXPTIME-complete for bisimulation equivalence,
and he formulated a conjecture that the problem is in fact EXPTIME-hard for
any relation between bisimulation equivalence and trace preorder.

The Rabinovich’s conjecture was approved by the author in [7]. This EX-

PTIME-hardness lower bound result can be easily extended to other types of
non-flat systems, for example to 1-safe Petri nets. A new auxiliary model called
reactive linear bounded automata (RLBA) was also introduced in this paper.
The use of RLBA considerably simplified the proof and allows very simple gen-
eralization of the result to other types of non-flat systems.

2.2 PTIME-hardness of Equivalence Checking of Flat Systems

It was shown by the author and his supervisor in [6] that equivalence checking
is PTIME-hard in case of flat systems for any relation between bisimulation
equivalence and trace preorder. The result implies that equivalence checking can
not be efficiently parallelized unless NC = PTIME which is generally conjectured
to be very unlikely.

The paper [7] contains alternative and simpler proof of the same result.

2.3 A Method for Proving DP-hardness of Verification Problems

Concerning One-Counter Automata

One-counter automata are finite-state automata equipped with a counter.
The the counter may be incremented by 1, decremented by 1, and tested if it
is equal to zero. Such automata can be viewed as a special case of pushdown
automata where the stack alphabet contains only one symbol (and a special
marker of the bottom). One-counter automata are one of the simplest examples
of infinite state systems.

One-counter nets form a subclass of one-counter automata where we can not
test the zero value of the counter, only non-zero. Such systems are equivalent to
Petri nets with at most one unbounded place.

A general method that can be used to show DP-hardness of many problems
concerning one-counter automata and one counter nets was presented in [2]. Note
that DP-hardness of a problem implies that the problem is NP-hard and also
coNP-hard.

The basic idea is that we can define a certain fragment of Presburger arith-
metic, called OCL (One-Counter Logic), such that deciding the truth of closed
formulas in this fragment can be easily reduced to different verification problems
for one-counter automata. Deciding the truth in OCL is DP-hard and so it im-
plies DP-hardness of all these problems. Every formula of OCL can be in some
sense ‘implemented’ by the corresponding pair of automata and this construction
proceeds inductively on a structure of a formula.

The particular results that were obtained using this method are:



– Equivalence checking is DP-hard for one-counter nets for every relation be-
tween bisimulation equivalence and simulation preorder.

– Deciding simulation preorder and simulation equivalence is DP-hard for a
one-counter automaton and finite-state system (in both directions).

– Model checking problem with a one-counter net and a formula from the
branching time temporal logic EF (the logic EF is a fragment of CTL) is
DP-hard.

The article [3] where this results are described in more detail was accepted
to publication in the magazine Information and Computation.

2.4 Undecidability of Deciding Simulation Equivalence for

One-Counter Automata

It was proved in [4] that the problem of deciding simulation equivalence (resp.
simulation preorder) is undecidable for one-counter automata.

3 Overview of Publications:

This section contains an overview of publications where the results were
published in chronological order:

– P. Jančar, F. Moller, and Z. Sawa – Simulation problems for one-counter
machines, in Proceedings of SOFSEM’99, [4].

– Z. Sawa and P. Jančar – P -hardness of equivalence testing on finite-state
processes, in Proceedings SOFSEM 2001, [6].

– P. Jančar, A. Kučera, F. Moller, and Z. Sawa – Equivalence-checking with
one-counter automata: A generic method for proving lower bounds, in Pro-
ceedings of FoSSaCS 2002, [2].

– Z. Sawa – Equivalence Checking of Non-flat Systems Is EXPTIME-hard, in
Proceedings of CONCUR 2003, [7].

– P. Jančar, A. Kučera, F. Moller, and Z. Sawa. DP Lower Bounds for
Equivalencei-Checking and Model-Checking of One-Counter Automata, to
appear in Information and Computation, [3].

References

1. E.M. Clarke, Jr., O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.
2. P. Jančar, A. Kučera, F. Moller, and Z. Sawa. Equivalence-checking with one-

counter automata: A generic method for proving lower bounds. In Proceedings of
FoSSaCS 2002, volume 2303 of LNCS, pages 172–186. Springer, 2002.

3. P. Jančar, A. Kučera, F. Moller, and Z. Sawa. DP Lower Bounds for Equivalencei-
Checking and Model-Checking of One-Counter Automata. To appear.

4. P. Jančar, F. Moller, and Z. Sawa. Simulation problems for one-counter machines. In
Proceedings of SOFSEM’99, volume 1725 of LNCS, pages 404–413. Springer, 1999.



5. A. Rabinovich. Complexity of equivalence problems for concurrent systems of finite
agents. Information and Computation, 139(2):111–129, 15 December 1997.

6. Z. Sawa and P. Jančar. P -hardness of equivalence testing on finite-state processes.
In Proc. SOFSEM 2001 (Piestany, Slovak Rep., November 2001), volume 2234 of
Lecture Notes in Computer Science, page 326. Springer, 2001.

7. Z. Sawa. Equivalence Checking of Non-flat Systems Is EXPTIME-hard. In Proc.
CONCUR 2003, volume 2761 of Lecture Notes in Computer Science, pages 237–250.
Springer, 2003.

8. R.J. van Glabbeek. The Linear Time - Branching Time Spectrum. In J.C.M. Baeten
and J.W. Klop, editors, Proceedings of CONCUR ’90, Theories of Concurrency:
Unification and Extension, volume 458 of Lecture Notes in Computer Science, pages
278–297. Springer-Verlag, Berlin, 1990.

9. Handbook of Process Algebra, Elsevier, 2001.


