
Department of Computers, Czech Technical University, Prague
Department of Software Engineering, Charles University, Prague

Department of Computer Science, VŠB-Technical University of Ostrava
ČSKI, OS Computer Science and Society

Proceedings of the Workshop

April 9 – 11, 2003
Desná – Černá Ř́ıčka

Technical editor: Jǐŕı Dvorský

VŠB-Technical University of Ostrava

DATESO 2003 (Proceedings of the Workshop Databases, Texts, Specifications, and
Objects), April 9-11, 2003, Desná – Černá Ř́ıčka, 1st – Ostrava – VŠB-Technical Uni-
versity of Ostrava, Ostrava-Poruba, tř. 17. listopadu 15, 708 33

ISBN 80-248-0330-5

Preface

DATESO 2003, the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming,
was held on April 9th 11th, 2003 in Desná – Černá. This was the third an-
nual workshop organized by FEL ČVUT Praha, Department of Computer Sci-
ence and Engineering, MFF UK Praha, Department of Software Engineering,
and VŠB-Technical University Ostrava, Department of Computer Science. The
DATESO aims for strengthening the connection between this various areas of
informatics. The proceedings of DATESO 2003 are also available at Web site
http://www.cs.vsb.cz/dateso/2003/.

We wish to express our sincere thanks to all the authors who submitted
papers, the members of the Program Committee, who reviewed them on the
basis of originality, technical quality, and presentation. We are also thankful to
the Organization Committee.

May, 2003 J. Pokorný, V. Snášel (Eds.)

http://www.cs.vsb.cz/dateso/2003/

Program Comittee

Jaroslav Pokorný Charles University, Prague
Karel Richta Czech Technical University, Prague
Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Pavel Zezula Masaryk University, Brno

Organization Comittee

Yveta Geletičová VŠB-Technical University of Ostrava
Pavel Moravec VŠB-Technical University of Ostrava
Aleš Keprt VŠB-Technical University of Ostrava
Jǐŕı Dvorský VŠB-Technical University of Ostrava

Table of Contents

Compression-Based Models for Processing of Structured and
Semi-structured Data . 1
Abu Sayed Md. Latiful Hoque

Data Transfer Between Relational Databases Using XML 21
Pavel Loupal

Ontology Merging in Context of Web Analysis . 30
Martin Labský, Vojtěch Svátek

Web Services and WSDL . 41
Karel Richta

Metadata Driven Data Pre-processing for Data Mining 55
Petr Aubrecht, Petr Mikšovský, Zdeněk Kouba

Algebraic Specification of Database models . 63
Martin Hnátek

Benchmarking the Multidimensional Approach for Term Searching 71
Jiř́ı Dvorský, Michal Krátký, Tomáš Skopal, Václav Snášel

Benchmarking the UB-tree . 83
Michal Krátký, Tomáš Skopal

Clustering Algorithm Via Fuzzy Concepts . 95
Stanislav Krajči

Author Index . 102

Compression-Based Models for Processing of
Structured and Semi-structured Data

Abu Sayed Md. Latiful Hoque
Latiful.Hoque@cis.strath.ac.uk

Department of Computer and Information Sciences, University of Strathclyde, 26,
Richmond St, Glasgow, G1 1XH, UK

Abstract. Lossless data compression is potentially attractive in
database systems for reduction of storage cost and performance im-
provement. It has proved difficult to combine a good compression tech-
nique to achieve both performance improvement and storage reduction.
This paper presents a novel three-layer database architecture for stor-
age and querying of structured relational databases, sparsely-populated
e-commerce data and semi-structured XML.

We have proved the system in practice with a variety of data. We have
achieved significant improvement over the basic Hibase model [28] for
relational data. Our system perform better than the Ternary model [22]
for the sparsely-populated data. We compared our results with conven-
tional LZW based UNIX utility compress. Our system performs a factor
of two to six more in reduction of data than compress, maintaining the
direct addressability of the compressed form of data. Our method needs
two passes which is not a problem for database applications.

1 Introduction

Reducing the volume of data without losing any information is known as Loss-
less Data Compression. This is potentially attractive in database systems for
two reasons:

1. reduction of storage cost
2. performance improvement
The reduction of storage cost is obvious. The performance improvement arises

because the smaller volume of compressed data may be accommodated in faster
memory than its uncompressed counterpart. Only a smaller amount of com-
pressed data need be transferred and/or processed to effect any particular op-
eration. A further significant factor is now arising in the storage and transfer of
semi-structured XML data across the Internet and distributed applications us-
ing wireless communications. Bandwidth is a performance bottleneck and data
transfers may be costly in wireless systems. All of these constitute factors making
data compression architecture exceedingly worthwhile.

To achieve the above goals, we have developed a three layer database archi-
tecture (Fig. 1) using compression.

c© J. Pokorný, V. Snášel (Eds.): Dateso 2003, pp. 1–20, ISBN 80-248-0330-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2003.

2

Layer 1: The lowest layer is the vector structures to store the compressed
form of data. As queries are processed on the compressed form of data, indexing
is allowed on the structure such that we can access any element in the compressed
form without decompression. The size of the element can vary during database
update. The vector can adapt dynamically as data is added incrementally to
the database. This dynamic vector structure is the basic building block of the
architecture.

Layer 2: The second layer is the explicit representation of the off-line dic-
tionary in compact form. We have presented a phrase selection algorithm for
off-line dictionary method in linear time and space [6].

Layer 3: The third layer consists of the data models to represent structured
relational data, sparsely-populated data and semi-structured XML.

Dynamic vector

Unary Model Extended Hibase

Relations, Massive table XML database, Sparse e−commerce

Layer 1

Layer 2

Layer 3

Tokenized data Dictionary Indexes

User queries interfaceApplication program interface

Fig. 1. The three layer database architecture using an off-line dictionary method
and the unary model

The Hibase model by Cockshott, McGregor and Wilson [28] is a model of data
representations based on information theory. We have developed an extention of
the Hibase model for storage and querying of the structured relational databases.
Storage and querying sparsely-populated e-commerce data [22], semi-structured
data such as XML [7] and the massive table data [25] typically of communication
networks has created new challenges for comventional database systems. The
horizontal relational model is less suitable for processing of these types of data
because of space overheads and performance limitations. We have developed a
novel unary model for storage and querying of sparsely-populated data. We have
extended the unary model for XML data.

In section 2, a review of the research in compression methods in database sys-
tems is presented. We have taken Hibase as the basis of our compression method.
We have described the dictionary organization and compressed relational struc-
ture of Hibase model and the Extended Hibase model in section 3. Section 4

3

presents the details of the unary data model. Section 5 describes the extension
of unary data model for XML data. Section 6 details the experimental work that
has been carried out. The experimental evaluation has been performed using a
wide variety of real and synthetic datasets. Section 7 presents conclusions and
suggestions for future work.

2 Literature Review

Wee et. al. [29] have proposed a tuple level compression scheme using Augmented
Vector Quantization. Vector quantization is a lossy data compression technique
used in image and speech coding [3]. However they have developed a loss-less
method for database compression to improve performance of I/O intensive op-
erations.

A similar compression scheme has been given in [27] with a different approach.
They have presented a set of very simple and light-weight compression techniques
and show how a database system can be extended to exploit these compression
techniques. Numeric compression is done by suppressing zeros, string compres-
sion is done by classical Huffman [13] or LZW [30] and dictionary-based com-
pression methods are used for the field containing a small number of different
values.

The scalability of MMDB depends on the size of the memory resident data.
Work has already been done on the compact representation of data [21,14]. A
typical approach to data representation in a such system is to characterize do-
main values as a sequence of strings. Tuples are represented as a set of pointers
or tokens referring to the corresponding domain values [21]. This approach pro-
vides significant compression but leaves each domain value represented by a fixed
length pointer/token that would typically be a machine word in length. An al-
ternative strategy is to store a fixed length reference number for each domain
value instead of a pointer to the value [21]. The benefit of this approach is that
in a static file structure, careful choice of the reference number will provide op-
timal packing of tuples. Another optimal approach for generating lexical tokens
is given by [8].

XML is emerging as a new major standard for representing data on the world
wide web. Effort to standardize data exchange over the internet has focussed on
the potential of XML. This has led to research on the possible approaches to
the representation and use of relational databases for storing XML. Researchers
have proposed several transformation models for this purpose. Schmidt et. al.
[7] have developed an XML extention of Monet based on the binary relational
model [10]. A semantic compression method optimized for XML has been given
in [17]. The method work well for data exchange and archiving. However it is
not designed for direct querying and achieves optimum performance only when
the data sets are large.

The purpose of using compressed text databases is to store both text and
indexes in compressed form so that queries can be processed on the compressed
data without prior decompression. Manber [19] has developed a dictionary

4

method based on directed graph G = (V,E), such that the vertices of G corre-
spond to the different characters in the text, one vertex for each unique character
and the edges correspond to the character pairs. The frequency count of each
pair is the weight of the pair. Finding the best non-overlapping phrase is an
NPcomplete problem. A greedy algorithm with limited size of the graph has
been used.

The index (or concordance) of a full text retrieval system is one of the largest
components of the system. The size of the uncompressed concordance may be
50% to 300% of the size of the uncompressed text [23]. Linoff et. al [18] used a
combination of compression methods to reduce the size of the concordance.

Effective exploratory analysis of massive, high-dimensional tables of alpha-
numeric data is a ubiquitous requirement for a variety of application environ-
ments including corporate data warehouses, network traffic monitoring or large
socio-economic or demographic serveys [24]. An example of massive data tables
is ”Call Detail Records” (CDR) of large telecommunication systems. A typical
CDR is a fixed length record structure comprising several hundred bytes of data
that capture information on various attributes of each call. These CDRs are
stored in tables that can grow to truely massive sizes, in the order of several
terabytes per year. Table compression was introduced by Buchsbaum et. al. [4]
as a unique application of compression, based on several distinguishing charac-
teristics. They have introduced a system called pzip. The basis of the method is
to construct a compression plan studying a very small training set off-line.

Sparsely-populated data arises when sometimes data is represented using a
single horizontal table. An example is the sparse bit-map for a digital library [20],
the electronic marketplace in [22] and the new-portal system in IBM-Almaden
[2]. In a relational database system, data objects are conventionally stored using
a horizontal scheme. A data object is represented as a row of a table. There
are as many columns in the table as the number of attributes of the objects.
To store all the information in one table for this kind of applications, most
of the attribute values become null. Storage and query problems arise using the
horizontal relational model. Agrawal et. al. [22] have developed a ternary vertical
model for a compact representation of sparsely-populated data.

3 The Extended Hibase Model

3.1 Basis of the Approach

In the relational approach [9], the database is a set of relations. A relation is a
set of tuples. A tuple (row) in relation r represents a relationship among a set
of values. The corresponding values of each tuple belong to a domain, for which
there is a set of permitted values. If the domains are D1, D2, . . . Dn respectively,
then relation r is defined as the subset of the Cartesian product of the domains.

Thus r is defined as

r ⊆ D1 ×D2 × . . .×Dn

5

A relation represents a set of tuples. In a conventional table structure, the
rows represents tuples and the columns contain values drawn from domains.

Queries are answered by the application of the operations of the relational
algebra, usually as embodied in a relational calculus-based language such as
SQL.

Table 1. ’CUSTOMER’: an example of a simple relation .

Customer name Street City Status

Billy Albert Glasgow Married
Ann Albert Edinburgh Single
John North Hover Glasgow Married

Annan Maxwell Glasgow Married
Johnes Albert Edinburgh Married
Billal Albert Glasgow Married
Peter Maxwell Edinburgh Married
John Maxwell Glasgow Single

3.2 Compression Architecture: HIBASE Approach

The design philosophy of the compression architecture is to aim for a
cost/performance between that of conventional DBMS and main memory DBMS
- costs less than the latter, and processes faster than the former [28]. The ar-
chitecture’s compact representation can be derived from a conventional record
structure in the following steps:

Create a Domain Dictionary A dictionary per domain is employed to store
string values and to provide integer identifiers for them. This achieves a lower
range of identifiers, and hence a more compact representation than could be
achieved if only a single dictionary was provided for the whole database.

Replace the original field values of the relation by identifiers The range
of the identifiers need only be sufficient to unambiguously distinguish which
string of the domain dictionary is indicated. For instance, in the example shown
in figure 2 since there are only 7 distinct customer names, only seven identi-
fiers 0-6 inclusive are required. This range can be represented by only a 3-bit
binary number. Hence in the compressed table each tuple requires only (3 bits :
Customer name) (2 bits: Street) (1 bit: City) (1 bits: Status) - a total of 7 bits
instead of the 29 *8 bits for the uncompressed relation. This gives a compression
of the table itself by a factor of over 33. This is not the overall compression
ratio however because we must also take account of the space occupied by the
domain dictionaries and also by indexes. Typically a proportion of domains are

6

2(10)
1(01)
0(00)
0(00)

2(010)
6(110)
5(101)
4(100)
3(011)
2(010)
1(001)
0(000)

Compression Engine

6
5
4
3
2

0(00)

1
0
0
0
0
0
1
0

0
1
0
1
0
0
1
0

2(10)
2(10)
0(00)

1

Customer name Street City Status

Ann Albert Edinburgh Single
Billy Albert Glasgow Married

John Maxwell Glasgow Single
Peter Maxwell Edinburgh Married
Billal Albert Glasgow Married
Jones Albert Edinburgh Married
Annan Maxwell Glasgow Married
John North Hover Glasgow Married

0

Id

John Maxwell
Ann North Hover Edinburgh Single

Peter
Billal
Jones
Annan

Customer name Street City Status

Billy Albert Glasgow Married

Fig. 2. Compression of a relation using domain dictionaries

present in several relations and this reduces the dictionary overhead by sharing
it between different attributes.

The fact that in a domain a specific identifier always refers to the same field
value enables many operations to be carried out by processing only the table
component of the data, ignoring the dictionaries until string values are essential
(e.g. for output).

Dictionary Structure All the unique attribute values (lexemes) are stored in
an end-to-end format in a string heap. A hashing mechanism is used to achieve
a contiguous integer identifier for the lexemes. This reduces the size of the com-
pressed table. It has three important characteristics:

1. It maps the attribute values to their encoded representation during the
compression operation: encode(lexeme) −→ token.

2. It performs the reverse mapping from codes to literal values when parts of
the relation are decompressed: decode(token) −→ lexeme.

3. The mapping is cyclic such that lexeme = decode(encode(lexeme)) and
also token = encode(decode(token)).

The structure is attractive for low cardinality data. For high cardinality and
primary key data, the size of the string heap grows considerably and contributes
very little or no compression.

Processing in the compressed data phase Queries are carried out directly
on the compressed data, without requiring any decompression during the pro-
cessing (figure 3). The query is translated to compressed form and then processed

7

directly against the compressed form of the relational data. Less data needs to
be manipulated and this is more efficient than the conventional alternative of
processing an uncompressed query, against uncompressed data. The use of this
compression method also increases efficiency of buffering of data both in RAM
and in CPU caches.

Decompression
Engine

Compression
Engine

Dictionaries

Scan Compressed
Table

Query Expanded result

Fig. 3. Querying a database in compressed form

The final answer has to be converted from the compressed form to a normal
uncompressed representation. However, the computational cost of this decom-
pression is low because the amount of data that needs to be decompressed is
only a small fraction of that processed.

Column-wise representation of relations The architecture represents a ta-
ble in storage as a set of columns, not a set of rows. This makes certain operations
on the compressed database considerably more efficient. Of course, the user is
free to regard the table as a set of rows as he/she pleases.

Representation by column can be processed more efficiently than represen-
tation by row. A column-wise organisation is much more efficient for dynamic
update of the compressed representation. A general database system must sup-
port dynamic incremental update, while maintaining efficiency of access.

The processing speed of a query is enhanced because, typically, queries specify
operations on only a subset of domains. In a column-wise database only those
specified values need be transferred, stored and processed. This requires only a
fraction of the data volumes required when processing by rows.

3.3 The Extended Hibase Model

We have developed the more compact and efficient vector structure as given in
[5]. The second order compression using an off-line dictionary method ofer a
further compression of the dictionary heap in Hibase. This is described in [6].
The use of the improved vector structure and second order compression of the
dictionary heap creates the extended Hibase model.

8

The extended Hibase model can achieve some benefit in a very low cardinality
data using unary representation. For example, if a domain has three values:
”Yes”, ”No” and ”undefined”, it requires two bits to represent three values. If
there are 15 consecutive ”yes” value, it requires 30 bits. The unary representation
can reduce it to only 6 bits.

The single attribute index and the composite index [28] are created on the
compressed representations in the Extended Hibase model using a hashing mech-
anism. The Update operation in the Extended Hibase model requires a ’string’
look up in the dictionary. If the ’string’ is present in the dictionary the Update
operation does not need a reorganization of the vector structure. If the ’string’
is not present in the dictionary it is inserted into the dictionary. This insertion
might result an increase of the element size. In this case the Update operation re-
quires a reorganization of the vector structure. This reorganization is less costly
in the Extended Hibase model than the basic Hibase model. Deletion is per-
formed by putting a null representation in the corresponding element position.
Dictionary entries are not deleted.

4 The Unary Model

We have developed a unary model for representing sparse data. It overcomes
the space difficulties of both the previous methods (Horizontal model (Table 2)
and Ternary representation [22]). As will be seen, it also offers better perfor-
mance. The unary model creates one unary compressed table for each attribute
maintaining the record identifier implicitly. The unary tables is shown in table
3.

Table 2. A sparsely-populated news portal table.

News Object Country People Sport Research

news1 UK ⊥ Atheletic ⊥
news2 ⊥ McGregor ⊥ Database
news3 USA ⊥ ⊥ ⊥
news4 ⊥ ⊥ Football ⊥
news5 ⊥ Newton ⊥ Physics

Compressed representations The unary representation is effectively an en-
coding of the off-line dictionary method [6] and a run-length encoding [11] of the
uncompressed sparse-table. Using the off-line approach [6], five dictionaries were
created for five domains: News identifier, country, people, sport and research.
The domain dictionaries are given in figure 4.

We have developed two alternative compressed representations for unary ta-
bles.

9

Table 3. Unary table.

Country People Sport Research
UK ⊥ Atheletic ⊥
⊥ McGregor ⊥ Database

USA ⊥ ⊥ ⊥
⊥ ⊥ Football ⊥
⊥ Newton ⊥ Physics

1. The offset structure
2. The bit-array index structure
An offset representation of unary tables shown in Table 3 is created using

run length encoding [11]. The run length of each non-null value is stored as an
offset of that value. An element of the compressed unary table is the union of
the unary table offset and the dictionary identifier. For example, the unary table
offset of the first non-null value ”McGregor” of people domain is ”1” and the
dictionary identifier is ”0”. The element in the unary compressed representation
is ”10”. The compressed unary tables are shown in Figure 5.

The bit-array representation is shown in Figure 6. In this representation a
bit-array of length equal to the cardinality of the sparse table is used. In the
bit-array a ’1’ represence of an attribute value and a ’0’ represents ’null’.

News1

Domain: Country

1
2

UK
USA

1
2

McGregor
Newton

Domain: Sport Domain: Research

1 Atheletic
2 Football

1 Database
2 Physics

Identifier

Values

Domain: News Id Domain: People

News5

1
2
3
4
5

News2
News3
News4

Fig. 4. Domain dictionaries for the unary representations

Let n be the cardinality of the horizontal sparse table and m be the number
of columns. The non-null density is ρ and the density is uniformly distributed.
The average run-length between non-null values is d. The number of additional
bits for the run-length is mnρ log2(d + 1) bits, and 0 ≤ d ≤ (n− 1). For uniform
distribution, d = (1− ρ)/ρ , where 1/n ≤ ρ ≤ 1. The size of the compressed table
using offset is mnρ log2(1/ρ) + mnρc. When ρ = 1, the size of the offset method

10

 1(1) 2(10)

Offset Code Offset Code Offset Code

People Sport Research

1(01) 1(01)
2(10) 2(10)

0(00) 1(01)
2(10) 2(10)

1(01) 1(01)
2(10) 2(10)

Compressed unary tables using offset representation

 0(0) 1(10)

Country

Offset Code

Fig. 5. Compressed representations of unary tables using offset

1(01)
2(10)

Sport
BA
1
0
0
1

Code
1(01)
2(10)

Research
BA
0
1
0
0
1

Code
1(01)
2(10)

BA = Bit−Array
Compressed unary tables using bit−array representation

Code
Country

1
0
1

BA Code
1(01)
2(10)

People
BA
0
1
0
0
1

Fig. 6. Compressed representations of unary tables using bit-array index

approaches to the size of the compressed horizontal table. The size of the bit-
array index is mn bits and the total size of the unary table is mn + mnρc.

5 Unary Model in XML

To fully realize the potential of XML as a basis for data storage and communi-
cation on the Internet, the performance issues inharent in the language must be
resolved. An XML document can be represented using a syntax tree [7]. Starting
from the syntax tree representation, we have developed a compressed represen-
tation of XML data using unary model.

The method given in [7] converts XML data into a binary relational model.
The number of tables are equal to the number of edges in the syntax tree that
underlies the XML structure. Each name of the table signifies for which edge the
table is created. The transformation of XML data into binary relational model
has two main problems. One is the space overhead and the other is the large
number of tables generated. An n− ary query on the data requires an n− ary
join. Alternatively, XParent [12] creates four tables to represent XML data but
has high data redundancy.

We can represent XML data in compressed form using unary model described
in the previous section. We have shown that the model can process data on the
compressed form more efficiently than in the uncompressed form. Indexing is
possible in the compressed form as well. We have transformed XML data into
the unary model using Monet transformation [7]. A binary tuple was created

11

for each edge of the syntax tree. The number of unary tables were equal to the
number of nodes in the tree.

For example, an XML entry for a news portal database is given in figure 7.
Exploring the structures of the document, we can represent it by syntax a tree.
In the example, news portal is the root of the tree and other attributes are the
nodes of the tree. The corresponding syntax tree of the document is given in
figure 8. The lowest level attributes of the tree point to the data values of those
attributes.

The horizontal sparse table is created for the syntax tree using Monet trans-
formation [7]. The sparse table is transformed into unary compressed represen-
tation and queries are processed on the compressed unary model.

