
Department of Computers, Czech Technical University, Prague
Department of Software Engineering, Charles University, Prague

Department of Computer Science, VŠB – Technical University of Ostrava
ČSKI, OS Computer Science and Society

Proceedings of the Dateso 2004 Workshop

Databases, Texts

Specifications, and Objects

2004
http://www.cs.vsb.cz/dateso/2004/

Sc.

Group

AMPHORA RESEARCH GROUP

A GR

Amphor

April 14 – 16, 2004
Desná – Černá Ř́ıčka

http://www.cs.vsb.cz/dateso/2004/

DATESO 2004
c© V. Snášel, J. Pokorný, K. Richta, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Technical editor:
Pavel Moravec, pavel.moravec@vsb.cz

Faculty of Electrical Engineering and Computer Science,
VŠB – Technical University of Ostrava

Page count: 171
Impression: 150
Edition: 1st

First published: 2004

This proceedings was typeset by PDFLATEX.
Cover design by Tomáš Skopal, tomas.skopal@vsb.cz.
Printed and bound in Olomouc, Czech Republic by Vydavatelstv́ı Univerzity Palackého.

Published by Faculty of Electrical Engineering and Computer Science, VŠB – Technical

University of Ostrava

Preface

DATESO 2004, the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming,
was held on April 14th – 16th, 2004 in Desná – Černá Ř́ıčka. This was the fourth
annual workshop organized by FEL ČVUT Praha, Department of Computer
Science and Engineering, MFF UK Praha, Department of Software Engineering,
and VŠB-Technical University Ostrava, Department of Computer Science. The
DATESO aims for strengthening the connection between this various areas of
informatics. The proceedings of DATESO 2004 are also available at DATESO
Web site http://www.cs.vsb.cz/dateso/2004/.

The Program Committee selected 15 papers from 17 submissions, based on
two independent reviews.

We wish to express our sincere thanks to all the authors who submit-
ted papers, the members of the Program Committee, who reviewed them
on the basis of originality, technical quality, and presentation. We are also
thankful to the Organizing Committee and Amphora Research Group (ARG,
http://www.cs.vsb.cz/arg/) for preparation of workshop and its proceedings.

March, 2004 V. Snášel, J. Pokorný, K. Richta (Eds.)

http://www.cs.vsb.cz/dateso/2004/
http://www.cs.vsb.cz/arg/

Program Committee

Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Jaroslav Pokorný Charles University, Prague
Karel Richta Czech Technical University, Prague
Vojtěch Svátek University of Economics, Prague
Peter Vojtáš University of P. J. Šafárik, Košice

Organizing Committee

Pavel Moravec VŠB-Technical University of Ostrava
Yveta Geletičová VŠB-Technical University of Ostrava
Michal Kolovrat VŠB-Technical University of Ostrava
Marek Andrt VŠB-Technical University of Ostrava
Aleš Keprt VŠB-Technical University of Ostrava

Table of Contents

Designing Indexing Structure for Discovering Relationships in RDF
Graphs . 7
Stanislav Bartoň

LSI vs. Wordnet Ontology in Dimension Reduction for Information
Retrieval . 18
Pavel Moravec, Michal Kolovrat, Václav Snášel

Pivoting M-tree: A Metric Access Method for Efficient Similarity Search . 27
Tomáš Skopal

Storage and Retrieval of First Order Logic Terms in a Database 38
Peter Gurský

Storing XML Data In a Native Repository . 51
Kamil Toman

Concept Lattices Constrained by Attribute Dependencies 63
Radim Bělohlávek, Vladimı́r Sklenář, Jiř́ı Zacpal

Concepts Valuation by Conjugate Möebius Inverse . 74
Petr Gajdoš, Václav Snášel

Querying the RDF: Small Case Study in the Bicycle Sale Domain 84
Ondřej Šváb, Vojtěch Svátek, Martin Kavalec, and Martin Labský

On Efficient Part-match Querying of XML Data . 96
Michal Krátký, Marek Andrt

INEX – a Broadly Accepted Data Set for XML Database Processing? . . . 106
Pavel Loupal, Michal Valenta

Query Expansion and Evolution of Topic in Information Retrieval Systems 117
Jiř́ı Dvorský, Jan Martinovič, Václav Snášel

Using Blind Search and Formal Concepts for Binary Factor Analysis 128
Aleš Keprt

Finite State Automata and Image Recognition . 141
Marian Mindek

Multi-dimensional Sparse Matrix Storage . 152
Jiř́ı Dvorský, Michal Krátký

Design of Structure and Realisation of Game Rules Database of
Robot-Soccer Game . 162
Bohumil Horák, Václav Snášel

Author Index . 171

Designing Indexing Structure for Discovering
Relationships in RDF Graphs

Stanislav Bartoň

Faculty of Informatics, Masaryk University, Brno, Czech Republic
xbarton@fi.muni.cz

Abstract. Discovering the complex relationships between entities is one
way of benefitting from the Semantic Web. This paper discusses new ap-
proaches to implementing ρ-operators into RDF querying engines which
will enable discovering such relationships viable. The cornerstone of such
implementation is creating an index which describes the original RDF
graph. The index is created in two steps. Firstly, it transforms the RDF
graph into forest of trees and then to each tree creates its extended sig-
nature. The signatures are accompanied by the additional information
about transformed problematic nodes breaking the tree structure.

1 Introduction

One form of retrieving information from the Semantic Web is to search for rela-
tions among entities. The simple relations such are the is-a or is-part-of relations
can be found easily. For example using RQL [3] one can find direct relationship
among entities. This means that we are able to retrieve all the descending classes
of one class, even on a different level. For example the user can ask for all in-
stances of a class ‘artist’ as it is shown in Figure 1. The answer to such query
would be all instances of both its subclasses in the knowledge base, all painters
and sculptors. But in the Semantic Web there can be observed more complex
relationships among entities [7] than those simple ones.

Such complex relationship can be represented by a path between two enti-
ties consisting of other entities and their properties. To discover such complex
relationships ρ-operators [1] have been developed. In this paper, the complex
relationships are discussed and are referred to as Semantic Associations [7]. The
ρ-operators are precisely the tools for discovering such Semantic Associations.
This class contains ρ path, ρ connect and ρ iso operators.

ρ path - This operator returns all paths between two entities in the graph. An
example of such relation can be seen in Figure 1 between resources &r6 and
&r8. Such association represents an information that a painter called Pablo
Picasso had painted a painting which is exhibited in Reina Sofia Museum.

ρ connect - This one returns all intersecting paths, on which the two entities
lie. An example of those two intersecting paths is the one between resources
&r6 and &r8 and between resources &r9 and &r8. This association represents
a fact that two artist had their artifacts (in one case it was a painting and
in the other a sculpture) exhibited in the same museum.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 7–17, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

8 Stanislav Bartoň

K
no

w
le

dg
e

B
as

e
Sc

he
m

as
String

String

String

Enumeration

locationThesaurus

Sculptor

Painter

Cubist Flemish

Painting

Sculpture

creates exhibited

sculpts

paints

Artifact MuseumArtist

lname

fname

technique

location

working_hours

String

DateTime

Integer

ExtResource
title

file_size

last_modified

typeOf (instance)

subClassOf, subPropertyOf (is−a)

"oil on canvas"

"oil on canvas"

Abraham and Isaac

17

"oil on canvas"

"oil on canvas"

"Buonarroti"

"Michelangelo"

"Picasso"

"Pablo"

"Descent"

2000−06−09T12:30:34

"Reina Sofia Museum"

"Louvre Museum"

FRANCE

9−1, 5−8

fname

fname

paints

paints

sculpts

sculpts

paints

paints

technique

technique

technique

technique

last_modified

working_hours

title

title

location

title

title

exhibited

exhibited

file_size

exhibited

lname

&r2

&r3

&r4

&r1

&r5

lname
&r6

&r7
&r8

&r9

&r10

&r11

Fig. 1. An example of RDF graph

ρ iso - This operator implies a similarity of nodes and edges along the path, and
returns such similar paths between entities. An example of such association
is the relation between resources &r1 and &r9. This represents a fact that
both subjects are classified as painters.

The ρ iso operator should also return an information that the subjects are
artists besides that they are both painters. Ranking of such answers is very
important since the fact that two subjects are painters is obviously more relevant
than they are artists, due to its greater specialization. The relevance of relations
found of course significantly depends on the context in which are the queries
asked.

The possible usage of searching such complex associations can found in the
field of national security. For example the system could find its usage on airports
helping to identify suspicious passengers by looking for available connections
between them.

In this paper we mainly focus on the former two operators which are the
ρ path and ρ connect. We introduce a design of a indexing structure for the
RDF graph that will make the discovery of the relationships described by these
ρ operators effective.

Section 3 discusses the related work to the topic of indexing RDF graphs.
Section 2 contains a brief introduction into the RDF and the RDF Schema. In
Section 4 we present out contribution to the issue by introducing the transfor-

Designing Indexing Structure for Discovering Relationships in RDF Graphs 9

mation of the RDF graph into forest of trees and after-wards the application of
tree signatures to those trees. Section 5 outlines possible improvements to the
indexing structure that is designed in this paper. Finally Section 6 concludes the
whole paper.

2 Preliminaries

The RDF graph depicted in Figure 1 is visualization of an RDF and RDF Schema
notation. These two languages are used to state the meta information about
resources. The following subsections briefly describe this technology. In the scope
of this paper the RDF is used to create the knowledge base and the RDF schema
to build the schema parts of the RDF graph.

2.1 RDF

The abbreviation RDF stands for resource description framework and according
to [4] is supposed to be a foundation for processing metadata. It basically pro-
vides a data model for describing machine-processable semantics of data. The
RDF statement is a triple (O, P, V) which parts stand for object, property and
value. Object is usually identified by URI. It is basically a resource. The value
can be either an explicit value or a resource also. Since this triple itself can be
considered as a resource it can appear in an RDF statement as well. This means
that the data model can be envisioned as a labeled hypergraph (each node can
be an entire graph) where an edge between two nodes represents the property
between the object and value.

2.2 RDF Schema

Because the modeling primitives of RDF are so basic, there is no way to define
the class-subclass relation. Therefore an externally specified semantics to some
resources was provided. Such enriched RDF is called RDF Schema [2]. Those
specific resources are for example rdfs:class and rdfs:subclass.

In such enriched environment we are able to define a simple model of classes
and their relations. This can be used to define simple ontologies in the web space.
The RDF Schema statements are expressed using XML together with its specific
namespace. Even RDF statements can be expressed using XML with its specific
namespace.

3 Related work

To make the best of these operators, they should be implemented into an RDF
querying system. One of such implementation is presented in [5]. The effort
described there demonstrates an implementation of ρ path operator above the
RDF Suite [3]. The implementation cornerstones are two indices, the Path index

10 Stanislav Bartoň

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

() vANC () vFOL

() vPRE

DES () v

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

pre

ti

po
st

n

n

Fig. 2. Properties of the preorder and postorder ranks.

and a Schema index. The former one is two-dimensional array of paths - it carries
the information about all paths between Class i and Class j in the schema part
of the RDF graph. The latter one is used to search for a path between classes
in different schemas. The Path index is very memory intensive when the data
grows to large amounts. Therefore this paper discusses a different approach to
index the data for the purpose of discovering Semantic Associations.

4 Indexing RDF graphs

The idea of indexing RDF graph demonstrated in this paper is to transform
it into tree or forest of trees in which the searching for relationship between
particular nodes will be much easier than in general directed graph. If we consider
ρ-path and ρ-connect operators, the problem is to find certain paths among
particular nodes. Therefore we deploy convenient indexing structure to each
tree to optimize such searching. Thus the signature [8] to each tree will be
created. This approach solves the problem of getting the relationship between
each pair of nodes in a tree by an atomic operation. Such relationship between
two nodes in a tree is represented by their mutual position in such tree (i.e.
ancestor, descendant, preceding or following). Tree signatures are described in
the following subsection.

4.1 Tree signatures

The idea of the tree signature is to maintain a small but sufficient representation
of the tree structures. The preorder and postorder ranks1 are used as suggested
in [6] to linearize the tree structure.

The basic tree signature is a list of pairs. Each pair contains a tree node name
along with the corresponding postorder rank. The list is ordered according to
the preorder rank of nodes.

1 How the preorder and postorder ranks are obtained please refer to [8].

Designing Indexing Structure for Discovering Relationships in RDF Graphs 11

BA

Fig. 3. Directed graphs that are not trees.

Given a node v with particular preorder and postorder ranks, their properties
can be summarized in a two-dimensional diagram, as illustrated in Figure 2,
where ancestors ANC(v), descendants DES(v), preceding PRE(v), and following
FOL(v) nodes of v in the particular tree are clearly separated in their proper
regions. Due to these properties the mutual position of two nodes within one
signature is clear immediately after reading a record of either of them in the
particular signature.

According to the signature structure the basic tree signature can be further
extended. To each entry a pair of preorder numbers is added. Those numbers
represent pointers to the first following, and the first ancestor nodes of a given
node. If no terminal node exists, the value of the first ancestor is zero and the
value of the first following node is n+1, where n is the number of nodes in a tree.
Such enriched signature is called extended signature. Later on when we refer to
signature we will mean the extended one.

4.2 Transforming the graph into forest of trees

The structure of the RDF Schema and the knowledge base can be envisioned
as a directed graph with arcs provided with labels, example is shown in Figure
1. The inconvenience of this structure lies in the problem of searching path
between nodes. Such searching algorithms work with great time computational
complexity.

Because the structure depicted above is not really a general directed graph,
we can get the benefit of the schema part of the structure since it carries useful
information about the knowledge base. The schema part has the same function
as a schema in the relational database. Then if we could reduce the problem
of searching in the whole graph to the problem of searching in the schema,
which is considerably smaller, we could use the same algorithms with better time
complexity results. But since the graph can contain several schema definitions
and the resources can be derived from more than one schema, the desired paths
can only be found using the real data, because they would not be included in
the schema definition.

Knowledge base transformation A tree can be defined as a directed graph
in which is true that (1) each node has zero or one incoming edge and (2) it

12 Stanislav Bartoň

does not contain a cycle. Directed graphs marked as A and B depicted in Figure
3 break those rules respectively. The transformation of the directed graph into
forest of trees lies in the removal of such problematic cases.

If we consider the problem marked as (A) in Figure 3, part (1) in Figure
4 shows a transformation to achieve structure conforming to the rule marked
as (1). The black node in the phase 1 in Figure 4, means that the node will
be ‘divided’ into two nodes in the following phase. The next phase has two
alternatives, phase 2a demonstrates the division of a node with a duplication
of all descendants to all divided nodes. Phase 2b shows the division without
duplication. The right way to handle such situation is to use the former method
since it prevents the uncontrollable growth of the structure. This assures that
the structure will grow in linear space instead of possible exponential growth.
The descending nodes should be cut off into stand alone component to avoid
‘short cuts’ within one component. This becomes important in the moment of
finding paths between nodes.

Thus the whole graph is traversed and all the nodes that have more than
one incoming edge are divided into exact amount of nodes that is the number of
that node’s incoming edges. This transformation can lead to breaking the graph2

into several components. These components are either trees or directed graphs
containing a cycle. To identify which components are trees a rule that a graph is
a tree only if it has exactly n+1 edges, where n represents the number of nodes
in a particular component. The non-tree components are then transformed as
follows.

The transformation of the directed graph containing a cycle is depicted in
the part marked as (2) in the Figure 4. The spanning tree of such component
is found and the nodes, which edges are not contained in the spanning tree are
divided. The transformation works in the way that it divides the particular node
into two, that the first one contains all the edges that have the original node as
the terminal one, and the extra node has all the edges that had the original as
a initial one.

2 We consider that at the beginning the graph consists from only one component.

2a1 2b 1 2

(1) (2)

Fig. 4. Transformation of a graph to conform with rules (1) and (2) respectively.

Designing Indexing Structure for Discovering Relationships in RDF Graphs 13

Obviously, after transforming all the non-tree components, we get a forest of
trees representing the original graph. Of course we have to store the information
about the divided nodes to assure that no information contained in the original
graph will not be lost in the new structure. Such information is stored in two
tables where the first one is used to get all the multiple nodes3 in the particular
signature, and the second table stores to each multiple node all signatures it
appears in. Those two tables connect the components back into the original
graph.

The time computation complexity of the transformation of a general directed
graph into forest of trees is estimated to O(2n) in the worst case. It mostly de-
pends on the number of components which after the first transformation contain
cycle. The spanning tree to such component has to be built but that means that
all the nodes of such components has to be traversed again. If all the newly built
components have cycles we have to traverse the whole graph again.

4.3 ρ path and ρ connect implementation

Once we obtain the desired forest of trees we create a signature to each compo-
nent (tree) of the transformed graph which together with the additional infor-
mation about multiple nodes will represent the index to the original RDF graph.
The time computational complexity of such operation is equal to O(n) since the
algorithm used traverses each node in each component once. The additional in-
formation connecting signatures together is built along and deploys only atomic
operations. Such information about the multiple nodes is represented by two
tables. One has in each row a name of a multiple node together with a particu-
lar signature or signatures it appears in. And the other one has a row for each
signature with a list of multiple nodes contained in it.

Above such index an algorithms implementing the ρ path and ρ connect
operators have been designed. The outline of those algorithms are demonstrated
in Algorithm 1 and Algorithm 2.

Algorithm for discovering paths The first algorithm returns an answer
whether there exists a path between two nodes. The algorithm traverses the
forest of trees only in one direction, so to tell whether there is really a path
between two nodes we have to switch the start and end node and deploy the
algorithm again if the search has not been successful for the first time. As a by-
product it also creates a list of multiple nodes that lie on the path between the
two nodes. The exact path is not computed at this point. Another function, to
which this list is passed, takes care of the exact path computation. To make the
most from the tree structure of this index, the path is computed from the bottom
to the top, the first ancestor pointer from the signature is used to traverse the
path.

3 A node which was represented as a one in the original graph, but is represented by
several nodes in the new structure.

14 Stanislav Bartoň

Algorithm 1 Name: findPathUp
Input: startSignature, startNode, checkedMultiples, endNode, wholePath
Output: true if the path between startNode and endNode exists else false

1: returnValue = false;
2: if startSignature.isNodeInSig(endNode) then
3: return startNode.isDescendantOrSelfOf(endNode);
4: else
5: multiplesInSignature = getMultiplesInSignature(startSignature);
6: if multiplesInSignature.isEmpty() then
7: return false
8: end if
9: Set usableMultiples = ∅;
10: for all multipleNode in multiplesInSignature do
11: if multipleNode.isAncestorOrSelfOf(startNode) AND !checkedMulti-

ples.contains(multipleNode) then
12: usableMultiples.add(multipleNode);
13: end if
14: end for
15: if usableMultiples.isEmpty() then
16: return false;
17: end if
18: for all usableMultiple in usableMultiples do
19: usableSigantures = getSignaturesToMultiple(usableMultiple);
20: checkedMultiples.add(multipleNode);
21: for all usableSignature in usableSignatures do
22: uniqueNodes = getSetOfMultipleNodeNamesInSignature();
23: for all uniqueNode in uniqueNodes do
24: if !checkedMultiples.contains(uniqueNode) then
25: if findPathUp(usableSignature, uniqueNode, checkedMultiples, endNode,

wholePath) then
26: wholePath.add(uniqueNode);
27: returnValue=true;
28: end if
29: checkedMultiples.add(uniqueNode);
30: end if
31: end for
32: end for
33: end for
34: end if
35: return returnValue;

Therefore the algorithm traverses the index structure in only one direction,
from bottom to top, it has to be deployed twice unless the path has not been
found in the first deployment. Thus to check whether there is not a path between
two nodes we have to execute the algorithm twice with both nodes used as a
starting point respectively. This implies that the time computational complexity
of finding a path between two nodes mainly depends on existence of such path.
The problem of dual execution could be solved if we could tell the mutual position
of the two nodes in the indexing structure. Then we could deploy the algorithm
exactly once to tell whether there exist a path between the two nodes or it does
not.

Algorithm for discovering connections As for the ρ connect operator, the
nature of the designed index structure implies that the connection, the inter-
secting node, can only be a multiple node. Therefore the problem of finding two
paths that intersect is reduced to finding a multiple node, to which exists a path

Designing Indexing Structure for Discovering Relationships in RDF Graphs 15

Algorithm 2 Name: findConnection
Input: node1, node2
Output: node where the two paths intersect or null

1: Set checkedMultiples1, checkedMultiples2, testedIntersections = ∅;
2: List multiples1, multiples2, toDoMultiples1, toDoMultiples2, wholePath1, wholePath2 =

∅;
3: done=false; found = false;
4: while !done do
5: Set usableMultiples1, usableMultiples2;
6: checkOneUsableMultiple(toDoMultiples1, usableMultiples1, checkedMultiples1, node1,

node1Signature);
7: checkOneUsableMultiple(toDoMultiples2, usableMultiples2, checkedMultiples2, node2,

node2Signature);
8: toDoMultiples1.addAll(usableMultiples1); multiples1.addAll(usableMultiples1);
9: toDoMultiples2.addAll(usableMultiples2); multiples2.addAll(usableMultiples2);
10: testMultiples = (multiples1 ∩ multiples2) - testedIntersections;
11: if !testMultiples.isEmpty() then
12: intersection = testMultiples.get(0);
13: intSignature = getSignature2Node(intersection);
14: testedItersections.add(intersection);
15: if findPathUp(intSignature, intersection, node1, wholePath1) AND find-

PathUp(intSignature, intersection, node2, wholePath2) then
16: return intersection;
17: end if
18: if toDoMultiples1.isEmpty() AND toDoMultiples2.isEmpty() then
19: done=true;
20: end if
21: end if
22: end while
23: return null;

from either node. The outlined Algorithm 2 searches the index structure in a
direction that the edges have. Its starting nodes are the two nodes to which it
is looking for connection.

Throughout the algorithm a set of multiple nodes, nodes which lie below the
particular starting node and are possible intersection, a set of checked nodes,
nodes through which the algorithm already switched to different signatures and
got all usable multiples in it, and a set of to do multiple nodes, nodes that have
to be still checked, are built to each starting node. In each cycle iteration those
sets are updated for each starting node separately, each starting node gets one
turn to check one multiple node. At the end of each iteration, the algorithm
checks whether there is a non-empty intersection of possible intersecting nodes
and if such intersection exists, it checks whether there exist paths from this node
to both starting nodes.

The above outlined algorithm for finding path intersection also very inten-
sively depends on the existence of such intersection. So far we can not stop
the algorithm without searching the entire index that is reachable from the two
starting points. It obviously also suffers from the impossibility of telling the
mutual position of two nodes in the indexing structure. Therefore the time com-
putational complexity is unacceptably high when looking for a connection that
apparently does not exist in a very large graph.

16 Stanislav Bartoň

Summarization The outlined algorithms in this section are implemented with
an emphasis to represent the idea of searching paths using the designed index
to RDF graphs. Thus they provide a vast space for further optimization, for
example to speed the first algorithm up a cycle could be used instead of the
approach with recursion. Also the access structures to the indexing structure
could be improved to save significant amount of time to speed the algorithms
up. Another way to improve the indexing structure is to create a second level
that would ease the problem of mutual position of nodes in the graph. This
approach is further discussed in the next section.

5 Future work

As it was proposed in the previous section, the future work will focus on two
directions of improving this project. Firstly, we will work on optimization of the
implemented algorithms to get better results on large scale data.

Secondly, as it was recognized in the previous section the main drawback of
both algorithms is that it is not able to tell the mutual position of two nodes
in the graph. So the future work in this direction is to solve this problem. Un-
der heavy research is a second level indexing structure on the designed index.
The idea is that the signatures, representing transformed stand-alone compo-
nents of the original RDF graph will be assumed as nodes and the edges will be
the connections through the multiple nodes to other signatures. Then the same
transformation as it is presented in this paper will be applied again.

6 Concluding remarks

In comparison to the index structure designed in [5], the path between two nodes,
if it exists, does not have to be precomputed to create the index. Instead, the
index is used to compute the path or the ρ connection between two nodes. One
of pros of the former indexing structure is that once all paths among all nodes
are computed, the searching of the ρ path is very fast and effective. The cons are
that such index is very memory intensive and the time to create such index is
great. The index structure discussed in this paper can be created in linear time
and the storage complexity is also linear to the size of the original RDF graph.

As was mentioned in Section 1 we recognize three ρ operators but the demon-
strated indexing structure together with its algorithms can handle only two of
them. The future work thus will also focus on extending the index to provide
search for all Semantic Associations defined by the ρ operators.

The aim of this project is to create a scalable indexing structure for RDF
graphs accompanied with algorithms providing the ρ operators functionality
with acceptable time and space computational complexity. In present time the
designed indexing structure provides solid base for such work but new approaches
mentioned in previous sections has to be taken into account to make it all pos-
sible.

Designing Indexing Structure for Discovering Relationships in RDF Graphs 17

References

1. Kemafor Anyanwu and Amit Sheth. The rho operator: Discovering and ranking
on the semantic web. 2003.

2. D. Brickley and R. V. Guha. Resource description framework schema specification.
2000.

3. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A declarative query language for RDF. In The 11th Intl. World Wide Web
Conference (WWW2002), 2002.

4. O. Lassila and R. R. Swick. Resource description framework: Model and syntax
specification. 1999.

5. Agarwal Minal, Gomadam Karthik, Krishnan Rupa, and Yeluri Durga. Rho: Se-
mantic operator for extracting meaningful relationships from semantic content.

6. T.Grust. Accelerating xpath location steps. In The 11th Intl. World Wide Web
Conference (WWW2002), pages 109–120, 2002.

7. Sanjeev Thacker, Amit Sheth, and Shuchi Patel. Complex relationships for the
semantic web. 2001.

8. Pavel Zezula, Giuseppe Amato, Franca Debole, and Fausto Rabitti. Tree signatures
for XML querying and navigation. Lecture Notes in Computer Science, 2824:149–
163, 2003.

LSI vs. Wordnet Ontology in Dimension
Reduction for Information Retrieval?

Pavel Moravec, Michal Kolovrat, and Václav Snášel

Department of Computer Science, FEI, VŠB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

{pavel.moravec, michal.kolovrat}@vsb.cz

Abstract. In the area of information retrieval, the dimension of doc-
ument vectors plays an important role. Firstly, with higher dimensions
index structures suffer the “curse of dimensionality” and their efficiency
rapidly decreases. Secondly, we may not use exact words when looking
for a document, thus we miss some relevant documents. LSI (Latent Se-
mantic Indexing) is a numerical method, which discovers latent semantic
in documents by creating concepts from existing terms. However, it is
hard to compute LSI. In this article, we offer a replacement of LSI with
a projection matrix created from WordNet hierarchy and compare it with
LSI.

