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Introduction

● Since 1998 XML has become a very popular 
standard for electronic interchange and 
application data

● XML documents don't need a rigid schema 
but they still offer a logical structure

● XML data originate from many different 
sources and are very heterogenous

● Greater flexibility creates a strong demand of 
XML Databases



XML Querying

● New XML query languages  have been pro-
posed – XPath and Xquery

● Both languages use the basic concept of 
path expressions

● Implementation of these languages on top of  
traditional relational and object-relational 
database systems is problematic

● Storing XML in object-oriented databases is 
ineffective

● Native XML databases are being developed



SXQ-DB

● Experimental native XML DB to store and 
manage collections of XML documents with 
a common DTD

● As the query language, SXQ (Simple 
Xquery) querying language is implemented

● The general and extensible modular 
architecture is built up on XMLCollection 
framework
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Document Representation

● XML Information Set augmented by relevant 
parts of XQuery Data Model

● Oriented tree where to each node is associ-
ated a type and a label, vertices with a com-
mon parent ordered left-to-right
– Text values of elements or attributes are represen-

ted as artificial nodes

– Mixed contents elements are modeled as trees



Document Representation
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Node Identification

● Numbering scheme: a function that assigns 
a unique binary identifier to each node 
– This id can be used as a reference in an index or 

while query evaluation

– Can be used as on document updates

● Primary: sequential numbering scheme
● Secondary: structural numbering scheme

– Allows effective query evaluation utilizing structur-
al joins



Node Identification
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XML Repository Architecture
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Physical Access To External 
Memory

● All XML nodes identifiers, their types and 
adjacent node identifiers are stored into 
individual fixed-length records in a binary file

● For effective access all records are indexed 
in a B+-tree

● Better representation of more complex 
relations between nodes is left to structural 
indices

● The system resources are limited – paging 
mechanism is used



Object Cache

● XML nodes are accessed frequently but 
– the information is mostly short-lived

– Every node must be first looked up in an index 
(possibly unbuffered), its respective page has to 
be computed and fetched

● To avoid this, secondary object cache is 
implemented

● All cache objects are kept in main memory at 
all times and only reinitialized with new data



Query Processing Module
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Sources of Difficulties

● Size of indices
– Besides common word or value indices, additional 

indices are needed for structural joins or effective 
tree traversals

● Slow updates:
– Not only data but even the structure of XML 

documents may change significantly

– Expensive index updates may be needed

● Generality of XML query languages
– Both XPath and XQuery are Turing-complete



Other Native XML Databases

● TIMBER
– XML tree algebra (TAX) approach
– XQuery subset translated to TAX operations

● eXist
– Lightweight, can manage only small to medium 

sized XML documents
– XPath subset + fulltext extensions

● dbXML
– Using B-trees, fully updatable
– Navigational approach + large indices

● Xindice
– XPath fully implemented, navigational approach
– XUpdate supported



Conclusion & Future Work

● Efficient XML database is achievable
– Chosen data model is sufficient for implementation 

of the most important parts of XQuery

– Managing dynamic XML data is much harder than 
static XML documents

● Future work should be probably focused on
– Finding a more general way how to express and 

evaluate the most common XML queries

– Reducing space needed for structural and term 
indices of the database
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