
Storing XML Data In a Native
Repository

Kamil Toman
ktoman@ksi.mff.cuni.cz

Dept. of Software Engineering
Faculty of Mathematics and Physics

Charles University

Introduction

● Since 1998 XML has become a very popular
standard for electronic interchange and
application data

● XML documents don't need a rigid schema
but they still offer a logical structure

● XML data originate from many different
sources and are very heterogenous

● Greater flexibility creates a strong demand of
XML Databases

XML Querying

● New XML query languages have been pro-
posed – XPath and Xquery

● Both languages use the basic concept of
path expressions

● Implementation of these languages on top of
traditional relational and object-relational
database systems is problematic

● Storing XML in object-oriented databases is
ineffective

● Native XML databases are being developed

SXQ-DB

● Experimental native XML DB to store and
manage collections of XML documents with
a common DTD

● As the query language, SXQ (Simple
Xquery) querying language is implemented

● The general and extensible modular
architecture is built up on XMLCollection
framework

SXQ-DB, Overall Architecture

User InterfaceUser Interface

Query Processing Module

XML Repository XML Repository

XML Data XML Data

Document Representation

● XML Information Set augmented by relevant
parts of XQuery Data Model

● Oriented tree where to each node is associ-
ated a type and a label, vertices with a com-
mon parent ordered left-to-right
– Text values of elements or attributes are represen-

ted as artificial nodes

– Mixed contents elements are modeled as trees

Document Representation

“end”

bf it

“begin”

“bold”

“normal”

“italic”

text

PCDATA PCDATA

PCDATA PCDATA

PCDATA

<text>begin<bf>bold</bf>normal<it>italic</it>end</text>

1 2 4 5

1 1 1 1 1

1 1

3

Node Identification

● Numbering scheme: a function that assigns
a unique binary identifier to each node
– This id can be used as a reference in an index or

while query evaluation

– Can be used as on document updates

● Primary: sequential numbering scheme
● Secondary: structural numbering scheme

– Allows effective query evaluation utilizing structur-
al joins

Node Identification

contact

name

“Joe”

phone

home office

“123 234 345” “192 837 465”

(1,100,1)

(10,5,2) (20,50,2)

(11,0,3) (25,10,3) ((40,10,3)

(30,0,4) (45,0,4)

3

4

5

6

9

12

21

18

XML Repository Architecture

DTD Storage

Element Storage

Value Storage

Structure Index

Value Index

Word Index

Common Infrastructure

Physical Access To External
Memory

● All XML nodes identifiers, their types and
adjacent node identifiers are stored into
individual fixed-length records in a binary file

● For effective access all records are indexed
in a B+-tree

● Better representation of more complex
relations between nodes is left to structural
indices

● The system resources are limited – paging
mechanism is used

Object Cache

● XML nodes are accessed frequently but
– the information is mostly short-lived

– Every node must be first looked up in an index
(possibly unbuffered), its respective page has to
be computed and fetched

● To avoid this, secondary object cache is
implemented

● All cache objects are kept in main memory at
all times and only reinitialized with new data

Query Processing Module

XML
Query

Lexical Analyzis

Syntactic Analyzis

Query Normalization

Query Optimization Plan Generation Query Plan Evaluation

Query Result

XML Repository
Symbols

Syntactic tree

Canonic Tree Document
Information

Data Model

Sources of Difficulties

● Size of indices
– Besides common word or value indices, additional

indices are needed for structural joins or effective
tree traversals

● Slow updates:
– Not only data but even the structure of XML

documents may change significantly

– Expensive index updates may be needed

● Generality of XML query languages
– Both XPath and XQuery are Turing-complete

Other Native XML Databases

● TIMBER
– XML tree algebra (TAX) approach
– XQuery subset translated to TAX operations

● eXist
– Lightweight, can manage only small to medium

sized XML documents
– XPath subset + fulltext extensions

● dbXML
– Using B-trees, fully updatable
– Navigational approach + large indices

● Xindice
– XPath fully implemented, navigational approach
– XUpdate supported

Conclusion & Future Work

● Efficient XML database is achievable
– Chosen data model is sufficient for implementation

of the most important parts of XQuery

– Managing dynamic XML data is much harder than
static XML documents

● Future work should be probably focused on
– Finding a more general way how to express and

evaluate the most common XML queries

– Reducing space needed for structural and term
indices of the database

References

● M. Kopecny (2002): Implementacni prostredi pro kolekce
XML dat (thesis, in Czech). MFF UK.

● K. Toman(2003): XML data na disku jako databaze (thesis, in
Czech). MFF UK.

● J. Cowan, R. Tobin (2001): XML Information Set.
http://www.w3.org/TR/xml-infoset

● J. Clark, S. DeRose (1999): XML Path Language (XPath 1.0)
http://www.w3.org/TR/xpath

● M. Marchiori (2003): XML Query Specifications.
http://www.w3.org/XML/Query#specs

● E. Cohen, H. Caplan, T. Milo (2002): Labeling XML Trees.
Symposium on PODS, p. 271-281