Keywords: vector model, latent semantic indexing, LSI, information retrieval, dimen-

sion reduction, WordNet

1 Introduction

The information retrieval [13,3] deals among other things with storage and re-
trieval of multimedia data, which can be usually represented as vectors in mul-
tidimensional space. This is especially suitable for text retrieval, where we store
a collection (or corpus) of texts. There are several models used in text retrieval,
from which we will use the vector model [10,12] providing qualitatively better
results than the boolean model [13], which combines word matching with boolean
operators.

In vector model, we have to solve several problems. The ones addressed in
this article are the size of resulting index, search efficiency and precision and
search for documents similar to the query.

To measure the improvement of a new indexing method, we can use several
measures, both quantitative and qualitative. The quantitative measures show us
the performance of an indexing structure, they can be for example number of
disc accesses – disc access cost (DAC) – or total time of performed indexing and
search – wall clock time. The qualitative measures tell us how good does this
new indexing structure reflect the reality when obtaining an answer set A for a

? This paper was partially supported by GAČR 201/03/1318 grant.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 18–26, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval 19

given query Q. The most commonly used qualitative measures are precision (P)
and recall (R) [3], where precision is a fraction of relevant documents in answer
set and recall is a fraction of retrieved relevant documents in all relevant ones.

In second chapter, we will describe classic vector model and above mentioned
problems. In third, we will describe latent semantic indexing (LSI). In fourth
chapter a basic description of English WordNet ontology will be given. In fifth
chapter we will offer a way how to use WordNet for concept creation instead
of LSI and in sixth we will present comparison of our approach with LSI and
random projection on real documents from TREC collection.

2 Vector Model

In vector model, a document Dj is represented as a vector dj of term weights,
which record the extent of importance of the term for the document.

To portrait the vector model, we usually use an n × m term-by-document
matrix A, having n rows – term vectors t1 . . . tn – where n is the total number
of terms in collection and m columns – document vectors d1, . . . dm, where m is
the size of collection C.

Term weights can be calculated in many different ways – ti ∈ {0, 1}, as a
membership grade to a fuzzy set, or as a product of functions of term frequency
both in a document and in the whole collection [11] (usually tf ∗ idf – count
of term occurrences in the document multiplied by a logarithm of the inverse
portion of documents containing the term). Sometimes is the normalisation of
document vectors applied during index generation phase to make the calculation
in retrieval phase faster.

A query Q is represented as an n-dimensional vector q in the same vector
space as the document vectors. There are several ways how to search for relevant
documents. Generally, we can compute some Ln metrics to represent similarity
of query and document vectors. However, in text retrieval can be better results
obtained by computing cosine measure:

simcos(dj , q) =
djq

||dj || × ||q||
=

∑n
i=1 wi,j × wi,q√∑n

i=1 w2
i,j ×

√∑n
i=1 w2

i,q

As one can see, we do not only obtain documents which are considered rele-
vant, but according to their distance (or similarity) to the query vector, we can
order them and obtain rank for every document in answer set. We can define a
threshold t, too, meaning that all documents closer than this threshold will be
considered relevant, whilst the rest will be irrelevant. However, the choice of the
threshold is not exact and its value is usually determined experimentally.

The main problem of vector model is, that the document vectors have a big
dimension (e.g. 150,000) and are quite sparse (i.e. most coordinates are zero). If
we store them as classical vectors, the storage volume is huge – consider size of
a term-by-document matrix consisting of 100,000 terms and 200,000 documents.

20 Pavel Moravec, Michal Kolovrat, Václav Snášel

We can use existing compression schemes for the term-by-document matrix
representation like the compressed column storage (CCS) to conserve memory,
but the co-ordinate access time is much longer and we are limited by the fact,
that we cannot access the term vectors quickly. Or we can use combined storage
with both CCS and compressed row storage (CRS). Anyway, updating would
still be a problem.

The second problem is the so-called “curse of dimensionality”, which causes
classical indexing structures like M-trees, R-trees [6], A-trees, iDistance, etc. to
perform same or even worse than sequential scan in higher dimension. More-
over, the vectors are placed almost equidistantly from each other, which makes
clustering ineffective.

Third, even there is a better chance that we can find relevant documents
when using some terms which are not contained in them, the synonyms and
other semantically related words are not taken in account.

The first two problems can be addressed for queries containing only a few
words by inverted list, which is in fact compressed storage of term vectors. Only
term vectors for terms contained in a query Q are loaded and processed, comput-
ing rank for all documents containing at least one of the terms at once. However,
the inverted list is not efficient when searching for similar documents, because
significant part of index must be processed.

3 Latent Semantic Indexing

Latent semantic indexing (LSI) [3,4] is an algebraic extension of classical vector
model. First, we decompose the term-by-document matrix A by either princi-
pal component analysis (PCA), which computes eigenvalues and eigenvectors of
covariance matrix or singular value decomposition (SVD), calculating singular
values and singular vectors of A. SVD is especially suitable in its variant for
sparse matrices (Lanczos [7]).

Theorem 1. (Singular value decomposition): Let A is an n × m rank-r
matrix. Be σ1 ≥ · · · ≥ σr eigenvalues of a matrix

√
AAT . Then there exist or-

thogonal matrices U = (u1, . . . , ur) and V = (v1, . . . , vr), whose column vectors
are orthonormal, and a diagonal matrix Σ = diag(σ1, . . . , σr). The decompo-
sition A = UΣV T is called singular decomposition of matrix A and numbers
σ1, . . . , σr are singular values of the matrix A. Columns of U (or V) are called
left (or right) singular vectors of matrix A.

Now we have a decomposition of original term-by-document matrix A. Need-
less to say, the left and right singular vectors are not sparse. We have at most r
nonzero singular numbers, where rank r is smaller of the two matrix dimensions.
However, we would not conserve much memory by storing the term-by-document
matrix this way. Luckily, because the singular values usually fall quickly, we
can take only k greatest singular values and corresponding singular vector co-
ordinates and create a k-reduced singular decomposition of A.

LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval 21

Definition 1.: Let us have k, 0 < k < r and singular value decomposition of A

A = UΣV T = (UkU0)
(

Σk 0
0 Σ0

) (
V T

k

V T
0

)
We call Ak = UkΣkV T

k a k-reduced singular value decomposition (rank-k SVD).

We would not conserve any space with the matrix Ak. So instead of the Ak

matrix, a concept-by-document matrix Dk = VkΣk with k concepts is used. To
convert a query Q to the concept-space, we create qk = UT

k q 1. The similarity of
terms in concept space can be calculated from UkΣk

2.
If every document contains only one topic (for more details see [9]), we obtain

a latent semantics – semantically related terms will be close in concept space
and will result in similar answer set when querying. This addresses the third
of above mentioned problems. And since the first co-ordinates of Dk have the
greatest influence on similarity, the clustering results are better.

Experimentally was k determined to several tens or hundreds (e.g. 50–250),
exact value of k is however a mystery; it is dependent on the number of topics
in collection. For a illustration of rank-k SVD see Figure 1.

Fig. 1. k-reduced singular value decomposition

Rank-k SVD is the best rank-k approximation of original matrix A. This
means, that any other decomposition will increase the sum of squares of matrix
A−Ak. However, this does not mean, that we could not obtain better precision
and recall values with a different approximation.

The LSI is hard to compute and once computed, it reflects only the decom-
position of original term-by-document matrix. If several hundreds of documents
1 The second approach is to use a matrix D′

k = Vk instead of Dk and q′k = UT
k Σ−1

k
2 or Uk in second approach

22 Pavel Moravec, Michal Kolovrat, Václav Snášel

or terms have to be added to existing decomposition (folding-in), the decom-
position may become inaccurate. The recalculation of LSI is expensive, so it is
impossible to recalculate LSI every time documents and terms are inserted. The
SVD-Updating [8] is a partial solution, but since the error slightly increases with
inserted documents and terms, the recalculation of SVD may be needed soon or
later.

4 WordNet Ontology

WordNet is an online lexical reference system whose design is inspired by cur-
rent psycholinguistic theories of human lexical memory. English nouns, verbs,
adjectives and adverbs are organised into synonym sets, each representing one
underlying lexical concept.

The goal of WordNet project is the creation of dictionary and thesaurus,
which could be used intuitively. The next purpose of WordNet is the support
for automatic text analysis and artificial intelligence. WordNet is also useful for
determining semantic connections between sets of synonyms, for tracing mor-
phological connections between words.

The ontology is organised not only by the ”is-the-synonym-of” relation; the
verbs and nouns are hierarchically organised via the hypernym/hyponym relation
(superior/inferior concepts), too. An example of hypernyms for “ontology” is
given in figure 2.

psychological feature

cognition, knowledge, noesis

content, cognitive content, mental object

knowledge domain, knowledge base

discipline, subject, field, study, bailiwick, ...

humanistic discipline, humanities, liberal arts, arts

philosophy

metaphysics

ontology

Fig. 2. Example of hypernyms of the term “ontology”

EuroWordNet is a multilingual database with WordNets for several European
languages (Dutch, Italian, Spanish, German, French, Czech and Estonian). The
WordNets are structured in the same way as the American WordNet for English
(Princeton WordNet) in terms of synsets (sets of synonymous words) with basic
semantic relations between them. Each WordNet represents a unique language-
internal system of lexicalizations.

LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval 23

In addition, the WordNets are linked to an Inter-Lingual-Index, based on the
Princeton WordNet. Via this index, the languages are interconnected so that it
is possible to go from the words in one language to similar words in any other
language.

This index also gives access to a shared top-ontology of 63 semantic dis-
tinctions which provides a common semantic framework for all the languages,
while language specific properties are maintained in the individual WordNets.
The database can be used, among others, for monolingual and cross-lingual in-
formation retrieval, which was demonstrated by the users in the project.

5 Using WordNet Hypernyms instead of LSI Concepts

As mentioned above, the calculation of SVD is quite difficult and since the
resulting matrices U and V are dense, memory can be exhausted quite quickly.
So we face a question, how to create concepts for given document collection.

One possibility is the usage of Papadimitriou’s two-step algorithm [9] com-
bining random projection (see e.g. [1]) with LSI. Simply said, we first create a
pseudoconcept-by-document matrix A′ with a suitable number of pseudocon-
cepts by multiplication of a zero-mean unit-variance projection matrix and the
term-by document matrix A. In second step we calculate rank-2k LSI of A′,
which gives us a very good approximation of rank-k LSI of original matrix A.

We experimentally verified this method recently and showed that the ap-
proximation error against LSI is low, however we do not obtain same concepts
as with original LSI. Because there is usually not the same number of singular
values as for the original matrix A (e.g. 60’000), but only the number for the re-
duced dimension (e.g. 1000), the concepts are created differently and are almost
equal (having similar singular values). This results in poor clustering and worse
selection of k.

However, we know the hierarchy of concepts defined by the WordNet syn-
onym/hypernym organisation. We can use all hypernyms of given term from l
top levels, applying a fraction of term weight dependent on its level in WordNet
to hypernym weight in concept-by-document matrix. This would give us a dif-
ferent linear combination of term vectors than classical LSI, with non-negative
concept weights.

This way we can create a term-to-concept projection matrix, applying ade-
quate parts of each term to its hypernyms. The top l levels of hypernyms will
give us new concepts. The results may be worse than in case of LSI, but would
give us a better starting point than random projection which chooses the pseudo-
concepts as a random linear combination of terms.

Is the resulting dimension too high for convenient direct use (but not too
high to make the LSI calculation problematic as in case of original matrix A),
we can replace random projection in the Papadimitriou’s two-step approximate
LSI calculation method by the term-to-concept projection matrix and calculate
LSI on generated term-by-concept matrix, which will improve the response time.

24 Pavel Moravec, Michal Kolovrat, Václav Snášel

The problem is, that hypernym hierarchy was created only for nouns and
verbs. Adjectives and adverbs can’t be handled this way, which brings some
complications. We can either use all concepts from this area, or silently ignore
them, which will cause either an increase of reduced dimension or worse recall.
The same problem is with numbers and names. While a number can be easily
identified, we can create a category “Number” to place all numbers in, we cannot
do this with names, so we either ignore them, too, or we can create a predefined
number of random concepts which would contain terms not found in WordNet
with a given weight.

6 Experimental Results

For the comparability with LSI, 5000 Los Angeles Times articles from the
TREC 5 document collection were indexed. LSI into a dimension of 100 and 200
was calculated using both classical and two-step algorithm. For comparison, the
random projection was calculated, too.

Tests were run with English Wordnet version 2.0; the WordNet concepts
were used both directly and as the first step in the two-step algorithm instead of
random projection. In first case, two and three top levels were used. In second
case, four top levels of WordNet hierarchy were used. The term weight in a
concept was inversely proportional to a logarithm of concept level.

Tests were executed on AMD Athlon 2200+ with VIA KT-400 chipset and
1GB DDR-333 RAM. The LSI and random projection routines were written in
C/C++.

The average precision and recall for 50 TREC queries was calculated for all
mentioned methods and classical vector model. The results are summarised in
table 1.

Table 1. Precision and recall of 50 executed TREC queries

Method Precision Recall

Original sparse term-by-document matrix 79% 74%

rank-100 LSI 74% 100%
rank-200 LSI 74% 100%
rank-200 LSI after RP to dim. 1000 75% 94%
Random projection to dimension 1000 77% 82%

rank-200 LSI of 5961 WordNet concepts 74% 96%
2747 WordNet concepts calculation 73% 100%
502 WordNet concepts calculation 73% 100%

Unfortunately, there are some problems which reduce usability of these re-
sults. First, the TREC queries consist of a small number of words, thus they
are not usable as document similarity queries. Second, because of the collection
size, there were between 1 and 5 relevant documents for each query and 0 to

LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval 25

10 documents which are surly irrelevant. The rest is supposed to be irrelevant
but was not checked manually when the queries were created. When we treat
these documents as non-relevant, the precision for both LSI and WordNet-based
reduction and cosine measure is poor (around 1%).

Because the response times for TREC queries were too short and they did
not represent the similarity queries we are mainly focused on, we created a set of
1000 document similarity queries for following tests. The query times for these
query set are shown in table 2 together with index size and dimension reduction
time. The query times represent an average over 5 test runs.

Table 2. Dimension reduction and query times in seconds; document matrix
size

Method Reduction time Query time Index size

Original sparse term-by-document matrix N/A 33 8,3 MB

rank-100 LSI 2730 6 1,9 MB
rank-200 LSI 3784 11 3,8 MB
rank-200 LSI after RP to dim. 1000 2026 10 3,8 MB
Random projection to dimension 1000 20 44 19,0 MB

rank-200 LSI of 5961 WordNet concepts 3262 10 3,8 MB
2747 WordNet concepts calculation 267 50 16 MB
502 WordNet concepts calculation 227 23 5,15 MB

7 Conclusion

We have shown, that using WordNet ontology instead of random projections
offers better results and is even comparable with classical LSI. This could make
the dimension reduction feasible even for huge document collections.

The selection of concepts was very rough, we can employ a filtration step and
use concepts whose document frequency lies within given borders, which will
probably lead to improved precision. We can also filter out several inappropriate
meanings of given terms and use other lexical categories like antonyms. Both
weighting approach and similarity function may be further modified to provide
better precision.

With the use of EuroWordnet’s Inter-Lingual-Index for mapping of given
concepts, we may be even able to index texts written in different languages.

We are currently studying an interesting application offered by a reversed
approach – we try to verify an existing ontology with LSI. If a suitable mapping
could be found and formally described, it may become possible to create an
ontology on a collection of multimedia documents, e.g. images by calculation of
LSI of the collection or its randomly-selected sample [5].

26 Pavel Moravec, Michal Kolovrat, Václav Snášel

References

1. D. Achlioptas. Database-friendly random projections. In Symposium on Principles
of Database Systems, 2001.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

3. M. Berry and M. Browne. Understanding Search Engines, Mathematical Modeling
and Text Retrieval. Siam, 1999.

4. M. Berry, S. Dumais, and T. Letsche. Computation Methods for Intelligent Infor-
mation Access. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference,
1995.

5. A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo Algorithms for Finding
Low Rank Approximations. In Proceedings of 1998 FOCS, pages 370–378, 1998.

6. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of ACM SIGMOD 1984, Annual Meeting, Boston, USA, pages 47–57.
ACM Press, June 1984.

7. R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. Techni-
cal report, University of Aarhus, 1998.

8. G. W. O’Brien. Information Management Tools for Updating an SVD-Encoded
Indexing Scheme. Technical Report ut-cs-94-258, The University of Tennessee,
Knoxville, USA, December, 1994.

9. C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent seman-
tic indexing: A probabilistic analysis. In Proocedings of the ACM Conference on
Principles of Database Systems (PODS), pages 159–168, 1998.

10. G. Salton. The SMART Retrieval System – Experiments in Automatic Document
Processing. Prentice Hall Inc., Englewood Clifs, 1971.

11. G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

12. G. Salton and M. Lesk. Computer evaluation of indexing and text processing.
Journal of the ACM, 15(1):8–39, January 1968.

13. G. Salton and G. McGill. Introduction to Modern Information Retrieval. McGraw-
ill, 1983.

Pivoting M-tree: A Metric Access Method
for Efficient Similarity Search

Tomáš Skopal

Department of Computer Science, VŠB–Technical University of Ostrava,
tř. 17. listopadu 15, Ostrava, Czech Republic

tomas.skopal@vsb.cz

Abstract. In this paper pivoting M-tree (PM-tree) is introduced, a
metric access method combining M-tree with the pivot-based approach.
While in M-tree a metric region is represented by a hyper-sphere, in PM-
tree the shape of a metric region is determined as an intersection of the
hyper-sphere and a set of hyper-rings. The set of hyper-rings for each
metric region is related to a fixed set of pivot objects. As a consequence,
the shape of a metric region bounds the indexed objects more tightly
which, in turn, improves the overall efficiency of the similarity search.
Preliminary experimental results on a synthetic dataset are included.

Keywords: PM-tree, M-tree, pivot-based methods, efficient similarity search

1 Introduction

Together with the increasing volume of various multimedia collections, the need
for an efficient similarity search in large multimedia databases becomes stronger.
A multimedia document (its main features respectively) is modelled by an ob-
ject (usually a vector) in a feature space U thus the whole collection can be
represented as a dataset S ⊂ U . Similarity search is then provided using a spa-
tial access method [1] which should efficiently retrieve those objects from the
dataset that are relevant to a given similarity query.

In context of similarity search, a similarity function (dissimilarity function
actually) can be modeled using a metric, i.e. a distance function d satisfying the
following metric axioms for all Oi, Oj , Ok ∈ U :

d(Oi, Oi) = 0 reflexivity
d(Oi, Oj) > 0 (Oi 6= Oj) positivity
d(Oi, Oj) = d(Oj , Oi) symmetry

d(Oi, Oj) + d(Oj , Ok) ≥ d(Oi, Ok) triangular inequality

Given a metric space M = (U , d), the metric access methods [2] organize (or
index) objects of a dataset S ⊂ U just using the metric d. Most of the metric ac-
cess methods exploit a structure of metric regions within the space M. Common
to all these methods is that during a search process the triangular inequality of
d allows to discard some irrelevant subparts of the metric structure.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 27–37, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

28 Tomáš Skopal

2 M-tree

Among many of metric access methods developed so far, the M-tree [3,5] (and its
modifications) remains still the only indexing technique suitable for an efficient
similarity search in large multimedia databases.

The M-tree is based on a hierarchical organization of feature objects Oi ∈ S
according to a given metric d. Like other dynamic, paged trees, the M-tree
structure is a balanced hierarchy of nodes. The nodes have a fixed capacity and
a utilization threshold. Within the M-tree hierarchy, the objects are clustered
into metric regions. The leaf nodes contain ground entries of indexed objects
themselves while routing entries (stored in the inner nodes) represent the metric
regions. A ground entry has a format:

grnd(Oi) = [Oi, oid(Oi), d(Oi, P (Oi))]

where Oi ∈ S is an appropriate feature object, oid(Oi) is an identifier of the orig-
inal DB object (stored externally), and d(Oi, P (Oi)) is a precomputed distance
between Oi and its parent routing entry. A routing entry has a format:

rout(Oj) = [Oj , ptr(T (Oj)), r(Oj), d(Oj , P (Oj))]

where Oj ∈ S is a feature object, ptr(T (Oj)) is pointer to a covering subtree,
r(Oj) is a covering radius, and d(Oj , P (Oj)) is a precomputed distance between
Oj and its parent routing entry (this value is zero for the routing entries stored
in the root). The routing entry determines a hyper-spherical metric region in
space M where the object Oj is a center of that region and r(Oj) is a radius
bounding the region. The precomputed value d(Oj , P (Oj)) is redundant and
serves for optimizing the M-tree algorithms.

Fig. 1. A metric region and its routing entry in the M-tree structure.

In Figure 1, a metric region and its appropriate routing entry rout(Oj) in an
M-tree are presented. For a hierarchy of metric regions (routing entries rout(Oj)
respectively) the following condition must be satisfied:

Pivoting M-tree: A Metric Access Method for Efficient Similarity Search 29

All feature objects stored in leafs of covering subtree of rout(Oj) must be spatially
located inside the region defined by rout(Oj).

Formally, having a rout(Oj) then ∀Oi ∈ T (Oj), d(Oi, Oj) ≤ r(Oj). If we re-
alize, such a condition is very weak since there can be constructed many M-trees
of the same object content but of different structure. The most important con-
sequence is that many regions on the same M-tree level may overlap.

Fig. 2. Hierarchy of metric regions and the appropriate M-tree.

An example in Figure 2 shows several objects partitioned into metric regions
and the appropriate M-tree. We can see that the regions defined by rout1(Op),
rout1(Oi), rout1(Oj) overlap. Moreover, object Ol is located inside the regions
of rout1(Oi) and rout1(Oj) but it is stored just in the subtree of rout1(Oj).
Similarly, the object Om is located even in three regions but it is stored just in
the subtree of rout1(Op).

2.1 Similarity Queries

The structure of M-tree was designed to natively support similarity queries. A
similarity measure is here represented by the metric function d. Given a query
object Oq, a similarity query returns (in general) objects Oi ∈ S close to Oq.

In the context of similarity search we distinguish two kinds of queries. A range
query is specified as a hyper-spherical query region defined by a query object
Oq and a query radius r(Oq). The purpose of a range query is to return all the
objects Oi ∈ S satisfying d(Oq, Oi) ≤ r(Oq). A query with r(Oq) = 0 is called a
point query. A k-nearest neighbours query (k-NN query) is specified by a query
object Oq and a number k. A k-NN query returns the first k nearest objects to
Oq. Technically, a k-NN query can be implemented using a range query with a
dynamic query radius.

During a similarity query processing the M-tree hierarchy is being traversed
down. Only if a routing object rout(Oj) (its metric region respectively) intersects
the query region, the covering subtree of rout(Oj) is relevant to the query and
thus further processed.

30 Tomáš Skopal

2.2 Retrieval Efficiency

The retrieval efficiency of an M-tree (i.e. the costs of a query evaluation) is highly
dependent on the amount of overall volume1 of the metric regions described by
routing entries. The larger metric region volumes (and also volumes of region
overlaps) the higher probability of intersection with a query region.

Fig. 3. a) An M-tree with large volume of regions. b) An M-tree with small
volume of regions.

In Figure 3 two different yet correct M-tree hierarchies for the same dataset
are presented. Although both M-trees organize the same dataset, a query pro-
cessing realized on the second M-tree will be more efficient (in average) due to
the smaller region volumes.

Recently, we have introduced two algorithms [6] leading to a reduction of the
overall volume of metric regions. The first method, the multi-way dynamic inser-
tion, finds the most appropriate leaf for each object being inserted. The second
(post-processing) method, the generalized slim-down algorithm, ”horizontally”
(i.e. separately for each tree level) tries to redistribute all entries among more
appropriate nodes.

3 Pivoting M-tree

A metric region (as a part of routing entry) of M-tree is described by a bounding
hyper-sphere (given by a center object and a radius). However, the shape of
hyper-spherical region is far from optimal since it does not ”wrap” the objects
tightly together and the region volume is too large. In other words, relatively to
the hyper-sphere volume there is only a ”few” objects spread inside the hyper-
sphere thus a huge proportion of an empty space2 is covered. Consequently,
1 We consider only an imaginary volume since there exists no universal notion of

volume in general metric spaces.
2 The uselessly indexed empty space is sometimes refered as a ”dead space”.

Pivoting M-tree: A Metric Access Method for Efficient Similarity Search 31

for hyper-spherical regions of large volumes the query processing becomes less
efficient.

In this section we introduce an extension of M-tree, called pivoting M-tree
(PM-tree), exploiting the pivod-based idea for metric region volumes reduction.

3.1 Pivot-based Methods

Similarity search realized by pivot-based methods [2,4] is based on a single gen-
eral idea. A set of p (random) objects {p1, ..., pl, ..., pk} ⊂ S is selected, called
pivots. The dataset S (of size n) is preprocessed so as to build a table of n ∗ p
entries, where all the distances d(Oi, pl) are stored for every Oi ∈ S and every
pivot pl. When a range query (Oq, r(Oq)) is processed, we compute d(Oq, pl) for
every pivot pj and then try to discard such Oi that |d(Oi, pl)−d(Oq, pl)| > r(Oq).
The objects Oi which cannot be eliminated with this rule have to be directly
compared against Oq.

The simple pivot-based approach is suitable especially for applications where
the distance d is considered expensive to compute. However, it is obvious that the
whole table of n∗p entries must be sequentially loaded during a query processing
which significantly increases the disk access costs.

3.2 Structure of PM-tree

Since PM-tree is an extension of M-tree we just describe the new facts instead
of a comprehensive definition. To exploit advantages of both, the M-tree and
the pivot-based approach, we have enhanced the routing and ground entries by
a pivot-based information.

First of all, a set of p pivots pl ∈ S must be selected. This set is fixed for
all the lifetime of a particular PM-tree index. Furthermore, we define a routing
entry of a PM-tree inner node as:

routPM (Oj) = [Oj , ptr(T (Oj)), r(Oj), d(Oj , P (Oj)),HR]

The additional HR attribute stands for an array of phr hyper-rings (phr ≤ p)
where the l-th hyper-ring HR[l] is an interval (possibly the smallest) cover-
ing distances between the pivot pl and each of the objects stored in leafs of
T (Oj), i.e. HR[l].min = min({d(Oi, pl)}) and HR[l].max = max({d(Oi, pl)}) for
∀Oi ∈ T (Oj). Similarly, for a PM-tree leaf we define a ground entry as:

grndPM (Oi) = [Oi, oid(Oi), d(Oi, P (Oi)),PD]

The additional PD stands for an array of ppd pivot distances (ppd ≤ p) where
the l-th distance PD[l] = d(Oi, pl).

Since each hyper-ring stored in HR defines a metric region containing all the
objects indexed by T (Oj), an intersection of hyper-rings and the hyper-sphere
forms a metric region bounding all the objects in T (Oj). Furthermore, due to
the intersection with hyper-sphere, the PM-tree metric region is always smaller

32 Tomáš Skopal

Fig. 4. a) Region of M-tree. b) Reduced region of PM-tree (with three pivots).

than the original M-tree region defined just by a hyper-sphere. For a comparison
of an M-tree region and an equivalent PM-tree region see Figure 4.