<\News Portal>

<Type>Sports </Type>
<Country>UK </Country>

<News Portal>
<Article key = "C000">

<Article>
<Article key = "S000">

<Article>

<Editor>Millar</Editor>

<Type> Sports <\Type>
<Author>Waseem </Author>
<Title>Cricket</Title>

<Author>Waseem </Author>

Fig. 7. XML document describing a fragment of news portal database

Key

1

2

3 4 5

6

7 8 9 10

"Millar" "Sports" "UK"

String String String String String String String

"C000" "S000"

"Sports" "Waseem" "Cricket" "Waseem"

Key
Article O

Country OType OAuthor OEditor O

News portal O

Title OAuthor OType O

Article O

Fig. 8. Syntax tree for the news portal document

All distinct nodes of the same level in the tree are attributes of the horizontal
table. The nodes that point only to values are considered as CDATA nodes.
Those nodes that have the key values are considered as key nodes. We can
consider a single domain or multiple domains for CDATA depending on the

12

individual attributes and their cardinalities. The syntax tree in figure 8 has
been converted to sparse table as given in Table 4.

We have considered one column for the root and a column for every child.
We have the following attributes: News Portal, n.Article, n.a.Type, n.a.Author,
n.a.Title, n.a.Editor, n.a.Country, n.a.key, n.a.CDATA for the sparse table.
We have considered a binary tuple for each of the edge of the tree. If there
are n number of attributes in the sparse table, for each tuple in the horizontal
table, (n− 2) null values are added. The non-null density ρ will be 2/n, where
n depends on the depth of the tree. For database applications, the value of n
is quite high, and hence the unary model offers better performance in all the
ranges of non-null densities.

Table 4. Horizontal sparse table

News n.Article n.a.Type n.a.Author n.a.Title n.a.Editor n.a.Country n.a.Key n.a.Cdata

O1 O2 null null null null null null null

null O2 null null null null null C000 null

null O2 O3 null null null null null null

null null O3 null null null null null Sports

null O2 null O4 null null null null null

null null null O4 null null null null Waseem

null O2 null null O5 null null null null

null null null null O5 null null null Cricket

O1 O6 null null null null null null null

null O6 null null null O7 null null null

null null null null null O7 null null Millar

null O6 null O8 null null null null null

null null null O8 null null null null Waseem

null O6 O9 null null null null null null

null null O9 null null null null null Sports

null O6 null null null null O10 null null

null null null null null null O10 null UK

null O6 null null null null null S000 null

6 Results and Discussions

All experiments were run on an 800 MHz AMD DuronTM processor machine
with 256 MB of physical memory. The operating system was Microsoft Widows
2000 Professional. We have implemented the model using Sun JDK version 1.3.
Both real (Scittish Judges, River [1], Test1, Test2 and Internet) and synthetic
(Sparsely-populated) datasets were used in the experiments.

We have evaluated the effect of storing a single domain dictionary and one
dictionary per distinct columns. We can use a single domain dictionary as is

13

the case in ternary model [22]. All the data values have been considered as
VARCHAR data. The choice of domain strategy has a significant effect on overall
compression. The effect of the number of domain dictionaries on compression is
shown in Figure 9.

The overall size of the dictionary using a single dictionary is always less than
the same for multiple domains (Figure 10). The overall compression is dependent
on the sum of the dictionary and the compressed representation. The length
of the token is greater in the single dictionary approach than in the multiple
dictionary approach. This is why the overall compression using the multiple
dictionary approach is always higher than the single dictionary approach (Figure
9).

We have achieved three main advances over the Hibase approach:
1. The improvement by using improved vector structure
2. The improvement by using off-line dictionary method
3. The improvement by the unary model
We have achieved in an average a factor of 15 compression for relational

databases whereas the basic Hibase approach can achieve a factor of 10 com-
pression (Figure 9). The improved vector structure and the off-line dictionary
have the main contribution on the preformance improvement over Hibase (Table
5). Unary model has significantly less impact in this case. The best performance
is the use of extended Hibase with multiple dictionaries. The total size of the
dictionaries in multiple dictionary option is greater than the corresponding size
of the dictionary in single dictionary option (Figure 10). As the size of the token
become shorter in multiple dictionary case, the sum of the compressed represen-
tation and the dictionary is smaller than the other options.

The selection of the number of domains has more impact on compression in
the basic Hibase model than the same for the extended Hibase model. This is
because of that the main contribution in extended Hibase model comes from the
vector, not the dictionaries (Figure 9).

Table 5. The contributions of improved vectors, off-line method and unary
representation on performance improvement in Extended Hibase for relational
data.

Dataset Hibase
Size (MB)

Extended
Hibase Size
(MB)

Perfor im-
provement

Contribution
of vector

Contribution
of off-line
method

Contribution
of unary rep-
resentation

Judges 0.968 0.808 0.20 0.1423 0.04 0.0176
River 0.174 0.123 0.41 0.282 0.00 0.1278
Test1 12.56 8.812 0.425 0.289 0.136 0.00
Test2 6.105 4.14 0.47 0.42 0.048 0.00

Internet 4.6976 3.44 0.3656 0.2202 0.145 0.0163

14

0

20

40

60

80

100

JudgesRiver Test1 Test2Internet

Sp
ac

e
oc

cu
pi

ed
 (%

)

Databases

uc
hs

hm
ehs

ehm

uc = Uncompressed, hs = Hibase Single Dictionary
hm = Hibase Multiple Dictionary
ehs = Extended Hibase Single Dictionary
ehm = Extended Hibase Multiple Dictionary

Fig. 9. The space occupied in Hibase and Extended Hibase as % of uncompressed
size (In assence these are in order from top to bottom and left to right).

0

500

1000

1500

2000

2500

3000

3500

4000

JudgeRiverTest1Test2 Itnet

Si
ze

(K
B

)

Databases

sdsh
mdsh
sdseh

mdseh

sdsh = Single Dictionary Size in Hibase
mdsh = Multiple Dictionary Size in Hibase
sdseh = Single Dictionary Size in Extended Hibase
mdseh = Multiple Dictionary Size in Extended Hibase

Fig. 10. The sizes of single and multiple domain dictionaries (In assence these
are these are in order from top to bottom and left to right).

15

The ternary table grows high as non-null density increases. Figure 11 shows
a comparison of the size of the table in ternary and unary representations. The
growth in ternary representation is significantly higher than the unary form. The
size of the table in horizontal relational storage representation is 1440 MB. We
have considered the non-null density ranges from 1% to 30%. For 1% non-null
density, the unary representation using offset is 1.5 MB. So the unary offset
representation is a factor of 960 smaller than the horizontal sparse table. This
high gain is because the horizontal representation has 99% of null values whereas,
unary representation has no null values. The ternary representation has no null
values. In 30% non-null density, the size of the ternary representation is 887
MB. The same is using unary offset representation is 73.6 MB. So the unary
representation is a factor of 20 smaller than the corresponding ternary form.
The main contribution in compression is using the unary model (Table 6). The
contributions of the vector and the off-line method are insignificant. We have
found that the same is true for all range of non-null densities. This is because of
the data redundancy in ternary representation. The query processing using the
unary representation is also significantly faster (Figure 12).

0
100
200
300
400
500
600
700
800
900

1000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Si
ze

(M
B

)

Non-null density

Ternary
Unary Bit-Array

Unary Offset

Fig. 11. Comparison of the sizes unary and ternary representations for different
non-null densities

UNIX compress is a standard compression system using LZW [30] method.
We have compared the unary compressed representation with compress. Figure
13 shows the comparison of unary model with compress. The same comparison
has been given for XML data in Figure 14. The unary model performs a factor
of 2 - 6 better than the compress compression. This is because of the off-line se-
lection of phrases and the compressed unary representation. Though the optimal
selection of phrases is an NP −Complete problem [26], we have a near optimal
selection by the vertical scanning of the domain and second-order compression
described in [6].

16

Table 6. The contributions of improved vectors, off-line method and unary
representation on performance improvement of the Unary model for sparsely-
populated data.

non-null
densities

Ternary
size (MB)

Unary
offset size
(MB)

Performance
improvement

Contribution
of vector

Contribution
of off-line
method

Contribution
of unary rep-
resentation

1 % 30 1.5 20 0.2 0.1 19.7

5 % 148 8.075 18.32 0.201 0.062 18.057

10 % 296 17.9 16.53 0.196 0.039 16.295

15 % 444 25.05 17.72 0.21 0.032 17.478

20 % 591 39.2 15.07 0.191 0.023 14.856

25 % 739 50.0 14.78 0.2 0.018 14.562

30 % 887 61.6 14.4 0.195 0.016 14.189

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100

T
im

e(
se

c)

Number of columns projected

Ternary
Unary Bit-Array

Unary Offset

Fig. 12. The projection time for varying number of columns with 5% non-null
density

17

In databases, the data redundancy arises within the attribute values. It is
rare to occur redundancy across the attribute values. The conventional dictio-
nary methods [15,16,30] scan the data horizontally and the initial part of the
dictionary is very inefficient. As dictionary grows bigger, longer strings are re-
placed by the codes and the selection of phrases goes towards optimal. So these
methods are asymptotically optimal [26]. That is why our method performs al-
ways better than the conventional methods. We can compare our results with
XMill [17], a semantic compressor for XML data. XMill compresses XML data
to a maximum factor of two better than comventional compression methods
[15,16,30]. Our system perform significantly better than XMill maintaining the
direct addressability of data.

0

20

40

60

80

100

Judge River Test1 Test2 Itnet

Sp
ac

e
oc

cu
pi

ed
 (%

)

Databases

uc
cp
eh

uc = Uncompressed, cp = UNIX compress
eh = Extended Hibase

Fig. 13. The comparison of the Extended Hibase model with the UNIX
compress for relational datasets.

7 Conclusions and Further Research

The performance gain of the Extended Hibase model over the basic Hibase model
is a factor of 1.5 in terms of space(Fig. 9). We have also evaluated the individual
contributions of the dynamic vector structure, the off-line method and the unary
model()Tab. 5). In Extended Hibase model the contribution of the improved
vector structure is more than 70% of the total improvement for all the datasets
except Internet data (61%). The contribution of unary model for all the datasets
is neglegible except the River data (29% of the total improvement).

We have compared our results with the Ternary representation [22] for the
sparsely-populated data. The performance improvement in terms of space ranges

18

0

20

40

60

80

100

Judge River Test1 Test2 Itnet

Sp
ac

e
oc

cu
pi

ed
 (%

)

XML version of the datasets

uc
cp
un

uc = Uncompressed, cp = UNIX compress
un = Unary Model

Fig. 14. The comparison of the Unary model with the UNIX compress for XML
data.

from a factor of 14 to 20 compared to the Ternary model (Fig. 11). We have
also evaluated the individual components of the architecture. More than 98%
of the total performance gain comes from the unary model (Tab. 6). The query
performance of unary model is significantly better than the Ternary model 12.

We have considered our system as a ”compressed and memory resident
database” paradigm that operates within a single user environment. The fu-
ture work of this research could be to explore the potential of the architecture
to the following other areas:
• The use of a block-oriented vector to allow the extension of the system to

distributed multi-user environment. Vertical and horizontal fragmentation can
be applied to the compressed representation.
• If the size of the compressed database grows to such an extent that it

cannot fit into memory, the same architecture can be extended for disk resident
database systems. In that case, data may be partitioned into frequently used and
rarely used fragments. The frequently used data can be memory resident and the
rarely used data can be disk-resident. Recovery in the compressed representation
needs to be addressed.

References

1. http://enterprise.canberra.edu.au/www/riversurvey.nsf?opendatabase.

2. http://www.almaden.ibm.com/.

3. V. Cuperman A. Gersho. Vector quantization: A pattern-matching technique for
speech coding. In IEEE Communication Magazine, Vol. 21:15–21, December 1983.

19

4. K. W. Church G. S. Fowler A. L. Buchsbaum, D. F. Caldwell and S. Muthukrish-
nan. Engineering the compression of massive tables: An experimental approach.
In Proceedings of the 11th Annual ACM-Siam SODA, pages 175–184. ACM, 2000.

5. D. R. McGregor A. S. M. L. Hoque. Improved compressed data representation
for computational intelligence systems. In UKCI-01, Edinburgh, UK, September
2001.

6. J. Wilson A. S. M. L. Hoque, D. R. McGregor. Database compression using an
off-line dictionary method. ADVIS, LNCS, 2457:11–20, October 2002.

7. M. Windhouwer F. Waas A. Schmidt, M. Kersten. Efficient relational storage and
retrieval of xml documents. In Lecture Notes on Computer Science, pages 137–50.
Springer-Verlag, 2000.

8. A. Cannane and H. E. Williams. A compression scheme for large databases. In
Proceedings of Australian Database Conference, University of Western Australia,
Curtin University, Murdoch University and Edith Cowan University, Perth, 1998.
Springer.

9. E. F. Codd. A relational model of data for large shared data banks. In Commu-
nications of the ACM, 13:6:377–387, 1970.

10. G. P. Copeland and S. Khoshafian. A decomposition storage model. In Proceedings
of the 1985 ACM SIGMOD, Austin, Texas, May 1985.

11. S. W. Golomb. Run-length encodings. In IEEE Transaction on Information The-
ory, (IT-12(3):399-401), 1966.

12. W. Wang H. Jiang, H. Lu and J. X. Yu. Path materialization revisited: An efficient
storage model for xml data. In Proceedings of the Second Australian Institute of
Computer Ethics Conference, Canberra, 2000. Australian Computer Society.

13. D. A. Huffman. A method for the construction of minimum-redundancy code. In
Proceedings of IRE, 40:9:1098–1101, 1952.

14. J. S. Karlsson and M. L. Kersten. W-storage: A self organizing multi-attribute
storage technique for very large main memories. In Proceedings of Australian
Database Conference. IEEE, 1998.

15. A. Lampel and J. Ziv. A universal algorithm for sequential data compression. In
IEEE Transaction on Information Theory, (Vol. 23):337 – 343, 1977.

16. A. Lampel and J. Ziv. Compression of individual sequences via variable-rate cod-
ing. In IEEE Transaction on Information Theory, (Vol. 24):530 – 536, 1978.

17. H. Liefke and D. Suciu. Xmill: an efficient compressor for xml data. In Proceedings
of the Management of Data, Dallas, TX USA, pages 153–164. ACM, 2000.

18. G. Linoff and C. Stanfill. Compression of indexes with full positional information
in very large text databases. In Proceedings of the ACM SIGIR, pages 88–95,
Pittsburgh, USA, 1993.

19. U. Manber. A text compression scheme that allows fast searching directly in the
compressed file. In ACM Transaction On Information Systems, 15:2:124–136, 1997.

20. A. Moffat and J. Zobel. Parameterised compression for sparse bitmap. In Proceed-
ings of the 15th Annual International SIGIR 92, pages 274–285. ACM, 1992.

21. J. Thevenin P. Pucheral and P. Valduriez. Efficient main memory data management
using dbgraph storage. In Prodeedings of the 16th Very Large Database Conference,
pages 683 – 695, Brisbane, Queensland, Australia, 1990.

22. Y. Xu R. Agrawal, A. Somani. Storage and querying of e-commerce data. In
Proceedings of the 27th VLDB Conference, pages 149–158, Roma, Italy, 2001.

23. H. Roger. Special purpose processors for text retrieval. Database Engineering, Vol.
4(No. 1):16–29, 1982.

20

24. M. Garafalakis S. Babu and R. Rastogi. SPARTAN: using constrained models
for garunteed-error semantic compression. SIGKDD Exploration Newsletter, Vol.
4(No. 1), June 2002.

25. M. Garofalakis S. Babu and R. Rastogi. spartan : a modelbased semantic com-
pression system for massive data tables. In Proceedings of the SIGMOD, Santa
Barbara, California, USA, pages 283–294. ACM, 2001.

26. J. A. Storer and T. G. Szymanski. Data compression via textual substitution. In
the Journal of the ACM, Vol. 29:928–951, 1982.

27. S. Helmer T. Westmann, D. Kossmann and G. Moerkotte. The implementation
and performance of compressed databases. In SIGMOD Record, 29:3:55–67, 2000.

28. D. McGregor W. P. Cockshott and J. Wilson. High-performance operations using
a compressed architecture. The Computer Journal, 41:5:283–296, 1998.

29. K. N. Wee and C. V. Ravishankar. Relational database compression using aug-
mented vector quantization. In Proceedings of the 11th International Conference
on Data Engineering, pages 540–550, Taipei, Taiwan, 1995. IEEE.

30. T.A Welch. A technique for high-performance data compression. In IEEE Com-
puter, 17:6:8–19, 1984.

Data Transfer Between Relational Databases
Using XML

Pavel Loupal

Czech Technical University in Prague,
Department of Computer Science and Engineering

Abstract. This paper is concerning data transfer between relational
databases using XML format. It contains description of XML interfaces
of wide spread relational database systems Oracle and Sybase. A simple
data synchronization example shows basic issues of existing database
interfaces and a way to process different XML formats using a XSL
transformation.
Paper should give a basic overview of these technologies including their
drawbacks and show how to use them for data transfers.

1 Introduction

The XML language [4] has been created in 1998 and became a standard format
for various data transfers. The advantage of using such kind of transfer media
brings some new features. This standard is widely acceptable and there are
already plenty of applications able to read and write so formatted files. The
standard also calculates with a native support for any international characters
set which helps to assist creating language independent solutions.

Concept of relational databases is a bit older (first commercial version of
Oracle was released in 1980) but with expansion of XML language their produc-
ers implemented a support of this format into their products. This maintenance
consists of two basic parts - input and output XML interfaces allowing import
and export data in this format and inner handling of XML data e.g. creating
native data types storing parsed instances of XML data or extending BLOB
capabilities of their system. In context of this paper we will concentrate chiefly
on XML interfaces.

Relational databases are widely used for storing data in both industry and
non-commercial areas. For many reasons, typically historical and organization
matters, they cannot be easily replaced by different technological solutions but
the stored data must be accessible and integrated with recent systems. Therefore
it is no surprise that support for XML technology becomes very important.

Why to use XML technology instead of existing data manipulation tech-
niques? The ”classical” approach is based on application programming interfaces
shipped with database products, e.g. C++ APIs. There had been no standard-
ization of such interfaces that makes programmers’ work a bit difficult - they had
to know and understand many different APIs. Accession of ODBC and JDBC

c© J. Pokorný, V. Snášel (Eds.): Dateso 2003, pp. 21–29, ISBN 80-248-0330-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2003.

22

interfaces has solved these problems but another one stayed - applications cannot
be extended without rewriting their source code. Using text-based XML format
in conjunction of XSLT transformation allows changing the input (or output)
much more easily.

Another advantage of this format is its wide support - data can be processed
in any time (because of its known plain format) - by any third-party applications
during transfer.

Sections 2, 3 and 4 of this paper describe common concept of data transfer
between relational databases, mapping between relational structures and XML
format and possible ways of data validation. Section 5 outlines features of existing
database XML interfaces and finally section 6 shows a concrete example of data
synchronization between two databases.

2 Data Transfer Concept

The usual concept for data transfer using XML is shown in figure 1. We will
focus on offline transfers but in general the concepts should be similar for on-
the-fly processing as well. Let’s suppose two relational database systems with
existing XML interfaces. These interfaces are usually parts of those databases.
Source data are fetched with XML interface module and mapped to database-
specific XML format using specified rules. Any ”third party” application e.g.
cryptographic module or a simple application for logging traffic on this channel
can then process this data.

It is useful to have the XML data exchanged in common format - this makes
its treatment easier. In case that the data would differ application should be pre-
pared to work with different data format what makes it worthlessly complicated.
Such a transformation can be simply done with a XSL stylesheet (see section 6).

In some cases the transformation would have to be solved by application logic
instead of a XSL transformation because of its complicacy. This would make
this process a bit cumbersome. We would loose the simplicity of adjustment of
a stylesheet. In addition to this there are many extension libraries that add new
features to standard XSL functionality such as the XLST extension library [6].

We could of course allow only one way data transfers between a relational
database and any other data source (e.g. a structured file) but in our case we
can demonstrate both imports and exports from/to a database in one example.

3 RDB - XML Mapping

One of the basic tasks for our case is to transform relational data into a XML
instance. This process is called RDB-XML mapping. Usually the data is stored
using name of an attribute as a tag (a XML document tree node) name and its
value as node value as described in experimental part of this paper in section
6. Every document following this model contains a sequence of ”row” elements
with nested subelements containing attributes values - this model corresponds

23

RDB
 RDB
XML DATA

DB - XML

Mapping

DB - XML

Mapping

Simple transfer / Extended

data processing

XML DATA

Fig. 1. Data transfer concept

tightly with structure of a table (or view). These examples of straightforward
Oracle and Sybase implementations are shown below.

More sophisticated methods use different structure of a document, e.g. XML-
DBMS library [2] views an XML document as a tree of objects and then uses an
object-relational mapping to map these objects to a relational database. In this
view, element types generally correspond to classes and attributes and PCDATA
correspond to properties. Complete description and Java implementation could
be found at [2].

4 Data Validation

Important feature at application layer is an ability to check data content. Usually
we suppose that exported data from database are without faults. In opposite
direction it could be useful to have a possibility to validate incoming data in
order to prevent data mismatch causing database errors. For XML formatted
data there are two possible ways - Document Type Definition (DTD) and XML
Schema. These both are W3C consortium [3] standards.

DTD [5] is a part of the XML standard and therefore also the oldest way for
checking documents validity. DTD declarations can be defined within the XML
document or defined external to the XML document and referenced by it. A DTD
defines structure and content of a document. Unfortunately it has also two im-
portant drawbacks - its syntax differs from the XML language and there is no
way how to define a data type for an element. Everything is simply treated as
a text. In spite of this DTDs are sufficient way for simple data validation.

XML Schema [8] standard sprang up to cover needs for detailed checking of
document’s content. Its syntax is XML compliant which makes it more ”read-
able” for developers. The standard contains strong data typing and structure
definition with namespaces support.

24

XML Schemas are today the most common way for validating data. It has
quickly become a widely acceptable standard with built-in support in all signifi-
cant XML parsers. For instance, Oracle XDK (see following section) can generate
a XML Schema depending on a SQL query.

