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Vector Model

@ A query is represented by m dimensional vector

q:(q17q27"'7qm))
where g; € (0,1).

@ Each document d; is represented by a vector

di = (wj1, Wiz, . . ., Wim)

@ An index file of the vector is represented by matrix, where
e i-th row matches i-th document
e j-th column matches j-th term

W11 Wi ... W1im
Wo1 Woo e Wom

D:

Wn1 Wn2 . Wnm
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Vector Model

o Coefficient of similarity is a “distance” between the
document'’s vector and the vector of the query

@ Cosine measure:

sim(q, d; > k1 (quewin)
\/Zk 1 qk Zk 1(W,k)
sim(d;, dj) = 21 (Wik W)

\/Zk L (wir)? SRy (win)?
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Formal Concept Analysis

e A Formal context C := (G, M, ) consists of two sets G, M
and one relation / between G and M.

o elements of G are called objects
o elements of M are called attributes

If object g € G has an attribute m € M, we write glm or
(g.m) el
@ The Incidence matrix

G m, | m,| .. | m
2, 0|1 |..]1
g, 110]..[1

g 1|1 |..]0




Background
0®000

Formal Concept Analysis

@ For a set A C G of objects we define
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-the set of attributes common to the objects in A.

@ Correspondingly, for a set B C M of attributes we define
B! ={g € G | glm for all m € B}

-the set of objects which have all attributes in B.
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Formal Concept Analysis

@ For a set A C G of objects we define
Al ={me M| glm for all g € A}

-the set of attributes common to the objects in A.

@ Correspondingly, for a set B C M of attributes we define
B! ={g € G | glm for all m € B}

-the set of objects which have all attributes in B.

e A formal concept of the context (G, M, ) is a pair (A, B)
with AC G, BC M, A" = B and B! = A. We call A the
extent and B the intent of the concept (A, B).
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Formal Concept Analysis

M| m, | m, | m, | m, | mg [ mg | m, Diversity of object
G 11|11 ]1]1]1
g | x x | x| x|x do(g) = Z A(m)
8 X X m:meM and (glm)el
23 X | X X | x| x| x
g, | x| x|x X
M|m, | m, | m, | m, | mg | m,|m, Sum of diversities of objects
G 111 ]1]1]1]1
g | X x [ x| x|x sdo(C) = > do(g)
£ X X g:geC
23 X | X X | x| x| x
g, | x| x|x X
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Formal Concept Analysis

M| m, | m, | m, | m, | m; | m, | m, Diversity of concept
G 1|1 |1]|1|1|1]1 Let S is the set of objects of the
g | x x | x [ x|x concept C.
2 X X
g | x| x X | x | x| X _
gl x [~ x v(5) ) A(m)

meM:(g,m)el for some g€S

It appears from Conjugate Moebius
Function.
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The importance of selected object (document)

@ Following formula has been obtained from observation and
experiments

impole) = 3 ) 2A) dole)
C:C>g

where S is the set of objects and A is the set of attributes of
the concept C.
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Formal Concept Analysis

The importance of selected object (document)

@ Following formula has been obtained from observation and
experiments

sdo(C)
v($)

impo(g) = Z A(A) do(g)

C:Cog

where S is the set of objects and A is the set of attributes of
the concept C.
S(\j/?g) The range of covered attributes (words).
It depends on weights of attributes and differences between
objects of selected concept.
o A(A) The weight of unique attributes.
e do(g) The weight of attributes owned by object (document).
This is used for objects’ differentiation in the same concept.




Vector Model Improvement
°

Obtaining the importances of documents by FCA

1. Input data
L{> ‘ 2. Data transformation ‘

L{> ’ 3. Set of concepts creation |

L{> | 4. Basic characteristics computation

H:{> 5. Sorting objects

according to their importance
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Topic Evolution

@ Evolution of topic

e documents may use different words to describe the same theme
list of documents related to theme, which is described by query
result of query

a query may consists of whole document.

@ Clusters generation

e TOPIC-CA algorithm
e TOPIC-FCA algorithm
@ Reordering algorithm
o SORT-EACH alg. moves all documents in a result of the
vector model query so that the documents belonging to the

same evolution of topic are closer to each other. It calls CA or
FCA Topic algorithm.
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Also we have now the hierarchy of documents (dendogram).
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© Next we choose the total number of documents in each topic
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Next we choose the total number of documents in each topic
("level’).

Then we find leaf cluster which contains selected relevant
document.

We pass through the hierarchy.

We explore neighbouring clusters. First we select the cluster
created on the highest sub-level. Each document, which we
find, we add to the result list. When the count of all
documents in the result list equals to 'level’ we break finding.
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Topic Evolution

All clusters of documents have been created using Cosine measure.
Also we have now the hierarchy of documents (dendogram).

TOPIC-CA algorithm

© Next we choose the total number of documents in each topic
("level’).

@ Then we find leaf cluster which contains selected relevant
document.

© We pass through the hierarchy.

@ We explore neighbouring clusters. First we select the cluster
created on the highest sub-level. Each document, which we
find, we add to the result list. When the count of all
documents in the result list equals to 'level’ we break finding.

© Go to the step 3 (we are going to compute Topic Evolution
for next document).
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Topic Evolution

All concepts have been already computed.

TOPIC-FCA algorithm

@ We make the query transformation. It means that we create
weighted vector of terms.

@ We compute the importances of documents (objects) and we
make the list of the documents and their importances.

© We find the relevant document rel; in the ordered list.

@ In finite steps, we look for “nearest” documents. The
“nearest” document is the document, that has the smallest
difference between its weight and the weight of rely. Founded
document is excluded before repeating of this step.
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Conclusion

Conclusion

@ We have described new method for vector query improvement
based on formal concept analysis and Moebius inverse
function.

@ The known deficiencies of vector model have been suppressed
using TOPICs and SEARCH-EACH algorithms.

@ Our presented methods can be applied on small data sets or
on large collections of documents.
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Future Work

@ test our method on large data collections

@ improve all algorithms by usage sparse matrix based on finite
automata

@ usage this method for collection preprocessing according to
specific dictionaries (mathematic, medicine, ...)
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