The PM-tree, as a combination of M-tree and the idea of pivoting, represents
a metric access method based on hierarchical pivoting. The numbers phr and ppd

(both fixed during a PM-tree index lifetime) allow us to specify the ”amount
of pivoting”. For phr > 0 and ppd = 0 only the hierarchical pivoting will take
place while for phr = 0 and ppd > 0 a query will be processed like in the
ordinary M-tree with subsequent pivot-based filtering in leafs. Obviously, using
a suitable phr > 0 and ppd > 0 the PM-tree can be tuned to achieve an optimal
storage/retrieval efficiency.

3.3 Building the PM-tree

In order to keep HR and PD arrays up-to-date, the original M-tree construction
algorithms [5,6] must be adjusted. The adjusted algorithms still preserve the
logarithmic time complexity.

Object Insertion.
During an object Oi insertion, the HR array of each routing entry in the insertion
path must be updated by values d(Oi, pl),∀l ≤ phr.

For the leaf node in the insertion path a new ground entry must be created
together with filling its PD array by values d(Oi, pl),∀l ≤ ppd.

Node Splitting.
When a node is split, a new HR array of the left new routing entry is created
by union of all appropriate intervals HR[l] (PD [l] in case of leaf splitting) stored
in routing entries (ground entries respectively) of the left new node. A new HR
array of the right new routing entry is created similarly.

Pivoting M-tree: A Metric Access Method for Efficient Similarity Search 33

3.4 Query Processing

Before processing any similarity query the distances d(Oq, pl), ∀l ≤ max(phr, ppd)
have to be computed. During a query processing the PM-tree hierarchy is being
traversed down. Only if the metric region of a routing entry rout(Oj) intersects
the query region (Oq, r(Oq)), the covering subtree T (Oj) may be relevant to the
query and thus it is further processed. In case of a relevant PM-tree routing
entry the query region must intersect all the hyper-rings stored in HR. Prior to
the standard hyper-sphere intersection check (used by M-tree), the intersection
of hyper-rings HR[l] with the query region is checked as follows (note that no
additional d computation is needed):

phr∧
l=1

(d(Oq, pl)− r(Oq) ≤ HR[l].max ∧ d(Oq, pl) + r(Oq) ≥ HR[l].min)

If the above hyper-ring intersection condition is false, the subtree T (Oj) is irrel-
evant to the query and thus discarded from further processing. On the leaf level
a relevant ground entry is determined such that the following condition must be
satisfied:

ppd∧
l=1

|d(Oq, pl)− PD[l]| ≤ r(Oq)

In Figure 4 an example of query processing is presented. Although the M-tree
metric region cannot be discarded (see Figure 4a), the PM-tree region can be
discarded since the hyper-ring HR[2] is not intersected (see Figure 4b).

The hyper-ring intersection condition can be incorporated into the original
M-tree range query as well as k-NN query algorithms. In case of range query
the adjustment is straightforward – the hyper-ring intersection condition is com-
bined with the original hyper-sphere intersection condition. However, the k-NN
query algorithm (based on priority queue heuristics) must be redesigned. In the
experiments we have considered range queries only – the design of a k-NN query
algorithm for PM-tree is a subject of our future research.

3.5 Hyper-Ring Storage

In order to minimize storage volume of the HR and PD arrays in PM-tree nodes,
a short representation of object-to-pivot distance is necessary.

We can represent a hyper-ring HR[l] by two 4-byte reals and a pivot distance
PD [l] by one 4-byte real. When (a part of) the dataset is known in advance
we can approximate the 4-byte distance representation by a 1-byte code. For
this reason a distance distribution histogram is created by random sampling
of objects from the dataset along with comparing them against all the pivots.
Then a distance interval 〈dmin, dmax〉 is computed so that most of the histogram
distances fall into the interval. See an example in Figure 5, where such an inter-
val covers 90% of sampled distances (the d+ value is an (estimated) maximum
distance of a bounded metric space M).

34 Tomáš Skopal

Fig. 5. Distance distribution histogram, 90% distances in interval 〈dmin, dmax〉

Values HR[l] and PD [l] are scaled into the 〈dmin, dmax〉 interval using a 1-byte
code. Experimental results have shown that a 1-byte distance approximation is
almost as effective as a 4-byte real while by using 1-byte approximation the
PM-tree storage savings are considerable. As an example, for phr = 50 together
with using 4-byte distances, the hyper-rings stored in an inner node having
capacity 30 entries will consume 30 ∗ 50 ∗ 2 ∗ 4 = 12000 bytes while by using
1-byte distance codes the hyper-rings will take only 30 ∗ 50 ∗ 2 ∗ 1 = 3000 bytes.

4 Experimantal Results

We have made several preliminary experiments on a synthetic dataset of 250,000
10-dimensional vectors. The vectors were distributed within 2500 spherical clus-
ters of a fixed radius (over the whole extent of the vector space domain). As a
distance function the Euclidean metric (L2) was used. Each label PM-tree(x,y)
in the figures below stands for a PM-tree index where phr = x and ppd = y. The
sizes of PM-tree indices varied from 19MB (in case of PM-tree (0,0), i.e. M-tree)
to 64MB (in case of PM-tree (100,100)). The PM-tree node size (disk page size
respectively) was set to 4KB. For each index construction the SingleWay +
MinMax techniques were used (we refer to [6]).

In the experiments a retrieval efficiency of range query processing was eval-
uated. The query objects were randomly selected from the dataset and each
particular query test consisted of 200 range queries of the same query selectivity
(the number of objects in query result). The results were averaged. Disk access
costs (DAC) and computation costs of the query evaluation were examined, ac-
cording to the number of pivots used (phr and/or ppd) as well as according to

Pivoting M-tree: A Metric Access Method for Efficient Similarity Search 35

query selectivity. The query selectivity was ranged from 5 to 50 objects. The
experiments were intended to compare PM-tree with M-tree hence the PM-tree
query costs are related to the costs spent by processing the same query by the
M-tree index.

4.1 Disk Access Costs

In Figure 6a DAC according to query selectivity are presented. We can see that
for querying PM-tree(60,0) index there is needed from 80% to 90% (increasing
with selectivity) of DAC needed by the M-tree. The PM-tree(200,0) index is
even more efficient since only 65% to 85% of DAC is needed. On the other side,
PM-tree(200,50) index consumes up to 150% DAC since the long PD arrays
(storing 50 pivot distances for each ground entry) cause the 250,000 ground
entries must be stored in 9177 leafs (the M-tree needs only 4623 leafs).

Fig. 6. Disk access costs: a) Query selectivity b) Number of pivots

Disk access costs according to the number of pivots are presented in Figure
6b. With the increasing p the disk access costs for PM-tree(p,0) indices decrease
from 85% to 65% since more hyper-rings help to discard more irrelevant subtrees
while the index sizes grow slowly (e.g. size of PM-tree(200,0) index is 24MB).
The PM-tree(100,p/2) indices are more efficient than the M-tree for p < 60
only.

Interesting results are presented for PM-tree(p,p/4) indices where DAC re-
main about 100%. These results are better than for PM-tree(100,p/2) indices
but worse than for PM-tree(p,0) indices. The reason for such behaviour is that

36 Tomáš Skopal

with increasing p more hyper-rings help to discard more irrelevant subtrees but,
on the other hand, due to the even longer PD arrays the index sizes grow quickly.

4.2 Computation Costs

Unlike for disk access costs, the increasing number of pivot distances in PD
arrays positively affects the computation costs. In Figure 7a we can observe
PM-tree(200,50) index to be more than 10 times as efficient as the M-tree
index. However, for p > 80 the indices PM-tree(p,p/4) and PM-tree(100,p/2)
consume the same computation costs (see Figure 7b). This happens particularly
due to the increasing number of leafs which must be payed by a higher number
of routing entries in inner nodes.

Fig. 7. Computation costs: a) Query selectivity b) Number of pivots

4.3 Summary

Based on the experimental results we are able to claim several facts (relative to
the M-tree efficiency):

– For increasing p where phr = p and ppd = 0 the disk access costs as well as
the computation costs steadily decrease.

– For increasing p where phr � ppd (say phr = p, ppd = p
4) the disk access costs

are similar to the M-tree DAC but the computation costs can be considerably
lower. Such a behaviour can be useful when a distance computation is more
expensive than a single disk access.

– In cases where phr ≤ ppd the PM-tree behaviour acts similarly like the simple
pivot-based filtering does since the disk access costs are high.

Pivoting M-tree: A Metric Access Method for Efficient Similarity Search 37

5 Conclusions and Outlook

In this paper the pivoting M-tree (PM-tree) was introduced. The PM-tree com-
bines M-tree hierarchy of metric regions together with the idea of pivot-based
methods. The result is a flexible metric access method providing even more effi-
cient similarity search than the M-tree. The preliminary experimental results on
a synthetic dataset indicate various efficiency trends for various PM-tree config-
urations.

In the future we plan to develop new PM-tree building algorithms exploiting
the pivot-based information. Second, the original M-tree k-NN query algorithm
has to be redesigned. Our next goal is formulation of a cost model making
possible to tune PM-tree parameters for an estimated efficiency. Last but not
least, extensive experiments on huge multimedia datasets have to be performed.

References

1. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

2. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqúın. Searching in Metric
Spaces. ACM Computing Surveys, 33(3):273–321, 2001.

3. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of the 23rd Athens Intern. Conf.
on VLDB, pages 426–435. Morgan Kaufmann, 1997.

4. L. Mico, J. Oncina, and E. Vidal. A new version of the nearest-neighbor approx-
imating and eliminating search (aesa) with linear preprocessing-time and memory
requirements. Pattern Recognition Letters, 15:9–17, 1994.

5. M. Patella. Similarity Search in Multimedia Databases. Dipartmento di Elettronica
Informatica e Sistemistica, Bologna, 1999.

6. T. Skopal, J. Pokorný, M. Krátký, and V. Snášel. Revisiting M-tree Building Prin-
ciples. In ADBIS 2003, LNCS 2798, Springer-Verlag, Dresden, Germany, 2003.

Storage and Retrieval of First Order Logic
Terms in a Database

Peter Gurský

Department of Computer Science, Faculty of Science
P.J.Šafárik University Košice

Jesenná 9, 040 01, Košice
gursky@vk.science.upjs.sk

Abstract. In this paper we present a storage method for sets of first
order logic terms in a relational database using function symbols based
indexing method of Discrimination trees. This is an alternative method
to a published one, based on attribute indexing. This storage enables
effective implementation of several retrieval operations: unification, gen-
eralization, instantation and variation of a given query term in the lan-
guage of first order predicate calculus. In our solution each term has
unique occurrence in the database. This is very useful when we need to
store a large set of terms that have identical many subterms.

Key words: first order logic terms, relational database storage and retrieval, first

order logic term indexing

1 Introduction

A term in the alphabet of first order logic theory is defined inductively as fol-
lows: A variable or a constant is a term and if f is an n-ary function symbol
and t1, ..., tn are terms, then f(t1, ..., tn) is a term. A constant can be sometimes
consider as the 0-ary function symbol. In this paper the notion term has always
this meaning. Please do no confuse it with other usage of the expression ’term’ in
information retrieval, digital libraries or other parts of computer science. Terms
constitute the basic representational unit of information in several disciplines
of computer science such as automated deduction, term rewriting, symbolic
computing, logic and functional programming and inductive logic programming.
Computation is done by operations such as, e.g., unification, generalization, in-
stantation or variation. Often these operations are performed on large collections
of terms. For instance, in logic programming, deductive databases, and theorem-
proving for model elimination we need to select all candidate clause-heads in the
program that unify with a given goal. In the absence of techniques for speeding
up the retrieval of candidate terms, the time spent in identifying candidates may
be overshadow the time spent in performing other useful computation. See [1].

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 38–49, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

Storage and Retrieval of First Order Logic Terms in a Database 39

In almost all programs that work with terms or sets of terms, there is a
question how to store and retrieve1 them effective. Majority of them take, at
first, all the program and transform text representations of the terms, occurred
in the program, to their internal structures in the main memory. If this program
contains a large amount of terms, then this initialization can be expensive. On
the other side, it is possible, that we do not have enough main memory. This
leads to the problem of storing terms in persistent form on the disk. One solution
is to use the relational database as the standard application to store a large
amount of data that are related together. It is also the standard device for
sharing data between the systems. Implementation described in this paper is
based on theoretical results of [1] and [2] and provides an alternative solution for
all of mentioned retrieval operations. We can store the sets of terms and quickly
find the terms, that fulfills given requirement with the use of indexing technique
called Discrimination trees. (See [1])

The paper is organized as follows: section 2 describes the problem of first or-
der logic term indexing and explains some useful expressions. Section 3 provides
deeper look on Discrimination trees indexing technique. Section 4 shows how to
represent the structure of a term with the use of directed acyclic graph. In sec-
tion 5 previously described structures are implemented in a relational database.
Finally, section 6 mentions conclusions.

2 First order logic term indexing

The problem of first order logic term indexing by [1] can be formulated abstractly
as follows. Given a set L (called the set of indexed terms or the indexed set), a
binary relation R over terms (called the retrieval condition) and a term t (called
the query term), identify the subset M of L consisting of all of the terms l such
that R(l, t) fulfills (M = {l : R(l, t)}).

In some applications it is enough to search for a superset M′ of M (M′ ⊇
M), i.e., to also retrieve terms l for which R(l, t) does not hold, but we would
naturally like to minimize the number of such terms in order to increase the
effectiveness of indexing. In information retrieval terminology we aim for a com-
plete query answering with possibly lower precision which can be improved by
additional search. When this happen, we say that indexing performs imperfect
filtering in terminology of [1]. Retrieved terms, in this case, we will call candidate
terms.

A substitution σ in a first order logic is a finite set of the form {v1 →
t1, ..., vn → tn}, where each vi is a variable, each ti is a term distinct from vi

and the variables v1, ..., vn are distinct.
Let σ = {v1 → t1, ..., vn → tn} be a substitution and s be a term. Then

sσ is the term obtained from s by simultaneously replacing each occurrence of
the variable vi in s by the term ti. We emphasize that it is important that

1 In this paper the notion retrieve means, that we search for terms, that fulfill some
kind of condition

40 Peter Gurský

replacements are done simultaneously. For example let s = p(x, y, f(a)) and
σ = {x → b, y → x}, then sσ = p(b, x, f(a)).

In the context of term indexing, it is usually the case that the relation R of
interest is such that R(s, t) fulfills if there exists substitution σ and β such that sσ
= tβ, and furthermore, these substitutions satisfy certain additional constraints.
In addition in order to identifying the terms that fulfills the retrieval condition,
we sometimes need to compute the substitutions σ and β as well.

Under retrieval condition we will understand unification, generalization, in-
stantation or variation. Given a query term t and indexed set L, the retrieval
operation is concerned with the identification of subset M of those terms in L
that have specified relation R to t. The retrieval relation R identifies those terms
l ∈ L that need to be selected. We will be interest in these retrieval conditions:

unif(l,t) ⇔ ∃ substitution σ: lσ = tσ;
inst(l,t) ⇔ ∃ substitution σ: l = tσ;
gen(l,t) ⇔ ∃ substitution σ: lσ = t;
var(l,t) ⇔ ∃ substitution σ: (lσ = t and σ is a renaming substitution).

To understand these retrieval conditions we can make following example:
Let l = f(x, g(a)), t = f(g(y), x), s = f(g(b), g(a)) and u = f(g(x), y) where

x and y are variables and a and b are constants.
Then unif(l,t) holds with substitution σ = {x → g(a), y → a},
inst(s,l) holds with substitution σ = {x → g(b)},
gen(t,s) holds with substitution σ = {y → b, x → g(a)}
and var(t,u) holds with substitution σ = {x → y, y → x}.
On the other side e.g. unif(l,u), gen(s,l), inst(t,s) and var(t,s) do not hold,

because there are no substitutions to fulfill the corresponding equality.
Thus, the retrieval condition is based on identification of a substitution be-

tween the query term and indexed terms, with various constraints placed on the
substitution. The question of whether the retrieval condition holds between the
query term and an indexed term is determined by the function symbols in both
these terms. Thus, in every positions where both the query term and candidate
term contain a function symbol, these symbols must be identical, because sub-
stitution does not change function symbols, it changes only variables. So we can
make use of the function symbols in the indexed terms in determining the candi-
date terms. Most known term indexing techniques are based on this observation,
and we refer to such techniques broadly as function symbols based indexing, or
simply as symbol-based indexing. Representative of this techniques is also an in-
dexing technique called Discrimination trees described in [1,2], that we will use
below.

An alternative to symbol-based indexing is attribute-based indexing. In
attribute-based indexing, we map som features of a term t into a simple-valued
(say, integer-valued) attribute at. This solution is based on the assumption that
a relation involving simple-valued attributes is much easier to compute than
performing term matching or unification. However, according to [1] it has several
disadvantages. Firstly, the precision of attribute-based indexing is typically low.

Storage and Retrieval of First Order Logic Terms in a Database 41

Second, if the index set is large, the coarse filter may still be inefficient as it
may involve checking the retrieval relation from each term in a set. For details
see [1,5].

In [5] authors use the attribute-based indexing for storing the terms in a
relational database. Our solution is an alternative method with a use of more
powerful filtering of symbol-based indexing also stored in a relational database.

3 Discrimination trees

Now, if we know that function symbols of the language of predicate calculus
of first order logic in every position in the query term and the candidate term
must be identical, we need some method to compare them. One solution is to
construct a string of symbols from the query term, and identify a candidate
term if this string matches the string constructed from the indexed terms. We
can make these strings by writing out the symbols occurring in a term in some
sequence. However, such an approach may lose some of the information captured
by the term structure.

In discrimination trees we generate a single string (called the path string or
the p-string) from each of indexed terms. These p-strings are obtained via a
preorder traversal (left-to-right, depth-first direction) of the terms. To construct
index structure we mount these p-strings in the index trie. The trie structure is
described in [1]. We can see that there is a unique correspondence between the
string obtained by preorder traversal (i.e. by writing out the symbols occurring
on this traversal) and the text representation of a term. If we say that we will
go through the terms only by preorder traversal, we can generate p-string very
fast. If we have the only traversal, we don’t need any added information about
positions captured to function symbols, as it is in many other indexing techniques
described in [1], e.g. Path indexing.

Except function symbols, and constants (that can be seen as function symbol
with null arity), there are variables in terms too. This method speeds up finding
of candidate terms by replacing variables by symbol *. This leads, of course, to
imperfect filtering (lowers precision but preserves completeness), because it is
impossible to search for substitutions or check out, if retrieval condition holds
between the query and the indexed terms. We have to compute resultant sub-
stitutions, that is very expensive, after retrieval of candidate terms.

We can illustrate discrimination tree indexing using the example set of in-
dexed terms and the p-strings generated from these terms.

{1} f(g(a,*),c) f.g.a.*.c
{2} f(g(*,b),*) f.g.*.b.*
{3} f(g(a,b),a) f.g.a.b.a
{4} f(g(*,c),b) f.g.*.c.b
{5} f(*,*) f.*.*

The retrieval of generalization of query term f(g(a, c), b) from the indexed
trie obtained from these p-strings is shown in Figure 1. To understand the process

42 Peter Gurský

Fig. 1. Index and retrieval of generalizations of the query term f(g(a,c),b)

of indexing, note that the string corresponding to the query term is f.g.a.c.b.
We compare the symbols in this p-string successively with the symbols on the
edges in the path from the root to state 5. At this point, we cannot take the
left path, as the symbol b on this edge conflicts with the symbol c in the query
term. However, the symbol ∗ on the edge leading to state 9 is entirely plausible,
since taking this edge corresponds finding a generalization (namely, a variable)
of the subterm c of the query term. However, we cannot proceed further from
state 9 because of constant c, so we have to backtrack to state 3. At this point,
we can follow down the ∗ branch all the way down the final state 15, identifying
candidate term 4. If we are interested in all generalizations, we have to backtrack
further to state 2, and then finally follow to state 7, identifying candidate term
5.

In order to perform retrieval of unifiable terms and instances, we must ef-
ficiently deal with situations where the query term has a variable at a point
where the indexed terms contain a function symbol. In such a case, we need a
mechanism to efficiently skip the corresponding subterms in the indexed terms.
It is also not trivial, witch part of p-string generated from query term, we need
to skip, if we find ∗ on some edge of index.

To perform traversal of a term t we will need two operations on term positions
explained in [1]: nextt and aftert, witch can be informally explained as follows.
Represent the term t as a tree and imagine a term traversal in the left-to-right,
depth-first direction (i.e. preorder traversal). Suppose that s is a descendant of t
and its (unique) position in the tree is p. Then nextt(p) is the position of subterm

Storage and Retrieval of First Order Logic Terms in a Database 43

of t visited immediately after s, and aftert(p) is the position of subterm visited
immediately after traversal of all subterms of s.

Figure 2 illustrates the behavior of next and after on the positions in the
term f(g(a, b), c), when we mark the position of the symbol t by Λ, the position
of the symbol g by 1, a by 1.1, b by 1.2 and the position of the symbol c by 2.
We also need a special object ε, that is representative of the ”end position” in
the term.

Fig. 2. nextt and aftert on the positions in term t = f(g(a,b),c). Solid straight
lines represents nextt and dashed lines represents aftert

When we have these two functions, it is easy to perform traversal through
the query term during the retrieval operation. Thus, if we make traversal in
the index trie and find the function symbol on the edge, we have to compare it
with relevant function symbol in the query term, and if they match, we call the
function nextt to determine the next comparing position. If we find symbol *
on the edge, we can call the function aftert for the position of next comparing.
Thus, we said that we can substitute the symbol * with all the subterm on this
position, and next comparing will be with his next sibling in the query term tree
or next symbol in preorder traversal after all this subterm.

Function aftert in the case of query term we cannot use, of course, when the
retrieval condition is instance, but we need mechanism similar to this function in
the index trie. This requirement stands out also when we need to find unifiable
terms. For this purpose we will use the structure named Jump lists from [1]. It
can be seen that there must be an analogy with the function aftert.

We can make following example. We can add new term t = f(g(b,c),*) with
its p-string f.g.b.c.* into the index trie in figure 1. Now imagine its traversal
functions nextt and aftert. Those structure is identical to that in Figure 2. It
can be seen, that there is reciprocal corresponding between the function nextt
and the respective branch in the indexed trie. We can see added branch on Figure
3. In every state on this branch (except the last, that represents the end position
ε) we will add a link to the states corresponding those positions in term t that
determine the function aftert. In this case, we will add in the edge 1 the link to
state 18, similar in state 2 to state 17, in state 3 to state 16, in state 16 to state
17 and in state 17 to state 18.

44 Peter Gurský

In Figure 3 we can see retrieval of terms unifiable with f(g(b, ∗), a) . Dashed
lines are Jump lists only for those nodes where jump links go to a state different
from the immediate child of a node, and except links from root to the leafes.

Fig. 3. Retrieval of terms unifiable with f(g(b, ∗), a)

All the structure of discrimination trees including index trie with jump lists
we implement in a relational database in section 5.

4 Storing of terms

When we add a new first order logic term to the database, the standard input is
the text-representation of this term and the name or the id of the set, where this
term have to be a member. Storing only the pure text-representation of terms
is not suitable. It is known that, term can be represented as a tree or directed
acyclic graph (DAG) [1,2]. The root node of the tree representation of a term t
contains the root symbol of t and pointers to nodes that correspond to immedi-
ate subterms of t. As compared to a tree representation, a DAG representation
presents an opportunity to share subterms. We are trying to ensure that exists
only a single copy of a term, regardless of number of contexts in which it occurs.
This solution is called perfect sharing or aggressive sharing [2]. Such sharing can
contribute to as much as an exponential decrease in the size of the term. The ex-
ample in Figure 4 shows DAG representation of term f(a, g(1, h(b), a), h(4, h(b)))
with aggressive sharing.

Storage and Retrieval of First Order Logic Terms in a Database 45

f

a g h

b

1 4h

Fig. 4. DAG representation of f(a, g(1, h(b), a), h(4, h(b))) with aggresive shar-
ing

The benefits of sharing are significant in practice. It is very useful when we
want, for example, to unificate two terms. There is known some unification algo-
rithms like the unification on term dags or an almost-linear algorithm described
in [2], that need on the input the structure contains two DAGs of the terms with
shared subterms that we want to unificate. These algorithms are more powerful
than any other unification algorithms based on any different structures. Those
main advantage is that each substitution is computed only once, because there is
always only one instance of each variable and after computing of any particular
substitution this can be implement on the each of positions immediately at once
and the substituted variable will never occur again.

When we do not share subterms, unification algorithm can be very inefficient.
In the worst case, its running time can be an exponential function of the length
of the input, for example when we want to unificate terms s = p(x1, ..., xn) and
t = p(f(x0, x0), ..., f(xn−1, xn−1)). For details see [2,5].

5 Implementation in relational database

In chapter 2 we have followed the informal description of the algorithms for re-
trieving of candidate terms and in previous chapter we have said how we can
represent first order theory terms according to [1], [2] and [3]. In this chapter
we present our method of storing terms in a relational database. The decompo-
sition of data to the relational schema is shown in Table 1. For better notion of
relationships between the tables, there is the database diagram on Figure 5.

For better understand of how to store and retrieve terms with use of this
decomposition, we will show this on following example.

Imagine that we want to insert term t=f(a, g(1, h(b), a), h(4, h(b))) where a
and b are variables, whose DAG representation is shown in Figure 4. We also
need to know the name or id of the set, of which this term have to be a member.
For simplicity suppose that its name is Set1 with id 1 already stored in table
SET, with root state 1. The root state is a number, that tell us, which state in
index trie belong to this set is a root one. It is better to store for each set its

46 Peter Gurský

SET(id, name, root state)

INSERTED(id, id term, id set)

TERM(id, id symbol)

ATTRIBUTE(id father, id son, position)

SYMBOL(id, name, arity)

STATE(id, id symbol, next)

JUMP(state, jump)

Table 1. Relational schema

INSERTED SET

TERM STATE JUMP

SYMBOL

ATTRIBUTE
father

son

state

jump

*

* 1

1

*

1

* 1

1

*
0..1

1 *

*

1

1* *

1 1

Fig. 5. Database diagram

own index trie. This solution is not suitable only if we want to retrieve always
from all stored terms. In this case is the information about sets needless and, of
course, we do not need table SET. In other cases our implementation allow to
have a smaller index tries and faster retrieval from the individual sets of indexed
terms. At first, we will point a look on storing of DAG representation of terms.
An example can be seen in Table 2. For better understand of relations we do not
start to generate id-s in table TERM from 1 but 11.

The symbols occurred in terms with their arities are stored in table SYM-
BOL. The column arity in the table SYMBOL is captured with the name, be-
cause it can really speed up retrieval from the index. Arity is also useful, when
we can read all the structure of any term for the database. In this case we know,
if we have to seek the table ATTRIBUTE for the subterms. Note that the arity
-1 denotes a variable and the arity 0 denotes a constant.