5 XML Interfaces of Relational Databases

This section gives a basic overview of XML interfaces used in two well-known
commercial database products - Oracle 8i and Sybase ASE 12.5. - which could be
marked as ones of the most significant and technologically advanced companies
in that area.

These XML interfaces are the main part responsible for converting relational
data into XML documents and conversely. Fetching data is straightforward.
A SQL SELECT statement is performed in a source relational database and
the data is pulled out in a XML format. There is no standard (DTD or XML
schema) saying how should this data be structured.

Importing data into a relational database brings some new issues. XML data
files acceptable by database’s XML interface are going to be inserted/updated
(or deleted from) to a database. Input files are sequentially read and data for sin-
gle rows are processed. This could bring troubles concerning referential integrity.
If a schema has some foreign keys and data transfer starts with ”wrong” table,
this problem occurs - the mandatory data is not yet in its place in database.
One solution how to avoid this kind of problems is to add some application
logic to divide this XML document to set of documents containing only one row
and control the order of statements to ensure data consistency. This means that
there must be a new application layer over database’s XML interface. None of
databases interfaces described in this paper is so ”clever” to check such kind of
dependencies. Another solution is to switch off database’s referencial integrity
before transfer and then start it up again but that is in almost all cases unac-
ceptable.

Let us suppose a simple conceptual database schema shown in figure 2. It
is a fragment of a database storing information about books and their authors.
Using this example we can describe interfaces’ capabilities and their default XML
formats.

Oracle. Since Oracle Database version 8i there is a XML module included -
XDK (XML Development Kit) [10]. Basic parts of this module are XML parser,
XSLT processor and XML-SQL Utility (XSU). All parts are implemented in
C++, Java and PL/SQL.

XSU is the most interesting part in context of this paper. It allows creating
a XML document depending on a SQL query, importing XML documents in
specified format and also dynamically creating a DTD or a XML Schema for
data to be exported. That is the only way how to get metainformation about
data contained in output XML documents.

These metainformation are evidently taken from system data dictionary and
can be used for basic data validation as described in section 4. Some problems

25

FK_BOOK_AUTHOR

Author

ID

Name

Surname

Birth

Photo

integer

varchar(100)

varchar(100)

DATE

BLOB

Book

ISBN

AuthorID

Title

Year

Price

Pages

varchar(13)

integer

varchar(100)

DATE

number(6,2)

integer

<fk>

Fig. 2. A simple conceptual schema

could occur when working with constrains (e.g. CHECK (pages > 100)) which
is not covered by this schema. In this case an external schema must be created.

Let’s suppose a SQL query SELECT ISBN, Title, Price FROM Book. Using
the Oracle interface (method)we get a document shown in figure 3. Such a file
consists of tags for rows and nested tags for their attributes.

<?xml version = ’1.0’ encoding = ’ISO-8859-2’?>

<ROWSET>

<ROW num="1">

<ISBN>80-85615-74-8</ISBN>

<TITLE>LaTeX for Beginners</TITLE>

<PRICE>129</PRICE>

</ROW>

<ROW num="2">

<ISBN>80-01-00704-9</ISBN>

<TITLE>Programming Language C</TITLE>

<PRICE>25</PRICE>

</ROW>

<!-other records -->

</ROWSET>

Fig. 3. XML data in Oracle format

Getting DTD or XML Schema according to the specified query could be
acquired by calling specialized methods.

For updating and deleting data the application must specify key columns for
searching corresponding records in the database. It also means that these state-
ments can affect more than one row. For example, following code uses Oracle’s
database interface for inserting XML data in format shown in figure 3.

Update or delete processing follows the same code structure as in figure 4
using methods updateXML(url) and deleteXML(url) respectively. Before this
calls the application has to set data key for looking up corresponding rows to
process.

26

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

Connection conn =

DriverManager.getConnection("jdbc:oracle:oci8:dp/tester@");

/* inserting into Book table */

OracleXMLSave sav = new OracleXMLSave(conn, "Book");

/* fileName contains a path to a XML data file */

URL url = sav.getURL(fileName);

rowCount = sav.insertXML(url);

System.out.println(rowCount + " were inserted.");

conn.close();

Fig. 4. Fragment of Java code inserting XML data into database

Sybase. Sybase ASE 12.5 is also shipped with some kind of XML support. In
comparison with Oracle the library is small and allows only basic operations -
it can just retrieve data based on SQL SELECT and insert data into database.
No update or delete processing is possible.

Having the same query as in previous example, we get a XML document as
follows in figure 5.

Unlike Oracle data format, this one contains metainformation about retrieved
data. This metainformation is taken from the JDBC ResultSetMetaData class.

Both interfaces have an important drawback - data import can be done only
to one table or view. Other cases must be processed by application logic in higher
layer.

6 Use Case - Data Synchronization

Let us suppose a bit more difficult problem coming from a real life systems -
an offline synchronization of data between two different versions of relational
systems. This example uses Oracle 8i and Sybase ASE 12.5 as experimental
systems.

For simplicity we can suppose that these systems have the same relational
structure (same tables and their attributes). This requirement is however too
strong as we will see later - but our simple XML-RDB columns mapping doesn’t
allow any differencies. With using an advanced mapping, names of attributes
and tables can differ. Only the data types should correspond.

The algorithm for transferring data of one table (or view) works as follows:

1. Connection to both databases using a JDBC interface.
2. Getting XML data from both sources regarding SQL SELECT statements.
3. Transformation to common XML format for easier manipulation.

27

<ResultSet>

<ResultSetMetaData getColumnCount="3">

<ColumnMetaData getColumnDisplaySize="13" getColumnLabel="ISBN"

getColumnName="ISBN" getColumnType="12" getPrecision="0"

getScale="0" isAutoIncrement="false" isCurrency="false"

isDefinitelyWritable="false" isNullable="false" isSigned="false"/>

<!- metadata for other columns ... -- >

</ResultSetMetaData>

<ResultSetData>

<Row>

<Column name="ISBN">80-85615-74-8</Column>

<Column name="Title"> LaTeX for Beginners </Column>

<Column name="Price">129.0</Column>

</Row>

<Row>

<Column name="ISBN">80-01-00704-9</Column>

<Column name="Title">Programming Language C</Column>

<Column name="Price">25.00</Column>

</Row>

</ResultSetData>

</ResultSet>

Fig. 5. XML data in Sybase format

ORACLE
 SYBASE

ORACLE XML

SELECT * FROM Author

ORACLE XML

XSL

Transformation

SYBASE

XML

Differential XML

Documents
INSERT
 INSERT

UPDATE
 UPDATE

DELETE
DELETE

Synchronization

Logic

Fig. 6. Data synchronization diagram

28

4. Specification of key attributes for searching for corresponding records.
5. Searching for record sets for INSERT, UPDATE, DELETE statements on

both sides (in figure 6 marked as Differential XML Documents). Looking up
corresponding records is performed via XPath statements containing condi-
tions with key values,
e.g. /ROWSET/ROW[ISBN="80-85615-74-8"].

6. Performing selected database operation using XML interfaces depending on
task type.

This processing should be repeated sequentially for whole set of synchronized
entities. Depending on relational schema we could encounter problems outlined
in section 5.

Regarding of choosing common XML format (mentioned in step 3) there are
many ways which structure of XML file to use. In this experiment the ”native”
Oracle XML format was chosen. The reason is simple. It is namely possible to
perform a loss less transformation between Oracle and Sybase data formats.
This transformation can also rename attributes what solves the problem with
different database structures. Other renaming operations can be performed as
aliases in SQL SELECTs.

Middleware Java libraries, XSL stylesheets and their detailed description can
be downloaded at [1].

7 Conclusions

This paper describes basic issues of data transfer between relational databases
using XML format. Concepts of native XML interfaces of most widely known
commercial databases Oracle and Sybase have been also described.

As a significant part of this paper there is shown an example of data synchro-
nization between two relational databases using XML. This example suggests
a data transfer method using a XSLT transformation for loss less conversion
between different output XML formats. Detailed description and sources can be
downloaded at [1].

Future work in this area should be focused on exploration of sophisticated
RDB - XML mapping. Current XML interfaces are not ready for non-trivial
transfers yet.

References

1. Loupal, P.: Metody prenosu dat prostrednictvim metadat. Thesis. January, 2003.
http://cs.felk.cvut.cz/\char126\relaxloupalp/papers

2. Bourret, R.: XML-DBMS - Middleware for Transferring Data between XML Docu-
ments and Relational Databases. http://www.rpbourret.com/xmldbms

3. World Wide Web Consortium. http://www.w3.org
4. World Wide Web Consortium Recommendation. Extensible Markup Language

(XML) 1.0 February, 1998. http://www.w3.org/TR/REC-xml

http://cs.felk.cvut.cz/char 126
elax loupalp/papers
http://www.rpbourret.com/xmldbms
http://www.w3.org
http://www.w3.org/TR/REC-xml

29

5. World Wide Web Consortium Recommendation. Document Type Declaration.
February, 1998. http://www.w3c.org/TR/REC-xml#dt-doctype

6. World Wide Web Consortium Recommendation. XSL Transformation (XSLT) Ver-
sion 1.0. November, 1999. http://www.w3.org/TR/xslt

7. World Wide Web Consortium Recommendation. XML Path Language (XPath) Ver-
sion 1.0. November, 1999. http://www.w3.org/TR/xpath

8. World Wide Web Consortium. XML Schema.
http://www.w3c.org/XML/Schema

9. Ball, S.: XSLT Standard Library. 2001, http://xsltsl.sourceforge.net
10. Oracle, Oracle XML Developer’s Kit for Java,

http://otn.oracle.com/tech/xml/xdk java/content.html

http://www.w3c.org/TR/REC-xml#dt-doctype
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3c.org/XML/Schema
http://xsltsl.sourceforge.net
http://otn.oracle.com/tech/xml/xdk_java/content.html

Ontology Merging in Context of Web Analysis

Martin Labský and Vojtěch Svátek

Department of Information and Knowledge Engineering,
University of Economics, Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic

{labsky|svatek}@vse.cz

Abstract. The Rainbow system aims at the analysis of websites by
means of distributed modules specialized in particular types of data,
such as free text, HTML structures or link topology. In order to ease
the integration of services offered by the individual modules, which may
come from third parties, a collection of ontologies has been developed.
Parts of the ontologies contain information specific to the different ways
of analyses, resulting in a need for integration. This paper describes
how ontology–merging, namely the FCA–Merge method, may be used
to integrate the results of multiple analyses for a certain application
domain.

1 Introduction

The vast amount of knowledge present on the World Wide Web is still harder
to track and process. The Rainbow system is a general framework aimimg at
World Wide Web analysis from multiple data type specific viewpoints, we thus
speak about multiway analysis. The proposed framework is an open architecture
in which multiple modules performing different types of website analysis coop-
erate to achieve better results than if used separately. In this paper, we focus on
the integration of results obtained from each data type specific analysis. Since
the Rainbow system heavily exploits ontologies [8], our approach utilizes Formal
Concept Analysis (FCA) which is closely related to ontology modeling. In par-
ticular we use an adapted FCA-Merge ontology merging method, described in
[5].

From the user point of view, Rainbow offers its functionality to client appli-
cations via web services. In essence, three general types of services are offered
to the clients - classification of web documents, retrieval of web documents, and
information extraction from web documents. The intents of these services are in
accord with their commonly used meanings, as described in [3]. So far we have
focused on two use cases — pornography recognition, which is a special case of
web document classification, and extraction of key facts from websites of orga-
nizations offering products and services (OOPS sites), a subtype of information
extraction.

In section 2 we briefly describe the ontology–based architecture and current
state of implementation of the Rainbow system. In section 3 we present our
approach to integrating the data type specific results of multiple analyses. The
last section briefly concludes and outlines the perspectives for the future.

c© J. Pokorný, V. Snášel (Eds.): Dateso 2003, pp. 30–39, ISBN 80-248-0330-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2003.

31

2 Architecture of the Rainbow System

The central idea of Rainbow (Reusable Architecture for INtelligent Brokering
Of Web information access) is firstly the separation of different ways of web
analysis according to the syntactic type of data involved and, simultaneously,
the exploitation of mutual dependencies between the results of data type spe-
cific analyses. In this way, the natural complementarity and/or supplementarity
of information inferable from different types of data is used to provide extra
information to clients as opposed to using single data type analyses.

2.1 Analysis Types

In the proposed architecture, all modules will utilize client–server model to com-
municate directly with clients but will also be able to communicate with each
other, using each other’s services as part of fulfilling their tasks. The function-
ality of Rainbow modules is offered by the means of web services defined by
WSDL1 interface descriptions. As a mediator we currently use the SOAP2 pro-
tocol carried over HTTP on a strict request-response basis.

The currently planned suite of Rainbow components comprises modules for
the analysis of six high–level data types: HTML structures, linguistic structures
[2], explicit metadata (in META tags and possibly RDF [4]), URL addressing
[6], link topology, and images. The current integrated prototype only includes
simple forms of free text analysis, META tag and URL analysis; modules for link
topology, HTML structure and image analysis already exist but have not been
yet integrated into the architecture3. We suppose new modules will be added
to Rainbow also by reusing existing systems. Since all modules must be able to
communicate in a uniform way with Rainbow clients and other modules, a com-
munication wrapper will typically be needed to make a third–party component
available as a Rainbow module.

2.2 Conceptual Framework and Abstract Inferences

Ontology is typically defined as a shared formal conceptualization of a domain
[8]. In Rainbow, ontologies provide the basis for the communication of modules
and clients, enable consistency checking of offered services and provide support
for the integration of multiple types of analyses, which is central to this text.

In order to present the integration of different analyses in detail, we first need
to summarize the used conceptual framework of web information access, first
introduced in [7]. In general, there are two kinds of concepts in Rainbow ontolo-
gies — syntactic types and semantic classes. Examples of types are Document,

1 http://www.w3.org/TR/2001/NOTE-wsdl-20010315
2 http://www.w3.org/TR/SOAP/
3 The implementation also includes modules for source data acquisition (spidering,

canonization to XHTML, provision via DBMS) as well as interaction with users
(plug–in panel for a web browser) and external services.

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/SOAP/

32

DocumentFragment, AbstractLink, XMLElement, or HTMLDocument. Among
classes, there are e.g. HProductCatalogue, TLeafDocument, HProductDescription
or LSentence. In our view, classes differ from types by their correspondence to
a certain type of analysis and by the lack of their exact and stable definitions.
The above class names are prefixed with corresponding types of analyses - ’H’ for
HTML structure, ’T’ for topology and ’L’ for linguistic analysis. Rainbow ontolo-
gies model classes as subconcepts of types (e.g. TLeafDocument is a subconcept
of Document). Currently, we distinguish between four types of classes according
to their parent syntactic type — we recognize Document, DocumentFragment,
DocumentCollection and AbstractLink classes.

Among the most widely used relations in Rainbow ontologies is the transitive
part–of relation, e.g. HProductDescription may be part–of a HProductCatalogue.
Concepts can be adjacent to each other, they may be identified–by some other
concepts etc. Inverse relations are defined where possible.

2.3 System of Ontologies

The Rainbow ontology4, which contains concepts, relations and service definitions
mentioned in the previous section, cannot be monolithic. Instead, the distinction
of analysis types as well as of application domains suggests natural decomposition
into four layers of ontologies as depicted in Fig. 1. The upper two layers are
domain–independent and therefore reusable by applications from all domains.
The lower two layers add information specific to the domain of analysis, e.g.
OOPS sites or web pornography.

Upper Web Ontology. The abstract Upper Web Ontology (UWO) provides a
hierarchy of common Web–related concepts and relations that are shared by all
analysis types and application domains. The UWO doesn’t attempt to define an
exhaustive description of the WWW. Instead, it provides a shared conceptual
language for all Rainbow modules to build upon. The UWO defines only concepts
that correspond to syntactic types as defined in section 2.2.

Partial Generic and Domain Web Models. For each way of analysis, Partial
Web Models occupy the middle layers of the Rainbow ontology system. Concepts
and relations defined in these models represent the types and classes specific to
one particular way of analysis. The partial web models consist of a generic and
domain–dependent part. Elements introduced in the generic model are based on
the UWO and are reusable across different application domains. On the other
hand, for each way of analysis there might be domain models specializing in
different application domains. All of these domain models are then based on
a single generic model and the common UWO. Concepts from the generic and
domain models mostly correspond to classes of resources, but new types may be
defined as well. In Fig. 1, the generic model and OOPS domain model for HTML
4 The current version of Rainbow ontologies is available at http://rainbow.vse.cz.

http://rainbow.vse.cz

33

Fig. 1. Structure of the Rainbow ontology system shown on HTML analysis
example

analysis are depicted within the dashed area. Examples of concepts from these
models and the UWO are shown on the right.

As formal ontology language, we used DAML+OIL5 (essentially, RDFS6 as
its sublanguage), and OilED7 and Protégé8 as ontology editors. The main ad-
vantage of OilED is the availability of a reasoner (FaCT), which enables to test
the consistency of the model. On the other hand, Protégé offers a slightly more
powerful interface capable of very simple ontology merging and visualization.

3 Integration of Multiple Analyses

As described in the previous section, the key information contained in partial
web models (both generic and domain) are the concept hierarchies of semantic
classes. Each such hierarchy extends one of the classified syntactic types, such
as Document or DocumentFragment, and presents a data–type restricted view of
that type. In our approach, the integration of multiple analyses consists in merg-
ing these class hierarchies9. The resulting class hierarchy is no more restricted to
a single data–type view and is included in the Domain Web Ontology (DWO),
as depicted in Fig. 1.
5 http://www.daml.org/2001/03/daml+oil-index.html
6 http://www.w3.org/TR/rdf-schema/
7 http://oiled.man.ac.uk
8 http://protege.stanford.edu
9 These is–a hierarchies will often be flat, since the analysis–specific classes are usually

not richly structured before integration.

http://www.daml.org/2001/03/daml+oil-index.html
http://www.w3.org/TR/rdf-schema/
http://oiled.man.ac.uk
http://protege.stanford.edu

34

The DWO also imports all concepts from the UWO and partial models that
were not subject to merge. Thus, the DWO is a domain-specific ontology of web
resources, and it integrates all data–type specific views of the used analyses. The
integration of multiple types of analyses in context of a particular domain is
motivated by the following benefits:

– First, interesting relations between analysis–specific classes may be revealed.
These are most often subsumptions which may be characteristic just for the
analyzed domain. Identical classes are merged.

– Second, the original data–type specific class hierarchies may be compared
with the merged hierarchy to find inconsistencies in the original taxonomies.

– Third, the merged Domain Web Ontology could be used to provide inte-
grated access to Rainbow services. In this case, Rainbow clients would not
communicate with individual modules anymore. Instead, the merged DWO
classes would be used for communication with the whole Rainbow system.

3.1 Deriving the Domain Web Ontology

We propose to derive the structure and content of the DWO based on labeled
data, which may be acquired e.g. from training data previously used to train the
individual modules. This labeled data comprises of training web pages that are
simultaneously labeled by classes used by all different types of analyses.

Input Data to the Merge Process. As mentioned earlier, Rainbow currently
addresses semantic classes that are subclassed from the following four syntac-
tic types: Document, DocumentFragment, DocumentCollection and AbstractLink.
Although the above four kinds of classes describe different objects, these four
types of objects have certain ontology–defined relations (such as part–of). Using
these relations, we can — in a limited way — relate the concepts to each other
and use this information as input to the merge process.

Before we start merging concepts, we have to choose one central syntactic
type to which all other (currently three) syntactic types will be related. For
example, if the merge process is done for the Document as the central type,
we regard the labeled input data as a set of training Documents. The input
attributes used by the merge process are then of the following forms:10

– is <Document class>,
– contains <DocumentFragment class>,
– part–of <DocumentCollection class>, or
– (source–of or target–of) <AbstractLink class>.

For the other three syntactic types, the same relations (or their inverses) may
be used to derive equivalent attribute sets. For example, if DocumentFragment

10 part–of, source–of, target–of and their inverses are standard relations from the Rain-
bow ontology introduced by UWO.

35

was chosen as the central type, we would regard the labeled data as a set of
DocumentFragments and use attributes such as part–of <Document class>).

In further text, we will only consider Document as the central syntactic type.
The labeled input data is therefore treated as a set of documents, which we will
denote as D. Each document di ∈ D has attributes given by the analysis–specific
classes it is labeled with. Each of these attributes has one of the above four forms.

The Merge Process. The task is essentially that of merging parts of multiple
ontologies based on concept extensions. For its realization, we use an adapted
FCA–Merge method introduced in [5], based on formal concept analysis (FCA).
Due to limited space we cannot describe FCA in this text and we point the reader
e.g. to [1]. FCA–Merge is a semi–automatic method which originally integrates
ontologies based on a set of natural language documents, in which references to
ontology concepts are found using NLU techniques. In our approach, we use a
set of training documents D, where labeled instances of to–be–merged concepts
already exist.

To perform integration, we need to obtain formal contexts for each type of
analysis. A formal context is a triple (G, M, I), where G is a set of objects, M is
a set of attributes, and I is a binary incidence relation such that I ⊆ G×M .

Let A be the set of all analyses being integrated. For each analysis ai ∈ A,
we compute a formal context κi from the set of labeled documents D: κi =
(D,Mi, Ii), where D is a set of training documents, Mi is a set of classes specific
to the i-th analysis, and Ii ⊆ D×Mi is the incidence relation, specifying which
documents are labeled with which classes. The fact that (d, m) ∈ Ii is read as
“document d has the attribute m”.

After computing formal contexts κi for each analysis ai, these contexts are
merged to produce a single formal context κ = (D,M, I), where the set of labeled
documents D remains unchanged, M := ∪n

i=1(Mi) where n is the number of
different analyses, and (d, m) ∈ I ⇔ (d, m) ∈ Ii.

Pursuant to FCA–Merge, a concept lattice11 is computed from the merged
formal context κ. The concept lattice contains a system of formal concepts, which
are used to construct the new ontology in a semi–automatic process according
to FCA–Merge guidelines [5].

