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Introduction

Introduction

I k-means method belongs to the most used ones in dm.

I It must be given the number of expected clusters.

I What to do if it could not be determined?

1. Make multiple computations with varying settings.

2. Adapt the algorithm to determine the count of clusters by
itself.
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Introduction

The goal

I Describe the ”classical” approach of determining clusters
using k-means based methods.

I Describe the solution using self-organizing neural network.

I Compare both approaches.
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K-means based methods

K-means based methods

Phases

1. Choose typical points.

2. Clustering.

3. Recompute typical points.

4. Check termination condition.
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CLASS method - flexible k-means

CLASS method - flexible k-means

I Tries to determine number of clusters on-line.

I During the clustering process it performs splitting of large
clusters.

I The very first step is one k-means clustering iteration. It
divide patterns into base clustering.

I Each iteration starts with exclusion of small clusters

I Excessively variable clusters are dispersed.
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CLASS method - flexible k-means

CLASS method - phases

Phases

1. Excluding small clusters.

2. Splitting clusters.

3. Revoking clusters.
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CLASS method - flexible k-means

CLASS method - splitting clusters

I The splitting threshold is determined with equation

Sm = Sm−1 +
1 − S0

GAMA

I Then for each cluster two average deviations are computed
I for points on the left side of the typical point
I for the right side

Djc =
1

kc

kc
∑

i=1

dij c ∈ {l , r}

I Using these deviations we compute splitting control
parameters a1 and a2 (relative ratios). If then:

I Number of clusters > 2K
I a1 > Sm or a2 > Sm

I Number of processed patterns > 2(THETAN + 1)

we split the cluster according to j th attribute.
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CLASS method - flexible k-means

CLASS method - revoking clusters

I Determine average minimum distance of h current clusters

TAU =
1

h

h
∑

i=1

Di

I Di is the minimum distance of i th typical point to others.

I If for some i holds Di < TAU and h > K
2

we revoke i th cluster.

I The clustering ends in GAMAth iteration.
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Unsupervised clustering

Self-Organizing Map

Self-Organizing Map

I A set A of neurons mutually interconnected, forming some
topological grid.

I The pattern is presented to the net to determine the winner.

c = argmin
a∈A

{||~x − ~wa||}

I The weight vectors of the winner and its neighbours are
adapted

wji (t + 1) =

{

wji(t) + hcj(t)(xi (t) − wji (t)) j ∈ N(c)

wji(t) otherwise.

I The som network preserves topology so neurons are placed in
the most dense regions.
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Growing Neural Gas

Growing Neural Gas

I Introduced by Bernd Fritzke

I Motivation:
I The net can have variable size.
I Neurons are added and/or replaced according to proportions in

the net.
I Impermanent connections between neurons.
I The resulting net could be in fact set of independent nets.
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Growing Neural Gas

GNG - phases

Phases

1. Competition.

2. Adaptation.

3. Removing.

4. Inserting new neurons.

5. Check termination condition.
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Growing Neural Gas

GNG - competition

I Determine the two nearest neurons s1 and s2 to the pattern ~x .

I If does not exists add a connection between these two
neurons.

I The age of the connection is set to 0.

I The local error variable of the winner is increased by squared
distance to the pattern.

∆Es1 = ||~x − ~ws1 ||
2
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Growing Neural Gas

GNG - adaptation & removing

Adaptation

I Weight vectors of neuron s1 and its topological neighbours are
adapted by fractions εb and εn.

∆ws1 = εb(~x − ~ws1)

∆wi = εn(~x − ~wi ) ∀i ∈ Ns1

I The age of all winner’s outgoing edges is increased by 1.

Removing

I All connections with age greater than agemax are removed.

I All standalone neurons are removed.
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Growing Neural Gas

GNG - inserting new neurons

I New neurons are added every λth step using this procedure:

1. Determine neuron p with largest accumulated local error and
its neighbour r with largest accumulated local error.

2. Create new neuron q and set its weight to the mean of p and
r neurons weights.

3. Remove connection between p and r and add new between p

and q and q and r .

4. Local accumulated errors of neurons p and r are decreased by
fraction α and local accumulated error of neuron q is set to
the mean of p and r errors.

5. Local accumulated errors of all other neurons are decreased by
fraction β.
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Examples and comparison

Examples and comparison - the basis

I The set of 1000 patterns with given distribution.
I The k-means and class methods use discrete points, som

and gng use continuosly generated points from same
distribution.

(a) Distribution (b) Objects from distribution
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Examples and comparison

Examples and comparison - k-means and som

I Test if both methods will produce similar partitioning with
number of units equal to number of clusters.

(c) k-means with K = 4 (d) som with 4 neurons
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Examples and comparison

k-means and som

I The dangerous situation occurs when:
I Number of representatives is very slightly higher or lower

I Result is hardly interpretable - i.e. typical points does not
represent clusters.

(e) k-means with K = 5 (f) k-means with K = 3
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Examples and comparison

Examples and comparison - class and gng

I Compare results reached with both methods.

I Both methods modify number of clusters using different
approaches

I compare them when they have identical cluster’s count.
I in the early iterations (few representatives) – 4
I little more representatives – 9
I enough representatives – 25
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Examples and comparison

class and gng – 4 representatives

I Both results represent rough partitioning.

I Representatives are near centers - covering clusters as a whole.

(g) class (h) gng
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Examples and comparison

class and gng – 9 representatives

I More fine grained partitioning - an effort to cover smaller
parts of clusters.

I gng expresses the topology of clusters using connections.
I gng’s result could be interpreted as ”three clusters”, but ...

(i) class (j) gng
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Examples and comparison

class and gng – 25 representatives

I Dislocation of representatives looks similar.
I gng’s result is nicely interpretable - 4 clusters with some

topology.

(k) class (l) gng
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Conclusions

Conclusions

I Both approaches produce similar results.

I Suitable interpretation of connections could make results
clearer.

I Good feature of gng - set of independent sets of neurons.
I Gives additional useful information.
I Need to be interpreted with care.

I Situation in n-dimensional space - future work.
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That’s all, thank you for your

attention.

Questions welcome.
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