The structure of the term is covered in table ATTRIBUTE. For example, as
we can see in Table 2, the term with id 11 (whose text representation is symbol
f) has as children the terms with id-s 12, 13 and 17 respectively. The order of
these subterms is determined by the column position.

A expert fluent in databases would say that information in table TERM is
redundant. It became useful when there is an identical function symbol with the
same arity but with different subterms. In this case, if we have not the table

Storage and Retrieval of First Order Logic Terms in a Database 47

SYMBOL

id name arity

1 f 3

2 a -1

3 g 3

4 1 0

5 h 1

6 b -1

7 h 2

8 4 0

TERM

id id symbol

11 1

12 2

13 3

14 4

15 5

16 6

17 7

18 8

ATTRIBUTE

id father id son position

11 12 1.

11 13 2.

11 17 3.

13 14 1.

13 15 2.

13 12 3.

15 16 1.

17 18 1.

17 15 2.

Table 2. Example of representation of inserted term f(a, g(1, h(b), a), h(4, h(b)))

TERM, we should have to add a new symbol as a row to the table SYMBOL
that would have the same name and arity as already stored symbol, just with
different id. For example if we want to add the term h(a), we can use fifth
symbol, e.g. we add the couple (19,5) to the table TERM and triple (19,12,1) to
the table ATTRIBUTE.

We can see, that we store only one instance of each subterm. We suppose
that aggressive sharing is not concern only on individual terms, and there is
only one instance of each subterm or term in all the database. Thus, if we add
another term, that has any subterm identical to some subterm, that was stored
before, we simply refer to the stored one. This happen also when this term is
stored in another set.

There is one another table INSERTED, that was not mentioned. It stores
the information, which term was original inserted (more precise it stores its root
id) and to which set.

Now, when we have stored the DAG representation, we need to know, how we
represent the index trie of Discrimination trees. As we have described in section
3, at first we make the p-string and add it as a new branch into the index trie.
Structure of the branch from our example can be seen in Figure 6.

f * g 1 h * * h 4 h * 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 6. Index representation of term f(a, g(1, h(b), a), h(4, h(b))). Solid lines rep-
resents next and dashed jump

48 Peter Gurský

We can store this structure to the tables NEXT and JUMP as we can see in
Table 3.

SYMBOL

id name arity

1 f 3

2 a -1

3 g 3

4 1 0

5 h 1

6 b -1

7 h 2

8 4 0

STATE

id id symbol next

1 1 2

2 NULL 3

3 3 4

4 4 5

5 5 6

6 NULL 7

7 NULL 8

8 7 9

9 8 10

10 5 11

11 NULL 12

12 1 0

JUMP

id state id jump

1 12

2 3

3 8

4 5

5 7

6 7

7 8

8 12

9 10

10 12

11 12

Table 3. Representation of indexing structure for term
f(a, g(1, h(b), a), h(4, h(b)))

The structure of these tables is, almost all, obvious from the Figure 6, when
we say, that we are replacing a symbol * by NULL value for simpler differenti-
ate between function symbols and variables with preserving of integer value of
column id symbol. The only difference between Figure 6 and Table 2 is on the
last raw of table STATE. On this place we are making a trick, and saying, that
when in the column next is value 0, than we are on leaf of index trie, and in the
column id symbol is the id of one of the terms, that are attached to this final
state and stored under this id in table TERM or table INSERTED (vote is on
the man, who want to implement it).

Now, when we are familiar in database structure, we can demonstrate, how
to retrieve terms, that fulfill a retrieval condition. Let us have the text or DAG
representation of a query term, retrieval condition and the name of set, that
we want to seek for retrieval. At first, we need a list of symbols with arities
equal to arities of the query term and its subterms. Then we must have a look
to the table SYMBOL to get id-s of these symbols. If we do not find relevant
rows for function symbols (with arity greater or equal to 0), than if the retrieval
condition is instance or variation, we can say, that there is no relevant candidates
in database. In other cases we can assign to such a symbols or variables unused
id-s, e.g. negative numbers. Now we can seek indexed trie of given set of terms
with root symbol registered in table SET. Traversal on this trie was described in
section 3 with the difference that we do not match symbols but id-s and symbol *
was substituted with NULL value. The function nextt we easy can simulate with
the use of table STATE and the function aftert with the use of table JUMP.

Storage and Retrieval of First Order Logic Terms in a Database 49

On this part of enumeration we have two possibilities. We can wait for all
the set of candidate terms or use the aspect of Discrimination trees, that we can
receive candidates in sequence one by one. This allows to do next enumerations
with the use of threading.

Further, it remains us to compute substitution for each couple of the query
and the candidate term. We have to select all the structure of a candidate term
from the database. One advantage is, that we obtain the structure, that answers
the DAG representation with aggressive sharing. So we can use very fast algo-
rithms as it was written in section 4. Finally, we have to delete those candidates,
for which the substitution cannot be computed.

This solution of implementation of sets of terms in database provides a struc-
tures for storing and retrieval. This system is suitable primarily for applications,
where retrieval performance is important and efficiency of maintenance opera-
tions is not a concern. If we want to insert or delete a branch from index trie
we need to take care of shared states and jump lists. Similar, when we want to
insert or delete a term from set (or more complicated from several sets) there is
need to see if any subterm is a part of some other term or as a term is a member
of a different set. In spite of that, there is a lot of programs, in which the sets
of terms are almost static and the primary requirement is retrieval time.

6 Conclusions

In this paper we have presented a storage method for sets of first order logic
terms in a relational database using Discrimination trees. Our solution is an
alternative to a [5], based on attribute indexing. This storage enables effective
implementation of retrieval operations unification, generalization, instantation
and variation of a given query term. In our solution each term has unique occur-
rence in the database and can be easy converted to the DAG representation of
terms. This provides very fast verifying of candidates returned from the index.

Acknowledgement. I would like to express my thanks to my master thesis
supervisor RNDr. Peter Eliaš PhD.

Supported by project VEGA 1/0385/03.

References

1. R.Sekar, I.V.Ramakrishnan, Andrei Voronkov Term indexing in Alan Robinson,
Andrei Voronkov Handbook of automated reasoning. Elsevier Science Publishers
B.V. 2001

2. Franf Baader, Wayne Snyder Unification theory in Alan Robinson, Andrei
Voronkov Handbook of automated reasoning. Elsevier Science Publishers B.V. 2001

3. Peter Gurský Implementation of formal structures in database systems. Master
thesis under supervision of Peter Eliaš (in Slovak). Košice 2003.

50 Peter Gurský

4. J.W.Lloyd Foundations of logic programming. Springer-Verlag New York Berlin
Heidelberg 1987. ISBN 3-540-18199-7, 0-387-18199-7

5. Paul Singleton, O.Pearl Brereton Storage and retrieval of first-order terms using a
relational database, 1993. ISSN 1353-7776

Storing XML Data In a Native Repository

Kamil Toman

Dept. of Software Engineering
Charles University, Faculty of Mathematics and Physics

Malostranské náměst́ı 25
118 00 Praha 1

E-mail: ktoman@ksi.mff.cuni.cz

Abstract. This paper is concerned with storing XML data in a native
repository suitable for querying with modern languages such as XPath or
XQuery. It contains a description of the experimental database, SXQ-DB,
its basic principles and system internals. Some of query evaluation tech-
niques and problems related with those methods in relation to amount
of stored information are mentioned.

1 Introduction

The XML language [1] was first published in 1998 but it has already become
very popular. In the first place it is used as a standard for electronic interchange
of application data and also as a flexible format allowing to store various infor-
mation in a human readable form. With the expansion of Internet the data are
gathered from various locations thus we cannot rely on their homogenity. On
the contrary, we need to adapt applications to be able to handle them.

XML documents are logically formated documents which lessen the difference
between pure text without any explicit formatting and rigidly structured data
stored traditionally in relational databases.

Contents of XML documents are split up to smaller parts—elements—which
are specifically named and which form one logical unit. From this point of view
we can look on XML data as a database however it does not have a given hard-
set structure and the structure of XML document itself provides a portion of
complete information.

XML documents are often bound to their respective DTDs (Document Type
Definitions). The purpose of DTD is to define the legal building blocks of an
XML document. It defines possible structures together with a list of legal el-
ements and attributes which might appear in the document. XML documents
with a common DTD are called document collections.

To retrieve XML data from XML databases several new XML query lan-
guages have been proposed but only the minority survived. The most studied
XML query languages with the most recent experimental implementations are
XPath [6] and XQuery [5]. Both of them use path expressions as one of their ba-
sic constructs. Path expressions allow users to navigate through arbitrary paths
of the XML tree and to address some portions of documents.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 51–62, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

52 Kamil Toman

Despite many attempts to store XML data in relational, object-relational or
object-oriented databases all existing approaches fail to supply sufficient func-
tionalities to effectively manage and query XML data. Often, to process a simple
path expression a sort of XML tree traversal is necessary. This might result in
complex highly nested SQL queries which are hard to be effectively executed.
Similarly in object-oriented databases, OQL is also not very suitable for ex-
pressing XML queries because it does not cover all basic constructs of XPath or
XQuery.

In order to efficiently answer database queries the traditional DBMS leverage
the usage of various indices. However, these index structures are tightly bound
to a rigid database schema. That is something what, to some extent, prevents
us from using them for XML indexing.

The database systems specially designed to store XML data are called native
XML repositories or native XML databases. The storage is maximally adapted
for tree shaped data contained in XML documents and as such it can be imple-
mented in a practically arbitrary way. In comparison with traditional systems
the index structures in native repositories are even more important. Often there
is no way how to evaluate XML queries without a particular type of index. It
does not, however, mean that a native XML database has to be implemented all
over from the beginning. Some parts of such systems like the transaction man-
ager, access control etc. can be often adopted from existing object or relational
database systems with minimum changes.

In this text the new native XML database SXQ-DB (Simple XQuery
DataBase) is described. In Section 2 the overall architecture and some im-
plementation details of its XML storage module are discussed. Later on this
section the query processing module is described. In Section 3 the brief overview
how other systems process XML queries is presented. Conclusions summarize
the contribution of this paper and give outlook to future work.

2 Native XML Database

SXQ-DB [3] is an experimental database suitable to store and manage collections
of XML documents. Its current implementation consists of a native XML storage
and a simple implementation of a non-trivial XML query language.

The goal of the work was to design a general and extensible architecture
usable for testing various implementations of database operations and for verifi-
cation basic qualities of the generic XML framework XMLCollection [2]. Unlike
other projects the most important aspect was not the overall performance but
the high-level design and the evaluation of the used data model with respect to
more complex constructions of XML query languages. The accent was also on
the fact that all accessed XML data were stored in the external memory.

As the XML query language has been implemented the language SXQ (Sim-
ple XQuery) which has been designed to cover the most important aspects of
XQuery.

Storing XML Data In a Native Repository 53

2.1 Overall Architecture

Due to given qualities and requirements of the initial XML framework the ap-
plication operates on collections of XML documents characterized by a common
DTD. These documents are stored in the external memory in a special binary
format which is appropriate for more flexible access to data and hastens the
effective successive processing.

The important decision on the implementation of the system was the choice
of the modular architecture which allows an easy addition or a replacement of
any system component.

Unlike programs managing XML files mostly in internal memory the module
providing data querying is strictly separated from the actual XML repository.
The Query Processing Module ensures syntactic analysis, processing and evalu-
ating a query, the XML repository serves just for manipulation with persistent
XML data. This design also allows the usage of several different XML storage
modules without imposing other changes to the system. The overall architecture
is depicted on Figure 1.

Query Processing Module

XML Repository

User Interface

XML Repository

XML Data XML Data

User Interface

Fig. 1. Overall Architecture of SXQ-DB

2.2 XML Repository

The essential part of the SXQ-DB is the native XML repository implemented by
utilizing the application framework XMLCollection. This module intermediates

54 Kamil Toman

via an application interface information about data and structure of stored XML
documents to other modules. It also provides access to individual elements and
attributes stored in external memory.

The data repository also allows to limit the system resources—for example
the size and number of system buffers or the maximal number of simultaneously
accessed objects. Unlike other modules we put the accent on effectivity of data
management.

Representation of XML Document. The used data model generally adheres
the model as defined in XML Information Set [4] augmented by constructions
defined by XQuery Data Model [5]. In our representation we use only those
qualities which are required for evaluation of the SXQ language. In brief, we look
on XML documents as oriented trees where to each vertex is associated a type
of the node and a label. The vertices relevant to a common parent are ordered
left-to-right. This ordering is imposed by the global document order requirement.

Text values are not assigned to all elements and attributes but only to special
(artificial) nodes. This approach is primarily advantageous because all elements
and attributes can be accessed the same way including elements with mixed
contents.

Node Identification. In order to reasonably access individual nodes of XML
tree we need to select a system of node identification. By a numbering scheme
of the logical document model we understand a function which assigns a unique
binary identifier (binary string) to each node of an XML tree. This identifier
then can be used as a reference to the given node in an index or while a query
evaluation.

The most common and also the simpliest numbering scheme in systems man-
aging XML data is the sequential numbering scheme. The individual identifiers
are assigned to particular nodes starting from one immediately after the nodes
have been inserted to the system. The primary advantage of this scheme is its in-
herent simplicity and the maximal size of identifier which is at most 1+blog2(n)c
bits where n is number of nodes inserted to the system (including already deleted
nodes).

The major disadvantage of the sequential numbering scheme is that it does
not provide structural information – relations between nodes must be stored in
separate.

The best way seems to be to leverage one of existing structural number
schemes [7], [11], [14] which allow very effectively to determine the relation of
arbitrary two nodes of the XML tree just from the information contained in
their respective identifiers and thus they allow effective query evaluation using
for example structural joins [11]. The maximum size of an identifier is still at
most 2b1 + log2(n)c bits.

On the other hand we have to take into account that we might need not only
to change contents of individual XML nodes but also the document structure.
Unfortunately all currently known structural numbering schemes are basically

Storing XML Data In a Native Repository 55

static – the numbering of nodes is based on the fact that we know or at least we
assume the potential shape of the XML tree. If there are substantial differences
from the anticipated XML data it is necessary to renumber the whole XML tree.

At the same time, neither contemporary techniques used for XML data man-
agement nor languages specially developed for XML document actualization like
XUpdate [13] give us enough information about possible shapes of inserted sub-
trees or about scale of modifications to be done on the stored documents.

In general, it is possible to create a structural numbering scheme which is us-
able even in case when we know nothing about shapes of inserted trees. However,
as proven in [14], the worst-case maximum size of resulting identifiers assigned
to individual nodes is O(n) bits.

Occasional renumbering of nodes in some XML subtrees does not imply an
insurmountable problem because it can be partially prevented by a sensible
utilization of structural statistics. Much bigger problem is that the renumbering
of XML nodes imposes changes in practically all indexes that might be built
up upon stored data. As XML indices are often relatively complex the total
overhead related to their actualization might be enormous.

For this reason it is sensible to choose a compromise. For the direct numbering
of nodes (in the core of XML repository) we use the basic sequential numbering
scheme, plus we define a secondary numbering scheme (secondary identifiers)
which will hold the structural information useful for quering.

In all indices we will use only references to primary node identifiers thus we
avoid forced updates of indices if the structure changes. The disadvantage of
this approach is slower evaluation of structural joins because of another level of
logical mapping and also increased requirements for the disk space to manage
primary and secondary identifiers.

Document Collections. We can also take advantage of the above approach to
store the whole collection of XML documents at once. Because we use a simple
sequential scheme as a primary identification mechanism the shape and the size
of the tree does not pose a problem. Thus we can look on the whole collection as
one XML document. It suffices to create two new special types of elements – the
artificial root and document root elements. The abstraction of XML collection
illustrates Figure 2.

The usage of the artificial collection root has one small additional advantage
– it will always exist even if the collection is empty and can serve as a stable
entry point with a fixed identifier.

Elements DOCUMENT allow mutual differentiation between individual XML
documents and their attributes may also be used to keep user’s information
about stored documents like title, author, date etc. The information then can
be later accessed even by the standard constructions of the query language.

Besides API simplification, the storage of the whole XML collection in one
tree is often advantageous when the indices are built up. For example, if we
create a word index it will be certainly more space efficient to build it up upon
the whole collection than to build individual indices for every document in the

56 Kamil Toman

Dokument 1 Dokument 2 Dokument 3

ROOT

1

DOCUMENT

354

DOCUMENT

1245

DOCUMENT

2

Fig. 2. Representation of XML Collection

collection. In case we want to query the whole collection at once it is also much
more effective.

XML Node Types. Because we manage only XML documents with a com-
mon DTD we can also use numbers instead of labels for all types of elements
and attributes (within different namespaces). The translation tables then can
be stored together with DTD of the collection. This has two advantages: this
approach to type identification is much more economical than storing text labels
directly and it is also much easier and faster to use them during evaluation.

Architecture of XML Repository. The implemented XML repository can
be logically divided into several modules. Each of them operates independently
and ensures a different type of functionality:

– the DTD Storage module holds the DTD of the collection, name mapping
tables, types and logical mapping of identifiers,

– the Element Storage module maintains the relations between XML nodes,
– the Value Storage module manages text values associated with elements and

attributes,
– the rest of modules are mostly repository indices.

Strict module separation allows to hide unimportant details from the rest of
the system. The communication between individual modules proceeds only via
general application interface.

Naturally, this does not prevent us from using a common infrastructure. It
is implemented as a separate module as well. The advantage is that potential
changes in basic infrastructure can be done just once. The overview of the ar-
chitecture of the XML repository module is demonstrated on Figure 3.

Storing XML Data In a Native Repository 57

Structure Index

DTD Storage Value Storage

Element Storage

Common Infrastructure

Word Index

Value Index

Fig. 3. Representation of XML Collection

The core modules cover only the basic functionality of the repository. For real
utilization we have to take into consideration various indices as well. However,
the indices might differ substantially from each other not only in implementation
details but also by usage. It is hard to design a common interface which would
allow a direct integration of an arbitrary index into the system.

To resolve this problem we expose only descriptions of events that may occur
instead of detailed application interface between the core modules and indices –
for instance a creation or a deletion of an XML node, its value actualization etc.

Each index is registered at particular modules so it can react to arisen events.
That means we neither need to anticipate what data the index requires nor we
need to know anything about its functionality. On the other hand we must ensure
that the implementation of each index will be able to work with data structures
of modules where it is registered.

Each index can propagate all events towards the rest of the modules which
are built up on other than core modules of the system. Thanks to this mechanism
we are able to sustain the whole system up-to-date.

Physical Access To External Memory. The important feature of the original
implementation was to limit the system resources, the memory consumption in
the first place. This property is ensured by the general paging mechanism.

58 Kamil Toman

Storage of Document Structure. The storage of a XML document structure
is based on modeling local relations between XML nodes where every vertex
“knows” only its direct neighbours. The representation of more complex relations
is left to structural indices or to the query processing module.

The XML nodes are assigned indentifiers by the simple sequential numbering
scheme and together with their types and identifiers of adjacent nodes are stored
into fixed-length records in a binary file.

In order to access the nodes effectively we need to be able to quickly localize
the information about individual nodes of the XML tree. To achieve this we
index all records in a B+-tree.

Secondary Object Cache. If there are some nodes which are accessed much
more frequently during a query evaluation the above described method of lo-
cating nodes has still great overhead. The position of every located node must
be at first looked up in the external index (possibly unbuffered) and then the
respective position must be computed. The located page has to be loaded into
main memory and requested data obtained from the computed offset.

For that reason a secondary object cache is implemented. Queries for infor-
mation about an XML node are directed at first to this cache and only if it does
not already contain the requested information the mechanism described above
is used.

Notice that information about XML nodes is mostly short-lived. We often
need to reach the record of the node just to find its neighbours or to check its
value. If we implemented objects holding such information in a standard way
frequent allocations and repeatedly released memory would kill the application
performance. All cache objects are therefore kept in the main memory at all
times and only if needed they are reinitialized with new data. The number of
cache objects is given by the configuration of the XML repository module.

2.3 Query Processing Module

The XQuery language was created only recently and despite its basic features
have their origin in previous proposals of XML query languages there is still
no general technique how to evaluate all its queries. There is still nothing like
relation algebra for classic relational database systems.

This is one of the reasons why classic navigational methods are still used
for the evaluation of more general XML queries. More effective techniques like
structural joins can be used only for special cases—mostly for path expressions
and indispensable minimum of conditional expressions. Furthermore, expressions
which can be evaluated by structural joins are very hard to distinguish from those
which cannot be evaluated this way. Many of practical implementations avoid
this problem simply by supporting only a limited set of XML queries [11], [20], [8].
The rest is modestly ignored.

Unlike other implementations our goal was to support all basic constructs of
XPath and XQuery languages, not only path expressions. The implementation

Storing XML Data In a Native Repository 59

of SXQ language thus reminds a simple compiler of a general programming
language. The architecture of the module and the individual phases of query
processing is demonstrated on Figure 4.

Query Result

Symbols

Syntactic Tree

Canonic Tree

Optimized Query Tree Query Plan

Query Optimization

Lexical Analysis

Syntactic Analysis

Plan Generation Query Plan Evaluation

Query Normalization

Document
Information

XML

Repository

XML
Query

Data

Model

Operations

Fig. 4. SXQ Query Processing

At first the module disassembles the query to individual lexical elements
which are subsequently used for syntactic analysis. In this phase context depen-
dent keywords are resolved. In current implementation this is done via a finite
automaton. The output of this stage is the syntactic tree which represents the
independent form of a given query. However this tree is yet too complex for
further processing. For that reason it is at first normalized into a canonic tree.

The canonic tree can be distilled from the syntactic tree by applying suc-
cessive sequence of formal rewriting rules eliminating compound operations and
“syntactic sugar”, i.e. operations which are not indispensable and can be equiv-
alently described using basic operations. Part of a query normalization is also a
unification of expressions—for instance, we can reorder some constructs to ad-
here a fixed form though formally the expressions do not depend on the order of
terms. The important thing is that the canonic tree is semantically equivalent
to syntactic tree but substantially simplified and also with rather more rigid

60 Kamil Toman

structure. The canonic tree is more suitable for logical optimization, apart from
other things, because by tree normalization we radically decrease the number of
different shapes an XML query tree might have.

Similarly, the logical optimization usually constitutes of a set of rewriting
rules. Unlike the previous ones the goal is not to simplify the structure of the
canonic tree but to reduce the time needed for the query evaluation. The rules are
often heuristic but the processing time generally should not be much longer if the
conditions were mispredicted. As an example of such a logical optimization we
can mention e.g. invariant motion (a separation and a movement of some parts
of the query away from a repeatedly evaluated expressions) or constraint motion
(evaluation of constraints and conditions as soon as possible). The overview of
such rewriting rules can be found in [12]. This phase might also include the
elimination of common subexpressions of the query.

The logically optimized query tree is then passed to a generator of query
plans. This module constructs possible procedures of query evaluation and ac-
cordingly to information supplied by XML repository it chooses the optimal
plan.

This plan of query evaluation is consecutively executed by the computation
engine which makes up the result of the query.

3 Query Processing In Other XML Database Systems

Tree pattern queries or correlated path expressions are the most accented con-
structs of XPath and XQuery querying languages. A pattern trees represent-
ing parent-child, ancestor-descendant relations between XML nodes bound with
some additional constraints are to be matched against a source XML tree or a
XML document collection.

The currently used evaluation techniques use extensive indices built mostly as
combinations of structural path summaries [15], value indexing and tree traversal
(Lore [16]) or identifier schemes (XISS [11]). However the storage efficiency is
often not considered in these approaches.

Earlier systems relied on tree traversal techniques and structural indices like
DataGuides or T-indices which are very inefficient when they are stored in the ex-
ternal memory. These methods have been surpassed with more modern structural
joins (XISS, eXist [20]) which compose the tree patterns by pairwise matching
parent-child and ancestor-descendant relations between candidate XML nodes.
However the most commonly used indices used for structural joins can gener-
ally exceed the size of the whole source XML tree not giving any additional
information besides the transitive ancestor-descendant relationship [17].

A few other indexing schemes like SphinX [18] or APEX [19] reduce the size
of resulting indices by deliberately not covering all necessary information at the
expense of generality or guaranteed performance. Though in practice they may
perform quite well.

A novel approach of processing XML queries is being developed for project
Timber [9] which is based on a complete and closed algebra named TAX which is

Storing XML Data In a Native Repository 61

a generalization of the current relational algebra for tree structures. The project
still uses the old object manager Shore to manage the XML persistence but a
transition to a native XML repository Natix [10] is planned.

4 Conclusions and Future Work

In this text, we described concepts and the implementation of SXQ-DB, the
experimental native XML database. We demonstrated some advantages of its
modular architecture and showed the basic data flow in the system. We also out-
lined some problems concerned with XML node insertions, numbering schemes
and XML query evaluations, the tree pattern matching queries in the first place.

Future work in this area should probably be focused on two things: to find a
more general way how to express and evaluate the most common XML queries
and also to reduce space needed for structural and term indices used by the
database application. Some recent more advanced proposals of XML indexing
like multidimensional trees and UB-trees [21] are also subjects to be studied.