The result of the FCA–Merge process is a hierarchy of new concepts, each
of which may be (1) an exact copy of its original analysis–specific concept, or
(2) a concept that has been created by combining more of the original concepts
together. FCA–Merge assists the human integrator and makes suggestions, but
the ultimate modeling decisions are left to the integrator. Concepts can typically
be combined when they have the same extension in the training data, resulting
in them being replaced by a new concept in the role of their conjunction. In case
two or more of the original concepts have a significant overlap, a new concept,
representing their conjunctions, may be added to the new ontology as well as the
original ones. This takes place especially when there exist concepts in the source
ontologies that are more specific than the potential new concept, and/or when
11 For definitions of FCA–related terminology, see [5] or [1].

36

the new concept has a high support12 in the training data. The hierarchy of the
new ontology is derived directly from the concept lattice and can be altered by
the integrator. Typically, the resulting class hierarchy is deeper (as it is drawn
from data) than the usually flat hierarchy of input classes.

The new concept hierarchy reveals previously hidden subsumption relations
across the different analysis types. These empirically induced subsumptions may
further be checked with formal ontology definitions of the original concepts.
This checking could be made automatic and a conflict would signal either in-
consistently labeled training data or a wrong definition of some of the original
concepts.

Another output of the merge process are two mapping functions between the
set of the original concepts M and the set of merged concepts, which we will
denote as C. The first function we call targets : M ⇒ P (C), as it transforms
an original concept into a set of concepts that were created from it. The other
function, sources : C ⇒ P (M), transforms a merged concept into a set of
concepts it was created from.

The final DWO consists of the merged classes, while all information other
than the original classes is simply imported from the partial web models and
the UWO. In principle, the DWO can be used for two purposes. First, we may
just want to examine the domain, find hidden relationships in data and use this
information for e.g. tuning modules’ knowledge bases, adapting original concept
definitions, correcting training data or adapting applications.

Second, the UWO may be used for a completely different purpose — as an
integration and communication platform for applications that want to use the
Rainbow system as a whole. Instead of calling the services of individual modules
and working with their analysis–specific concepts, applications may prefer to
work with the merged concept hierarchy, as it better reflects the relations in the
training data13 (and thus in the domain, presumably).

The merged DWO concepts cannot be used to query the modules directly,
since modules don’t know the merged concept language. Instead, there must be a
mechanism based on the abovementioned functions targets and sources and their
inverses, which will translate the DWO concepts to the original concepts under-
stood by the modules and back. This task will be taken care of by a dedicated
integration module, which will manage the bidirectional translation of concepts
and control the execution of the correct modules14 . This part of our research is
currently in an early phase of development.

12 We compute support as the number of positive documents divided by the total
number of training documents.

13 Large amount of training data with enough information about all analysis types will
be required for this task.

14 A single application request will typically need to be translated into a control struc-
ture containing multiple requests upon the Rainbow modules. The result will then
transparently (to the application) integrate multiple analysis views.

37

3.2 Example

In the following we present a ’toy’ example taken from the domain of websites
of car dealers. In the example, integration is done based on a set of only thirteen
manually labeled documents. Nevertheless, we will be able to demonstrate some
of the benefits of this method. Due to lack of space, we will consider only one kind
of semantic classes — Document classes. The other three kinds of classes could
be taken into account as described in section 3.1. We also limit the integration
to just two types of analyses — HTML structures and topology.

Table 1. HTML documents classified by the topology and HTML structure
analysis

I TLE THU TLO TRE HAB HRE HPR HIM
d1 × ×
d2 × × ×
d3 × ×
d4 × × ×
d5 × × ×
d6 × × × ×
d7 × × × ×
d8 × × × ×
d9 × × × ×
d10 × × ×
d11 × × ×
d12 × × ×
d13 ×

The above table shows thirteen documents classified by the following data
type specific classes. Topology–specific classes are prefixed with ’T’, while
HTML–specific classes have ’H’ as their first letter15 :

– TLeaf (TLE) is a document with no links to other documents,
– THub (THU) has more than 1 link to other documents,
– TLocalHub (TLH) is a subconcept of THub, most of whose links lead to the

same IP address as its own,
– TRemoteHub (TRH) is a subconcept of THub, most of whose links lead to

a different IP address than its own,
– HAboutCompany (HAB) is a document describing a company in general,
– HProductCatalogue (HPR) contains descriptions of offered products,
– HReferences (HRE) refers to customers’ pages,
– HImageGallery (HIM) contains a set of similarly–sized images.

From the labeled set of documents, we are able to construct a concept lattice
depicted in Fig. 2. Formal concepts that are on the same level of specificity as
the source class hierarchies are shown in dark color. On the other hand, formal
concepts more specific than original classes are drawn in light color.

15 The presented concept intents are only informative, exact meaning is specified by
modules performing the analysis.

38

Fig. 2. Pruned concept lattice derived for the 13 car dealer documents

We observe that no original concepts had the same extensions in the train-
ing data, as each formal concept directly corresponds to at most one ontol-
ogy concept. Depending on the use of the target ontology, all or most of the
original classes could be included in it. In the concept lattice, we might reveal
several interesting implications pertaining the analyzed domain (or, more pre-
cisely, the training data), such as HImageGallery ⇒ HProductCatalogue or
HReferences ⇒ HRemoteHub. It is up to the integrator what part of the
induced hierarchy will be reflected in the target ontology.

We can also identify one new (no-name) concept which is a combination of
THub and HProductCatalogue and whose specialization is HImageGallery. This
concept might e.g. stand for product catalogues referring to child documents with
detailed information about the sold products — let us denote it ComplexProduct-
Catalogue16 . Because of its interpretation and being within the specificity level
of the original ontologies, ComplexProductCatalogue is an appropriate candidate
for adding to the target ontology.

Last of all, formal concepts more specific than the original ontologies should
be examined. Frequently occurring combinations of original ontology concepts
may be included in the target ontology as well if they are considered useful by
human integrators. For example, the formal concept with extension d6, d8, d9 and

16 The new concept is not specific to any type of analysis.

39

significant support of 0.23 may be considered interesting for certain applications
and included in the target ontology as GraphicalLocalCatalogue.

4 Conclusions and Future Work

In this text, we demonstrated the use of ontology merging method FCA–Merge
[5] for the integration of multiple ways of web analyses. We provided a simpli-
fied example of merging class hierarchies used by HTML structure analysis and
topology analysis and created a new merged ontology based on a collection of
labeled web pages. We also briefly presented the system of Rainbow ontologies
that were subject to the merge process.

The most imminent direction for future work is testing the presented ap-
proach on a large collection of training data, which will first be taken from small
segments of the OOPS domain. In conjunction with testing, we will check the
feasibility of building an integrated interface to Rainbow services using the pre-
sented method. Apart from the described FCA–based approach to knowledge
integration, we also plan to exploit the valuable information stored in probabil-
ity distributions among different analysis–specific classes in the training data.
The evolving prototype implementation of Rainbow should constantly serve for
empirical validation of (not only) the mentioned research directions.

Acknowledgements

The authors would like to thank their collaborators in the Rainbow project, who
contributed to the development of ontologies—Miroslav Vacura, Jirka Kosek,
Martin Kavalec, Martin Sajal and Petr Berka. The research has been supported
by grant no. 201/00/D045 of the Grant Agency of Czech Republic.

References

1. Beneš, M., Snášel, V.: Deducing Design Class Hierarchy from Object Properties. In:
(Hanáček, P., ed.) Information Systems Modeling, Ostrava 2002, 203–211.

2. Kavalec, M., Svátek, V.: Information Extraction and Ontology Learning Guided by
Web Directory. In: (Aussenac-Gilles, N., Maedche, A., eds.) ECAI Workshop on
NLP and ML for Ontology Engineering. Lyon, 2002, 39–42.

3. Kosala, R., Blockeel, H.: Web Mining Research: A Survey. In: ACM SIGKDD Ex-
plorations, 2(1):1-15, 2000.

4. Lassila, O., Swick, R.: Resource Description Framework (RDF) Model and Syntax
Specification. Recommendation, World-Wide Web Consortium, Feb. 1999.

5. Stumme, G., Maedche, A.: FCA–Merge: A Bottom–Up Approach for Merging On-
tologies. In: IJCAI ’01 - Proceedings of the 17th International Joint Conference on
Artificial Intelligence, Morgan Kaufmann 2001.

6. Svátek, V., Berka, P.: URL as starting point for WWW document categorisation.
In: (Mariani, J., Harman, D.:) RIAO’2000 – Content-Based Multimedia Information
Access, CID, Paris, 2000, pp.1693–1702.

40

7. Svátek, V., Kosek, J., Bráza, J., Kavalec, M., Klemperer, J., Berka, P.: Framework
and Tools for Multiway Extraction of Web Metadata. In: (Hanáček, P., ed.) Infor-
mation Systems Modelling, Ostrava 2002, 235–242.

8. Uschold, M., Jasper, R.: A Framework for Understanding and Classifying Ontology
Applications. In: IJCAI’99 Workshop on Ontologies and Problem-Solving Methods:
Lessons Learned and Future Trends. Stockholm 1999.

Web Services and WSDL?

Karel Richta

Dept. of Computer Science, Engineering Faculty of Electrical Engineering
Czech Technical University of Prague

Karlovo nám. 13, Praha 2, Czech Republic
richta@fel.cvut.cz

Abstract. The paper deals briefly with WSDL (Web Services Defini-
tion Language) as a tool for the specification of web services. The main
purpose for WSDL is something similar to XML for the transfer of data.
The example of the small web service and its call is used to explain how
WSDL works.

Key words: WSDL,XML,HTTP,UDDI

1 Introduction

In the present time, it is hard to imagine computing without the Web. The
reason why the Web succeeded seems to be simplicity and global accessibility.
From a service provider’s point of view (e.g. an e-shop provider), they can join
the global community. From a client’s point of view (e.g. an e-shop buyer), you
can access services through Web. The majority of the web’s work is done by
HTTP methods GET, POST, and PUT, and a simple markup language XML. The
web services are the result of the fact that the advantages of the Web as a plat-
form apply not only to documents but also to services. A more formal definition
of a web service may be borrowed from [11] ”Web services are a new breed of Web
application. They are self-contained, self-describing, modular applications that
can be published, located, and invoked across the Web. Web services perform
functions, which can be anything from simple requests to complicated business
processes...Once a Web service is deployed, other applications (and other Web
services) can discover and invoke the deployed service.” There exists different
middleware platforms: CORBA, DCOM, RMI, Jini, etc. While middleware plat-
forms provide great implementation vehicles for services, none of them is a clear
winner. The strengths of the Web is its ”simplicity of access and ubiquity”. The
Web provides a uniform and widely accessible interface and access, although
middleware services are more efficiently implemented in a traditional middle-
ware platform.
? This work has been partially supported by the research program no. MSM 212300014

”Research in the Area of Information Technologies and Communications” of the
Czech Technical University in Prague (sponsored by the Ministry of Education,
Youth and Sports of The Czech Republic), and it also has been partially supported
by the grant No. 201/03/0912 ”XML Documents Searching and Indexing” of the
Grant Agency of The Czech Republic.

c© J. Pokorný, V. Snášel (Eds.): Dateso 2003, pp. 41–54, ISBN 80-248-0330-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2003.

42

2 What Web Services Are Based On?

The basic platform for Web services is XML and HTTP. HTTP is a protocol,
running practically everywhere on the Internet. XML provides a meta-language
in which you can write specialized languages (called XML applications) to ex-
press complex interactions between clients and services or between components
of a composite service. Behind the front wall of a web server, the XML message
gets converted to a middleware request and the results converted back to XML.
The resulting infrastructure is similar to CORBA, i.e. IDL plus remote procedure
calls. But the real life is never quite that simple, and there are many problems
with the platform supported. On the other hand, the Web needs to be aug-
mented with a few other platform services, which maintain the simplicity of the
Web, to constitute a more functional platform. The Web services are based on
XML - everything is converted into XML (data, function calls, etc.). XML data
are transferred with the help of HTTP protocol. Function calls are expressed
in an XML application called SOAP (Simple Object Access Protocol [9]). The
SOAP document describes, what service, and with which parameters is required.
The characteristics of the service should be described somehow. That is duty of
WSDL (Web Services Description Language [13]), the other XML application.
The complete list of available services is something like directory service, and it
is called UDDI (Universal Description, Discovery and Integration Service [10]. At
higher levels, one might also add technologies such as XAML, XLANG (trans-
actional support for complex web transactions involving multiple web services),
XKMS, and XFS (XML Key Management Specification) - services that are not
universally accepted as mandatory.

3 Simple Object Access Protocol SOAP

SOAP [9] is a simple protocol specification that defines a uniform way of pass-
ing XML-encoded data. It also defines a way to perform remote procedure calls
(RPCs) using HTTP as the underlying communication protocol. SOAP arises
from the understanding that no matter how clever the current middleware offer-
ings are, they need a WAN wrapper. Architecturally, sending messages as plain
XML has advantages in terms of ensuring interoperability. The top element of
the SOAP XML document representing the message is the Envelope element.
The Envelope element may contain the Header element, must contain the Body
element, and may contain the Fault element. The SOAP Fault element is used
to carry error and/or status information within a SOAP message. If present, the
SOAP Fault element must appear as a body entry and must not appear more
than once within a Body element. The SOAP message containing request for a
local time can look like follows:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

43

Fig. 1. The SOAP document structure

<time:GetLocalTime xmlns:time="www.zvon.org/time">

<time:city>New York</time:city>

<time:format template="hh:mm"/>

</time:GetLocalTime>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

4 WSDL: Web Services Definition Language

WSDL [13] provides a way for service providers to describe the basic format
of web service requests over different protocols or encodings. WSDL is used
to describe what a web service can do, where it resides, and how to invoke it.
While the claim of SOAP/HTTP independence is made in various specifications,
WSDL makes the most sense if it assumes SOAP/HTTP/MIME as the remote
object invocation mechanism. UDDI registries describe numerous aspects of web
services, including the binding details of the service. WSDL fits into the subset
of a UDDI service description.

WSDL defines services as collections of network endpoints or ports. In WSDL
the abstract definition of endpoints and messages is separated from their con-
crete network deployment or data format bindings. This allows the reuse of
abstract definitions of messages, which are abstract descriptions of the data be-
ing exchanged, and port types, which are abstract collections of operations. The
concrete protocol and data format specifications for a particular port type con-
stitute a reusable binding. A port is defined by associating a network address

44

Fig. 2. The WSDL document structure

with a reusable binding; a collection of ports define a service. And, thus, a WSDL
document uses the following elements in the definition of network services:

– Types – a container for data type definitions using some type system (such
as XSD).

– Message – an abstract, typed definition of the data being communicated.
– Operation – an abstract description of an action supported by the service.
– Port Type – an abstract set of operations supported by one or more end-

points.
– Binding – a concrete protocol and data format specification for a particular

port type.
– Port – a single endpoint defined as a combination of a binding and a network

address.
– Service – a collection of related endpoints.

So, in plain English, WSDL is a template for how services should be described
and bound by clients. In what follows, I’ve described a stock quote service ad-
vertisement and a sample request/response pair for the service, which seeks the
current quote on Motorola (ticker: MOT).

4.1 The WSDL example

Let us suppose we want to create a simple Web service to compute sum of two
integers [2]. In the Message part it has to be declared, the sum will be requested
with two parameters p0 and p1 of the integer type:

<wsdl:message name=’Sum_Request’>

<wsdl:part name=’p0’ type=’xsd:int’/>

<wsdl:part name=’p1’ type=’xsd:int’/>

</wsdl:message>

45

The response will again be an integer:

<wsdl:message name=’Sum_Response’>

<wsdl:part name=’response’ type=’xsd:int’/>

</wsdl:message>

In the portType part it has to be set, that the operation Sum with parameters
p0 and p1 in this order will be called:

<wsdl:portType name=’Sum’>

<wsdl:operation name=’Sum’ parameterOrder=’p0 p1’>

<wsdl:input name=’Sum’ message=’tns:Sum_Request’/>

<wsdl:output name=’Sum’ message=’tns:Sum_Response’/>

</wsdl:operation>

</wsdl:portType>

Fig. 3. WSDL and UDDI deployment

In the Binding part it has to be set, that the operation call will be transported
via RPC encoded according to appropriate XML schema as an input and output
elements:

<wsdl:binding name=’SumSOAPBinding0’ type=’tns:Sum’>

<soap:binding transport=’http://schemas.xmlsoap.org/soap/http’

style=’rpc’/>

<wsdl:operation name=’Sum’>

46

<soap:operation soapAction=’’ style=’rpc’/>

<wsdl:input name=’Sum’>

<soap:body use=’encoded’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

namespace=’urn:x-kosek:services:Sum’/>

</wsdl:input>

<wsdl:output name=’Sum’>

<soap:body use=’encoded’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

namespace=’urn:x-kosek:services:Sum’/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

In the Service part it has to be set, which node will be addressed:

<wsdl:service name=’Sum’>

<wsdl:port name=’Sum’ binding=’tns:SumSOAPBinding0’>

<soap:address location=’http://localhost:6060/Sum/’/>

</wsdl:port>

</wsdl:service>

The whole picture look as follows:

<?xml version=’1.0’?>

<wsdl:definitions name=’Sum’

targetNamespace=’urn:x-kosek:services:Sum’

xmlns:wsdl=’http://schemas.xmlsoap.org/wsdl/’

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’

xmlns:tns=’urn:x-kosek:services:Sum’

xmlns:http=’http://schemas.xmlsoap.org/wsdl/http/’

xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’

xmlns:mime=’http://schemas.xmlsoap.org/wsdl/mime/’

xmlns:soap=’http://schemas.xmlsoap.org/wsdl/soap/’

xmlns:SOAP-ENC=’http://schemas.xmlsoap.org/soap/encoding/’>

<wsdl:message name=’Sum_Response’>

<wsdl:part name=’response’ type=’xsd:int’/>

</wsdl:message>

<wsdl:message name=’Sum_Request’>

<wsdl:part name=’p0’ type=’xsd:int’/>

<wsdl:part name=’p1’ type=’xsd:int’/>

</wsdl:message>

<wsdl:portType name=’Sum’>

<wsdl:operation name=’Sum’ parameterOrder=’p0 p1’>

<wsdl:input name=’Sum’ message=’tns:Sum_Request’/>

<wsdl:output name=’Sum’ message=’tns:Sum_Response’/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name=’SumSOAPBinding0’ type=’tns:Sum’>

<soap:binding

47

transport=’http://schemas.xmlsoap.org/soap/http’ style=’rpc’/>

<wsdl:operation name=’Sum’>

<soap:operation soapAction=’’ style=’rpc’/>

<wsdl:input name=’Sum’>

<soap:body use=’encoded’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

namespace=’urn:x-kosek:services:Sum’/>

</wsdl:input>

<wsdl:output name=’Sum’>

<soap:body use=’encoded’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

namespace=’urn:x-kosek:services:Sum’/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name=’Soucet’>

<wsdl:port name=’Soucet’ binding=’tns:SumSOAPBinding0’>

<soap:address location=’http://localhost:6060/Sum/’/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

4.2 Web Services in the Action

At the server side the service will be implemented e.g. as:

public class Sum

{

public int Sum(int x, int y) { return x + y; }

}

At the client side the service will be declared:

package client.iface;

public interface Sum

{

int Sum(int p0, int p1);

}

The client application that uses this service can look as follows:

48

package client;

import client.iface.*;

import org.idoox.wasp.Context;

import org.idoox.wasp.MessageAttachment;

import org.idoox.webservice.client.WebService;

import org.idoox.webservice.client.WebServiceLookup;

public class SumClient{

public static void main(String args[]) throws Exception {

String host = "http://localhost:6060/Sum/";

//init the lookup

WebServiceLookup lookup = (WebServiceLookup)Context.getInstance

("org.idoox.webservice.client.WebServiceLookup");

//get the instance of the Web Service interface from the lookup

//change the interface class to your Web Service’s interface

Sum service = (Sum)lookup.lookup

("http://localhost:6060/Sum/", Sum.class,host);

//now call the methods on your Web Service’s interface

System.out.println(service.Sum(2,5));

}

}

The request will be enveloped into the SOAP envelope (where references to XML
Schema types should be included):

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:wn1="http://www.w3.org/2000/10/XMLSchemas"

xmlns:wn0="http://www.w3.org/2001/XMLSchemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchemas-instance">

<nsp:Sum xmlns:nsp="urn:x-kosek:services:Sum">

<p0 xsi:type="wn0:int">2</p0> <p1 xsi:type="wn0:int">5</p1>

</nsp:Sum>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

And send to the server. When the sum is computed, the result is again enveloped
into the SOAP envelope and returned back:

49

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:wn1="http://www.w3.org/2000/10/XMLSchemas"

xmlns:wn0="http://www.w3.org/2001/XMLSchemas"

xmlns:xsi="http://www.w3.org/2001/XMLSchemas-instance">

<nsp:SumResponse xmlns:nsp="urn:x-kosek:services:Sum">

<response xsi:type="wn0:int">7</response>

</nsp:SumResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

4.3 Another Example: Service Advertisement

<?xml version="1.0"?>

<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote.wsdl"

xmlns:tns="http://example.com/stockquote.wsdl"

xmlns:xsd1="http://example.com/stockquote.xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<schema targetNamespace="http://example.com/stockquote.xsd"

xmlns="http://www.w3.org/1999/XMLSchema">

<element name="TradePriceRequest">

<complexType>

<all>

<element name="tickerSymbol" type="string"/>

</all>

</complexType>

</element>

<element name="TradePrice">

<complexType>

<all>

<element name="price" type="float"/>

</all>

</complexType>

</element>

</schema>

</types>

<message name="GetLastTradePriceInput">

<part name="body" element="xsd1:TradePriceRequest"/>

</message>

<message name="GetLastTradePriceOutput">

<part name="body" element="xsd1:TradePrice"/>

</message>

50

<portType name="StockQuotePortType">

<operation name="GetLastTradePrice">

<input message="tns:GetLastTradePriceInput"/>

<output message="tns:GetLastTradePriceOutput"/>

</operation>

</portType>

<binding name="StockQuoteSoapBinding"

type="tns:StockQuotePortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetLastTradePrice">

<soap:operation

soapAction="http://example.com/GetLastTradePrice"/>

<input>

<soap:body use="literal"

namespace="http://example.com/stockquote.xsd"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="literal"

namespace="http://example.com/stockquote.xsd"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="StockQuoteService">

<documentation>My first service</documentation>

<port name="StockQuotePort" binding="tns:StockQuoteBinding">

<soap:address location="http://example.com/stockquote"/>

</port>

</service>

</definitions>

<binding name="StockQuoteServiceBinding"

type="StockQuoteServiceType">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getQuote">

<soap:operation

soapAction="http://www.getquote.com/GetQuote"/>

<input>

<soap:body type="InMessageRequest"

namespace="urn:live-stock-quotes"

encoding="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body type="OutMessageResponse"

encoding="http://schemas.xmlsoap.org/soap/encoding/"/>

51

</output>

</operation>

</binding>

<service name="StockQuoteService">

<documentation>My first service

</documentation>

<port name="StockQuotePort"

binding="tns:StockQuoteBinding">

<soap:address location="http://example.com/stockquote"/>

</port>

</service>

</definitions>

A SOAP enveloped request to the StockQuote service

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml;

charset="utf-8"

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>MOT</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A SOAP enveloped response to the StockQuote service

HTTP/1.1 200 OK Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m="Some-URI">

<Price>14.5</Price>

</m:GetLastTradePriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

52

5 UDDI, The Universal Description, Discovery and
Integration Service

UDDI [10] provides a mechanism for clients to dynamically find other web ser-
vices. Using a UDDI interface, businesses can dynamically connect to services
provided by external business partners. A UDDI registry is similar to a CORBA
trader, or it can be thought of as a DNS service for business applications. A
UDDI registry has two kinds of clients: businesses that want to publish a service
(and its usage interfaces), and clients who want to obtain services of a certain
kind and bind programmatically to them. The UDDI contains so called ”White
pages”, which contains information such as the name, address, telephone num-
ber, and other contact information of a given business. It tells how the provider
of a Web service registers itself. The second part are ”Yellow pages”, which is a
specification, how an application finds a particular Web service. The third part
are ”Green pages”, where are the technical details necessary to invoke a Web
service. This includes URLs, information about method names, argument types,
and so on.

UDDI Example

Query: The following query, when placed inside the body of the SOAP envelope,
returns details on Microsoft.

<find_business generic="1.0" xmlns="urn:uddi-org:api">

<name>Microsoft</name>

</find_business>

Result: detailed listing of ¡businessInfo¿ elements currently registered for Mi-
crosoft, which includes information about the UDDI service itself.

<businessList generic="1.0"

operator="Microsoft Corporation"

truncated="false"

xmlns="urn:uddi-org:api">

<businessInfos>

<businessInfo

businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3">

<name>Microsoft Corporation</name>

<description xml:lang="en">

Empowering people through great software -

any time, any place and on any device is Microsoft’s

vision. As the worldwide leader in software for personal

and business computing, we strive to produce innovative

products and services that meet our customer’s

</description>

<serviceInfos>

<serviceInfo

businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"

53

serviceKey="1FFE1F71-2AF3-45FB-B788-09AF7FF151A4">

<name>Web services for smart searching</name>

</serviceInfo>

<serviceInfo

businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"

serviceKey="8BF2F51F-8ED4-43FE-B665-38D8205D1333">

<name>Electronic Business Integration Services</name>

</serviceInfo>

<serviceInfo

businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"

serviceKey="611C5867-384E-4FFD-B49C-28F93A7B4F9B">

<name>Volume Licensing Select Program</name>

</serviceInfo>

<serviceInfo

businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"

serviceKey="A8E4999A-21A3-47FA-802E-EE50A88B266F">

<name>UDDI Web Sites</name>

</serviceInfo>

</serviceInfos>

</businessInfo>

</businessInfos>

</businessList>

6 Conclusion

The paper try to show how WSDL serves for the description of service call.
It means, that WSDL covers the syntax only. What remains to solve is the
description of the semantics of web services. In the presented example we have
to know, that the right function is the function ”Sum”. To be able to find out
any function that sums two integer numbers is the task for the future.

References

1. V. Bisová, K. Richta: Transformation of UML Models into XML. In Pro-
ceedings of Challenges 2000 ADBIS-DASFAA. Praha: MATFYZPRESS UK,
ISBN 80-85863-56-1, pp. 33-45. Praha 2000.

2. J. Kosek: Inteligentńı podpora navigace na WWW s využit́ım XML. Diplomová práce
KIT VŠE Praha, 2002, http://www.kosek.cz/diplomka/, (in Czech).

3. M. Nič: SOAP Reference. http://www.zvon.org/xxl/soapReference/
4. J. Pokorný, K. Richta: XML a semistrukturovaná data. In Proceedings of DATASEM

2000. Brno: Masaryk University - ISBN 80-210-2428-3, pp. 47–63. Brno 2000.
5. K. Richta: Using XSL in IS Development. In: New Perspectives on Information

Systems Development: Theory, Methods, and Practice. New York : Kluwer Aca-
demic/Plenum Publishers, 2002, pp. 309-319. ISBN 0-306-47251-1.

6. K. Richta: Types in XML and XML-schemas. In DATESO’01 – Proceedings of
Workshop on Databases, Texts, Specifications, and Objects. Prague : CTU, 2001,
pp. 20-32. ISBN 80-01-02376-1. (in Czech).

54

7. K. Richta, P. Long: Using XSLT for IS Simulation. In DATESO’02 – Proceedings
of Workshop on Databases, Texts, Specifications, and Objects. Ostrava : VŠB-TUO,
2002, pp. 66-78. ISBN 80-248-0080-2.

8. K. Richta, M. Badawy: Deriving Triggers from UML/OCL Specification. In ISD
2002. New York : Kluwer Academic/Plenum Publishers, 2002, pp.305–316. ISBN
0-306-47698-3.

9. SOAP Version 1.2 Part 0: Primer, W3C Candidate Recommendation 19 December
2002. http://www.w3.org/TR/soap12-part0/

10. OASIS Committee Specifications, Universal Description, Discovery and
Integration, UDDI Version 3.0, Published Specification, 19 July 2002,
http://uddi.org/specification.html

11. V. Vasudevan: A Web Services Primer.
http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/

12. W3C: Web Services Activity. http://www.w3.org/2002/ws/
13. Web Services Description Language (WSDL) Version 1.2, W3C Working Draft 3

March 2003, http://www.w3.org/TR/wsdl12/

Metadata Driven Data Pre-processing for Data
Mining

Petr Aubrecht, Petr Mikšovský, and Zdeněk Kouba

Czech Technical University, Prague, Czech Republic,
{aubrech,miksovsp,kouba}@labe.felk.cvut.cz

Abstract. It is well known that success of every data mining algorithm
is strongly dependent on a quality of processed data. In this context
it is natural that data pre-processing can be a very complicated task.
Sometimes, data pre-processing takes more than half of the total time
spent by solving the data mining problem. The paper describes a tool
called SumatraTT, the goal of which is to make the process of data
pre-processing easier and faster.
Basically, SumatraTT is a metadata-driven, platform independent, ex-
tensible, and universal data processing tool. These features have been
achieved by building the tool as an interpreter of a transformation-
oriented scripting language called SumatraScript. SumatraScript is fully
interpreted language with Java-like syntax combining together data ac-
cess, metadata access, and common programming constructions. Further-
more, it supports RAD (Rapid Application Development) technology by
providing the library of re-usable transformation templates.
The second part of the paper contains a practical application of Suma-
traTT. It is a task aimed at prediction of water consumption in a regional
distribution network.

1 Introduction

Real-life data rarely complies with the requirements of various data mining tools.
It is often inconsistent, noisy, they contain redundant attributes, they have un-
suitable format, etc. That is why it has to be prepared carefully before the process
of data mining can be started. It is well known that data preparation is a key to
the success of data mining tasks. The “no free lunch theorem” actually tells that
a clever pre-processing can compensate a nonoptimal choice of a mining algo-
rithm for the given task. To support this argument Pyle [5] estimates percentage
of time necessary to complete a data-mining project for various activities as well
as importance of these activities (Tab. 1). Nevertheless, in past most effort was
devoted to the development of more and more sophisticated mining tools while
data pre-processing issues were considered as peripheral.

A universal data pre-processing tool should be able to help to a data miner
with many every-day problems. For instance, data is provided in many differ-
ent formats (text files, database files, etc.), different formats of values (national
formats of date, time, currencies, etc), calculation of derived attributes, data fil-
tering, joining several data sets, etc. The data mining process usually starts with

c© J. Pokorný, V. Snášel (Eds.): Dateso 2003, pp. 55–62, ISBN 80-248-0330-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2003.

56

Table 1. Stages of data exploration project [5]

Time to complete
(percent of total)

Importance to success
(percent of total)

1. Exploring the problem 10 15

2. Exploring the solution 9 14

3. Implementation specification 1 51

4. Data mining

a. Data preparation 60 15

b. Data surveying 15 3

c. Data modelling 5 2

data understanding phase. In this stage the data pre-processing tool can help
with data exploration and discovering for example duplicated or missing values,
etc. Data pre-processing includes a lot of a tedious work. It can be simplified
and shortened using specialised tools for data pre-processing.

2 SumatraTT

SumatraTT is a metadata-driven, platform independent, extensible, and univer-
sal data processing tool. These features have been achieved by building the tool
as an interpreter of a transformation-oriented scripting language called Suma-
traScript. The Sumatra language is a fully interpreted language with Java-like
syntax combining together data access, metadata access, and common program-
ming constructions. Furthermore, it supports RAD (Rapid Application Devel-
opment) technology by providing library of re-usable transformation templates.
The principal schema of SumatraTT is shown in figure 1.

As it is shown in the figure, the central part of SumatraTT is the Metadata
Repository module. Basically, the repository plays two roles. It is a central stor-
age consisting of data sources descriptions and data transformation definitions.
Moreover, the repository contains data objects interconnecting an abstract data
access level in Sumatra interpreter with real-life data sources. This intermedi-
ated connection helps in unifying the data access to very different data sources
(e.g. SQL-based data sources, plain text files, etc.). Such a unification makes the
process of transformation script development easier and data source more inde-
pendent. Moreover, it separates transformation “logic” from the data connection
problems. In the case of very complicated data pre-processing task, development
of a data transformation script can be very time consuming. The SumatraTT
allows to speed-up this process by using re-applicable transformation templates.
The idea of re-usable templates is based on a library of solved types of tasks.
E.g., there is a data set containing time series and we need to calculate a statis-
tical characterization of the data. If it is carried out for the first time the new
template has to be developed. But next time, the statistical template will be
ready. Thus, transformation script can be developed during a fraction of time
required before.

57

SumatraTT

Pr
oc

es
si

ng
 p

ar
t

D
ec

la
ra

tiv
e

pa
rt

for(i=0;i<....

Inp.Open("data"....

interpreter

SQL
Delimited Text
JDBC
Prolog
WEKA
External
others...

Transformations
Data sources

MetadataData sources

Wizards
Code generator

Templates
Metadata repository

SumatraScript

code
SumatraScript

Data source
drivers

Fig. 1. Overview of SumatraTT

Every pre-processing task implemented using SumatraTT consists of a design
and a run-time phases. It corresponds to the client-server architecture where the
design phase means definition of all data sources and development of transforma-
tion scripts on the client side. In case of a typical user, who is an expert in data
mining or data warehousing but who is not a programmer the design phase can
be carried out using a graphical user interface. The GUI allows an interactive
data definition and script development by simple clicking on wizards. On the
other hand, the run-time phase corresponds to the script execution on the server
side. From the user perspective, the execution can be invoked immediately or
scheduled for running it later.

3 How SumatraTT Works

In the beginning, there is a data miner with data to be processed. Using Suma-
traTT there are several ways how to proceed.

The most straightforward way is to program the transformation task in
SumatraScript. It is relatively difficult task. Although a unified data access and
simplified programming are some of SumatraScript features that simplify trans-
formation task development, almost the same result can be achieved using C++.
Schema describing this approach is on figure 2.

The real benefit of using SumatraTT is making use of templates. Templates
represent pre-programmed tasks already solved and generalized. They are writ-
ten using meta-information, which is concretized at the moment of the final use.
There exist several obligatory parameters, which expand the meta-information.

58

Fig. 2. Transformation written in SumatraScript

Fig. 3. Transformation with advance of template

Templates usually contain a lot of optional parameters for advanced features.
A schema of using a template is in the figure 3.

In the second case SumatraTT combines the template and metadata and
generates a complete SumatraScript code, which is processed in the same way
as in the first case.

The best example of a template is the most frequently used one – Trans-
formTableCopy. The main purpose of this template is to copy data from one
data source into another. The arbitrary parameters are input and output data
sources. At this moment, transformation is ready-to-use. It can move data from
any (supported) format into another (e.g. from text file into database or from
database into Prolog clauses, etc.). Format change is automatically achieved by
different data source definition.

59

The main part of TransformTableCopy template consist of the following
code (simplified). In metadata, the From, To parameters have to be specified to
determine source and target data sources, the Code is optional.

from.FindFirst(); while(!from.Eof()) {
// load data from data source to local variables
##DSvariablesLoadById(From,##param(From))
// first of all, copy all matching fields
##DSCopyMatchingFields(From,##param(From),To,##param(To))
// user-defined transform
##param(Code,)
// store variables to data source
##DSvariablesSave(To,##param(To))
To.PostRecord();
From.NextRecord();

}

Optional parameters of TransformTableCopy template (which is much more
developed than the previous example) extend SumatraTT’s ability into a level
of very powerful tool. There are parameters for creating the target data source
(even if it is an SQL table), cleaning the target data source (removing all values)
before copy, filtering, reporting problems during the run and others.

4 Case Study – Water Distribution Company

The case study is targeted to prediction of drinking water consumption in the
Western Bohemian region. The distribution network starts from the manufactur-
ing part, where the natural water quality is improved to be drinkable and then
pumped to a primary water supply. A primary water supply distributes water
to customers indirectly via storage reservoirs. Only a tiny amount of customers
is supplied directly from a primary water supply. Each reservoir has its region
where it works as the main source of drinking water. Water storage reservoirs
are used as accumulators of drinking water to ensure fluent loading of water
manufacturing part. The water is produced in a production unit (production =
pumping from springs + cleaning). The best quality of water and most efficient
production is achieved when producing a constant amount of water produced
per time unit. Thus, the consumption peaks must be foreseen and the reservoirs
must be pre-filled to contain enough water for covering following peaks. How-
ever, keeping non-necessary high level of water in water reservoirs is bad, as the
water quality is affected by slow exchange of reservoir contents.

The reservoirs are automatically measured and controlled. Each of these
reservoirs yields every 10 minutes measurements of inflow and outflow of water
in cubic meters per second and a set of several design-dependent internal flows,
which are used for control. Thus, a complete snapshot of process parameters is
at disposal every 10 minutes.

60

From the beginning, the domain expert expected that water consumption is
dependent on weather. Moreover, every reservoir distributes water to a different
type of area (garden, block of flats, . . .). Therefore a model for every reservoir
has to be found. There were available the following data sets:

– Measurements of distribution network parameters (inflow, outflow, etc.) in
water storage reservoirs. The data is stored in semicolon-separated plain text
file where the first column represents date and time of the measurement and
following 61 columns contain measured values.

– Distribution network description - connections and dependencies within the
network (network configuration).

– Weather description

During the data pre-processing phase the following problems appeared:

– Data contains immediate values of inflow/outflow but the task is to predict
water consumption, i.e. amount of water. The data has to be interpolated in
an appropriate form.

– Each reservoir requires its special model. That is why the data has to be
separated for each reservoir.

– The consumption also depends on weather in several previous days. That is
why the data for a data mining tool have to contain several historical values
in one record.

5 Problems Solved by SumatraTT

Generally, SumatraTT is able to solve almost every data pre-processing task. In
the case of often-repeated tasks there is a corresponding template at disposal.
Even if the template is not available, the task can be implemented by writing
a transformation script. However, this is a time consuming way.

The advantage of using SumatraTT is in its simplicity, speed, and reliability
of transformation design. SumatraTT’s ability to solve tasks quickly is given
by a library of templates. A set of basic templates is a part of the software
distribution. These templates are able to solve wide range of common data pre-
processing problems. Moreover, the library is still growing as new tasks are solved
in a general way.

Every transformation is defined by a template to be applied and a set of pa-
rameters defined in metadata. The parameters determine the final behavior
of the template. The list of currently supported tasks is mentioned in the next
paragraphs. All these tasks can be easily implemented using a template from the
standard library.

Usual data pre-processing tasks belongs to one of the following groups:

Standard tasks – supported by almost every transformation tool
Advanced tasks – very often in data mining practice but unfortunately not

common in data pre-processing software

61

5.1 Standard Tasks

Currently, SumatraTT distribution [3] supports the following standard tasks:

Copy data Unfortunately, almost every data mining tool requires a special data
format therefore the most frequent task is to change data format.

Formatting of values Especially text files different formats of data are used.
The most common example of format issue is date and time processing.
There are national formats of date, time, currencies. Changing data type
and format is done automatically according to data source definition.

Calculation of a new attribute Adding a new or calculating derived attribu-
tes can be made by an expression in SumatraScript code
(e.g. out SUM = in Left+in Right;).

Data filtering Data filtering is defined by a logical condition. Optionally, there
can exist a piece of code to solve more complicated situations.

Reporting The data pre-processing task can generate a text output or log
errors and/or problems occurred during its run.

Visualization Data visualization is a very important function especially in
the data understanding phase. It helps to uncover hidden features of the
data. In SumatraTT, the visualization is available in two ways: directly in
GUI using an interactive setup, or using external tool, e.g. gnuplot.

5.2 Advanced Tasks

There are many important issues that have to solved during the data pre-
processing phase. They are often very and very time consuming. Unfortunately,
currently available tools are missing their support. The following list contains
problems that are usually very hard to solve by traditional tools and SumatraTT
can solve them easily.

Split a data set It supports automatic splitting data into training and evalu-
ation data sets with respect to the distribution of target classes. Moreover,
the data set can be split into several data sets using a splitting condition.

Time series processing Data mining algorithms are mostly able to handle
data sets only record by record. In the case of time series it happens very
often that a value in time t somehow depends on values in time t− 1, t− 2,
etc. Then data from several previous records have to be transformed into
one record. The most of Sumatra TT templates support a parameter called
History determining the depth of history to be held. These values can be
accessed in a same way as normal fields are.
Moreover, application of the History parameter can help with deriving char-
acteristic values of a subset of records. This feature was successfully verified
in medical applications.

Contradictory records Sometimes data contains records, which have all val-
ues the same except class. Such records can be errors or can indicate that
a set of attributes is not correct. SumatraTT contains a template where such
records can be easily extracted.

62

Prolog facts export/import There is ready-made data source supporting ex-
port/import of data to/from Prolog facts. It is very useful in case of using
ILP (Inductive Logic Programming) methods for data mining for details see
[6] and [1].

6 Conclusion

There are many very sophisticated tools and algorithms for data mining as well
as many good books in this area. They address lots of problems from different
areas but only few of them describe how to prepare (pre-process) data for efficient
analysis and achieving of usable results. This paper tries to point out some of the
most often problems that have to be solved during data pre-processing phase. It
describes their solution using a data pre-processing tool called SumatraTT.

SumatraTT is metadata-driven, platform independent, extensible, and uni-
versal data processing tool. These features have been achieved by building the
tool as an interpreter of a transformation-oriented scripting language called
SumatraScript. The Sumatra language is fully interpreted Java-like language
combining together data access, metadata access, and common programming
constructions. Furthermore, it supports RAD (Rapid Application Development)
technology by the library of re-usable transformation templates.

The SumatraTT tool was verified on several data mining problems. One
of them has been briefly described in this paper. It demonstrates a very common
problems appearing during time series processing, e.g. using historical values,
national formats of date and time, etc. Moreover, it shows complicated transfor-
mation of measured values into features suitable for data mining algorithms.

References

1. Petr Aubrecht, Filip Železný, Petr Mikšovský, and Olga Štěpánková. Progress in
SumatraTT: ILP Connectivity and More New Features. In Data Mining and Deci-
sion Support in Action! (subconference of Information Society IS 2001), volume 1,
pages 107–110. Ljubljana : Institut Jozef Stefan, 2001.

2. Petr Aubrecht, Filip Železný, Petr Mikšovský, and Olga Štěpánková. Sumatratt:
Towards a universal data preprocessor. In Cybernetics and Systems 2002, volume II,
pages 818–823, Vienna, 2002. Austrian Society for Cybernetics Studies.

3. Czech Technical University in Prague. SumatraTT Official Home Page, 2001.
http://krizik.felk.cvut.cz/Sumatra.

4. Katharina Morik. The Representation Race – Preprocessing for Handling Time
Phenomena. In ECML, Lecture Notes in Computer Science, pages 4–19. Springer,
2000. Invited talk.

5. Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishers,
Inc., San Francisco, CA, USA, 1999.

6. Filip Zelezny, Petr Aubrecht, and Petr Miksovsky. Connecting Sumatra to Aleph. In
Christophe Giraud-Carrier, Nada Lavrač, Steve Moyle, and Branko Kavšek, editors,
Integrating Aspects of Data Mining, Decision Support and Meta-Learning: Internal
SolEuNet Session, pages 43–52. ECML/PKDD’01 workshop notes, September 2001.

Algebraic Specification of Database models

Martin Hnátek

Department of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University,

Karlovo nám. 13, 121 35 Prague 2
xhnatek@fel.cvut.cz??

Abstract. Typical problem during the process of database reverse en-
gineering (DBRE) is insufficient exactness of the original definitions of
transformations among the database models at the different levels of
abstraction (e.g. the conceptual model, logical model, implementation
model). This paper uses algebraic notation tool, the OBJ3 language, to
express possible database model and transformation specification. This
approach tries to separate automatic work and the points of human de-
cision more precisely.

1 Introduction

The term data reverse engineering (DRE) evolved from the more generic term
reverse engineering. Reverse engineering is a process to achieve understanding of
the structure and interrelationships of a subject system. It is the goal of reverse
engineering to create representations that document the subject and facilitate
our understanding it what it is, how it works, and how it does not work. As a
process, reverse engineering can be applied to each of the three principal aspects
of a system: data, process, and control. Data reverse engineering concentrates
on the data aspect of the system that is the organization. It is a collection of
methods and tools to help an organization determine the structure, function,
and meaning of its data. In case of data intensive applications where database
system is used, the term database reverse engineering is applied. DRE has also
been defined in several ways, for example as “the use of structured techniques
to re-constitute the data assets of an existing system”. For a deeper look at this
definition see [1]. Reverse engineering and design recovery has been clearly and
neatly defined by Elliot Chikofsky in [2].