References

1. XML CoreWorking Group: Extensible Markup Language (XML). (2000)
http://www.w3.org/XML/

2. M. Kopečný: Implementan prosted pro kolekce XML dat. Thesis (In Czech), MFF
UK (2002)

3. K. Toman: XML data na disku jako databáze. Thesis (In Czech), MFF UK (2003)
4. J. Cowan, R. Tobin: XML Information Set. (2001)

http://www.w3.org/TR/xml-infoset

5. M. Marchiori: XML Query Specifications. (2003)
http://www.w3.org/XML/Query#specs

6. J. Clark, S. DeRose: XML Path Language (XPath) Version 1.0. (1999)
http://www.w3.org/TR/xpath

7. P. F.‘Dietz: Maintaining order in a linked list. Proc. of the Fourteenth Annual
ACM Symposium on Theory of Computing: 122-127. (1982)

8. A. Sahuguet: Kweelt, the Making-of Mistakes Made and Lessons Learned. Techni-
cal report, Department of Computer and Science, University of Pensylvania. (2000)

9. H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman,
S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, C. Yu: TIM-
BER: A Native XML Database. (2002)
http://www.eecs.umich.edu/db/timber

10. C. Ch. Kanne, G. Moerkotte: Efficient Storage of XML Data. Poster abstract in
Proc. ICDE: 198. (2000)

11. Q. Li, B. Moon: Indexing and Querying XML Data for Regular Path Expressions.
VLDB Conference: 361-370 (2001)

12. M. Grinev, S. Kuznetsov: Towards an Exhaustive Set of Rewriting Rules for
XQuery Optimization: BizQuery Experience Advances in Databases and Infor-
mation Systems (2002)

13. XUpdate Working Group: XUpdate – XML Update Language. (2003)
http://www.xmldb.org/xupdate/

62 Kamil Toman

14. E. Cohen, H. Kaplan, T. Milo: Labeling Dynamic XML Trees. Symposium on
Principles of Database System (PODS): 271-281 (2002)

15. R. Goldman, J. Widom: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. VLDB Conference (1997)

16. J. McHugh, J. Widom, S. Abiteboul, Q. Luo, A. Rajaraman: Indexing Semistruc-
tured Data. Technical report, Stanford University (1999)

17. C. Zhang, G. He, D. J. DeWitt, J. F. Naughton: On supporting containment queries
in relational database management systems. In SIGMOD International Conference
on Management of Data: 425-436 (2001)

18. L. K. Poola, J. R. Haritsa: Schema-consious XML Indexing. Indian Institute of
Science, Dept. of Computer Science & Automation (2001)

19. Ch.-W. Chung, J.-K. Min, K. Shim: APEX: An Adaptive Path Index for XML
data. ACM SIGMOD (2002)

20. W. Meier: eXist: An Open Source Native XML Database. (2002)
http://exist-db.org

21. M. Krátký, J. Pokorný, V. Snášel. Indexing XML Data with UB-Trees. ADBIS
(2002)

Concept Lattices Constrained by Attribute
Dependencies

Radim Bělohlávek, Vladimı́r Sklenář, Jǐŕı Zacpal

Dept. Computer Science, Palacký University, Tomkova 40, CZ-779 00, Olomouc,
Czech Republic, radim.belohlavek@upol.cz

Abstract. The input data to formal concept analysis consist of a col-
lection of objects, a collection of attributes, and a table describing a
relationship between objects and attributes (so-called formal context).
Very often, there is an additional information about the objects and/or
attributes available. In the analysis of the data, the additional informa-
tion should be taken into account.
We consider a particular form of the additional information. The infor-
mation is in the form of particular attribute dependencies. The primary
interpretation of the dependencies is to express a kind of relative impor-
tance of attributes. We introduce the notion of a formal concept compat-
ible with the attribute dependencies. The main gain of considering only
compatible formal concepts and disregarding formal concepts which are
not compatible is the reduction of the number of resulting formal con-
cepts. This leads to a more comprehensible structure of formal concepts
(clusters) extracted from the input data. We illustrate our approach by
examples.

Keywords: formal context, formal concept, concept lattice, clustering, constraint,

attribute dependency

1 Introduction and problem setting

Finding interesting patterns in data has traditionally been a challenging prob-
lem. Particular attention has been paid to discovering interesting clusters in
data. Recently, there has been a growing interest in so-called formal concept
analysis (FCA) [4] which provides methods for finding patterns and depen-
dencies in data which can be run automatically. The patterns looked for are
called formal concepts. Both foundations and applications (classification, soft-
ware (re)engineering, document and text organization, etc.) of formal concept
analysis are documented (see [4] and [1], and the references therein).

The central notion of all clustering methods is that of a cluster. Clusters are
supposed to be meaningful pieces of data which are cohesive in some way. To
have a good notion of a cluster, one should exploit all the information about the
data available which can contribute to identification of meaningful clusters.

Formal concept analysis deals with input data in the form of a table with
rows corresponding to objects and columns corresponding to attributes which

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 63–73, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

64 Radim Bělohlávek, Vladimı́r Sklenář, Jǐŕı Zacpal

describes a relationship between the objects and attributes. The data table is
formally represented by a so-called formal context which is a triplet 〈X, Y, I〉
where I is a binary relation between X and Y , 〈x, y〉 ∈ I meaning that the
object x has the attribute y. For each A ⊆ X denote by A↑ a subset of Y
defined by

A↑ = {y | for each x ∈ X : 〈x, y〉 ∈ I}.

Similarly, for B ⊆ Y denote by B↓ a subset of X defined by

B↓ = {x | for each y ∈ Y : 〈x, y〉 ∈ I}.

That is, A↑ is the set of all attributes from Y shared by all objects from A
(and similarly for B↓). A formal concept in 〈X, Y, I〉 is a pair 〈A,B〉 of A ⊆ X
and B ⊆ Y satisfying A↑ = B and B↓ = A. That is, a formal concept consists
of a set A of objects which fall under the concept and a set B of attributes
which fall under the concept such that A is the set of all objects sharing all
attributes from B and, conversely, B is the collection of all attributes from Y
shared by all objects from A. This definition formalizes the traditional approach
to concepts which is due to Port-Royal logic [2]. The sets A and B are called the
extent and the intent of the concept 〈A,B〉, respectively. The set B (X, Y, I) =
{〈A,B〉 | A↑ = B,B↓ = A} of all formal concepts in 〈X, Y, I〉 can be naturally
equipped with a partial order ≤ defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, equivalently, B2 ⊆ B1).

That is, 〈A1, B1〉 ≤ 〈A2, B2〉 means that each object from A1 belongs to A2 (or,
equivalently, each attribute from B2 belongs to B1). Therefore, ≤ models the
natural subconcept-superconcept hierarchy under which dog is a subconcept of
mammal.

The structure of B (X, Y, I) is described by the so-called main theorem of
concept lattices [4,6].

Theorem 1. (1) The set B (X, Y, I) is under ≤ a complete lattice where the
infima and suprema are given by∧

j∈J

〈Aj , Bj〉 = 〈
⋂
j∈J

Aj , (
⋃
j∈J

Bj)↓↑〉 ,
∨
j∈J

〈Aj , Bj〉 = 〈(
⋃
j∈J

Aj)↑↓,
⋂
j∈J

Bj〉 . (1)

(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to
B (X, Y, I) iff there are mappings γ : X → V , µ : Y → V such that

(i) γ(X) is
∨

-dense in V, µ(Y) is
∧

-dense in V;
(ii) γ(x) ≤ µ(y) iff 〈x, y〉 ∈ I.

In the basic setting of formal concept analysis, no further information except
for 〈X, Y, I〉 is taken into account. However, more often than not, both the set
of objects and the set of attributes are supplied with an additional information.
Further processing of the input data (formal context) should therefore take the

Concept Lattices Constrained by Attribute Dependencies 65

additional information into account. For example, some attributes may be rele-
vant (or relevant to some degree) with respect to a particular kind of decisions
while some may be not. When processing a respective formal context in order
to get some support for the decisions in question, the attributes which are not
relevant to the decision may be disregarded. In the end, this may result in a
simplification of the overall processing.

In this paper, we consider additional information which has the form of
formulas (so called AD-formulas) describing particular dependencies between
attributes expressing their relative importance. We introduce the notion of a
formal concept compatible with an AD-formula. This enables us to eliminate
formal concepts which are not compatible with the information about the rela-
tive importance of attributes. An important effect of the elimination is a natural
reduction of the size of the resulting conceptual structure making the structure
more comprehensible. This paper extends in a natural way our previous ap-
proach [3] in that the constraints expressible by AD-formulas are more general
and thus more expressive than those of [3]. Such an extension is needed, as we
discuss in the text and show by examples.

2 Constraints by attribute dependencies

Basic motivation When people categorize objects by means of the object at-
tributes, they naturally take into account the importance of attributes. Usually,
attributes which are less important are not used to form large categories (clus-
ters, concepts). Rather, less important attributes are used to make a finer cate-
gorization within a larger category. For instance, consider a collection of certain
products offered on a market, e.g. home appliances. When categorizing home
appliances, one may consider several attributes like price, the purpose of the ap-
pliance, the intended placement of the appliance (kitchen appliance, bathroom
appliance, office appliance, etc.), power consumption, color, etc. Intuitively, when
forming appliance categories, one picks the most important attributes and forms
the general categories like “kitchen appliances”, “office appliances”, etc. Then,
one may use the less important attributes (like “price ≤ $10”, “price between
$15–$40”, “price > $100”, etc.) and form categories like “kitchen appliance with
price between $15–$40”. Within this category, one may further form finer cate-
gories distinguished by color. This pattern of forming categories follows the rule
that when an attribute y is to belong to a category, the category must contain an
attribute which determines a more important characteristic of the attribute (like
“kitchen appliance” determines the intended placement of the appliance). This
must be true for all the characteristics that are more important than y. In this
sense, the category “red appliance” is not well-formed since color is considered
less important than price and the category “red appliance” does not contain
any information about the price. Which attributes and characteristics are con-
sidered more important depends on the particular purpose of categorization.
In the above example, it may well be the case that price be considered more
important that the intended placement. Therefore, the information about the

66 Radim Bělohlávek, Vladimı́r Sklenář, Jǐŕı Zacpal

relative importance of the attributes is to be supplied by an expert (the person
who determines the purpose of the categorization). Once the information has
been supplied, it serves as a constraint for the formation of categories. In what
follows, we propose a formal approach to the treatment of the above-described
constraints to formation of categories.

Constraints by attribute-dependency formulas Consider a formal context
〈X, Y, I〉. We consider constraints expressed by formulas of the form

y v y1 t · · · t yn. (2)

Formulas of this form will be called AD-formulas (attribute-dependency for-
mulas). The set of all AD-formulas will be denoted by ADF . Let now C ⊆ ADF
be a set of AD-formulas.

Definition 1. A formal concept 〈A,B〉 satisfies an AD-formula (2) if we have
that

if y ∈ B then y1 ∈ B or · · · or yn ∈ B.

The fact that 〈A,B〉 ∈ B (X, Y, I) satisfies an AD-formula ϕ is denoted by
〈A,B〉 |= ϕ. Therefore, |= is the basic satisfaction relation (being a model)
between the set B (X, Y, I) of all formal concepts (models, structures) and the
set ADF of all AD-formulas (formulas).

As usual, |= induces two mappings, Mod : 2ADF → 2B(X,Y,I) assigning a
subset

Mod(C) = {〈A,B〉 ∈ B (X, Y, I) | 〈A,B〉 |= ϕ for each ϕ ∈ C}

to a set C ⊆ ADF of AD-formulas, and Fml : 2B(X,Y,I) → 2ADF assigning a
subset

Fml(U) = {ϕ ∈ ADF | 〈A,B〉 |= ϕ for each 〈A,B〉 ∈ U}

to a subset U ⊆ B (X, Y, I).
The following result is immediate [5].

Theorem 2. The mappings Mod and Fml form a Galois connection between
ADF and B (X, Y, I). That is, we have

C1 ⊆ C2impliesMod(C2) ⊆ Mod(C1), (3)
C ⊆ Fml(Mod(C)), (4)

U1 ⊆ U2impliesFml(U2) ⊆ Fml(U1), (5)
U ⊆ Mod(Fml(U)). (6)

for any C, C1, C2 ⊆ ADF, and U,U1, U2 ⊆ B (X, Y, I).

Thus, more generally, for U ⊆ B (X, Y, I) and C ⊆ ADF we write U |= C if
U ⊆ Mod(C) which is equivalent to C ⊆ Fml(U) (the meaning: each 〈A,B〉 ∈ U
satisfies each ϕ ∈ C).

Concept Lattices Constrained by Attribute Dependencies 67

Definition 2. For C ⊆ ADF we put

BC (X, Y, I) = Mod(C)

and call it the constrained (by C) concept lattice induced by 〈X, Y, I〉 and C.

For simplicity, we also denote BC (X, Y, I) simply by BC . That is, BC (X, Y, I)
is the collection of all formal concepts from B (X, Y, I) which satisfy each AD-
formula from C (satisfy all constraints from C).

Note that (3)–(6) have a natural interpretation. For instance, (3) says that
the more formulas we put to C (the more constraints), the fewer formal concepts
are in BC .

Remark 1. (1) In [3], we introduced constraints by a hierarchy on Y which is
represented by a partial order E on Y . A formal concept 〈A,B〉 ∈ B (X, Y, I)
is called compatible with E if for each y ∈ B and y E y′ we have y′ ∈ B.
Denote B (X, 〈Y,E〉, I) the set of all formal concepts from B (X, Y, I) which are
compatible with E. It is clear that putting CE = {y1 v y2 | 〈y1, y2〉 ∈ E}, we
have B (X, 〈Y,E〉, I) = BCE (X, Y, I). This way our current approach generalizes
that one of [3].

(2) Note that our present approach is needed. For instance, if y, y1, and y2

stand for “price > $100”, “kitchen appliance”, and “office appliance”, respec-
tively, then y v y1 t y2 represents a natural constraint which cannot be directly
expresses by a hierarchy E in the sense of [3].

In the rest of this section we briefly discuss selected topics related to con-
straints by AD-formulas. Due to the limited scope, we omit details.

Structure of BC (X, Y, I) Contrary to [3], we lose some nice properties under
the present approach. For example, although BC (X, Y, I) is a partially ordered
subset of B (X, Y, I), it does no need not be a sup-sublattice of B (X, Y, I) as is
the case of E.

Example 1. Let X = {x1, x2}, Y = {y1, y2, y3}, I =
{〈x1, y2〉, 〈x1, y3〉, 〈x2, y1〉, 〈x2, y3〉}, C = {y3 v y1 t y2}. Then BC is not a
sup-sublattice of B (X, Y, I).

Entailment of AD-formulas Another interesting issue, in fact, a very important
one, is that of entailment of AD-formulas (i.e. the notion of entailment of an
AD-formula by a set of AD-formulas). Namely, AD-formulas which follow from
C may be ignored because do not represent any additional constraint. Conversely,
it might be interesting to look for a base of a set C of AD-formulas, i.e. a subset
C′ ⊆ C such that each ϕ ∈ C follows from C′ and C′ is a minimal one with this
property. Due to the limited scope, we omit any further details.

68 Radim Bělohlávek, Vladimı́r Sklenář, Jǐŕı Zacpal

Expressive power of AD-formulas A given y ∈ Y may occur on left hand-side of
several AD-formulas. For example, we may have y v y1 t y2 and y v y3 t y4.
Then, for a formal concept 〈A,B〉 to be compatible, it has to satisfy the following:
whenever y ∈ B then it must be the case that y1 ∈ B or y2 ∈ B, and y3 ∈ B or
y4 ∈ B. Therefore, it is tempting to allow for expressions of the form

y v (y1 t y2) u (y3 t y4)

with the intuitively clear meaning of compatibility of a formal concept and a
formula of this generalized form. Note that a particular form is also e.g. y v
y2uy3. One may also want to extend this form to formulas containing disjunctions
of conjunctions, e.g.

y v (y1 u y2) t (y3 u y4).

It is not difficult, however, somewhat tedious, to show that the expressive power
of such generalized formulas remains the same. More precisely, to each set C of
generalized formulas there exists a set C′ of ordinary AD-formulas such that for
each formal concept 〈A,B〉 we have that 〈A,B〉 |= C iff 〈A,B〉 |= C′.

3 Examples

We now present illustrative examples. We assume that the reader is familiar
with Hasse diagrams which will be used for visualization of concept lattices
and attribute hierarchies. We label the nodes corresponding to formal concepts
by boxes containing concept descriptions. For example, ({1, 3, 7}, {3, 4}) is a
description of a concept the extent of which consists of objects 1, 3, and 7, and
the intent of which consists of attributes 3 and 4.

Example 2. Using attribute dependencies for generation of views on
databases. Suppose we have a relational database with particular car models as
objects and selected car properties as attributes. We have attributes like “hatch-
back”, “sedan”, “diesel engine”, “gasoline engine”, “air-conditioning”, “ABS”,
etc. This data can be understood as a (bivalent) formal context. This context
induces a corresponding concept lattice containing all formal concepts hidden in
the database. In general, this concept lattice contains a large number of formal
concepts. This fact makes the concept lattice not comprehensible by humans.
With respect to a particular aim (e.g. a decision making), the concept lattice
will contain both important and natural concepts as well as concepts which are
considered not important.

To get a more precise idea, suppose a customer wants to buy a car and wants
to look at the concept lattice to help him select one. He has a certain idea of
what the car should fulfill. Some car properties can be more important for him
then others.

Consider the formal context 〈X, Y, I〉 in Tab. 1 . The context contains cars as
the objects (labeled 1–8) and some of their properties as the attributes (labeled

Concept Lattices Constrained by Attribute Dependencies 69

1 2 3 4 5 6 7 8

car 1 1 0 1 0 0 1 0 1
car 2 1 0 1 0 1 1 0 1
car 3 0 1 1 0 0 0 0 1
car 4 0 1 0 1 1 0 0 0
car 5 0 1 1 0 1 1 0 0
car 6 0 1 0 1 0 1 1 0
car 7 0 1 0 1 1 1 1 1
car 8 0 1 0 1 0 0 0 1

attributes: 1 - diesel engine, 2 - gasoline engine, 3 - sedan, 4 - hatchback, 5 - air-
conditioning, 6 - airbag, 7 - power stearing, 8 - ABS

Table 1. Formal context given by cars and their properties.

({},{1,2,3,4,5,6,7,8})

({3},{2,3,8})

({7},{2,4,5,6,7,8})({2},{1,3,5,6,8})
({5},{2,3,5,6})

({6,7},{2,4,6,7})

({7,8},{2,4,8})
({2,5},{3,5,6})

({5,7},{2,5,6})

({3,5},{2,3})

({1,2},{1,3,6,8})

({4,7},{2,4,5})({2,7},{5,6,8})

({4,5,7},{2,5})({1,2,5},{3,6})

({1,2,3},{3,8})
({2,5,7},{5,6})

({3,7,8},{2,8})
({1,2,7},{6,8})({5,6,7},{2,6})

({2,4,5,7},{5})

({4,6,7,8},{2,4})

({1,2,3,5},{3}) ({1,2,3,7,8},{8})
({1,2,5,6,7},{6})

({3,4,5,6,7,8},{2})

({1,2,3,4,5,6,7,8},{})

Fig. 1. Concept lattice corresponding to the context from Tab. 1

70 Radim Bělohlávek, Vladimı́r Sklenář, Jǐŕı Zacpal

1–8). The concept lattice B (X, Y, I) corresponding to formal concept 〈X, Y, I〉
contains 27 formal concepts and is depicted in Fig. 1.

The formal concepts of B (X, Y, I) represent all concept-clusters that are
present in the data. No attention is paid to importance or relative importance
of attributes.

Let us now consider some attribute dependencies and the corresponding con-
strained concept lattices B (X, Y, I) .

First, consider a set of AD-formulas (7)–(12). They represent the fact that
most important car propeties (for a particular user) are the kind of engine, etc.

air − conditioning v hatchback t sedan (7)
powerstearing v hatchback t sedan (8)

airbag v hatchback t sedan (9)
ABS v hatchback t sedan (10)

hatchback v gasoline engine t diesel engine (11)
sedan v gasoline engine t diesel engine (12)

The concept lattice B (X, Y, I) constrained by AD-formulas (7)–(12) contains
13 formal concepts and is depicted in Fig. 2.

({},{1,2,3,4,5,6,7,8})

({3},{2,3,8})

({7},{2,4,5,6,7,8})

({2},{1,3,5,6,8})

({5},{2,3,5,6})

({7,8},{2,4,8})

({1,2},{1,3,6,8})

({6,7},{2,4,6,7})

({3,5},{2,3})

({4,7},{2,4,5})

({4,6,7,8},{2,4})

({3,4,5,6,7,8},{2})

({1,2,3,4,5,6,7,8},{})

Fig. 2. Concept lattice constrained by AD-formulas (7)–(12)

Concept Lattices Constrained by Attribute Dependencies 71

Second, consider a set of AD-formulas (13)–(18). Contrary to the previous
example, the importance of the type of a car and the kind of the engine are
reversed.

air − conditioning v diesel engine t gasoline engine (13)
powerstearing v diesel engine t gasoline engine (14)

airbag v diesel engine t gasoline engine (15)
ABS v diesel engine t gasoline engine (16)

gasoline engine v hatchback t sedan (17)
diesel engine v hatchback t sedan (18)

The concept lattice B (X, Y, I) constrained by AD-formulas (13)–(18) con-
tains 14 formal concepts and is depicted in Fig. 3.

({},{1,2,3,4,5,6,7,8})

({3},{2,3,8})
({7},{2,4,5,6,7,8})

({2},{1,3,5,6,8})

({5},{2,3,5,6})

({7,8},{2,4,8}) ({1,2},{1,3,6,8})

({4,7},{2,4,5})

({6,7},{2,4,6,7}) ({3,5},{2,3})

({4,6,7,8},{2,4}) ({1,2,3,5},{3})

({1,2,3,4,5,6,7,8},{})

Fig. 3. Concept lattice constrained by AD-formulas (13)–(18)

Third, suppose the user finds the most important car property to be safety.
The situation is described by AD-formulas (19)–(26)

72 Radim Bělohlávek, Vladimı́r Sklenář, Jǐŕı Zacpal

air − conditioning v diesel engine t gasoline engine (19)
powerstearing v diesel engine t gasoline engine (20)

gasoline engine v hatchback t sedan (21)
diesel engine v hatchback t sedan (22)

sedan v ABS (23)
hatcback v ABS (24)

ABS v airbag (25)
airbag v ABS (26)

The concept lattice B (X, Y, I) constrained by AD-formulas (19)–(26) con-
tains 6 formal concepts and is depicted in Fig. 4.

({},{1,2,3,4,5,6,7,8})

({2},{1,3,5,6,8})

({7},{2,4,5,6,7,8})

({1,2},{1,3,6,8})

({1,2,7},{6,8})

({1,2,3,4,5,6,7,8},{})

Fig. 4. Concept lattice constrained by AD-formulas (19)–(26)

Acknowledgement The research of the first author was supported by grant
No. 201/02/P076 of the GAČR.

Concept Lattices Constrained by Attribute Dependencies 73

References

1. http://www.mathematik.tu-darmstadt.de/ags/ag1/Literatur/literatur de.html
2. Arnauld A., Nicole P.: La logique ou l’art de penser. 1662. Also in German: Die

Logik oder die Kunst des Denkens. Darmstadt, 1972.
3. Bělohlávek R., Sklenář V., Zacpal J.: Formal concept analysis with hierarchically

ordered attributes. Int. J. General Sytems (to appear).
4. Ganter B., Wille R.: Formal concept analysis. Mathematical Foundations. Springer-

Verlag, Berlin, 1999.
5. Ore O.: Galois connections. Trans. Amer. Math. Soc. 55(1944), 493–513.
6. Wille R.: Restructuring lattice theory: an approach based on hierarchies of con-

cepts. In: Rival I.: Ordered Sets. Reidel, Dordrecht, Boston, 1982, 445—470.

Concepts Valuation
by Conjugate Möebius Inverse

Petr Gajdoš, Václav Snášel

Department of Computer Science,
VŠB - Technical University of Ostrava,

tř. 17. listopadu 15, 708 33 Ostrava-Poruba
Czech Republic

Petr.Gajdos@vsb.cz

Abstract. There is several known algorithm to construct concept lat-
tices. The question is, how could we simplify this lattice into concepts,
that are important and have selected features. According to “A Theory
of Diversity”, we can compute the diversity of a set of objects recursively
from the pairwise dissimilarities between its elements. Using Conjugate
Möebius Inverse, we can compute weights of each concept from these di-
versities. Determining attribute weights is a complex task, however, since
there are as many potential attributes as there are non-empty subset of
object. The document shows the implementation of Möebius function on
concept lattices and then determinig concepts weights by pairwise be-
tween objects. We suppose, this is the way to simplify concept lattices.

Keywords: Möebius, concept lattice, diversity, dissimilarity, weight

1 Introduction

This article addresses the problem of the weighting of concepts. In “A The-
ory of Diversity” (Nehring and Puppe, 2002, henceforth TD), we proposed a
multi-attribute approach according to which the diversity of a set of objects
is determined by the number and weight of the different features (attributes)
possessed by them. In some cases, the diversity of a set can be computed re-
cursively from the pairwise dissimilarities between its elements (plus their value
as singletons). Two basic models for which this is possible are the hierarchical
model studied by Weitzman (1992, 1998) in the context of biodiversity and the
more general line model introduced in TD. As already observed by Weitzman
(1992), then hierarchical model implies that the two greatest dissimilarities be-
tween three points are always equal if singletons are equally valued. The purpose
of the present paper is to show, how could we compute the weights of concepts
using knowledge of this models.

Section 2 procides the necessary background from formal concepts analysis
and TD. Section 3 shows the implementation of Conjugate Möebius Function to
valuating concept lattice and another way to get same values by pairwise dis-
similarities between objects. Last section is devoted to the poser with weighting
concept lattices.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 74–83, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

Concepts Valuation by Conjugate Möebius Inverse 75

2 Backgound

This section shows some definitions and tools, that are important for our later
valuating of concepts. First we define a context and concept lattice. Next, we
summarize the basic features of the multi-attribute model developed in TD.

2.1 Context and concept lattice

Definition 1. A formal concept C := (G, M, I) concsists of two sets G and
M and relation I between G and M . The elements of G are called the objects and
the elements of M are called the attributes1 of the context. In order to express
that an object g is in a relation I with an attribute m, we write gIm or (g,m) ∈ I
and read it as “the object g has the attribute m”. The relation I is also called
the incidence relation of the context.

Definition 2. for a set A ⊂ G of object we define

A
′
= {m ∈ M | gIm for all g ∈ A}

(the set of attributes common to the objects in A). Correspondingly, for a set B
of attributes we define

B
′
= {g ∈ G | gIm for all m ∈ B}

(the set of objects which have all attributes in B).

Definition 3. A formal concept of the context (G, M, I) is a pair (A,B) with
A ⊆ G, B ⊆ M , A

′
= B and B

′
= A. We call A the extent and B the intent of

the concept (A,B). B(G, M, I) denotes the set of all concepts of context (GMI)

Definition 4. The concept lattice B(G, M, I) is a complete lattice in which in-
fimim and supremum are given by:

∧
t∈T

(At, Bt) =
(⋂

t∈T

At,

(⋃
t∈T

Bt

)′′)

∨
t∈T

(At, Bt) =
((⋃

t∈T

At

)′′

,
⋂
t∈T

Bt

)
.

We refer to [1].

1 The attribute has different meaning in the Conjugate Möebius Inverse. It’s a set of
objects.

76 Petr Gajdoš, Václav Snášel

2.2 Diversity function

Definition 5. Let F be the totality of all features deemed relevant in the specific
context, and denote by R ⊆ X × F the “incidence” relation that describes the
features possessed by each object, i.e. (x, f) ∈ R whenever object x ∈ X possesses
feature f ∈ F . For each relevant feature f ∈ F , let λf ≥ 0 quantify the value of
realization of f . Upon normalization, λf can thus be thought of as the relevant
importance, or weight of feature f . The diversity value of a set S is defined as

v(S) =
∑

f∈F :(x,f)∈R for some x∈S

λf (1)

The diversity value of a set is given by the total weight of all different features
possessed by some objects in S. Note expecially that each feature occurs at most
once at sum. In particular, each single object contributes to diversity the value
af all those features that are not possessed by any already existing objects.