Basically, DRE is seldom a goal of some project itself, but often is the first
step in a broader engineering project. Here follow some of the most frequent
objectives of DRE.

?? This work has been partially supported by the research program no. MSM 212300014
“Research in the Area of Information Technologies and Communications” of the
Czech Technical University in Prague (sponsored by the Ministry of Education,
Youth and Sports of the Czech Republic.

c© J. Pokorný, V. Snášel (Eds.): Dateso 2003, pp. 63–70, ISBN 80-248-0330-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2003.

64

– Data extraction/conversion: In some situations, the only component to sal-
vage when abandoning a legacy system is its database. The data have to be
converted into another format, which requires some knowledge on its physical
and semantic characteristics. On the other hand, most data warehouses are
filled with aggregated data extracted from corporate databases. This trans-
fer requires a deep understanding of the physical data structures, to write
the extraction routines, and of their semantics, to interpret them correctly.

– Quality assessment : Analyzing the code and the data structures of a sys-
tem in some detail can bring useful hints about the quality of this system,
and about the way it was developed. M. Blaha observed that assessing the
quality of a vendor software database through database reverse engineering
techniques is a good way to evaluate the quality of the whole system.

– Data administration: database reverse engineering is also required when one
develops a data administration function that has to know and record the
description of all the information resources of the organization.

– Component reuse: In emerging system architectures, database reverse en-
gineering allows developers to identify, extract and wrap legacy functional
and data components in order to integrate them in new systems, generally
through ORB technologies.

Extensive list of reasons for practicing DRE has been presented in [8]. In a
wider look, data reverse engineering is a special subset of reverse engineering and
reverse engineering is a part of software maintenance, thus necessity of DRE is
derived from inevitability of software maintenance. Particular forms of software
maintenance and reasons why it can not be shifted off is analyzed in [10].

Data reverse engineering grew up through two different (and for the most
part exclusive) communities:

1. the database community,
2. the software engineering community.

The way DRE was performed and which aspects of DRE were emphasized
differed as much as the focus of the two communities differed. The database
community always used own terminology and methodologies. The software en-
gineering community perceived the data reverse engineering as a special aspect
of the whole reverse engineering process.

Over the years, the research and publications in DRE by both communities
has been mainly in three areas:

– DRE translation and methodologies algorithms,
– DRE tools,
– The DRE of specific applications and experiences in DRE.

This paper concentrates on formal model description, together with transfor-
mational approach elaboration. The database community constructed number of
models describing different levels of database abstraction, starting at conceptual

65

schema, going through logical schema, ending with implementation. These mod-
els help designing database and they correspond engineering tasks very well.
However, the models are not suitable for reverse engineering purposes which
requires other properties of description. The main goal of data reverse engi-
neering models is to facilitate the engineer in several ways. High degree of model
equivalences is required to express inter-schema mappings appropriately. Feasible
description offers mathematical characterization of transformations and brings
possibility of precise verification and validation. Also, systematic approach to
parameterization must by used enabling model conformation for the particular
task. On the other hand, no process is substitute for expertise of software engi-
neer, so the model specification must provide the possibility to precisely state
the moments of human knowledge and decision utilization.

There are several formal approaches that can be utilized with various features
and applicability. The first way presents individual model creation adjusted to
data reverse engineering processes. The DB-MAIN approach is such an example
[7]. The second approach applies algebraic specifications for model description
and relevant algebraic operations for transformations. The algebraic approach is
employed in this paper. The third alternative considers type theories.

2 A Brief Summary of Algebra Variants

Oversimplified, the main idea of algebraic specifications is the description of
the modeled system using algebraic structures. All the properties of algebraic
structures are exactly mathematically defined in a number of publication, for
example [4] or [12] (in Czech). General (also called universal) algebra offered
basic concepts (such as congruence, variety, and free algebra) and basic results
(including completeness and variety theorems). Anyway, ordinary unsorted logic
allows the situation where anything can be applied to anything, thus unsorted
logic is too permissive. Later, many sorted algebra (MSA) has been studied
with better results using sorts, for example in automatic theorem proving this
can greatly reduce the search space. Although many sorted algebra has been
quite successful for the theory of abstract data types, it can produce some very
awkward code in practice, primarily due to difficulties in handling erroneous
expressions, such as dividing by zero in the rationals, or taking the top of an
empty stack. In fact, there is no really satisfying way to define either rationals or
stacks with (unconditional) MSA. Traditional many sorted logic is too restrictive,
because it does not support overloaded operation symbols, such as .+. for integer,
rational, and complex numbers. Strictly speaking, an expression like (-21 / -3)!
does not parse (assuming that factorial only applies to natural numbers), because
(-21 / -3) looks to the parser like a rational rather than a natural. As a solution,
the use of sorted sets (also called indexed families) for MSA was introduced
by Goguen in lectures at the University of Chicago, and first appeared in print
in [3].

Sorted sets allow a simpler notation than alternative approaches, and also
allow overloading. However, overloading only reveals its full potential in order

66

sorted algebra (OSA). OSA is designed to handle cases where things of one sort
are also of another sort (e.g., all natural numbers are also rational numbers),
and where operators or expressions may have several different sorts. The essence
of order sorted algebra is to provide a subsort partial ordering among sorts, and
to interpret it semantically as subset inclusion among the carriers of models; for
example, given Nat and Rat and signalizing that MNat ⊆ MRat, where M is
a model, and Ms is its set of elements of sort s. OSA also supports multiple
inheritance, in the sense that a given sort may have more than one distinct
supersort. Two pleasant facts are that OSA is only slightly more difficult than
many sorted algebra, and that essentially all results generalize without difficulty
from the many sorted to the order sorted case. OSA presents the basis for the
OBJ language.

Ongoing research brought alternative approaches, for example universe OSA,
unified algebra, hidden sorted algebra. There is a comprehensive survey of alge-
bras, mostly aimed at order sorted algebras, in [6].

3 The OBJ3 Language

OBJ is a wide spectrum first-order functional language that is rigorously based
on (order sorted) equational logic and parameterized programming, supporting
a declarative style. The following text is meant as a recapitulation of OBJ3
features, giving a list of typical ones, and commenting only the most utilized.
A solid introduction to OBJ is included in [5], also available in PostScript from
[11].

1. OBJ is based on OSA. OSA provides a notion of subsort that rigorously
supports multiple inheritance, exception handling and overloading.

2. Two kinds of modules: objects (which are not very closely related to objects
in the sense of object-oriented programming) and theories. Objects encapsu-
late executable code, and in particular define abstract data types by initial
algebra semantics, and (loose) theories are designed to specify both syntactic
and semantic properties of modules.

3. Parametrized programming. Parametrized programming gives powerful sup-
port for design, verification, reuse, and maintenance.

4. Executable code consists of equations that are interpreted as rewrite rules.
OBJ provides some extended features, such as rewriting modulo associa-
tive, commutative and/or identity equations, as well as user-definable eval-
uation strategies that allow lazy, eager, and mixed evaluation strategies on
an operator-by-operator basis. In addition, OBJ3 supports the application
of equations one at a time, either forwards or backwards; this is needed for
equational theorem proving.

5. Mixfix syntax. OBJ allows users to define any syntax for operators, including
prefix (for example top), postfix (for example squared), infix (for example
+), and most generally, mixfix (for example if then else fi).

6. OBJ3 extensions. OBJ3 objects can encapsulate Lisp code, e.g., to provide
efficient built-in data types, or to augment the system with new capabilities.

67

7. Built-in modules. OBJ is sufficiently powerful to define any desired data
type, but building in the most frequently used data types can make a great
difference in efficiency and convenience. OBJ3 has predefined objects such as
BOOL, IDENTICAL, NAT, INT, RAT, FLOAT, QID, QIDL, and ID, plus
the parameterized tuple objects, the theory TRIV, etc.

OSA provides sufficient expressiveness, while still banishing truly meaningless
expressions. It allows to separate logically and intuitively distinct concepts and,
when the notion of subsort is added, to support multiple inheritance, overload-
ing (a form of subsort polymorphism), coercions, multiple representations, and
error handling, without the confusion, and lack of semantics, found in many pro-
gramming languages. In particular, overloading can allow users to write simpler
expressions, because context can often determine which possibility is intended.

OBJ offers powerful means directed to parametrized programming. Each kind
of module (object or theory) can be parameterized, where actual parameters may
be modules. For parameter instantiation, a view binds the formal entities in an
interface theory to actual entities in a module, and also asserts that the target
module satisfies the semantic conditions of the interface theory. This kind of
module composition is, in practice, more powerful than the purely functional
composition of traditional functional programming, because a single module in-
stantiation can compose together many different functions all at once, in complex
ways.

Typical OBJ3 programming session consists of designing an object, witch
possibility of using other models as parameters, and trying reduction of some
patterns. Here is a recall of initial object syntax:

obj <ModId> is
sort <SortId> . *** sort declaration
op <OpForm> : <SortList> -> <Sort> . *** operation declaration
var <VarId> : <Sort> . *** variable declaration
eq <Term> = <Term> . *** ordinary equation

endo

Reduction is declared by

reduce [in <ModExp> :] <Term>

Here is the simplest illustration of reduction:

reduce in NAT : 1 + 2 .

The introduction to OBJ [5] includes number of examples, as well as OBJ3
syntax grammar.

68

4 Specifying Database Models: The Several Object
Approach

The following lines attempt to sketch database model specification, emphasizing
debate of rising aspects and offering some examples. Source pieces in the text are
exemplary patterns only. Complete and executable code is available online [9].

Specification of database models using OBJ3 is motivated in cumulative im-
provements. First task presents simply expressing models utilizing OBJ3 objects.
Next phase tries to define forward and reverse process, evaluating equivalences
(or differences) of particular operations among them. Final phase presents vari-
ety of case studies interpretation showing practicability of selected approach.

The process of model specification is influenced by a number of decisions.

– The scale of parameterization. Some situations allow to select either an ex-
tension of already existing object or parameterization of the feature.

– Database types representation. Obviously, there is a possibility of the OBJ
language means usage (e.g. database type would be an OBJ object), or the
approach of specifying a sort for database type, together with corresponding
operations.

– The points of expected inconsistencies. Incorrect design is indicated as dis-
tinct request in the process of transformation which must be supported.

– Different initial object structure at different levels of abstraction. First ap-
proach tries unifying all the models into one generic model from the very
beginning. The second one builds particular object for particular level of
abstraction and consequently formalizes the transformations.

Obviously, during the process of object completion, the approaches of greater
hierarchy versus one big object pervade in several ways, but the initial state is
still important.

In this paper, the first approach is showed, focusing on conceptual to logical
model migration, using the ER model and the relational model terminology in
examples.

Supposing already existing type object that specifies types which will be
used, the attribute description can be specified like this:

obj ATTRIB is
sort Attrib .
protecting QID .
protecting TYPE .
op (_:_) : Id Type -> Attrib .
op name : Attrib -> Id .
op type : Attrib -> Type .
var A : Attrib .
var I : Id .
var T : Type .
eq name(I : T) = I .

69

eq type(I : T) = T .
endo

Similar ideas lead to entity and association (n-ary relation) specification. At-
tribute realization involve name and type completion, entity is created specifying
the name together with the list of attributes. Association joins together two or
more entities, adding arity.

The next step presents forward and reverse object specification. In both cases
it is desirable to distinguish two kinds of transformations: type transformation
and structure transformation. The important observation follows equivalences
or differences in the contradictory processes. Decision of symmetry is often de-
termined by semantic inconsistency which should be designated by the engineer,
thus the problem of loose design is exposed in different local transformation
specification. The source code on [9] presents sample reductions showing typical
problematic reverse steps.

5 Conclusions and future work

Algebraic specification of database models using OBJ3 language lined up several
ideas in the process of model transformations. Different aspects of model trans-
formation has been separated and the points of user (or other outside) decisions
has been outlined. Anyway, a lot of issues has to be improved. All considera-
tions should be generalized to emphasize fundamentals of model at the selected
level of abstraction, and to leave over more specific details. This means greater
parameterization of objects in OBJ3 lingo. On the other hand, models at the
implementation level has to be elaborated, to reveal practical (but theoretically
undesirable) features of data definition languages. A lot of steps needs to be
done in the benefit of user (reverse engineer) interaction. At least, notation on a
higher level for human decision definitions must be provided. Ongoing research
should cover the hole problem of database model transformations, together with
concurrence links to the rest of reverse engineering processes settlement.

References

1. P. Aiken. Data Reverse Engineering: Slaying the Legacy Dragon. McGraw-Hill,
1996.

2. E. Chikofsky, and J. Cross. Reverse Engineering and Design Recovery: A Taxon-
omy. IEEE Software, January 1990, 7(1):13-17.

3. J. Goguen. Semantics of computation. In Ernest G. Manes, editor, Proceedings,
First International Symposium on Category Theory Applied to Computation and
Control, pages 234-249. University of Massachusetts at Amherst, 1974.

4. J. Goguen. Order sorted algebra. Technical Report 14, UCLA Computer Science
Department, 1978. Semantics and Theory of Computation Series.

5. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.P. Jouannaud. Introducing
OBJ. SRI Computer Science Laboratory Technical Report SRI-CSL-92-03, Menlo
Park 1992.

70

6. J. Goguen, and R. Diaconescu. An Oxford survey of order sorted algebra. Mathe-
matical Structures in Computer Science, 4:363-392, 1994.

7. J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, and D. Roland. Evolution of
database Applications: the DB-MAIN Approach. In Proceedings of the thirteenth
Conf. on the Entity-Relationship Approach, Manchester, December 1994.

8. J-L. Hainaut, J. Henrard, J-M. Hick, V. Englebert, and D. Roland. The Nature of
Data Reverse Engineering. Data Reverse Engineering Workshop, EuroRef, Seventh
Reengineering Forum, ReengineeringWeek 2000, Zurich, Switzerland, March 2000.

9. Research projects [online]. Department of Computer Science and Engineering, Fac-
ulty of Electrical Engineering, Czech Technical University, 20 March 2003; 15:50:23
[cited 20 March 2003]. Available from: 〈http://cs.felk.cvut.cz/ xhnatek/research/〉

10. K. Lano, and H. Haughton. Reverse engineering and software maintenance.
McGraw-Hill International Series in Software Engineering, 1993.

11. OBJ Family: OBJ3 CafeOBJ Maude Kumo FOOPS Eqlog [online].
UCSD Department of Computer Science and Engineering - CSE Home,
24 October 2002; 02:49:22 [cited 10 March 2003]. Available from:
〈http://www.cs.ucsd.edu/users/goguen/sys/obj.html〉

12. K. Richta, and J. Velebil. Sémantika programovaćıch jazyk̊u. Karolinum, 1997.

Benchmarking the Multidimensional Approach
for Term Searching

Jǐŕı Dvorský, Michal Krátký, Tomáš Skopal, and Václav Snášel

Department of Computer Science, VŠB-Technical University of Ostrava,
Czech Republic

Abstract. The area of computer science dealing with searching and
processing collections of multimedial documents is known as Informa-
tion Retrieval. In information retrieval systems the text documents are
characterized with terms. For effective retrieval the terms must be stored
in appropriate data structures. Many term searching approaches (e.g. in-
verted list) are able to process only the simple queries. We can use these
approaches for finding out whether the term is or is not stored in the term
database. But non-trivial term searching (e.g. according regular expres-
sions) is hardly feasible or even impossible. In this paper, we introduce
a multidimensional approach for non-trivial term searching.

1 Introduction

Area, which deals with processing and searching in multimedia documents, is
called Information Retrieval [14,1,8]. Textual documents, in the information
retrieval system, are characterized by terms. In general the term can be word
or multi word phrase. It is necessary to choose appropriate data structure for
searching of terms. Purpose of term indexing is dependent on used model (e.g.
Boolean or Vector model [14]). Methods of terms storage developed in past (such
as inverted file) allow simple querying on set of terms only. In most cases we can
only decide if particular document is characterized by given term or is not. More
complex searching such as searching of the terms given by regular expression
is very difficult or even impossible. We propose multidimensional approach for
non-trivial searching of terms in our paper.

The inverted file is one of the approaches of terms storage that characterize
particular document. The inverted file consists of alphabetically sorted terms
and for all of these terms there is a list of documents characterized by the term.
The inverted file can be represented as B-tree [16]. Searching in B-tree can be
done in logarithmic time with respect to number of terms in tree. So, the inverted
file solve problem how to find documents for exactly given term.

This approach does not allow retrieving documents for queries, which con-
sist of regular expressions. For example regular expression "*Heller" means
retrieving all of documents in which terms "Joseph Heller" or "Petr Heller"
appear. Searching algorithm for inverted file, implemented as B-tree, that use
regular expression is described in [8]. This approach is very efficient for query

c© J. Pokorný, V. Snášel (Eds.): Dateso 2003, pp. 71–82, ISBN 80-248-0330-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2003.

72

processing of <string>* type. The terms could be ordered from last symbol for
efficient processing of *<string> type query. But it is unreal to create special
index for each query type.

We introduce the multidimensional approach for efficient query processing
defined by regular expression over single index. Multidimensional approach for
non-trivial term searching will be presented in Section 2. Great emphasis will be
laid to construction of queries based on user’s demand. The multidimensional
approach utilizes structures for indexing multidimensional vector spaces. One of
these structures - UB-tree - will be described in Section 3. The experimental
results will be presented in Section 4. Conclusions summarize the contribution
of this paper and give outlook to the future.

2 Multidimensional approach for non-trivial term
querying

Structures for indexing of discrete vector spaces [5] are used in multidimensional
approach for non-trivial term querying. These structures allow us to consider
terms as points in n-dimensional vector space. UB-trees [2] and R-trees [9,4]
belong to such kind of structures. Retrieving terms from query in this case is
transformed to finding points in given n-dimensional box. Such kind of queries
is called multidimensional range query. It is necessary to transform term to n-
dimensional point for effective storage and searching in index structures of vector
spaces. The transformation is often called feature extraction [5], i.e. relevant in-
formation is obtained from indexed entity, and the obtained piece of information
can be processed for indexing.

Definition 1 (n-dimensional point representing term).
Let t = c0, c1, . . . , cn−2, cn−1 be a term of the length n, where ci ∈ A is char-
acter, 0 ≤ i < n. n-dimensional point representing the term t is defined as
pt = (code(c0), code(c1), . . . code(cn−1)), where code : A → {0, 1}m is function,
which encodes character to binary number of the length m.

It is necessary to choose maximal length of term n, and terms of the length l,
where l < n, will have coordinates ptermi

, l ≤ i < n equal to zero. Dimension
of space Ω is equal to n and cardinality of domains |Di| = 2m, 1 ≤ i < n.
The dimension of space is in the most cases smaller than 30, which follows from
lengths of words in natural languages. The cardinality of domains is 256, when
ASCII coding is used. The number of dimension is very large, and effectiveness
of the algorithms could be affected by curse of dimensionality [5]. On the other
hand cardinality of domains is relatively small.

Let maxd = |Di| − 1 = 2m − 1 (i.e. value that can be expressed as m bit
number) be a maximal value of domain i. In case of ASCII coding maxd =
28 − 1 = 255. The term, that is transformed to point in n-dimensional vector
space, is inserted into multidimensional data structure, e.g. UB-tree. Queries are
then performed on the multidimensional structure.

73

2.1 Construction of queries

A task of finding terms in multidimensional approach is transformed to geomet-
rical task of finding points in multidimensional cube. This n-dimensional cube
will be called query box. The box can be defined by two n-dimensional points.
When user enters his/her query, we must be able to create particular multidi-
mensional query box (i.e. two points determining box must be defined) and in
data structure search for points that belong to the box. The points obtained from
data structure should be decoded to terms (decoding is done by application of
function code−1). A list of decoded terms is returned to the user as result.

Example 1 (The construction of query box for regular expression query.).
Let’s take terms fan, fun and far. Corresponding points for these words are:

pfan = (code(f), code(e), code(n)) = (102, 97, 110)
pfun = (code(f), code(u), code(n)) = (102, 117, 110)
pfar = (code(f), code(a), code(r)) = (102, 97, 114)

Function code computes ASCII encoding in this case, the cardinality of do-
mains is |Di| = 256, 1 ≤ i ≤ 3. The dimension n of the space has to be 3 due to
easy visualization (see Figure 1).

Let’s take two regular expression query (f*n) and (f*). The range query
boxes will be constructed for given expressions. The 3-dimensional box

(code(f), 0, code(n))× (code(f),maxd, code(n))

is defined for the first of expressions. The constructed box can be seen in Figure 1.
Every point of the box has the first and the third coordinates constant, only
the second coordinate is drawn from interval 〈0,maxd〉. Results of the query
represented by the query box 1 are fan and fun only. We don’t think the query
box retrieving the term fn now.

The second query defines a query box

(code(f), 0, 0)× (code(f),maxd,maxd)

Resulting query box can be seen in Figure 1. The results for the query box are
terms fan, fun and far.

3 The multidimensional data structures

The multidimensional data structures are structures, which index the vector (for
example R-tree [9], UB-tree [2]) or metric spaces (M-tree [6]). We have used the
UB-tree for the multidimensional approach for term indexing. The reason of UB-
tree usage is very good resistance again curse of dimensionality [5]. The space
dimension could be up 30 in this case.

74

Fig. 1. 3-dimensional space containing points representing terms and query
boxes for retrieving terms defined by regular expressions (f*n) and (f*).

3.1 The Universal B-tree (UB-tree)

The Universal B-tree (UB-tree) belongs to methods for accessing multidimen-
sional data in a multidimensional space. This access method was designed in
[2]. The extensive source of information about UB-tree and multidimensional
indexing is [12,3].

The idea of the UB-tree is based on the Z-ordering and the B-tree. The B-tree
is balanced, persistent, paging tree, which provides logarithmic complexities for
basic operations and minimal overhead over inserting and deleting of indexed
tuples/points. A page utilisation of 50% is guaranteed. It is necessary to establish
an ordering at points of n-dimensional space for using B-tree data structure.
Z-ordering (Z-address) is used for the UB-trees.

Z-address

Definition 2 (Z-address).
Let Ω be an n-dimensional space. For tuple O ∈ Ω with n attributes and binary
representation attribute value Ai = Ai,s−1Ai,s−2 . . . Ai,0, where 1 ≤ i ≤ n, it is
defined function Z(O):

Z(O) =
s−1∑
j=0

n∑
i=1

Ai,j2jn+i−1

The function calculates for all points of n-dimensional space their Z-
addresses. Because calculation of the Z-address is very frequent operation upon

75

using the UB-tree, it is important the algorithm of bit-interleaving with linear
complexity to exist for its calculation. We can see Z-addresses for 2-dimensional
space 8×8 in Figure 2. Thus the Z-ordering transforms the n-dimensional space
into a one dimensional space and establishes ordering at points of n-dimensional
space. If we are calculating the Z-addresses for all points of n-dimensional space
Ω we get the Z-curve filling the entire space Ω (see Figure 2b).

0 1
2 3

4 5
6 7

16
18

17
19

20
22

21
23

8 9
10 11

12 13
14 15

24 25
26 27

28 29
30 31

32 33
34 35

36 37
38 39

40 41
42 43

44 45
46 47

48 49
50 51

52 53
54 55

56 57
58 59

60 61
62 63

0 1
2 3

4 5
6 7

16
18

17
19

20
22

21
23

8 9
10 11

12 13
14 15

24 25
26 27

28 29
30 31

32 33
34 35

36 37
38 39

40 41
42 43

44 45
46 47

48 49
50 51

52 53
54 55

56 57
58 59

60 61
62 63

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

a) b)

Fig. 2. a) The Z-addresses of all points 2-dimensional space 8×8. b) The Z-curve
filling the entire 2-dimensional space 8× 8.

Z-region

The UB-tree establishes Z-regions for clustering spatial neighbours onto disk
pages. The Z-regions allow an effective disk access upon getting spatial neigh-
bours and so an efficient processing of the multidimensional range queries. The
Z-region [α:β] is defined as the space covered by interval 〈α, β〉 on Z-curve. There
is the Z-region [3:18] in 2-dimensional space 8×8 in Figure 3a). The entire space
can be partitioned into the Z-regions (see Figure 3b). The Z-regions define a
totally ordered disjunctive partitioning of n-dimensional space. Tuples from the
Z-region are stored into a single B-tree page. The Z-regions are mapped onto disk
pages. Thus the usage of Z-regions ensures the minimal number of disk accesses
upon getting spatial neighbours.

The UB-tree is based on a B+-tree. The B+-tree is a B-tree with all keys
considered in leafs only. The way how to store indexed tuples and Z-regions in
UB-tree is depicted in Figure 4.

Range query

Basic query (together with point query) is range query, the query for finding
of points in given n-dimensional hyper box. The exponential algorithm (with
dimension) is shown in [2], in [12,13] is very vaguely presented the linear algo-
rithm. For that reason, authors of this paper have developed their own algorithm
called DRU range query algorithm [15].

76

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

a) b)

0 1
2 3

4 5
6 7

16
18

17
19

20
22

21
23

8 9
10 11

12 13
14 15

24 25
26 27

28 29
30 31

32 33
34 35

36 37
38 39

40 41
42 43

44 45
46 47

48 49
50 51

52 53
54 55

56 57
58 59

60 61
62 63

0 1
2 3

4 5
6 7

16
18

17
19

20
22

21
23

8 9
10 11

12 13
14 15

24 25
26 27

28 29
30 31

32 33
34 35

36 37
38 39

40 41
42 43

44 45
46 47

48 49
50 51

52 53
54 55

56 57
58 59

60 61
62 63

Fig. 3. a) The Z-region [3:18] in 2-dimensional space 8× 8. b) The partition of
2-dimensional space 8× 8 defined by Z-regions [0:2],[3:18],[19:36],[37:49],[50:63].

pages containing
 indexed tuples

pages containing
 all Z-regions

 hierarchy of
 Z-regions

tuples from
Z-region

index}}
}
}

Fig. 4. The storage for indexed tuples and Z-regions in UB-tree.

4 Experimental Results

For a set of tests we have chosen a real dataset – the terms extracted from the
TREC’s Los Angeles Times collection which includes over 130,000 of newspa-
per articles and about 662,000 unique terms. The number of tuples in indices is
growing with growing dimensionality (terms length respectively) but for n ≥ 17
the number of tuples is almost constant (for example see Figure 5(b) – Whole
terms count). Short list of important characteristics of created UB-trees can be
found in Table 1. For each of UB-trees corresponding B-tree was constructed i.e.
B-tree that contains the same set of terms. Characteristics of obtained B-trees
can be found in Table 2. The native implementation of UB-tree with own range
query algorithm [15] was used. Tests were executed at computer Intel Pentiumr4
2.4Ghz, 512MB DDR333, Windows XP.

Table 1. UB-tree characteristics

|Di| 28 dimensions 10–30
tuples 408,962–662,000 tree height 4
nodes 22,068–37,824 Z-regions 20,626–35,341
node capacity 26 utilization 71.3–71.2%
node size 490–1030B index file 10.3–37.2MB

77

Table 2. B-tree characteristics

tree height 5 items 408,962–662,000
nodes 19,622–38,605 index file 26–52 MB
node capacity 26 utilization 80–66%

4.1 Performed Tests

Several typical queries, defined by regular expressions: soft*, *soft*, *soft,
were tested on UB-trees respectively B-trees (inverted list). In all cases disk ac-
cess cost, number of found terms, number of all compared terms, and overall
execution time were observed with respect to increasing length of terms. The
range query was constructed for each regular expression in case of UB-tree. For
single query defined by a regular expression it is necessary to process generally
more range queries. The range query selectivity have been 12.8–6.2 on average
(with growing dimension the count of queries return the empty result extended).
A finite automaton corresponding to regular expression was constructed to per-
form searching on B-tree.

4.2 Experimental Results – evaluation

Query soft*

B-tree (inverted list) indicates itself as better for query soft* (query type
<string>*). The disk access counts is minimal (proportional to tree height).
Reason is we are capably to determine the first and last searched terms. In other
words we are able to define the order for this query type homomorphic with
terms order in B-tree. For multidimensional approach it is necessary to process
only one range query. The terms count matched to query were found 79–137 (in
dependency at maximal term length).

In Figure 5(a) we see the disk access counts (DAC) for inverted list and
multidimensional approach. We see the DAC is positively lesser for inverted
list. The Figures 5(b) and (c) show the compared terms count (CTC) essential
for this query processing in multidimensional approach respectively inverted list.
The count is far lesser than whole terms count, sure for inverted list is count only
about one higher than found terms count (FTC). This fact corresponds to time
query processing in Figure 5(d). This query processing is ideal for inverted list
but we see the query processing is very efficiently in multidimensional approach
too.

78

(a) Disk access costs. (b) Terms count comparing test –
UB-tree.

(c) Terms count comparing test –
B-tree.

(d) Realtime test.

Fig. 5. Experimental results for query soft*.

79

Query *soft*

The B-tree proves the extremaly behaviour from compared terms count point
of view. The CTC is about one higher than the found terms count for query
soft* (last compared term is first non-matching term) but for other query
(*soft* and *soft for example) is conversely necessary to search the whole B-
tree. In that case the compared terms count blends with the whole terms count
(see Figure 6(c)). The UB-tree compares the more terms than is the found terms
count but the CTC is always lesser than whole terms count (see Figure 6(b)).
For this query we see the CTC nears to the whole terms count for dimension 30
sure the senseful maximal term length is about 20.

(a) Disk access costs. (b) Terms count comparing test –
UB-tree.

(c) Terms count comparing test –
B-tree.

(d) Realtime test.

Fig. 6. Experimental results for query *soft*.

80

We must to process the n− len(string)+1 (in that case n-3) of range queries
in multidimensional approach for process this query. The found terms count is
97–178 (in dependency at maximal term length – space dimension).

Query *soft

The number of terms appropriate to this query is 16–24. For this query it is
necessary to compare the all terms (see Figure 7(c)). In case of multidimensional
approach it is essential to perform the n− 3 of range queries but the compared
terms count is far lesser from the whole terms count (see Figure 7(b)). This
fact is reflected in query process time for multidimensional approach (see Fig-
ure 7(d)). The results of process this query suit about very well efficiency of the
multidimensional approach.

5 Conclusion

The multidimensional approach for term indexing offers much more capabilities
for terms querying than current approaches (inverted list for example). We pre-
sented this approach for processing of queries defined by regular expression. But
this approach is suitable for processing of similarity queries for Hamming or Lev-
enshtein metrics [11,10]. Some queries are very efficiently processed by inverted
list but for great amount of queries it is necessary to compare all terms. For pro-
cessing of single query it is needful to execute generally more of range queries
in multidimensional approach but the effectivity is very good even for higher
dimension (maximal term length). The content of our future work is improve
the properties of multidimensional approach.

The experimental result shows that effectivity slims the increasing dimen-
sion. Therefore we will attempt any reduction of term space dimension or the
thicking of the space (because the whole terms count is very small with compar-
ing to volume of term space). Next open question is quality of elected clustering
respectively the finding of suitable term clustering. In our future work we want
to use data structures for metric space indexing (for example M-tree [6]) or to
compare our approach to exist metric terms indexing approach (for example [7]).
But these structures knows to index the objects only for one metric. Likewise
we want try to find the method for defining of hyper box for general regular
expressions with possibility of usage the hyper box geometric optimisations (as
unification or intersection).

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

2. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts.
In Proceedings of World-Wide Computing and its Applications’97, WWCA’97,
Tsukuba, Japan, 1997.

81

(a) Disk access costs. (b) Terms count comparing test –
UB-tree.

(c) Terms count comparing test –
B-tree.

(d) Realtime test.

Fig. 7. Experimental results for query *soft.

82

3. Bayer Rudolf et al. The project MISTRAL (Multidimensional Indexes for Storage
and for the Relational Algebra). http://mistral.in.tum.de, 1999.

4. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An effcient
and robust access method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, pages 322–331,
1990.

5. C. Böhm, S. Berchtold, and D. Keim. Searching in High-dimensional Spaces –
Index Structures for Improving the Performance Of Multimedia Databases. ACM,
2002.

6. P. Ciaccia, M. Pattela, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of 23rd International Conference
on VLDB, pages 426–435, 1997.

7. V. Dohnal, C. Gennaro, and P. Zezula. A Metric Index for Approximate Text
Management. In Proceedings of IASTED International Conference Information
Systems and Database – ISDB 2002, 2002.

8. W. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and Algo-
rithms. Prentice-Hall, 1992.

9. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of ACM SIGMOD 1984, Annual Meeting, Boston, USA, pages 47–57.
ACM Press, June 1984.

10. J. Holub. Simulation of Nondeterministic Finite Automata in Pat-
tern Matching, Ph.D. thesis. Czech Technical University, Prague,
http://cs.felk.cvut.cz/~holub/, 2000.

11. I. Levenshtein. Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physics-Doklady 10, pages 707–710, 1966.

12. V. Markl. Mistral: Processing Relational Queries using a Multidimensional
Access Technique. In Ph.D. thesis, Technical Univerity München, German,
http://mistral.in.tum.de/results/publications/Mar99.pdf, 1999.

13. F. Ramsak, V. Markl, R. F. R., M. Zirkel, K. Elhardt, and R. Bayer. Integrat-
ing the UB-tree into a Database System Kernel. In Proceedings of 26th VLDB
International Conference. Morgan Kaufmann, 2000.

14. G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw
Hill Publications, 1st edition, 1983.

15. T. Skopal, M. Krátký, V. Snášel, and J. Pokorný. On Range Queries in Universal
B-trees. In Submitted at VLDB International Conference, 2003.

16. N. Wirth. Algorithms and Data Structures. Prentice Hall, 1984.

Benchmarking the UB-tree

Michal Krátký, Tomáš Skopal

Department of Computer Science, VŠB–Technical University of Ostrava,
tř. 17. listopadu 15, Ostrava, Czech Republic

michal.kratky@vsb.cz, tomas.skopal@vsb.cz

Abstract. In the area of multidimensional databases, the UB-tree rep-
resents a promising indexing structure. A key feature of any multidimen-
sional indexing structure is its ability to effectively perform the range
queries. In the case of UB-trees, we have proposed an advanced range
query algorithm making possible to operate on indices of high dimension-
ality. In this paper we present experimental results of this range query
algorithm.

Keywords: UB-tree, range query, benchmarks, DRU algorithm

1 Introduction

In multidimensional databases, objects are indexed according to several or many
independent attributes. However, this task cannot be effectively realized using
many standalone indices and thus special indexing structures have been devel-
oped is last two decades. Common to all this structures is that they index vectors
of values instead of indexing single values.

The UB-tree represents one of the promising multidimensional index struc-
tures. Indexing and querying high-dimensional databases is a challenge for cur-
rent research since high-dimensional indexing is significantly influenced by phe-
nomenon called curse of dimensionality. This unpleasant phenomenon states
that increasing dimensionality of feature space makes effective indexing and
querying very hard (we refer to [2] and [8]). In this paper we present an ad-
vanced range query algorithm which makes the UB-tree suitable for indexing
large high-dimensional databases.

In Section 1 we describe the UB-tree, Section 2 presents our range query al-
gorithm and Section 3 analyses the comprehensive experimental results. Section
4 concludes the results.

1.1 Universal B-tree

The Universal B-tree (UB-tree) was introduced in [1] for indexing multidimen-
sional data. Its main characteristics reside in an elegant combination of the well-
known B+-tree and the Z-ordering. The power of UB-tree lies in linear ordering
of vectors, similarly like an ordering of simple values is indexed by the B+-tree.

c© J. Pokorný, V. Snášel (Eds.): Dateso 2003, pp. 83–94, ISBN 80-248-0330-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2003.

84

In the UB-tree we require to establish such ordering on a multidimensional vec-
tor space and thus linearize the space onto a single-dimensional interval which
is usually realized using space filling curves [6]. A space filling curve orders all
the points within a n-dimensional vector space. UB-tree was designed to be used
with the Z-ordering generated using the Z-curve. Points (tuples) in the space are
ordered according to their Z-addresses.

An interval [α : β] (α is the lower bound, β is the upper bound) on the Z-
curve forms a region in the space which is called Z-region. An example of Z-curve
and several Z-regions is presented in Figure 1a.

Fig. 1. a) The 2-dimensional space 8×8 filled with the Z-curve. The numbers in
the grid are the Z-addresses. The space is partitioned with six Z-regions. The
black dots represent 4 indexed objects. b) The UB-tree nodes correspond to the
Z-regions and super Z-regions.

Each Z-region is then mapped into a single page within the underlying
B+-tree. The UB-tree leafs represent the Z-regions containing indexed objects
themselves while the inner nodes represent the super Z-regions. A super Z-region
contains all the (super) Z-regions lying entirely inside the super Z-region. Hence,
the UB-tree structure is determined by a nested Z-region hierarchy. An indexed
vector space and its appropriate UB-tree is depicted in Figure 1.

1.2 Range Queries

Realization of basic operations in the UB-tree (insertion, deletion, point query)
is analogous to the operations in the ”ordinary” B+-tree. The main difference
is that in the UB-tree we must at first compute the Z-address of the indexed
object as a key for the subsequent operation on the underlying B+-tree.

Unfortunately, a range query cannot be so simply forwarded to the B+-tree.
This fact arises from the speciality of the range query which is intended to be
used on multidimensional data. Range query (window query respectively) in
vector spaces is usually represented with a hyper-box in a given vector space Ω.
The ranges of a query box QB are defined by two boundary points, the lower

85

bound QBlow = [a1, a2, . . . , an] and the upper bound QBup = [b1, b2, . . . , bn]
where a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn. The purpose of a range query is to return
all the points located inside the query box, i.e. to return all the points o satisfying
ai ≤ oi ≤ bi, for 1 ≤ i ≤ n (see Figure 2a).

Fig. 2. a) Two-dimensional query box QB specified with lower bound QBlow

and upper bound QBup. b) Space Ω partitioned to Z-regions.

A more specific range query definition oriented to the UB-tree context can
be formulated as a search over all the UB-tree’s Z-regions that intersect given
query box (see Figure 2b).

Existing Solution. Markl in [4] presents following range query algorithm con-
secutively searching intersecting Z-regions.

In Figure 3, an example of range query algorithm run is shown. At first,
Z-address for the query box lower bound is computed. Using this value a page
from UB-tree is retrieved and searched for relevant objects. Next, subsequent
Z-region is retrieved and so on. The algorithm will finish as soon as the β of
the active Z-region is greater than the Z-address of query box upper bound, i.e.
β > Zaddr(QBup).

So far, the algorithm was elegant and clear. But problem arises when we
look deeper into function determining the next Z-address inside the query box.
We denote this function GetNextZaddress. Computing the next Z-address lying
within the query box is not trivial operation since this procedure is obviously
dependent on the shape of Z-region. The algorithm for GetNextZaddress pre-
sented in [4] is of time complexity exponential with the dimensionality. Later, in
[5], authors have presented a version linear with the Z-address bit length.

Limitations. Unfortunately, all descriptions of GetNextZaddress published so
far were mentioned very briefly. Moreover, the explanations were always based on
a pure algorithmic basis using ”handling with bits” and hence lacking a geometric

86

Fig. 3. Range query processing example

model providing a little bit deeper abstract view. Finally, original algorithms on
UB-trees are protected with international patents1.

2 Down-Right-Up Algorithm

The DRU (Down-Right-Up) algorithm exploits two types of leaf optimizations
reducing unnecessary disk accesses as well as the Z-region intersection compu-
tations. The first optimization called neighbour first point is used for testing
whether the first point of the right neighbour leaf (its Z-region respectively) lies
inside the query box. If it does, the algorithm can simply ”jump right” (the leafs
are linked) to the neighbour leaf and continue processing. This optimization was
already used in the original Bayer-Markl’s algorithm.

The second optimization called neighbour region is specific to the DRU algo-
rithm and is based on existence of TestZregionIntersection operation. This
operation tests whether a given query box intersects a Z-region. We closely de-
scribe an algorithm realizing this operation as well as the theory to DRU algo-
rithm itself in [7].

The neighbour region optimization is used for testing whether the neighbour
leaf (its Z-region respectively) is intersecting the query box. If it does, the
algorithm ”jumps right” similarly like by the first optimization.

The DRU algorithm description:
The algorithm uses a path stack to keep the actual path in the UB-tree. The
path stack allows us to avoid disk accesses to the nodes (and items in nodes)
already processed.
DRU algorithm steps (input is the query box qb):
1 Deutsches Patentamt Nr. 197 09 041.9 and Nr. 196 35 429.3

87

1. Find a leaf the Z-region of which contains Zaddr(qblow). Store the path on
the stack.

2. Search actual leaf for tuples lying inside qb. Return these tuples as a part of
the result.

3. Retrieve the neighbour leaf from disk and set it as the actual leaf. If the first
point of the actual leaf lies inside qb then goto step 2. This is the neighbour
first point optimization.

4. If the Z-region of the actual leaf intersects qb goto step 2. This is the neigh-
bour region optimization.

5. The stack must recover after the ”optimization jumps”. The UB-tree is
passed (along the path in the stack) to the next relevant node. After the
recovery, on the top of stack is a parent node of the leaf reached by the
preceding optimization.

6. (Right-Phase). Peek the node on the top of the stack and try to find a
link to the next relevant node (i.e. to node the Z-region of which intersects
qb). If no such node is found, pop a node from the stack and repeat step 6
(Up-Phase). If a node is found, retrieve the node from the disk and push
it onto the stack (Down-Phase). If a leaf is reached goto step 2 otherwise
repeat step 6.

The algorithm terminates (in any phase) until all relevant pages were examined,
i.e. a Z-region was examined such that α ≥ Zaddr(qbup).

Fig. 4. DRU algorithm

An example of DRU algorithm is presented in Figure 4. Only the intersecting
Z-regions (nodes respectively) are being processed. These Z-regions (nodes) are
grayed. The bold branches are the only paths passed down. On the leaf level, all
tuples lying inside the query box are returned as a query result.

88

3 Experimental Results

The tests were focused on several cost-factors. Besides the disk access costs
(DAC), the effectivity of leaf optimizations was examined. Furthermore, compu-
tation costs (CC) of the range queries were investigated.

3.1 Cost Model

Let us now discuss the disk access costs and the computation costs. Let h be
the height of the UB-tree, r be the number of Z-regions intersecting the query
box, mf be the number of neigbour leafs matched by the neighbour first point
optimization, and mr be the number of neighbour leafs matched by the neighbour
region optimization.

The basic DAC = (h + 1) × r. Had we consider the neighbour first point
optimization, the DAC will be reduced to (h+1)×(r−mf)+mf . Considering both
leaf optimization will reduce the DAC to (h+1)× (r− (mf +mr))+(mf +mr).

The asymptotic CC = θ((h+2)×r). Had we consider the neighbour first point
optimization, the asymptotic CC will be reduced to θ((h + 1) × (r −mf) + r).
Considering both leaf optimizations will reduce the CC to θ((h+1)× (r−mf)−
h×mr + r).

The set of tests was made on synthetic datasets of increasing dimensionality.
The tuples were generated into randomly located clusters of fixed radius (using
the L2 metric) and indexed with the UB-tree. The number of tuples was in-
creasing with the number of dimensions. In order to obtain solid results we have
tested large datasets (up to 8 milion 30-dimensional tuples).

Query boxes of various shapes were generated randomly according to the
distribution of tuples in the space. The ranges of query boxes were for growing
dimensionality the same thus the volumes were increasing but the ratio query
box volume/space volume was decreasing. This query box construction is typical
for multidimensional applications. The number of queries was increasing with the
number of dimensions (from 24 to 120 queries). The results are averaged.

The tests were performed on an Intel Pentiumr4 2.4GHz with 512MB
DDR333, 60GB UDMA100 7200rpm, run under Windows XP.

3.2 Two-Dimensional Datasets

For the two-dimensional datasets, we have examined the performance depen-
dence on the growing UB-tree node capacity. In general, the greater node
capacity implies lower disk access costs and number of computations.