For any subset A ⊆ X of objects denote by FA the set of features that
are possessed exactly the objects in A. Each feature in FA is possessed by all
elements of A and not possessed by any element of X \A. Then we can write

v(S) =
∑

A∩S 6=∅

∑
f∈FA

λf (2)

Then, for each subset A ⊆ X denote by λA :=
∑

f∈FA
λf the total weight of

all features with extension A, with the convention that λA = 0 whenever FA = ∅.
With this notation we write

v(S) =
∑

A∩S 6=∅

λA (3)

2.3 Conjugate Möebius Inverse

Theorem 1. For any function v : 2X → R with v(∅) = 0 there exists unique
function λ : 2X → R, the Conjugate Möebius Inverse, such that λ∅ = 0 and, for
all S,

v(S) =
∑

A:A∩S 6=∅

λA (4)

Furthermore, the Conjugate Möebius Inverse λ is given by the following formula.
For all A 6= ∅,

λA =
∑

A:A∩S 6=∅

(−1)|A|−|S|+1 ∗ v(Sc), (5)

where Sc denotes the complement of S in X.

We refer to [4].

Concepts Valuation by Conjugate Möebius Inverse 77

3 Concept lattice and Möebius function

This part shows, how can we compute weights and diversity of concepts of
particular concept lattice. Then we use dissimilarity and similarity function to
get the same result by easier way.

Description of objects and features in incidence matrix.
C = cat q = quadrupped (four feet)
M = monkey (chimpanzee) p = pilli
D = dog i = intelligence
F = fish (delphinus) w = live in water
H = human h = hand
W = whale

Table 1. Incidence relation matrix.

λq = 2 λp = 3 λi = 4 λw = 2 λh = 2
q p i w h

C x x

M x x x

D x x

F x x

H x x

W x x

There are all subsets A ⊆ X in the table 2. FA presents a set of relevant
features f ∈ F , which are possessed by all elements of set A, but not possessed
by any element of a set X \A. By λA :=

∑
f∈FA

λf , we get the values in the
table.

By v(S) =
∑

A:A∩S 6=∅ λA, we compute the diversity of each subset of objects
of universum X, S ⊆ X in the table 3. In this time, we include all attributes
and their weights to compute diversities of subsets S. The large the incidence
matrix the large count of conceivable attribues and subsets of objects, so it’s
more difficult to compute diversity function.

Next, we consider only attributes corresponding to concepts. Sets of at-
tributes are not sets of features of concept but they are identical to sets of
objects.

We use Conjugate Möebius Inverse (5) to compute weights of attributes (con-
cepts) from diversities in the table 4.

78 Petr Gajdoš, Václav Snášel

Table 2. All conceivable attributes.

A FA λA A FA λA A FA λA A FA λA A FA λA

∅ FW w 2 CMD p 3 MFHW i 4 CMDFH
C MH h 2 CMF CMDF CMDFW
M CD q 2 CMH CMDH CMDHW
D CM CMW CMDW CMFHW
F CF CDF CMFH CDFHW
H CH CDH CMFW MDFHW
W CW CDW CMHW CMDFHW

MD CFH CDFH
MF CFW CDFW
MW CHW CDHW
DF MDF CFHW
DH MDH MDFH
DW MDW MDFW
FH MFH MDHW
HW MFW DFHW

MHW
DFH
DFW
DHW
FHW

Table 3. Diversities of subsets S of objects.

S v(S) S v(S) S v(S) S v(S) S v(S) S v(S)

∅ 0 FW 6 CMD 11 MFHW 11 CMDFH 13 CMDFHW 13
C 5 MH 9 CMF 13 CMDF 13 CMDFW 13
M 9 CD 5 CMH 11 CMDH 11 CMDHW 13
D 5 CM 11 CMW 13 CMDW 13 CMFHW 13
F 6 CF 11 CDF 11 CMFH 13 CDFHW 13
H 6 CH 11 CDH 11 CMFW 13 MDFHW 13
W 6 CW 11 CDW 11 CMHW 13

MD 11 CFH 13 CDFH 13
MF 11 CFW 11 CDFW 11
MW 11 CHW 13 CDHW 13
DF 11 MDF 13 CFHW 13
DH 11 MDH 11 MDFH 13
DW 11 MDW 13 MDFW 13
FH 8 MFH 11 MDHW 13
HW 8 MFW 11 DFHW 13

MHW 11
DFH 13
DFW 11
DHW 13
FHW 8

Concepts Valuation by Conjugate Möebius Inverse 79

Table 4. Weighting by CMI

A S : S ⊆ A Sc (−1)|A|−|S|+1 v(S) λA

FW F CMDHW +1 13 2
W CMDFH +1 13
FW CMDH −1 11
∅ CMDFHW −1 13

MH M CDFHW +1 13 2
H CMDFW +1 13
MH CMDW −1 11
∅ CMDFHW −1 13

CD C MDFHW +1 13 2
D CMFHW +1 13
CD MFHW −1 11
∅ CMDFHW −1 13

cmd C MDFHW −1 13 3
M CDFHW −1 13
D CMFHW −1 13
CM DFHW +1 13
CD MFHW +1 11
MD CFHW +1 13
CMD FHW −1 8
∅ CMDFHW +1 13

MFHW M CDFHW +1 13 4
F CMDHW +1 13
H CMDFW +1 13
W CMDFH +1 13
MF CDHW −1 13
MH CDFW −1 11
MW CDFH −1 13
FH CMDW −1 13
FW CMDH −1 11
HW CMDF −1 13
MFH CDW +1 11
MFW CDH +1 11
MHW CDF +1 11
FHW CMD +1 11
MFHW CD −1 5
∅ CMDFHW −1 13

M M CDFHW −1 13 0
∅ CMDFHW +1 13

∅ 0

CMDFHW all subsets all subsets 0

Any diversity function satisfies this formula:

v(S ∪ {x})− v(S) =
∑

A3x,A∩S=∅

λA (6)

80 Petr Gajdoš, Václav Snášel

Fig. 1. a) Diversities of concepts b) Weights of concepts

Table 5. Dissimilarities

C M D F H W

C 0 2 0 5 5 5

M 6 0 6 5 3 5

D 0 2 0 5 5 5

F 6 2 6 0 2 0

H 6 0 6 2 0 2

W 6 2 6 0 2 0

By (6), the marginal diversity of an object x at a set S is given by the total
weight of all attributes possessed by x but by no element of S. Accordingly, we
will refer to marginal diversity also as the distinctiveness of x from S, which we
denote by

d(x, S) := v(S ∪ {x})− v(S). (7)

A diversity function naturally induces a notion of pairwise dissimilarity be-
tween objects as follows.

Definition 6. For all x, y

d(x, y) := d(x, {y}) = v({x, y})− v({y}). (8)

By (6), d(x, y) is the weight of all attributes possessed by x but not by y.
Note that, in general, d need not be symmetric. We can read it from table (5).

As we said at the beginning, there are two models in TD. The hierarchical
and the more general line model. All concept lattices are hierarchical ordered.
But, weighting of concepts is a difficult task. We can assign values to concepts
only in small and simly lattice because of next condition.

Definition 7. A model H ⊆ 2X is called a (taxonomic) hierarchy if the elements
of H are nested in the sence that, for all A,B ∈ H,

A ∩B 6= ∅ ⇒ [A ⊆ B ∨ B ⊆ A]. (9)

Concepts Valuation by Conjugate Möebius Inverse 81

Accordingly, we will refer to a diversity function v, as well as to the associ-
ated attribute weighting function λ, as hierarchical if the support Λ of relevant
attributes forms a hierachy. Diversity function is hierarchical if and only if, for
all x and S,

v(S ∪ {x})− v(S) = min
y∈S

[v({x, y})− v({y})] (10)

or, equivalently,
d(x, S) = min

y∈S
d(x, y) (11)

Theorem 2. Conjugate Möebius Inverse on a hierarchy. Let v be a di-
versity function with attribute weighting function λ. If v is hierarchical, then for
all A ∈ Λ and all x ∈ A,

λA = min
y∈Ac

d(x, y)−max
y∈A

d(x, y) (12)

Conversely, suppose that,
for all A ∈ Λ and all x ∈ A, λA = d(x, Ac)−maxy∈A d(x, y), then λ is hierar-
chical.

According to (12) we compute weights of concepts in the table 6. We can see,
that most of values are correct (compare with table (4)). But, some of them are
not right although we have used the same formula (12). We can find hierarchical
ordering in the concept lattice but it is different to hierarchy defined in (9).

Table 6. Values of concepts according to (12)

Concept A Ac sel. x miny∈Ac d(x, y) maxy∈A d(x, y) λA

C1 CD MFHW C 2 0 2
D 2 0 2

C2 M CDFHW M 0 0 0
C3 FW CMDH F 2 0 2

W 2 0 2
C4 MH CDFW M 5 3 2

H 2 0 2
C5 CMD FHW M 3 6 -3

C 5 2 3
D 5 2 3

C6 MFHW CD M 6 5 1
F 6 2 4
H 6 2 4
W 6 2 4

C7 CMDFHW ∅ C 0 0 0
C8 ∅ CMDFHW ∅ 0 0 0

82 Petr Gajdoš, Václav Snášel

Proof. Suppose that Λ is a hierarchy. Let x ∈ A ∈ Λ, and define
z∗ := argmaxz∈Ad(x, z). Since Λx = {B ∈ Λ : x ∈ B} is a chain, one
has B ⊂ A ⇔ z∗ /∈ B for all B ∈ Λx, where “⊂” denotes the proper subsethood
relation.
Hence,

minz∈Ac d(x, z)−maxz∈A d(x, z)
= v({x} ∪Ac)− v(Ac)− d(x, z∗)
= λ({B : x ∈ B ⊆ A})− λ({B : x ∈ B, z∗ /∈ B})
= λA + λ({B : x ∈ B ⊂ A})− λ({B : x ∈ B, z∗ /∈ B})
= λA.

Conversely, suppose that Λ is not a hierarchy, i.e. suppose there exists
A,C ∈ Λ such that A ∩ C, A \ C, and C \ A are all non-empty. Let x ∈ A ∩ C.
Without loss of generality we may assume that A is an minimal element
of Λ satisfying x ∈ A and A \ C 6= ∅, i.e. for no proper subset A

′
of A,

x ∈ A
′ ∈ Λ and A

′ \ C 6= ∅. Let y ∈ A \ C. By construction one has
{B ∈ A : x ∈ B,B ⊂ A} ⊂ {B ∈ Λ : x ∈ B, y /∈ B} since C belong to
the latter but not to the former set. Since assumption, λC > 0, this implies
λ({B : x ∈ B ⊂ A})− λ({B : x ∈ B, y /∈ B}) < 0.
Therefore,

d(x, Ac)−maxz∈A d(x, z)
= v({x} ∪Ac)− v(Ac)−maxz∈A d(x, z)
≤ v({x} ∪Ac)− v(Ac)− d(x, y)
= λ({B : x ∈ B ⊆ A})− λ({B : x ∈ B, y /∈ B})
= λA + λ({B : x ∈ B ⊂ A})− λ({B : x ∈ B, y /∈ B})
< λA.

According to next definition, we can divide the concept lattice into hierarchies
to compute weights of concepts by CMI.

Definition 8. A lattice hierarchy H in lattice L is join-sublattice where
a ∩ b 6= ∅ ⇒ [a ≤ b ∨ b ≤ a], a, b ∈ H. H(L,⊆) denotes the poset of all lat-
tice hierarchies of lattice L.

Theorem 3. Let H be the lattice hierarchy. Then Hasse diagram H \0 is rooted
tree.

Proof. Because H is finite join-sublattice then exists join r for all element of H.
It is easy to show that r is root. Hence Hasse diagram H \ 0 is connected. Let
H \ 0 contain a cycle i.e. suppose there exists a, b ∈ H \ 0 such that a‖b and
a ∧ b = c, c 6= 0. We obtain a contradiction with presumption.

Concepts Valuation by Conjugate Möebius Inverse 83

4 Conclusion

Concept lattice is ordered but we can not use a simple method to compute
weights of concepts by Conjugate Möebius Inverse. We try to delegate this prob-
lem to pairwise of elements of the hierarchical model. We get values of weights
or diversities but this method ensures right results if and only if, concept lattice
or a part of lattice satisfy the condition of hierarchical structure (9).

We see another way to solve this problem. In future, we want to prove, that
we can “supply” any concepts lattice by finite set of trees, that are ordered and
they satisfy our condition of hierarchical structure. We want to find minimal
count of hierarchies, that can cover concept lattice.

References

1. B. Ganter and R. Wille. Formal Concept Analysis. Springer-Verlag Berlin Heidel-
berg, 1999.

2. K. Nehring. A theory of diversity. Ecometrica 70, pages 1155–1198, 2002.
3. K. Nehring and C. Puppe. Modelling phylogenetic diversity. Resource and Energy

Economics, 2002.
4. K. Nehring and C. Puppe. Diversity and dissimilarity in lines and hierarchies.

Mathematical Social Sciences 45, pages 167–183, 2003.
5. I. Vondrak and V. Snasel. Using concept lattices for organizational structure anal-

ysis. In Proceedings of European Concurrent Engineering Conference ECEC ’02
(Modena, Italy), 2002.

Querying the RDF: Small Case Study in the
Bicycle Sale Domain

Ondřej Šváb, Vojtěch Svátek, Martin Kavalec, and Martin Labský

Department of Information and Knowledge Engineering,
University of Economics, Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic

{xsvao06,svatek,kavalec,labsky}@vse.cz

Abstract. We examine the suitability of RDF, RDF Schema (as simple
ontology language), and RDF repository Sesame, for providing the back-
end to a prospective domain-specific web search tool, targeted at the offer
of bicycles and their components. Actual data for the RDF repository
are to be extracted by analysis modules of a distributed knowledge-based
system named Rainbow . Attention is paid to the comparison of different
query languages and to the design of application-specific templates.

1 Introduction

The goal of semantic web initiative is to endow web data with formal syntax and
semantics and thus make them available for automated reasoning. Such reason-
ing could improve information retrieval (moving from keyword-based to content-
based retrieval), but also increase the degree of automation in data/application
integration or website design. Among the ‘semantic web’ representation lan-
guages, RDF1 has prominent position. It is used to express interconnected logical
facts, which can be semantically viewed as simple kind of structured knowledge.
On the other hand, semantic web facts may potentially arise in large quantities,
and thus, at the syntactical level, require treatment similar to traditional, tabu-
lar data. Several tools have been developed for RDF storage and retrieval, such
as Jena2, RDF Suite [1], and finally Sesame, which is the focus of this paper.
There are also multiple query languages implemented in different tools.

Although semantic annotations written by hand have the best quality, it is
unrealistic to obtain the critical mass of semantic web purely manually. Auto-
mated annotation of legacy pages (or service descriptions) by means of lingustic
or statistical techniques became a hot topic in semantic web research3. In this
paper, we analyse the applicability of RDF query languages and of the Sesame
repository for storage and retrieval of facts potentially discovered by Rainbow—a
distributed knowledge-based system for analysis of web content and structure.
1 http://www.w3.org/RDF
2 http://www.hpl.hp.com/semweb/jena2.htm
3 Cf. the workshop on ’Human Language Technology for Semantic Web and Web

Services’ at the last International Semantic Web Conference, http://gate.ac.uk/
conferences/iswc2003.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 84–95, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

http://www.w3.org/RDF
http://www.hpl.hp.com/semweb/jena2.htm
http://gate.ac.uk/conferences/iswc2003.
http://gate.ac.uk/conferences/iswc2003.

Querying the RDF: Small Case Study in the Bicycle Sale Domain 85

Section 2 of this paper discusses how facts (on bicycle sales) extracted by
Rainbow can be represented in RDF and shows the underlying RDF Schema.
Section 3 describes the architecture of Sesame. Section 4 compares the major
RDF query languages with respect to the given application. Finally, section 5
deals with application-specific templates that can shield a user of the (prospec-
tive) semantic search tool from the syntax of query languages.

2 Representing the Rainbow Results in RDF

2.1 Architecture of Rainbow

The loosely-coupled architecture of Rainbow consists of a web spider, a full-text
database tool, and several analytical tools, interfacing with each other by means
of web service protocols. Analytical tools specialise in different forms of web
data, such as free text, text structured with HTML tags, website topologies or
images. The semantics of services is modelled by an application ontology . In the
current state of the system, the services can only be invoked procedurally, in a
fixed order; the ontology is hence merely used indirectly, at design time of the
composed application. A more flexible composition solution (based on skeletal
planning) is envisaged for the future. More details can be found in [8] and at
the project homepage4. The current application of Rainbow aims at develop-
ment of a semantic search tool for the domain of bicycle products. Websites of
bicycle-selling companies5 are systematically analysed, with emphasis on cata-
logue information, but also including a general profile of the company.

2.2 Resource Description Framework and Vocabulary Language

Resource description framework6 (RDF) is a language developed for representing
information about resources in the World Wide Web; it can however be used as
general language for encoding facts. RDF statements, also called triples, consist
of three parts: subject, predicate (property), and object . An statement may e.g.
say that a particular web page was created by a particular human: the page
then is the subject, the human is the object, and the relation ‘created by’ is
the predicate. Any real-world entity (and even property) can be understood
as resource, whether accessible via the web or not. Object is the only part of
statement where not only a resource but also a literal (i.e. simple string or
numerical value) may appear. RDF literals can also be typed, via reference to
XML Schema datatypes. Even whole statements can be declared as resources:
this technique is called reification7, and enables to assert facts about statements
themselves. To identify a particular information resources, RDF uses URI, the
4 http://rainbow.vse.cz
5 As initial data source, we use the sites referenced by the Google Directory, namely

its node Sports/Cycling/BikeShops/Europe/UK/England.
6 http://www.w3.org/RDF
7 From Latin: res= ’thing’, since the statement thus becomes an object of discourse.

http://rainbow.vse.cz
http://www.w3.org/RDF

86 Ondřej Šváb, Vojtěch Svátek, Martin Kavalec, and Martin Labský

Uniform Resource Identifier . RDF statements may be encoded using varying
serialization syntax 8 but always conform to the same, graph-oriented data model ,
where subjects and objects are represented by nodes, predicates by directed arcs,
and each node-arc-node triple represents one RDF statement.

RDF is endowed with more expressive power through RDFS: the RDF
Schema [2], which plays the role of vocabulary language. Individual resources
can be assigned types, i.e. classes; RDFS then allows to build a hierarchical
structure over classes and properties, and to declare the domain and range of
properties.

2.3 RDF Facts and RDFS Ontology on Bicycle Sites

When applied on bicycle-selling sites, analytical modules of Rainbow are typ-
ically able to extract the name of a bike, its price, details on its components
(such as fork, frame, rear derailer etc.), its picture, and possibly some infor-
mation about the company that offers it. Bikes, as well as separately-sold bike
components are associated with retail offers. Examples of information ‘triples’
(in free-text form, to avoid syntax issues) are ”Company X offers bike Y”. ”Bike
Y has name Rockmachine Tsunami”, ”Bike Y has fork Z”. ”Fork Z has name
Marzocchi Air”, ”Price of bike Y is 2500.” Furthermore, we need to represent
metadata associated with the extracted facts, such as ”Statement XY has cer-
tainty 0.75” or ”Statement XY was produced by URL analysis module”.

The RDF schema (i.e. simple ontology) of our domain uses four namespaces:
bike dealing with bikes themselves, comp dealing with (not necessarily ‘bike’)
companies, pict dealing with pictures on web pages, and meta dealing with
metadata on statements extracted by Rainbow. Its graph is shown on Fig. 1
and 2 (decomposed for easier readability). The central point of the schema is
the concept of RetailOffer. It corresponds to an offer of BikeProduct (whole bike
or component) by a Company; it is also associated with the Name under which
and Price for which it is offered, and URL of associated Picture. URI of particu-
lar RetailOffer corresponds to the URL of catalogue item containing the offer9.
BikeProduct is superclass of all bike products. Note that BikeProduct and its
subclasses only have ‘types’ of products as their instances, not individual phys-
ical entities. Such ‘type’ of product can be offered for different prices and even
under slightly different names (associated with the given instance of RetailOffer)
and accompanied with different pictures, while BikeProduct itself has a ’canoni-
cal’ name, specified e.g. by its manufacturer. Finally, let us explain the nature of
metadata. Our solution to representing them is based on reification and inspired
by the SWAP project10. In order to store metadata about e.g. origin, confidence,
8 The standard format is RDF/XML (see http://www.w3.org/RDF); there is

also a line-based encoding format, N-triples (see http://www.w3.org/TR/2002/

WD-rdf-testcases-20020429) and a format easily readable for humans, Notation
3 (N3, see http://www.w3.org/2000/10/swap/Primer).

9 Typically the place from where the core information was extracted.
10 Ongoing IST project on Semantic Web and Peer-to-Peer (knowledge nodes), see

http://swap.semanticweb.org/

http://www.w3.org/RDF
http://www.w3.org/TR/2002/WD-rdf-testcases-20020429
http://www.w3.org/TR/2002/WD-rdf-testcases-20020429
http://www.w3.org/2000/10/swap/Primer
http://swap.semanticweb.org/

Querying the RDF: Small Case Study in the Bicycle Sale Domain 87

security and caching of each piece of knowledge, they set up a complex meta-
data schema [3]. In contrast, we are only need a few metadata items, such as,
information on which analysis module the statement was obtained from, or its
certainty factor. Metadata are grouped under an abstract class called Meta.

3 Architecture of Sesame

Sesame allows persistent storage and querying of RDF data and schema11; it
consists of three functional modules:

– Query Module parses a query, builds the query tree to optimise it, and finally
evaluates it in a streaming fashion.

– Admin Module enables to insert and delete RDF data and schema, checks for
consistency of newly added statements with statements in the repository, and
infers entailed information. Inferencing is done according to rules and axioms
defined in [6] as well as to custom (application-specific) rules/axioms12.

– Export Module exports the content of repository (data or schema or both).

Additionally, Sesame uses a stack of SAILs (Storage and Inference Layers),
which transparently ensure access to specific implementations of repository. The
underlying repositories can be based on a (relational or object-oriented) DBMS,
RDF files cached in memory, RDF network services or existing RDF stores.

Our choice of Sesame was to some extent motivated by our close contacts
with its developers. There are at least two comparable tools for RDF storage
and retrieval. RDF Suite13 [1], developed by ICS FORTH, Greece, is potentially
faster for large queries thanks to flexible adaptation of database schema to the
given RDF schema. It supports the full RQL query language (see section 4.1),
and enables dynamic loading of multiple RDF schemata. Jena14, developed by
HP Labs, Bristol, UK, offers a user-friendly interface for writing RDF schemata,
and an API for ontology languages (OWL, DAML+OIL, RDFS). It only sup-
ports the RDQL query language (see section 4.3). Arguments in favour of Sesame
might be close adherence to the most recent ‘inference-centric’ updates of RDF,
and some features of its original query language, SeRQL (see section 4.2). Given
the experimental nature of our project, response time, reliability (typically de-
creasing with increasing role of inference), and quality of editing interface do not
play so crucial a role, and since we deal with a single RDF Schema fully under
our control, there is no need for dynamic schema integration. In our setting for
Sesame, we further opted for RDBMS back-end.To enable easy search in the bi-
cycle data repository, an HTML interface is being developed, with pre-fabricated
query templates (cf. section 5).
11 The first stable version, Sesame 1.0RC1, can be downloaded from http://

sourceforge.net/projects/sesame. Sesame is developed by the Dutch company
Aduna (earlier Aidministrator), see http://sesame.aidministrator.nl.

12 In our case, it is e.g. possible to define a rule stating that property partOfModel is
inverse to property hasBikePart.

13 http://139.91.183.30:9090/RDF
14 http://www.hpl.hp.com/semweb/jena2.htm

http://sourceforge.net/projects/sesame
http://sourceforge.net/projects/sesame
http://sesame.aidministrator.nl
http://139.91.183.30:9090/RDF
http://www.hpl.hp.com/semweb/jena2.htm

88 Ondřej Šváb, Vojtěch Svátek, Martin Kavalec, and Martin Labský

bike:BikeProduct

bike:RetailOffer

bike:BikePart

bike:TrekModel

bike:MTBModel

bike:FreeRideModel

bike:RoadModel

bike:BikeModel

bike:Brakes

bike:Fork

bike:SuspensionFork

bike:FrontDerailer

bike:Wheel

comp:Company

bike:hasBikeProduct

rdfs:subClassOf

rdfs:subClassOf

bike:hasCompany

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

bike:name

bike:partOfModel/bike:hasBikePart

rdfs:Literal

bike:Frame

rdfs:subClassOf

bike:Derailer

rdfs:subClassOf

bike:RearDerailer

Fig. 1. RDF schema of bicycle domain 1/2

Querying the RDF: Small Case Study in the Bicycle Sale Domain 89

meta:Meta

rdfs:Resource

rdf:Statement

meta:hasMeta

meta:hasMeta

rdfs:Literal rdfs:Literalrdfs:Literal

meta:label
meta:certainty meta:fromModule

pict:Picture

pict:hasWidth

pict.hasHeight

pict:hasColours

bike:RetailOffer

bike:hasPicture

rdfs:Literal

rdfs:Literal

rdfs:Literal

bike:hasPrice

bike:hasName

rdfs:Literal

rdfs:Literal

comp:BikeCompany

comp:email comp:companyName

comp:address

comp:officePhone

rdfs:Literal

rdfs:Literalrdfs:Literal

Class

subclassof

property (domain/range)

literal

class

LEGENDA

comp:BikeCompany

comp:address

blank node in RDF graph

rdfs:Literal

rdfs:Literal

rdfs:Literal

rdfs:Literal

comp:city
comp:postalCode

comp:country
comp:street

blank node

Fig. 2. RDF schema of bicycle domain 2/2

90 Ondřej Šváb, Vojtěch Svátek, Martin Kavalec, and Martin Labský

4 Querying the RDF in Sesame

There are three RDF query languages implemented in Sesame: RQL, RDQL and
SeRQL. Unlike standard SQL, these languages only serve for querying and not
for data manipulation. The main accent is laid on RQL and SeRQL, which enable
querying both the RDF data and associated RDF schemata. We will demonstrate
RQL and SeRQL on examples, and attempt to expose their weak and strong
aspects. We will also briefly mention RDQL and the language implemented in
the PerlRDF tool produced by Ginger Alliance (i.e. not supported by Sesame).

4.1 RQL

RQL is a declarative query language over RDF and RDFS. It was originally
proposed in the context of RDF Suite [1]; its implementation in Sesame is only
partial and adheres more closely to the recent RDF updates by the W3C. The
building blocks of RQL are functions and path expressions. Functions enable to
directly query the RDF Schema. Examples of functions are Class (returning
the set of all classes), Property (returning the set of all properties), domain or
range (returning the domain/range of a property). They can be be combined in
many ways, even with path expressions.

RQL offers the SELECT-FROM-WHERE construct known from SQL, with
some differences. It has two obligatory and two optional parts. In the (obliga-
tory) SELECT clause, we list the variables (selected from the subsequent FROM
clause), the values of which we want in the result. We could also use an asterisk,
representing all variables. In the (obligatory) FROM part, we specify the RDF
subgraph over which we query, in the form of path expression representing a
filter on the graph. Further conditions are expressed is the (optional) WHERE
clause. A WHERE expression is typically a comparison of variables from FROM
clause and concrete values; we can also compare a variable with the result of an
embedded query (see example 2Q), and use boolean connectives. RQL offers the
comparison operators <,>,=,>=,<= and like (string matching, with possible left
or right expansion). The RQL query engine tries to convert the operands to be
compared to the same type. It is doing in this sequence: classes, properties (both
compared hierarchically), real numbers, integers, literals and finally, resources.
The last clause is (optional) USING NAMESPACE; it enables to write elements
from certain namespace in short form (prefix:local name = Qname)15.

Now we demostrate the use of RQL on examples related to our bicycle ap-
plication; they conform to the RDF Schemata in Fig. 1 and 2. Path expressions
of the queries are shown in Fig. 3.

Let us first demonstrate the use of RQL functions.
1Q: Find restrictions (domain and range) of property hasWidth.

select domain(@predicate), @predicate, range(@predicate)

from {} @predicate {}

where @predicate = pict:hasWidth

15 In all examples in this paper we omit namespace definitions, for brevity.

Querying the RDF: Small Case Study in the Bicycle Sale Domain 91

subject objectpredicate

hasWidth

literal

RetailOf
fer

Picture

literal

hasPicture

hasName

predicate

Stateme
nt

Subject

Predicat
e

subject
type

Meta

object

literalcertainty

BikePro
duct

literalcompanyName

hasPicture

Compan
y

RetailOf
fer

literal

hasPrice

hasCompany

hasBikeProduct

name literal

Picture

1Q 2Q

3Q 4Q

Fig. 3. Path expressions for sample queries

The next example already demonstrates the use of path expressions.
2Q: Find all retail offers with name starting with letter ”l” and having a picture
with width lower than 70.

select *

from {X : bike:RetailOffer } bike:hasName {name},

{X} bike:hasPicture {Y}. pict:hasWidth {width}

where name like "l*" and width < 70

We see that in RQL, a variable (denoting a resource) can be assigned class
(here, RetailOffer) using shortcut notation (with colon). This query also fea-
tures lexicographic and numerical comparisons and a slightly more complicated
path expression. It contains two paths starting from the same node specified by
variable X. In the node specified by variable Y, the path is extended across the
arc (property) hasWidth (see also Fig. 3).

RQL is however not very suitable for expressing optional path expressions,
as manifested on the following example (note the last sentence).
3Q: Find all retail offers of bicycles that have a concrete bike component. Output
the name of company that offers the bike, the picture of retail offer, the price of
bike (offer). Retrieve the retail offer even if the URL of picture is not known.

In RQL must be this type of query expressed by applying a Boolean union on
the results of two partial queries; also notice the use of operator in (reference to
embedded query) in the second subquery, in order to eliminate duplicate results
(obviously, with increasing number of optional parts of the query graph we would
face combinatorial explosion):

92 Ondřej Šváb, Vojtěch Svátek, Martin Kavalec, and Martin Labský

(select web, company, price, picture, name

from {X : bike:RetailOffer } bike:hasCompany

{web : comp:Company }. comp:companyName {company},

{X} bike:hasPrice {price},

{X} bike:hasPicture {picture},

{X} bike:hasBikeProduct {idtyp}. bike:name {name}

where idtyp=data:part1)

union

(select web, company, price, null, name

from {X : bike:RetailOffer } bike:hasCompany

{web : comp:Company }. comp:companyName {company},

{X} bike:hasPrice {price},

{X} bike:hasBikeProduct {idtyp}. bike:name {name}

where idtyp=data:part1

and not (X in select X

from {X} bike:hasPicture {picture}))

4.2 SeRQL

SeRQL [4] (”Sesame RDF Query Language”, pronounced as ‘circle’) is a declar-
ative query language over RDF and RDF Schema; in contrast to RQL, there is
explicit support for optional path expressions. There are two alternative types
of queries, SELECT and CONSTRUCT. While SELECT returns a table of re-
sults, CONSTRUCT returns again an RDF graph, which is part of the graph
being queried or derived from it via introducing new properties or classes. The
parts of SELECT have the same meaning as in RQL; the only difference of
CONSTRUCT is in the CONSTRUCT clause itself, where a structure of RDF
triples appears in the place of variable list. An analogy of RQL functions are
SeRQL built-in predicates, they however only cover some of the queries that could
not be made using the RDF representation of the schemata themselves. This is
the case of <serql:directSubClassOf>, <serql:directSubPropertyOf> and
<serql:directType>, since the information on e.g. direct vs. inferred subclass
relationship is not preserved in the repository in RDF form. In contrast to
RQL, XML datatypes can be used in queries. SeRQL does not have an im-
plicite sequence of type comparisons: unless the RDF literals themselves are
typed (contain information on their datatypes), we must explicitly say how
the query engine should compare two expressions in the WHERE clause, e.g.
WHERE width < "150"^^<xsd:positiveInteger>. In SeRQL, we can, again,
use the Boolean connectives AND, NOT and OR (in WHERE clause). In the
following, we will translate the examples (1Q, 2Q and 3Q) to SeRQL.

1Q: Find restrictions (domain and range) of property hasWidth.
There are no built-in construct for accessing the domain/range. They can how-
ever be retrieved in the RDF representation of the schema, which is a part of
the repository. We also benefit from shortcut notation: multiple edges from the
same node are separated with semicolon, and the node is not repeated any more:

select domain, range

from {<pict:hasWidth>} <rdfs:domain> {domain}; <rdfs:range> {range}

Querying the RDF: Small Case Study in the Bicycle Sale Domain 93

2Q: Find all retail offers that have a name starting with letter ”l” and their
picture has width lower than 70.

select *

from {X} <bike:hasName> {name},

{X} <bike:hasPicture> {Y} <pict:hasWidth> {width}

where name like "l*" and width < "70"^^<xsd:integer>

3Q: Find all retail offers of bicycles that have a concrete bike component. Output
the name of company that offers the bike, the picture of retail offer, the price of
bike (offer). Retrieve the retail offer even if the URL of picture is not known.

select prv, web, company, price, picture, name

from {prv} <serql:directType> {<bike:RetailOffer>};

<bike:hasPrice> {price};

[<bike:hasPicture> {picture}];

<bike:hasBikeProduct> {idtyp},

{idtyp} <bike:name> {name},

{prv} <bike:hasCompany> {web} <rdf:type> {<comp:Company>};

<comp:companyName> {company}

where idtyp = <data:part1>

The query shows a strong aspect of SeRQL: optional path expressions (in
brackets). Also notice the combination of shortcut and not-shortcut notations.

The last, new example (we omitted its RQL form for brevity) deals with
reified statements (with the abstract ‘meta’ resource, see section 2).
4Q: Find all statements that have certainty higher than 0.9.
Queries to reified statements may use their own shortcut form in SeRQL:

select *

from { {reifSubj} reifPred {reifObj} }

<meta:hasMeta> {obj} <meta:certainty> {certainty}

where certainty > "0.9"^^<xsd:double>

We choose SeRQL for our application, mainly because of the need for optional
path expressions (since we deal with often incomplete data extracted from HTML
pages) and shortcut querying of reified statements. The strong aspect of RQL—
functions for direct querying of RDF Schema—was found idle for our purpose,
since we deal with relatively small and stable schemata.

4.3 Comparison with Other Languages

RDQL [7] was originally developed for the Jena tool. Its version in Sesame
takes into account RDF data with schema but without inferential capability.
It allows to specify a path expression but without support for optional parts.
The SELECT clause has different syntax but usual meaning. There is no FROM
clause, and the graph pattern is specified in the WHERE clause, as list of triples;

94 Ondřej Šváb, Vojtěch Svátek, Martin Kavalec, and Martin Labský

partial paths are bound together with variables. Finally, the AND clause specifies
filters on variable values and the USING clause maps to namespaces.

Now we demonstrate RDQL on one example: find all retail offers which have
not the name liberta and their picture has width lower than 70.

SELECT ?retailoffer, ?name, ?picture, ?width

WHERE (?retailoffer, <rdf:type>, <bike:RetailOffer>) ,

(?retailoffer, <bike:hasName>, ?name) ,

(?retailoffer, <bike:hasPicture>, ?picture) ,

(?picture, <pict:hasWidth>, ?width)

AND (?width < 70 && ?name ne "liberta")

The last query language we mention is part of PerlRDF, a collection of tools
developed by Ginger Alliance (http://www.gingerall.com). It offers path ex-
pressions, comparisons, functions and namespaces; there is no support for infer-
encing nor optional path expressions. We illustrate this RDF query language on
the query: find all retail offers that have a picture with width more than 10.

Select ?retailoffer, ?name,

?picture->[http://rainbow.vse.cz/schema/picture.rdfs#hasHeight],

?picture->[http://rainbow.vse.cz/schema/picture.rdfs#hasWidth]

From bike:RetailOffer::?retailoffer->bike:hasName{?name},

?retailoffer->bike:hasPicture{?picture}

Where

?picture->[http://rainbow.vse.cz/schema/picture.rdfs#hasWidth] > ’10’

5 Query Templates for the Bicycle Application

In order to make our prospective RDF repository available for a casual user,
we decided to prepare a domain-specific HTML interface with several (SeRQL)
query templates. The templates should shield the user from the syntax of the
query language, and even offer a very simple form of navigational retrieval . Our
idea is based on two-stage querying. The template for initial query (specifying
its FROM part) is quite complicated, rich in optional path expressions:

from {idretail} <rdf:type> {<bike:RetailOffer>};

[<bike:hasCompany> {idweb}

<rdf:type> {<comp:Company>};

<comp:companyName> {company};

<comp:address> {} <comp:city> {city}];

[<bike:hasPrice> {price}];

[<bike:hasPicture> {picture}];

<bike:hasBikeProduct> {idbike}

<rdf:type> {<bike:BikeModel>};

<bike:name> {name}

[<bike:hasBikePart> {idFork}

<rdf:type> {<bike:Fork>};

<bike:name> {Fork}];

http://www.gingerall.com

Querying the RDF: Small Case Study in the Bicycle Sale Domain 95

The final shape of the query will be tuned by the user, who may refine the
SELECT clause (variables), FROM clause (optional or not), and WHERE clause
(comparisons). The results of the initial query are the starting point for follow-
up querying. For example, the initial query might be: Find all bikes that are sold
by this company . The results contain various information about each retail offer
of the company. There might be e.g. the fact that some offered product has a
certain type of frame. Now the user can choose (i.e. click on) the option ‘offer’,
which means: Query on all retail offers of this product (i.e., this type of frame).
Follow-up queries will be mediated by simpler templates such as for pictures,
compaines, retail offers of a particular type of bike or component and so on.

6 Conclusions and Future Work

We discussed the way a concrete RDF storage-and-retrieval tool, Sesame, can be
used for our specific application within the Rainbow project, presented the RDF
schema for this application, and analysed the RDF query languages implemented
in Sesame Eventually, SeRQL was found suitable for our purposes. We plan to
experimentally evaluate our hypotheses on a repository filled with a solid amount
of real-world data. The data will be accessible through a domain-specific HTML
interface with pre-fabricated query templates as well as through queries manually
compiled by the user. In conjuction with this first live experiment, we will also
have to integrate the results of multiple analytical modules of Rainbow.

The project is partially supported by grant no. 201/03/1318 of the Grant
Agency of the Czech Republic.

References

1. Alexaki S., Christophides V., Karvounarakis G., Plexousakis D., Tolle K.:The ICS-
FORTH RDFSuite: Managing Voluminous RDF Description Bases, 2ndInternational
Workshop on the Semantic Web, in conjunction with WWW10, Hongkong, 2001.

2. Brickley D., Guha R.V.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, World-Wide Web Consortium, Feb. 2004

3. Broekstra J., Ehrig M., Haase P., van Harmelen F., Kampman A., Sabou M., Siebes
R., Staab S., Stuckenschmidt H., Tempich C.: A Metadata Model for Semantics-
Based Peer-to-Peer Systems. In: Proceedings of the WWW’03 Workshop on Se-
mantics in Peer-to-Peer and Grid Computing, Budapest, 2003.

4. Broekstra J., Kampman A.: User Guide for Sesame. http://sesame.

aidministrator.nl/publications/users/
5. Broekstra J., Kampman A.: Sesame: A generic Architecture for Storing and Query-

ing RDF and RDF Schema, On-To-Knowledge project deliverable 10, 2001.
6. Hayes P., McBride B.: RDF Semantics. W3C Recommendation, World-Wide Web

Consortium, Feb. 2004, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.
7. Seaborne A.:A Programmer’s Introduction to RDQL, http://jena.sourceforge.

net/tutorial/RDQL, April 2002
8. Svátek V., Kosek J., Labský M., Bráza J., Kavalec M., Vacura M., Vávra V., Snášel

V.: Rainbow - Multiway Semantic Semantic Analysis of Websites. In: 2nd DEXA
Int’l Workshop on Web Semantics, Prague, IEEE Computer Society Press 2003.

http://sesame.aidministrator.nl/publications/users/
http://sesame.aidministrator.nl/publications/users/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://jena.sourceforge.net/tutorial/RDQL
http://jena.sourceforge.net/tutorial/RDQL

On Efficient Part-match Querying of XML Data?

Michal Krátký, Marek Andrt

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava–Poruba
{michal.kratky,marek.andrt}@vsb.cz

Czech Republic

Abstract. The XML language have been becoming de-facto a standard
for representation of heterogeneous data in the Internet. From database
point of view, XML is a new approach to data modelling. Implementation
of a system enabling us to store and query XML documents efficiently
(so called native XML databases) require a development of new tech-
niques. The most of XML query languages are based on the language
XPath and use a form of path expressions for composing more general
queries. These languages make it possible a part-match querying string
values of elements and attributes. Particularly, such queries are common
for document-centric XML documents. The document-centric documents
are often widely unstructured, contain the mixed content and so on. In
particular, such documents are (after a transformation to well-formed
XML documents) entire information of broad Web. Previously published
multi-dimensional approaches to indexing XML data use paged and bal-
anced multi-dimensional data structures. In the paper we extend the
approach for the part-match querying XML data.

Key words: XML, indexing XML data, multi-dimensional data struc-
tures, part-match querying, XPath, XQuery

1 Introduction

The mark-up language XML (eXtensible Markup Language) [22] is recently un-
derstood as a language for data representation. Important properties of the lan-
guage are heterogeneity, extensibility, and flexibility. From database point of
view, the XML is a new approach to data modelling [18]. A well-formed XML
document or a set of documents is an XML database and the associated DTD
or schema specified in the language XML Schema [23] is its database schema.
Implementation of a system enabling us to store and query XML documents
efficiently (so called native XML databases) requires a development of new tech-
niques [18]. A number of languages have been developed for querying over XML
data e.g., XML-QL [8], XPath [21], and XQuery [20]. The common feature of
such languages is the usage of regular path expressions for formulation of the

? Work is partially supported by Grant of GACR No. 201/03/0912.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 96–105, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

On Efficient Part-match Querying of XML Data 97

path in the graph modelling an XML document. Such a path is a sequence of
element or attribute names from the root element to a leaf.

The XML data are instance of semistructured data. An unstructured data
may occur into the structured elements. Further, an XML document can be
classified on the basis of contained data, as a data-centric or document-centric.
The data-centric XML documents have got well defined regular structure and
capture a structured data, e.g. forms. Such data is often possible to map in a set
of relations [17]. On the other hand, the document-centric documents are often
much unstructured, contain fewer elements with amount of unstructured data
(e.g. an XML database of articles). However the most of XML documents are
combined from both types (so-called hybrid documents).

Languages as the XQuery and XPath contain many constructs for querying
both data-centric and document-centric XML documents. Such languages pro-
vide structures for part-match querying values of elements and attributes. For
example, the XPath language allows a filtration unmeant elements in a result set
using the predicate filter. One from the predicate filters is filter category appli-
cable to string values of elements. For example, the function contains() provides
a selection of the elements, which contain a substring specified as a parameter.
Since a structure of the document-centric documents is not regular, languages
were necessary to extend to operators which provide a querying data with mixed
content. Consequently, such systems extend classical information retrieval (IR)
models for querying XML data. For example, a query retrieving the elements con-
taining an ordered term or phrase are required in the case of querying document-
centric XML documents. In Chapter 2 some existing query languages and index
approaches for part-match querying XML data are described.

This paper addresses the indexing and querying the document-centric XML
documents using multi-dimensional data structures. Chapter 3 presents previ-
ously published multi-dimensional approach to indexing data-centric XML doc-
uments, particularly how to map paths to points in a multi-dimensional space.
Our approach enables an efficient accomplishment of querying text content of an
element or an attribute value as well as of queries based on regular path expres-
sions and XPath axes. Chapter 4 extends this approach for part-match querying
XML data. Chapter 5 describes multi-dimensional data structures UB-tree [2]
and R∗-tree [3], which are used for indexing XML document. In conclusion we
summarize the paper content and outline possibilities of a future work.

2 State of the art

Recently there are many languages and algorithms deal with matching phrases
in XML documents with a mixed content. Now, some of them are described. The
XQuery-IR [7] is an extension of the XQuery language which supports phrase
matching in document fragments and ranks them according to their relevance
by using TF × IDF weights. A tenet of this weight consists in preference terms
that occur frequently with one fragment and infrequently in the rest of doc-

98 Michal Krátký, Marek Andrt

ument. The XXL [19] is a system with similar syntax like SQL language and
using a part-match operator allowed querying conformable terms contained in
the element or attribute name. The XIRQL [9] language exploits weights and
vague predicates, using appropriate DTD, and creates disjoint index contexts
for TF × IDF weights. The weights are applied to rank of relevant document
parts regarding to a specified query.

The XKeyword [12] system applies the rank based on a graph distance be-
tween the matched words and allows matching words anywhere in a document.
Algorithm PIX (Phrase matching In XML) [2] for phrase and similar phrase
matching in XML documents does not need a exact path specification like XPath.
This algorithm provides a phrase matching overlapping separate elements. The
TIX (Text In XML) algebra [1] uses the scored pattern tree which contains
formulas of boolean combination of predicates (applicable to nodes), a set of
scoring function (calculate of the score for each node) and also edges labelled
in the sense of XPath axis. Operators as the selection, projection, join, and so
on are defined under TIX algebra and enable a ranking relevant elements which
contain the phrase in dependence on a document structure.

3 Multi-dimensional Approach to Indexing XML Data

In [13] a multi-dimensional approach to indexing XML data was introduced. A
revision of this approach was described in [14]. This approach applies multi-
dimensional data structures (see Section 5) to indexing XML data.

3.1 Model of XML documents

An XML document may be modelled by a tree, whose nodes correspond to el-
ements and attributes. String values of elements or attributes or empty values
occur in leafs. An attribute is modelled as a child of the related element. Conse-
quently, an XML document may be modelled as a set of paths from the root node
to all leaf nodes. Note, unique number idU (ui) of a node ui (element or attribute)
is obtained by counter increments according to the document order [11]. Unique
numbers may be obtained using an arbitrary numbering schema. Of course, the
document order must be preserved.

Let P be a set of all paths in a XML tree. The path p ∈ P in an XML tree is
sequence idU (u0), idU (u1), . . . , idU (uτP (p)−1), s, where τP (p) is the length of the
path p, s is PCDATA or CDATA string, idU (ui) ∈ D = {0, 1, . . . , 2τD − 1}, τD is the
chosen length of binary representation of a number from domain D. Node u0

is always the root node of the XML tree. Since each attribute is modelled as a
super-leaf node with CDATA value, nodes u0, u1, . . . , uτP (p)−2 represent elements
always.

A labelled path lp for a path p is a sequence s0, s1, . . . , sτLP (lp) of names of
elements or attributes, where τLP (lp) is the length of the labelled path lp, and si

On Efficient Part-match Querying of XML Data 99

<!DOCTYPE books [
<!ELEMENT books(book)>
<!ELEMENT book(title,author)>
<!ATTLIST book id CDATA #REQUIRED>
<!ELEMENT title(#PCDATA)>
<!ELEMENT author(#PCDATA)>

]>

<?xml version="1.0" ?>
<books>
<book id="003-04312">
<title>The Two Towers</title>
<author>J.R.R. Tolkien</author>

</book>
<book id="001-00863">
<title>The Return of the King</title>
<author>J.R.R. Tolkien</author>

</book>
<book id="045-00012">
<title>Catch 22</title>
<author>Joseph Heller</author>

</book>
</books>

Fig. 1. (a) DTD of documents which contain information about books and au-
thors. (b) Well-formed XML document valid w.r.t. DTD.

is the name of the element or attribute belonging to the node ui. Let us denote
the set of all labelled paths by LP. A single labelled path belongs to a path,
one or more paths belong to a single labelled path. If the element or attribute
is empty, then τP (p) = τLP (lp), else τP (p) = τLP (lp) + 1.

books

book book book

title author title author id author

J.R.R.
Tolkien

(7)

J.R.R.
Tolkien

(7)

Joseph
Heller
(12)

The Two
Towers

(5)

The Return
of the King

(9)

045-
00012

(10)

1
(1)

2
(2)

4
(6)

11
(4)

0
(0)

5
(1)

9
(1)

3
(4)

7
(4)

8
(6)

10
(2)

12
(6)

id

003-
04312

(3)

id 6
(2)

title

001-
00863

(8)

Catch 22

(11)

Fig. 2. Example of XML tree with unique numbers idU (ui) of elements and
attributes ui and unique numbers idT (si) of names of elements and attributes
and their values si (values in parenthesis).

Example 1 (Decomposition of XML tree to paths and labelled paths).
In Figure 1 we see an example of an XML document. In Figure 2 we see an XML
tree modelling the XML document. We see that this XML document contains
paths:
– 0,1,2,’003-04312’; 0,5,6,’001-00863’ ; and 0,9,10,’045-00012’ belong
to the labelled path books,book,id,
– 0,1,3,’The Two Towers’; 0,5,7,’The Return of the King’; and 0,9,11,
’Catch 22’ belong to the labelled path books,book,title,

100 Michal Krátký, Marek Andrt

– 0,1,4,’J.R.R. Tolkien’; 0,5,8,’J.R.R. Tolkien’; and 0,9,12,’Joseph
Heller’ belong to the labelled path books,book,author.

The term index which contains all strings si of an XML document and their
unique numbers idT (si) is used in this approach.

Definition 1 (point of n-dimensional space representing a labelled
path).
Let ΩLP = Dn be an n-dimensional space of labelled paths, |D| = 2τD , and
lp ∈ LP be a labelled path s0, s1, . . . , sτLP (lp), where n = max(τLP (lp), lp ∈
LP) + 1. Point of n-dimensional space representing a labelled path is
defined tlp = (idT (s0), idT (s1), . . . , idT (sτLP (lp))) ∈ ΩLP , where idT (si) is a
unique number of term si, idT (si) ∈ D. A unique number idLP (lpi) is assigned
to lpi.

Definition 2 (point of n-dimensional space representing a path).
Let ΩP = Dn be an n-dimensional space of paths, |D| = 2τD , p ∈ P be a
path idU (u0), idU (u1), . . . , idU (uτLP (lp)), s and lp a relevant labelled path with
the unique number idLP (lp), where n = max(τP (p), p ∈ P) + 2. Point of n-
dimensional space representing path is defined tp = (idLP (lp), idU (u0), . . . ,
idU (uτLP (lp)), idT (s)) ∈ ΩP .

We define three indexes:

1. Term index. This index contains a unique number idT (si) for each term
si (names and text values of elements and attributes). The unique numbers
can be generated by counter increments according to the document order.
We want to get a unique number for a term and a term for a unique number
as well. This index can be implemented by the B-tree.
In Figure 2 we see the XML tree with unique numbers of terms in parenthesis.

2. Labelled path index. Points representing labelled paths together with
labelled paths’ unique numbers (also generated by counter increments) are
stored in the labelled path index.
In Figure 2 we see that the document contains three unique labelled paths
books,book,id; books,book,title; and books,book,author. We create
points (0,1,2); (0,1,4); and (0,1,6) using idT of element’s and attribute’s
names. These points are inserted into a multi-dimensional data structure
with idLP 0, 1, and 2.

3. Path index. Points representing paths are stored in the path index.
In Figure 2 we see unique numbers of elements. Let us take the path to the
value The Two Towers. Relevant labelled path books,book,title has got
idLP 1 (see labelled path index). We get point (1,0,1,3,5) after insert-
ing unique numbers of labelled path idLP , unique numbers of elements idU

and term The Two Towers. This point is stored in a multi-dimensional data
structure.

On Efficient Part-match Querying of XML Data 101

An XML document is transformed to points of vector spaces and XML
queries are implemented using a multi-dimensional data structure queries. The
multi-dimensional data structures provide a nature processing of point or range
queries [2]. The point query probes if the vector is or is not present in the data
structure. The range query searches all points in a query box T1 : T2 defined by
two points T1, T2.

3.2 Queries for values of elements and attributes

Now, implementation of a query for values of elements and attributes and query
defined by a simple path based on an ancestor-descendent relation will be de-
scribed. Query processing is performed in three phases which are connected:

1. Finding unique numbers idT of query’s term in the term index.
2. Finding labelled paths’ idLP of query in the labelled path index.

We search the unique numbers in a multi-dimensional data structure using
point or range queries.

3. Finding points in the path index. We find points representing paths in
this index using range queries. Now, we often want to retrieve (using labelled
paths and term index) names or values of elements and attributes.

4 Efficient part-match querying of XML data

Now, an extension of the multi-dimensional approach for part-match querying
XML data is described. We aim to querying individual terms of the element and
attribute string values mainly. Operator ∼= is defined for such query. The indi-
vidual terms must be indexed, but we need preserve an information about per-
tinence of the term to the path and labelled path. The Path-Labelled path-Term
(PLT) index satisfies such requirements. This storage contains points of an 3-
dimensional space ΩPLT = DidP

×DidLP
×DidT

. Consequently, items of the space
are points (idP (pi), idLP (lpi), idT (ti)). In order to the index can be used for a
part-match querying, a unique number idP (pi) of path pi is stored in the first co-
ordinate of the point representing the path pi: tpi

= (idP (pi), idLP (lpi), idU (u0),
idU (u1), . . . , idU (uτP (pi)). During a parsing string values of elements and at-
tributes we could use the stop-list known in IR systems [3]. For example, fre-
quent terms (e.g. conjunctions) are eliminated by the stop-list. Such terms are
not important for a querying. Since whole values of elements and attributes are
important and itT (ti) of the whole string ti is removed in the point representing
the path, whole short values are inserted in the term index and PLT index.

Example 2 (Creation of the PLT index).
Let us take a document-centric XML document. For example, Shakespeare’s

Hamlet in XML [6]. idLP (′PLAY, SCENE,ACT, SPEECH, SPEAKER′) =
100 and idP of belonging path is 110 (see Figure 3).

102 Michal Krátký, Marek Andrt

<PLAY>...

<SCENE>...