89

UB-tree characteristics:
|Di| 232 dimensions 2
tuples 524,288 tree height 4–8
Z-regions 121,138–21,472
node capacity 6–35 utilization 72.7–69.7%
node size 116–580B index file 17.4–12.4MB

Range query characteristics:
range queries 24 query selectivity (tuples) 9676.1
query real times 0.09–0.06 s

Figure 5a shows the number of leaf Z-regions in two-dimensional UB-tree
indices in order to node capacity. We can see that the growing leaf capacity ”in-
flates” the Z-regions’ volume while the number of Z-regions decreases. Figure 5b
shows the number of Z-regions intersecting the query box. This indicates that
the total volume of intersecting Z-regions is not dependent on the growing node
capacity. In Figure 6, the disk access costs as well as the number of compu-

Fig. 5. a) Number of Z-regions. b) Number of Z-regions intersecting the query
box.

tations for two-dimensional UB-tree indices are presented. The DRU algorithm
performs significantly better than the original Bayer-Markl’s algorithm since the
DRU algorithms accesses by 30%-60% less disk pages. Similarly, the number of
computations is lesser by 25%-50%.

The success of the DRU algorithm is caused by effective application of the
neighbour region optimization. In Figure 7, the number of matching attempts of
the leaf optimizations is presented. Matching attempt means a case when the Z-
region is intersected, i.e. value true is returned and ”jump” to the right neighbour
leaf is performed. Figure 7a shows that the neighbour first point optimization
is very effective for lower node capacities. The neighbour region optimization is
performed after the neighbour first point was non-matching. Hence, the result
is that for two-dimensional indices (low-dimensional respectively) the neighbour
first point optimization filters the majority of unnecessary disk accesses. The
third line shows the total attempts (matching and non-matching) of either opti-

90

Fig. 6. a) Disk access costs. b) Number of computations.

mization. In Figure 7b, the optimization effectivity is presented. The neighbour
first point optimization is effective by 90%, together with the neighbour region
optimization by 95%.

Fig. 7. a) Leaf optimizations. b) Leaf optimizations effectivity.

A particular result is that for low-dimensional UB-trees the Bayer-Markl’s
algorithm is only slightly less effective than the DRU algorithm. A different
situation comes with more dimensions as we will see in the following sub-section.

3.3 High-Dimensional Datasets

In high-dimensional spaces, say for n ≥ 10, the range query efforts rapidly
increase. This fact is caused by the curse of dimensionality described later in
this section. In practice, the disk access costs and the number of computations

91

grow with the increasing dimensionality.

UB-tree characteristics:
card(D) 232 dimensions 2–30
tuples 524,288–7,864,320 tree height 4
nodes 22,400–321,885 Z-regions 21,475–321,885
node capacity 35 utilization 69.7–69.8%
node size 580–4612B index file 12.4MB–1.44GB

Figure 8a shows the number of inserted tuples according to dimensionality
of the dataset. In Figure 8b, the range query selectivity is depicted, i.e. average
number of returned tuples. The other line in the graph represents the number
of accessed leaf Z-regions. In Figure 9, the disk access costs and the number of

Fig. 8. a) Dataset sizes. b) Range query selectivity.

Fig. 9. a) Disk access costs. b) Computations.

computations are presented. We can see that with increasing dimensionality the

92

costs grow. However, the growth for the DRU algorithm is much less steep than
for the Bayer-Markl’s algorithm. Thus, the DRU algorithm is more effective for
higher dimensionalities. The reason of the DRU algorithm’s success resides again
in the application of the leaf optimizations.

For higher dimensionalities, the significance of the neighbour leaf optimiza-
tion exponentially grows while the neighbour first point optimization goes down
to zero. This behaviour is caused by the complex shape of the Z-curve for higher
dimensionalities thus the probability that the first point of the neighbour Z-
region will intersect the query box tends to zero. On the other side, this kind of
probability does not affect the effectivity of the neighbour region optimization
since it determines the Z-region/query box intersection absolutely.

Fig. 10. a) Leaf optimizations. b) Leaf optimizations efficiency.

In Figure 11 we present average real times of a range query execution.

3.4 Curse of Dimensionality

Presented results allow us to think about the curse of dimensionality [2], [8]
appearing in the UB-tree. With the growing dimensionality of UB-trees grow
also the costs, even though less than exponentially. Figure 12a presents a ratio
of tuples inside the query box to the number of intersecting Z-regions. Figure
12b shows ratio of intersecting Z-regions containing at least one tuple inside
the query box to all of the intersecting Z-regions. This ratio says that in higher
dimensionalities more than 95% of relevant Z-regions ”give” no tuples to the
result. The reason is obvious – the topological properties of the Z-curve are
worse for higher dimensionalities.

On the other side, the Figure 12b also shows a ratio of intersecting Z-regions
to the Z-regions lying in the interval [Zaddr(qblow) : Zaddr(qbup)] (i.e. interval
of the query box’s ”bounding Z-region”). One could expect that the negative
effect of the curse of dimensionality will ”raise” this ratio up to 100% which is

93

Fig. 11. Range query real times.

Fig. 12. a) Range query selectivity ratio. b) Query box ratios.

the same as a traversal through the majority of the UB-tree structure. However,
this test shows that (even for high dimensionalities) the number of Z-regions
intersecting the query box is much lesser than the number of Z-regions within
the above mentioned interval. This particular result indicates that the UB-tree
together with the DRU algorithm is remarkably resistant to the curse of dimen-
sionality. For a comparison, the well-known R-tree [3] used in many applications
is very affected by the curse of dimensionality and its usage for high-dimensional
indexing is nearly impossible.

4 Conclusions

The experimental results have shown that the DRU range query algorithm makes
the UB-tree applicable for effective indexing and querying of high-dimensional
feature spaces.

94

The key to the DRU algorithm effectivity is an incorporation of two leaf
optimizations. The neighbour region optimization allows the DRU algorithm
process range queries in high-dimensional spaces and thus proves that the UB-
tree is partially resistable to the unpleasant curse of dimensionality. In particular,
the DRU algorithm allows to effectively process ”tight” range queries, i.e. query
boxes having very disproportionate ranges.

References

1. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts.
In Proceedings of World-Wide Computing and its Applications’97, WWCA’97,
Tsukuba, Japan, 1997.

2. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

3. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Pro-
ceedings of ACM SIGMOD 1984, Annual Meeting, Boston, USA, pages 47–57. ACM
Press, June 1984.

4. V. Markl, F. Ramsak, and R. Bayer. Improving OLAP Performance by Multidi-
mensional Hierarchical Clustering. In Proceedings of IDEAS Conference, Montreal,
Canada, 1999.

5. F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer. Integrating
the UB-tree into a Database System Kernel. In Proc. Of the 26th Int. Conference
VLDB, Cairo, Egypt, 2000.

6. H. Sagan. Space-Filling Curves. Springer–Verlag, 1994.
7. T. Skopal, M. Krátký, V. Snášel, and J. Pokorný. On Range Queries in Universal

B-tree. In submitted to VLDB 2003, 2003.
8. C. Yu. High-Dimensional Indexing. Springer–Verlag, LNCS 2341, 2002.

Clustering Algorithm Via Fuzzy Concepts

Stanislav Krajči

Ústav informatiky, Pŕırodovedecká fakulta, UPJŠ Košice
krajci@science.upjs.sk

Abstract. The cluster analysis and the formal concept analysis are both
used to identify significant groups of similar objects. Rice & Siff’s algo-
rithm for the clustering joins these two methods in a case where values
of an object-attribute model are 1 or 0 and often reduce an amount of
concepts. We define a new type of a fuzzification of a conceptual lattice
and we use it for a generalization of this clustering algorithm in a fuzzy
case.

1 Introduction

The fields of the cluster analysis and the concept analysis are both used to iden-
tify patterns in data. Clusters are groups of objects made using of some distance,
concepts are significant groups identified by similarities on their attributes.

Both of these approaches have their disadvantages. There is unclearity in
choosing a metric in order the found clusters will be meaningful in some way.
On other side, concepts are meaningful but their number may be (and often is)
too large to analyze in a reasonable amount of time.

Rice and Siff in [4] make a bridge between the concept analysis and the
traditional hierarchical clustering – they define some special (pseudo)metric (or
distance) using a classical (crisp) conceptual lattice on a Boolean object-attribute
model and then they construct the algorithm for reducing an amount of concepts-
clusters using this metric.

We use this approach for the fuzzy case: We define a fuzzification of a con-
ceptual lattice, following the construction of a classical conceptual lattice (as
in [1] in the chapter 2. We define some some special metric in the third chap-
ter and we use it for our modified clustering algorithm in the chapter 4. Some
characteristics of this algorithm are discussed in the fifth chapter.

2 Fuzzy conceptual lattice

Let an A (like attributes) and a B (like objects) be non-empty (finite) sets and
let an R be fuzzy relation on their Cartesian product, i.e. R : A × B → [0, 1].
This relation can be understood as a table with rows and columns corresponding
to objects and attributes respectively. Then the value R(a, b) expresses a grade
in which the object b does have the attribute a.

c© J. Pokorný, V. Snášel (Eds.): Dateso 2003, pp. 95–101, ISBN 80-248-0330-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2003.

96

Define a mapping τ : P(B)→ A[0, 1] which assigns to every set X of elements
of B some function τ(X), a value of which in a point a ∈ A is

τ(X)(a) = min{R(a, b) : b ∈ X},

i.e. this function assigns to every attribute the least of such values that all objects
from X have this attribute at least in such grade.

Conversely, define a mapping σ : A[0, 1] → P(B), which assigns to every
function f : A→ [0, 1] a set

σ(f) = {b ∈ B : (∀a ∈ A)R(a, b) ≥ f(a)},

i.e. these attributes which have all attributes at least in grade set by the func-
tion f (i.e. these attributes the function of their fuzzy-membership to objects
dominates over f).

It is easy to see that this mappings have a following properties:

(P1) X1 ⊆ X2 → τ(X1) ≥ τ(X2)
(P2) f1 ≤ f2 → σ(f1) ⊇ σ(f2)
(P3) X ⊆ σ(τ(X))
(P4) f ≤ τ(σ(f))

By f1 ≤ f2 it is understood that for all elements x from a domain (common for
both f1 and f2) is f1(x) ≤ f2(x).

These properties are equivalent to the assertion that for each X ⊆ B and
f ∈ A[0, 1] holds

f ≤ τ(X) iff X ⊆ σ(f)

(or, equivalently, the pair 〈τ, σ〉 is a Galois connection).
Note that in a crisp case, i.e. if the range of the R is (at most) the two-

element set {0, 1}, R(a, b) = 1 means that the a is an attribute of the object
b, and conversely R(a, b) = 0 means that the a is not an attribute of the b.
Every function from A{0, 1} can be understood equivalently like a subset of the
A (because it is its characteristic function). Then τ(X)(a) = 1 iff R(a, b) = 1 for
all b ∈ X, i.e. τ(X) is the set of all attributes which all objects from X do have.
Conversely it holds σ(χY) = {b ∈ B : (∀a ∈ Y)R(a, b) = 1} for every set Y of
attributes, hence this is the set of all attributes common to all objects from Y .
So our construction is a generalization of the classical Ganter-Wille’s one.

Let us continue and define a mapping cl : P(B) → P(B) as the composition
of the mappings τ and σ: for every X ⊆ B set cl(X) = σ(τ(X)).

It is easy to see from previous properties that cl is a closure operator, i.e.
that the following conditions are fulfilled:

(C1) X ⊆ cl(X)
(C2) X1 ⊆ X2 → cl(X1) ⊆ cl(X2)
(C3) cl(X) = cl(cl(X))

97

Like in a crisp case an important role is played by such sets X of objects for
which X = cl(X) (because in such case it holds that if f = τ(X) then X = σ(f)).
Such pair 〈X, τ(X)〉 is called a fuzzy concept. Then X is the extent of this concept
and the corresponding fuzzy set τ(X) is its intent. Because of possibility of
reciprocal deriving of both cooordinates of concept it can be considered only
one of them, e.g. the first one. Then the set L of all such extents, i.e. L = {X ∈
P(B) : X = cl(X)} ordered by inclusion is a lattice, operation of which are
defined as following: X1 ∧ X2 = X1 ∩ X2 and X1 ∨ X2 = cl(X1 ∪ X2). This
lattice we will call a fuzzy conceptual lattice.

Note that roles of objects and attributes can be interchanged and this con-
struction works. We have used this converse construction in [3].

Example

Consider the following fuzzy relation:

a b c d e

α 1 0.8 0.2 0.3 0.5
β 0.8 1 0.2 0.6 0.9
γ 0.2 0.3 0.2 0.3 0.4
δ 0.4 0.7 0.1 0.2 0.3
ε 1 0.9 0.3 0.2 0.4

I.e. α, β, γ, δ, and ε are objects and a, b, c, d, e are their attributes. For
example, the object α has the attribute a in the grade 1 (i.e. undubiously) and
the attribute c in the grade 0.2 (i.e. with big niggles).

The corresponding fuzzy conceptual lattice looks like this:

98

•
∅

(1, 1, 1, 1, 1)

•
{α}

(1, 0.8, 0.2, 0.3, 0.5)
•
{β}

(0.8, 1, 0.2, 0.6, 0.9)

•
{ε}

(1, 0.9, 0.3, 0.2, 0.4)

•
{α, β}

(0.8, 0.8, 0.2, 0.3, 0.5)
•

{α, ε}

(1, 0.8, 0.2, 0.2, 0.3)

•
{β, ε}

(0.8, 0.9, 0.2, 0.2, 0.4)

•
{α, β, ε}

(0.8, 0.8, 0.2, 0.2, 0.4)

•
{α, β, δ, ε}

(0.4, 0.7, 0.1, 0.2, 0.3)

•
{α, β, γ}

(0.2, 0.3, 0.2, 0.3, 0.4)

•
{α, β, γ, ε}

(0.2, 0.3, 0.2, 0.2, 0.4)

•
{α, β, γ, δ, ε}

(0.2, 0.3, 0.1, 0.2, 0.3)

�
�

�
�

�
�

@
@

@
@

@
@
�

�
�

�
�

�

@
@

@
@

@
@

�
�

�
�

�
�

@
@

@
@

@
@

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

�
�

�
�

�
�
@

@
@

@
@

@

�
�

�
�

�
�

�
�

�
�

�
�

3 Distance function

Define the function ρ : P(B)× P(B)→ R in the following way:

ρ(X1, X2) = 1−
∑

a∈A min{τ(X1)(a), τ(X2)(a)}∑
a∈A max{τ(X1)(a), τ(X2)(a)}

.

It is easy to see that 0 ≤ ρ(X1, X2) ≤ 1 and the following lemma holds:
Lemma

1. ρ is a pseudometric on P(B).
2. ρ is a metric on L.

Proof
It is stated in [5] that the vector function mmm : Rn × Rn → R defined by

mmm(〈a1, . . . , an〉, 〈b1, . . . , bn〉) = 1−
∑n

i=1 min{ai, bi}∑n
i=1 max{ai, bi}

99

is the (so-called min/max) metric on Rn. (Another, an explicit proof can be
found in [2].)

Because the function τ(X) can be understood as a vector (i.e. a row in the
table) for every X ⊆ B, it holds that ρ(X1, X2) = mmm(τ(X1), τ(X2)) and it
implies that ρ is a pseudometric. The prefix ”pseudo-” means that there are
some X1 6= X2 such that ρ(X1, X2) = 0 or equivalently τ(X1) = τ(X2)). But it
can not be the case for elements of L, because then X1 = cl(X1) = σ(τ(X1)) =
σ(τ(X2)) = cl(X2) = X2). It means that the ρ is a metric on L.

Note that this metric is a generalization of Rice and Siff’s distance function

ρRS(X1, X2) = 1− |X1 4 X2|
|X1 ∩X2|

in the crisp case.
Yet another note: If the wa is the weight of an attribute a, it can be defined

and used the more generalized distance with weights of all attributes:

ρw(X1, X2) = 1−
∑

a∈A wa min{τ(X1)(a), τ(X2)(a)}∑
a∈A wa max{τ(X1)(a), τ(X2)(a)}

.

The same Lemma can be proved (in the same way) for this distance function
ρw.

4 Clustering algorithm

We take the hierarchical clustering algorithm from [4] but we replace their
(pseudo)metric by our ρ. Then our algorithm can be expressed by the following
pseudocode:

C ← D ← {cl({b}) : b ∈ B}
while (|D| > 1|) do
{

m ← min{ρ(X1, X2) : X1, X2 ∈ D, X1 6= X2}
E ← {〈X1, X2〉 ∈ D ×D : ρ(X1, X2) = m}
V ← {X ∈ D : (∃Y ∈ D)〈X1, X2〉 ∈ E}
N ← {X1 ∨ X2 : 〈X1, X2〉 ∈ E}
D ← (D \ V) ∪N
C ← C ∪N
}

The variable D is the set of clusters-concepts in an actual iteration, the C
is the union of all D till now. The m is the minimal distance of pairs from D.
Then the set E contains ”edges”, such pairs of clusters from D which distance is
this m and the variable V contains ”verctices”, the ends of such edges. Elements
of the set N are new clusters, joins of edges. A new iteration of the D replaces
clusters form V by their joins from N .

If values of all used variables in the k-th iteration of the algorithm are marked
by the index k, we have in our example:

100

D0 = {{α}, {β}, {α, β, γ}, {α, β, δ, ε}, {ε}}
C0 = {{α}, {β}, {α, β, γ}, {α, β, δ, ε}, {ε}}
m1 = 3

29
E1 = {〈{α}, {ε}〉, 〈{ε}, {α}〉}
V1 = {{α}, {ε}}
N1 = {{α, ε}}
D1 = {{α, ε}, {β}, {α, β, γ}, {α, β, δ, ε}}
C1 = {{α}, {β}, {α, β, γ}, {α, β, δ, ε}, {ε}, {α, ε}}
m2 = 14

37
E2 = {〈{α, ε}, {β}〉, 〈{β}, {α, ε}〉}
V2 = {{α, ε}, {β}}
N2 = {{α, β, ε}}
D2 = {{α, β, ε}, {α, β, γ}, {α, β, δ, ε}}
C2 = {{α}, {β}, {α, β, γ}, {α, β, δ, ε}, {ε}, {α, ε}, {α, β, ε}}
m3 = 7

24
E3 = {〈{α, β, ε}, {α, β, δ, ε}〉, 〈{α, β, δ, ε}, {α, β, ε}〉}
V3 = {{α, β, ε}, {α, β, δ, ε}}
N3 = {{α, β, δ, ε}}
D3 = {{α, β, γ}, {α, β, δ, ε}}
C3 = {{α}, {β}, {α, β, γ}, {α, β, δ, ε}, {ε}, {α, ε}, {α, β, ε}} = C2
m4 = 7

20
E4 = {〈{α, β, γ}, {α, β, δ, ε}〉, 〈{α, β, δ, ε}, {α, β, γ}〉}
V4 = {{α, β, γ}, {α, β, δ, ε}}
N4 = {{α, β, δ, ε}}
D4 = {{α, β, γ, δ, ε}}
C4 = {{α}, {β}, {α, β, γ}, {α, β, δ, ε}, {ε}, {α, ε}, {α, β, ε}, {α, β, γ, δ, ε}}
stop

We have reduced the number of concepts in this way: (extents of) the concepts
∅, {α, β}, {β, ε}, and {α, β, γ, ε} are omitted, because they are not clusters in
this meaning.

5 Conclusions

Let us say some words about some characteristics of this algorithm. The finite-
ness follows from the finiteness of the sets of objects and attributes. If we have
the square table with 0’s on the diagonal and with 1’s elsewhere, then all object
play the same role, every subset of them is concept and no of these concepts is
removed by our algorithm. It means that its complexity is exponential in general.
But this is a rather spiteful example. If the set Ek has (at most) two elements
(i.e. the pair of the minimal distance is only one) in every stage k, the number of
clusters is at most the double of the number of objects. In Rice and Siff’s crisp
case such ”exponential blowup has never occured in running the algorithm on
any real-world or randomly generated contexts” and in all the number of clusters
generated is linear to the number of objects. Because of wider possibilities for

101

values in the table in the fuzzy case, it is very presumable that are the most of
values of distances of pairs of concepts will be different and therefore numbers
of iterations will not be very large.

References

1. B. Ganter, R. Wille: Formal Concept Analysis, Mathematical Foundation, Springer
Verlag 1999, ISBN 3-540-62771-5

2. S. Krajči: Vektorová min/max metrika, ITAT 2002 Malinô Brdo, Košice 2002
3. S. Krajči: Fuzzifikovaný konceptuálny zväz, submitted to MIS 2003, Josef̊uv Důl
4. M. D. Rice, M. Siff: Clusters, Concepts, and Pseudometrics, preprint,

http:// science.slc.edu/˜msiff/papers/mfcsit2000.pdf
5. P. N. Yianilos: Normalized Forms for Two Common Metrics, preprint,

http:// www.pnylab.com/pny/

Author Index

Aubrecht, Petr, 55

Dvorský, Jǐŕı, 71

Hnátek, Martin, 63
Hoque, Abu Sayed Md. Latiful, 1

Kouba, Zdeněk, 55
Krátký, Michal, 71, 83
Krajči, Stanislav, 95

Labský, Martin, 30
Loupal, Pavel, 21

Mikšovský, Petr, 55

Richta, Karel, 41

Skopal, Tomáš, 71, 83
Snášel, Václav, 71
Svátek, Vojtěch, 30

Editor: J. Pokorný, V. Snášel

Department: Department of Computer Science

Title: DATESO 2003

Place, year, edition: Ostrava, 2003, 1st

Page count: 110

Edit: VŠB-Technical University of Ostrava,
Ostrava-Poruba, tř. 17. listopadu 15,
708 33

Print: Vydavatelstv́ı UP Olomouc

Edition: 100

Unsaleable

ISBN 80-248-0330-5

	Algebraic Specification of Database models
	Benchmarking the Multidimensional Approach for Term Searching
	Benchmarking the UB-tree
	Clustering Algorithm Via Fuzzy Concepts
	Compression-Based Models for Processing of Structured and Semi-structured Data
	Data Transfer Between Relational Databases Using XML
	Metadata Driven Data Pre-processing for Data Mining
	Ontology Merging in Context of Web Analysis
	Web Services and WSDL