<ACT>...

<SPEECH>

<SPEAKER>MARCELLUS</SPEAKER>

<LINE>It faded on the crowing of the cock.</LINE> ...
</SPEECH>

...

Fig. 3. A part of Shakespeare’s Hamlet in XML.

idLP (′PLAY, SCENE,ACT, SPEECH,LINE′) = 101 and idP of be-
longing path is 111. Unique numbers of terms: idT (′MARCELLUS′) = 120,
idT (′crowing′) = 121, idT (′cock′) = 122, and so on. After the insertion of
points representing the path, labelled path, idT (ti) and term ti into the term
index, the points are created and inserted into the PLT index: (110, 100, 120),
(111, 101, 121), (111, 101, 122), and so on.

Now, processing the query /books/book[keywords∼=’XML’]/title
over an XML database of books is described. Note, query box
(qb1,min(D), . . . ,min(D)) : (qb1,max(D), . . . ,max(D)) may be written
as (qb1, ∗, . . . , ∗).

1. Finding id1
LP = idLP (′books, book, keywords′) and id1

T = idT (′XML′).
2. Processing the narrow range query (∗, id1

LP , id1
T) in the PLT index. The

result is k unique numbers idP (p1), . . . , idP (pk) of relevant paths p1, . . . , pk.
3. Processing the complex range query (idP (p1), id1

LP , ∗, . . . , ∗),. . .,(idP (pk),
id1

LP , ∗, . . . , ∗). The result is the points representing the relevant paths.
4. Finding id2

LP = idLP (′books, book, title′).
5. Performing the child XPath axis with id2

LP in the second coordinate. The
child XPath axis is implemented by a sequence of range queries (see [14]).
The result is m paths pf

1 , . . . , pf
m.

6. Performing the complex range query (idP (pf
1), id2

LP , ∗), . . . , (idP (pf
m), id2

LP , ∗).
An output is collection of idT (ti). Strings of titles ti are retrieved from the
term index and the strings are returned as a result.

Query processing of a general part-match query is a generalization of above
described procedure. The XML query languages make it possible to place a
complex query condition using boolean operators e.g., AND and OR. In described
approach a query defined by the OR operator is possible to process effectively. For
example, the query /books/book[keywords∼=’XML’ OR keywords∼=’SGML’]/
title is performed according to above techniques, but the first two steps are
distinguish.

1. Finding id1
LP = idLP (′books, book, keywords′), id1

T = idT (′XML′), and
id2

T = idT (′SGML′).

On Efficient Part-match Querying of XML Data 103

2. Processing the narrow range queries (∗, id1
LP , id1

T) and (∗, id1
LP , id2

T) in the
PLT index. The result is k unique numbers idP (p1), . . . , idP (pk) of relevant
paths p1, . . . , pk.

Next steps of this query processing are the same.

5 Index Data Structures

Due to the fact that an XML document is represented as a set of points rep-
resenting paths and labelled paths in the multi-dimensional approach, we use
multi-dimensional data structures for their indexing, e.g., paged and balanced
multi-dimensional data structures like UB-tree [2], and R∗-tree [3].

(B)UB-tree data structure applies Z-addresses (Z-ordering) [2] for mapping
a multi-dimensional space into single-dimensional. Intervals on Z-curve (which is
defined by this ordering) are called Z-regions. (B)UB-tree stores points of each
Z-regions on one disk page (tree leaf) and a hierarchy of Z-regions forms an
index (inner nodes of tree). In the case of indexing point data, an R-tree and
its variants cluster points into minimal bounding boxes (MBBs). Leafs contain
indexed points, super-leaf nodes include definition of MBBs and the other inner
nodes contain hierarchy of MBBs. (B)UB-tree and R-tree support point and
range queries [11], which are used in the multi-dimensional approach to indexing
XML data. The range query is processed by iterating through the tree and
filtering of irrelevant tree nodes, i.e. (super)Z-regions in the case of (B)UB-tree
and MBBs in the case of R-tree, which do not intersect a query box.

One more important problem of the multi-dimensional approach is the un-
clear dimension of spaces of paths and labelled paths. A naive approach is to
align the dimension of space to the maximal length of path. For example, points
of dimension 5 will be aligned to dimension 36. This technique increases the size
of index and the overhead of data structure as well. In [15] BUB-forest data struc-
ture was published. This data structure solves the problem of indexing points
with different dimensions. The range query used in the multi-dimensional ap-
proach is called narrow range query. Points defining a query box have got some
coordinates the same, whereas the size of interval defined by other coordinates
near to the size of space’s domain. Many irrelevant regions are searched during
processing the narrow range query in multi-dimensional data structures. In [9]
Signature R-tree data structure was introduced. This data structure enables
efficient processing the narrow range query.

6 Conclusion

In our future work we would like to test this approach over a current test XML
document collections. Test queries are often defined for such collections. There-
fore a comparison of our approach with another XML indexing approaches is

104 Michal Krátký, Marek Andrt

possible. INEX [10] collection seems to be hopeful. INEX contains 12,000 IEEE
articles since 1995. The size of the collection is 500MB.

References

1. S. Al-Khalifa, C. Yu, and H. Jagadish. Querying Structured Text in an XML
Database. In Proceedings of International Conference on Management of Data
(SIGMOD), San Diego, CA, June 2003.

2. S. Amer-Yahia, M. Fenández, D. Srivastava, and Y. Xu. Phrase Matching in XML.
In Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

4. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts.
In Proceedings of WWCA’97, Tsukuba, Japan, 1997.

5. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient
and robust access method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, pages 322–331.

6. J. Bosak. Shakespeare in XML, 1999, http://www.ibiblio.org/xml/examples/
shakespeare/.

7. J.-M. Bremer and M. Gertz. XQuery/IR: Integrating XML document and data re-
trieval. In Proceedings of the 5th International Workshop on the Web and Databases
(WebDB), June 2002.

8. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query
Language for XML. Technical report, WWW Consortium, August, 1998.

9. N. Fuhr and K. Grossjohann. XIRQL: An extension of XQL for information re-
trieval. In Proceedings of SIGIR, 2001.

10. N. Fuhr, N. Gvert, S. Malik, M. Lalmas, and G. Kazai.
INEX – Initiative for the Evaluation of XML Retrieval, 2003,
http://www.is.informatik.uni-duisburg.de/projects/inex/index.html.en.

11. T. Grust. Accelerating XPath Location Steps. In Proceedings of ACM SIGMOD
2002, Madison, USA, June 4-6, 2002.

12. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on
XML graphs. In Proceedings of the ICDE, 2003.

13. M. Krátký, J. Pokorný, T. Skopal, and V. Snášel. The Geometric Framework
for Exact and Similarity Querying XML Data. In Proceedings of First EurAsian
Conferences, EurAsia-ICT 2002, Shiraz, Iran. Springer–Verlag, LNCS 2510, 2002.

14. M. Krátký, J. Pokorný, and V. Snášel. Implementation of XPath Axes in the
Multi-dimensional Approach to Indexing XML Data. In Accepted at International
Workshop DataX, Int’l Conference on EDBT, Heraklion - Crete, Greece, 2004.

15. M. Krátký, T. Skopal, and V. Snášel. Multidimensional Term Indexing for Efficient
Processing of Complex Queries. Kybernetika, Journal of the Academy of Sciences
of the Czech Republic, accepted, 2003.

16. M. Krátký, V. Snášel, J. Pokorný, P. Zezula, and T. Skopal. Efficient Processing
of Narrow Range Queries in the R-Tree. In Submitten at VLDB 2004, 2004.

17. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expres-
sions. In Proceedings of 27th VLDB International Conference, 2001.

18. J. Pokorný. XML: a challenge for databases?, pages 147–164. Kluwer Academic
Publishers, Boston, 2001.

On Efficient Part-match Querying of XML Data 105

19. A. Theobald and G. Weikum. The index-based XXL search engine for querying
XML data with relevance ranking. In Proceedings of EDBT, 2002.

20. W3 Consortium. XQuery 1.0: An XML Query Language, W3C Working Draft, 15
November 2002, http://www.w3.org/TR/xpath/.

21. W3 Consortium. XML Path Language (XPath) Version 2.0, W3C Working Draft,
15 November 2002, http://www.w3.org/TR/xpath20/.

22. W3 Consortium. Extensible Markup Language (XML) 1.0, 1998,
http://www.w3.org /TR/REC-xml.

23. W3 Consortium. XML Schema Part 1: Structure, 2001,
http://www.w3.org/TR/xmlschema-1/.

24. C. Yu. High-Dimensional Indexing. Springer–Verlag, LNCS 2341, 2002.

INEX – a Broadly Accepted Data Set for XML
Database Processing??

Pavel Loupal and Michal Valenta

Dept. of Computer Science and Engineering
FEE, Czech Technical University

Karlovo náměst́ı 13, 121 35 Praha 2
Czech Republic

P.Loupal@sh.cvut.cz, valenta@fel.cvut.cz

Abstract. The aim of the article is to inform about the INEX initia-
tive, its testing data set, actual results, and future plans. We discuss and
demonstrate possible utilization of the INEX data set for our own re-
search and testing purposes. Our example – adaptation of approximate
tree embedding algorithm - provides a basis for discussion about INEX
data set suitability and about eventual consecutive experiments.

1 Introduction

Until now, there is no broadly accepted database nor data set for testing new
search or index algorithms or query language specifics in branch of XML process-
ing research. Such referential data set would be useful mainly for more accurately
comparing of individual algorithms and approaches.

INEX data set can be discussed as a hot candidate for such purposes, al-
though the INEX initiative focuses itself rather to information retrieval research
than to XML query languages aspects. But its data set seems suitable, because
it is large enough and its structure is also appropriately complex.

Hence the aim of the article is to inform about INEX initiative, its back-
ground, participants, plans, and results in order to initiate relevant discussion
of accepting or rejecting INEX data set as a referential database for comparing
research results.

We have developed a simple web based application which provides access to
INEX data set and enables easy algorithm testing and results evaluation. We
have prepared an example – adaptation of approximate tree embedding algo-
rithm – in order to provide couple of concrete arguments for discussion about
INEX data set relevance.

The paper is organized as follows: The second section brings basic informa-
tion about INEX initiative. Subsection 2.1 informs about background, plans,
founders, and participants of INEX initiative. Subsection 2.2 discusses INEX
? The research was partially supported by the grant GAČR 201/03/0912

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 106–116, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

INEX – a Broadly Accepted Data Set for XML Database Processing? 107

data set structure, organization of consecutive tasks, and several results. The
third section is dedicated to our utilization of INEX data set. Subsection 3.1
introduces our approach for accessing the INEX data set. Subsection 3.2 demon-
strates the application on concrete example – adaptation of approximate tree
embedding algorithm.

2 INEX initiative

2.1 History, participants, purposes

INitiative for the Evaluation of XML retrieval (INEX) was founded three years
ago. The motivation and the main aim of the project is to provide a referential
database for purposes of data retrieval research community.

Actually 69 participants mainly from universities have taken their active part
in INEX project. Concrete list of participant’s organizations and responsible
persons could be found in INEX home page [5]. In the head of initiative stand
Norbert Fuhr, Saadia Malik (Duisburg-Essen University) and Maunia Lalmas
(Queen Mary University London).

Project is organized as a set of consecutive steps. Each step consists of the
set of tasks which are spred among all participants. When all individual tasks
are solved by their responsible participants, the result is considered together
and evaluated by participants forum discussion. Then step is closed and project
moves to the next stage.

The first step of the project consisted only from acquiring appropriate data
set. It was supplied by IEEE – several volumes of IEEE journals. In the second
step set of data retrieval queries were developed and evaluated by participants.
The third step consisted of hand made relevance assessment process of individual
queries. The next step is actually object of participant’s discussion. It should be
focused to the efectivity of relevance assessment process and to the study of
searchers behaviors and also to the topics of distributed data sources. Follow
open discussion of the third INEX workshop in [5].

2.2 Data structure, queries, relevance assessments

INEX data set (actual version 1.4) has 536MB of XML data. It is exactly 12,107
articles from 6 IEEE transactions and 12 journals from years 1995 to 2002.
Pictures are not included – data set consists only of XML formated text.

Data set is organized in file structure. Root directory consists of two subdi-
rectories – dtd (holds structure information - DTD specification article element)
and xml. Each journal/transaction has its own two-letter named subdirectory
inside xml directory. Journal/transaction is further divided into the directories
by the year of publication. Finally each article is stored in individual xml file,
which name consists of a letter following by four-digit number and xml suffix.
Structure is schematically shown in figure 1.

108 Pavel Loupal, Michal Valenta

In average each article contains 1,532 XML nodes, where the average depth
of node is 6.9. See [3] for detail characteristics of data set.

/inex-1.4

/dtd

...

xmlarticle.dtd

/xml

/an

/1995

...

a1019.xml

a1032.xml

a1034.xml

...

/...

/2002

/...

/ts

Fig. 1. INEX data set file structure

DTD specification or article element is too complex to be clearly presented
here. Instead of this more illustrative fragment of typical article is shown in
figure 2. Picture is taken from [3].

The second stage of INEX project was focused to construction of suitable data
retrieval queries (topics). Topics were constructed by individual participants and
then were accepted or rejected by discussion forum of all participants. Each
participant had to design 6 queries.

Topics were divided into two groups – Content Only (CO) and Content And
Structure (CAS) topics. CAS topics have a structure condition inside their spec-
ification, for example they interests only in abstracts etc. CAS topics are then
classified either Strict (SCAS) or Vague (VCAS). The final set of INEX’03 topics
consists of 36 CO and 30 CAS queries.

Then each participant did 3 runs of each topic and select the first 1000 most rel-
evant documents. Individual runs were averaged so there was a set of 1000 most
relevant documents for each topic. Statistics of individual runs were computed
and they are available for participants purposes.

Evaluation stage covers hand made relevance assessments of 1000 documents
selected in the previous stage with respect to the given topic. The evaluation
was done through web based assessment application, see figure 4. Relevance as-
sessment was expressed by two independent scales – specificity and exhaustivity.

INEX – a Broadly Accepted Data Set for XML Database Processing? 109

|<article> | <sec>

| <fm> | <st>...</st>

| ... | ...

| <ti>IEEE Transactions on ...</ti> | <ss1>...</ss1>

| <atl>Construction of ...</atl> | <ss1>...</ss1>

| <au> | ...

| <fnm>John</fnm> | </sec>

| <snm>Smith</snm> | ...

| <aff>University of ...</aff> | </bdy>

| </au> | <bm>

| </au>...</au> | <bib>

| ... | <bb>

| </fm> | <au>...</au><ti>...</ti>

| <bdy> | ...

| <sec> | </bb>

| <st>Introduction</st> | ...

| <p>...</p> | </bib>

| ... | </bm>

| </sec> |</article>

Fig. 2. INEX typical article structure

Each scale has three values – marginal, fairly, high specific/exhaustive, so el-
ement can be maked by one of nine assessment values. The tenth assessment
value is not relevant. This is the way to express more relevant parts inside the
document. Icons were used to express given relevance mark for chosen XML node
in INEX assessment interface.

Moreover there are several parent-child dependencies in assigning relevance
mark to the element. For example exhaustivity level of a parent element is al-
ways equal to or greater than the exhaustivity level of its children elements.
These dependencies are fixed and they are automatically checked by assessment
interface.

The result of assessment process is published as XML document according
to DTD specification is shown in figure 3.

Nowadays, all INEX topics have been processed and there is XML file with
assessment results for each topic. This stage of project has been discussed in the
second INEX workshop, see [4] for details.

The next stage of INEX project will focus on detail study of searchers behaviors
(this research starts from analysis of handy made assessments from previous
stage) and also to data retrieval from heterogeneous sources and distributed
systems. Actually, details of the further stage of INEX project are discussed in
forum of project participants. See discussion in [5] for details.

110 Pavel Loupal, Michal Valenta

<!ELEMENT assessments (file+)>

<!ATTLIST assessments

topic CDATA #REQUIRED

>

<!ELEMENT file (path*)>

<!ATTLIST file

file CDATA #REQUIRED

>

<!ELEMENT path EMPTY>

<!ATTLIST path

path CDATA #REQUIRED

exhaustiveness (0 | 1 | 2 | 3) #REQUIRED

specificity (0 | 1 | 2 | 3) #REQUIRED

>

Fig. 3. INEX DTD topic assessments

Fig. 4. INEX XML assessment interface

INEX – a Broadly Accepted Data Set for XML Database Processing? 111

3 Data set utilization

The first step for utilization of the INEX data set for our research purposes is
preparation of common interface for data access. As shown in figure 1 data is
stored in directories relevant to journals and volumes. Our approach should keep
this structure to avoid any disorders. Also for that reason we decided to use a
solution based on a native XML database.

3.1 Native XML storage

Native XML databases have some advantages in comparison with ordinary
method of storing XML files in a file system. The concept of native XML
databases is based on filesystem structure i.e. data can be stored in collections
which mean the same as directories in filesystems but additionally this kind of
databases has many enhanced features useful for processing XML data.

For our purposes and with respect to INEX structure we decided to build our
approach on the Apache Xindice native XML database [6]. This product is an
open source project developed by the Apache Software Foundation with several
contributors involved into its advancement.

Starting from version 1.1, Xindice is not a standalone server anymore. The
server functions are now based on any Servlet 2.2 (or higher) compliant appli-
cation server - in our case we decided to use Apache Tomcat 5.0.16 application
server. Bundling database core functionality into a servlet container allows users
not to create only standalone console applications but easily develop also web
based applications using e.g. Java Server Pages (we use this technology in our
tree-embedding example).

Regarding to user documentation Xindice was not designed for handling huge
documents, rather, it was designed for collections of small to medium sized doc-
uments. The INEX structure complains optimally this requirement (see section
2.2).

Following built-in key features are important for data processing:

– Standard API for accessing data - In this case it is the XML:DB interface
[7]. This simple interface is developer-friendly and supports common data
processing methods.

– XPath expresions - In many applications XPath is only applied at the
document level but in Xindice XPath queries are executed at the collection
level. This means that a query can be run against multiple documents and
the result set will contain all matching nodes from all documents in the
collection.

– Usage of metadata - Xindice allows an user to store metadata that is
associated with any collection or document. Metadata is data that is asso-
ciated with a document or collection but is not part of that document or
collection. This metadata could be used for storing temporar information

112 Pavel Loupal, Michal Valenta

e.g. algorithm’s subresults or more permanent data such as a list of indexed
keywords contained by that collection or document.

Actually there are two ways for developers how to access Xindice database:

– XML:DB XML Database API - is used for developing applications in
Java language. An example of usage of this Application Programming Inter-
face (API) is shown in figure 5. This example shows an basic approach for
retrieving a document from specified collection.

– Xindice XML-RPC API - is used when accessing Xindice from language
other than Java.

One example of usage of the XML:DB API is shown in figure 5.

Collection col = null;

try {

String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";

Class c = Class.forName(driver);

Database database = (Database) c.newInstance();

DatabaseManager.registerDatabase(database);

col =

DatabaseManager.getCollection(

"xmldb:xindice://nonstop.sh.cvut.cz:8080/db/inex/mu/2001");

XMLResource document = (XMLResource) col.getResource("a1019.xml");

if (document != null) {

// Print out document’s content

System.out.println(document.getContent());

}

else {

System.out.println("Document not found");

}

}

Fig. 5. Example Java code for retrieving an XML document from database

3.2 Example – Approximate tree embedding algorithm

We have addopted an approximate tree embedding algorithm using the INEX
data set. Our implementation uses core tree embedding algorithm written by
Jan Váňa (see [2]) and is wrapped into a simple graphical user interface. This
interface allows user to select a collection (with or without all subcollections)
where to search and a query to search for. Details of this algorithm are described
in following section.

INEX – a Broadly Accepted Data Set for XML Database Processing? 113

The algorithm. Approximate tree embedding algorithms were studied in early
90’s and Kilpelainen showed that the decision problem whether a tree can be
embedd into another is NP-complete. Schlieder [1] created an algorithm which
behaviour is polynomial in practical examples. Váňa [2] modified that algorithm
and added few improvements in some special boundary cases and exceptional
situations.

The core part of this algorithm could be described as embeddTree(Tq, Td),
where Tq is a query tree and Td is data tree. One possible matching mapping
between query and data tree is shown in figure 6. Algorithm searches for all
embeddings of query tree in data tree and also returns a rating for each match
- this ”cost” basically means the number of elements which had to be skipped
when embedding tree.

Fig. 6. Example matching between two trees. a) query tree Tq, b) data tree Td

This paper is not primarily addressed to discuss this problem. This example
was chosen for showing adaptation of such algorithm over the INEX data set.
Detailed description of this algorithm can be found in [1], [2].

Implementation. We have created an application which integrates approx-
imate tree embedding algorithm with access to documents stored in XML
database. Web-based user interface allows user submit his query over specified
collection and get results with their ranking. Our algorithm traverses (recur-
sively) specified collection, fetches list of XML resources stored in and tries to
embedd query tree into all documents.

Actually algorithm uses two metrics for rank matched result. The first one is
based on number node which need to be skipped when embedding tree and the
second one is the level of root node of the query tree Tq in data tree Td.

114 Pavel Loupal, Michal Valenta

Fig. 7. Simple web interface for querying database

Results. Our adaptation of the approximate tree embedding algorithm allows
user to get results as supposed by its description, i.e. it finds all embeddings in
documents contained in specified collection(s). The correctness of the implemen-
tation was not proved exactly but our queries and their respective results were
manually checked for match.

Performace. Our implementation uses platform independent Java XML:DB in-
terface outlined above. This approach is probably slower than a similar native
solution written in language like C++ but in this case speed is not the crucial
requested property.

To get an estimation of time consumption when performing our algorithm
we ran a simple query (see figure 8) on a computer with the Intel Pentium III
processor (500MHz) with 256 MB of memory. This run over the complete INEX
data set took about 68 minutes and returned 101 matches.

Usability. In spite of correctness of the algorithm, practical benefit is a moot
question. The main drawback is strict comparison of data items used - the con-
tent of an element must exactly match data in given query. For practical purposes
users would usually ask queries not about structual match but more on approx-

INEX – a Broadly Accepted Data Set for XML Database Processing? 115

<article>

<yr>2001</yr>

<au>

<snm>Smith</snm>

</au>

</article>

Fig. 8. Query example - all articles published in the year 2001 written by author
with surname ”Smith”

imate content. Therefore, operators such as contains() or starts-with() known
from XPath could extend practical algorithm applicability.

4 Conclusions

The INEX data set is a huge collection of ”real” and meaningful documents.
Storing such data in native XML database (in our case Apache Xindice) allows
researchers to implement and test wide range of algorithms over these data.
Technical environment supports developing both console and web-based Java
applications using common standards for manipulating XML data.

Our example, approximate tree embedding algorithm, shows one example of
possible utilization of the INEX data set. It is just one of possible implemen-
tations but the common access interface allows researches to ”plug in” another
solution of the embedding algorithm or even to use another algorithm which has
a different goal.

Further work on this algorithm should be focused on experiments with order
evaluating function. Some hypothesis about local and global rate of the order
function had been stated in an unformal discussion in the last DATESO work-
shop. These hypothesis should be formalized, implemented, and proved on a
”real” data set.

In addition the INEX data set has been adopted into our frame and can
be used for arbitral experiments in the branch of XML database processing
research. Although it is only a side-effect of the INEX project, we have shown
in this article, it can be used also for our own research with a good benefit.

References

1. Schlieder, T., Naumann, F.: Approximate tree embedding for querying XML data.
In ACM SIGIR Workshop On XML and Information Retrieval, Athens, Greece,
2000.

2. Váňa, J.: Integrity of XML data (in Czech). Master Thesis, Dept. of Software En-
gineering, Charles University, Prague. 2001.

116 Pavel Loupal, Michal Valenta

3. Fuhr, N., Gvert, N., Kazai, G., Lalmas, M.: INitiative for the Evaluation of XML
retrieval (INEX). Proceedings of the First INEX Workshop.ERCIM Workshop Pro-
ceedings. ERCIM, Sophia Antipolis, France, 2003.

4. Fuhr, N., Malik, S., Kazai, G., Lalmas M. (Editors): Proceedings of the 2nd Initiative
on the Evaluation of XML Retrieval (INEX 2003). ERCIM Workshop Proceedings.
2003

5. INEX 2003 - home page. http://inex.is.informatik.uni-duisburg.de:2003/index.html.
6. Apache Xindice - Native XML database. http://xml.apache.org/xindice.
7. XML:DB initiative - Application Programming Interface for accessing native XML

databases. http://www.xmldb.org.

Query Expansion and Evolution of Topic
in Information Retrieval Systems?

Jǐŕı Dvorský, Jan Martinovič, and Václav Snášel

Department of Computer Science, VŠB-Technical University of Ostrava,
17. listopadu 15, Ostrava - Poruba, Czech Republic

{jiri.dvorsky,jan.martinovic,vaclav.snasel}@vsb.cz

Query expansion and evolution of topic
in information retrieval systems�

Jǐŕı Dvorský, Jan Martinovič, and Václav Snášel

Department of Computer Science, VŠB-Technical University of Ostrava,

17. listopadu 15, Ostrava - Poruba, Czech Republic

{jiri.dvorsky,jan.martinovic,vaclav.snasel}@vsb.cz

Abstract. Approach based on clustering will be described in our paper.

Basic version of our system was given in [5] allows us to expand query

through special index. Hierarchical agglomerative clustering of the whole

document collection generates the index. Retrieving of topic development

is specific problem. Standard methods of IR does not allow us such kind

of queries for appropriate solution of information problem. The goal of

presented method is to find list of documents that are bearing on topic,

represented by user-selected document, sorted with respect to historical

development of the topic.

1 Introduction

There are plenty of large text collections in the world. In connection with expan-

sion of Internet these collections get bigger and bigger. Amount of processed data

reach in present time dimensions that statistical properties of texts in collection

become evident. This fact leads to new approaches, which involve methods from

statistics, linear algebra, neural networks, and other (see [1, 9]).

Another important feature of these collections is their dynamic character.

Modern surveys of information retrieval (IR) supposes that text collections have

static character. Prior knowledge of topics’ distribution is other presumption of

current IR methods. Omission of these presumptions is more adequate to today’s

demands [2].

Retrieving of topic development is specific problem. Let’s imagine that we

want to perform query about war in Iraq from open source text collection. Set of

terms contained in documents describing initial part of the war will be different

from set of terms in document that characterize current state of war. Standard

methods of IR [3] does not allow us such kind of queries for appropriate solution

of information problem.

There are many IR systems based on Boolean, vector, and probabilistic mod-

els. All of them use their model to describe documents, queries, and algorithms to

compute relevance between user’s query and documents. Each model contains

some constraints. Constrains cause disproportion between expected (relevant)

�
This work was done under grant from the Grant Agency of Czech Republic, Prague

No.: 201/03/1318

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 117–127, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

118 Jǐŕı Dvorský, Jan Martinovič, Václav Snášel

documents and documents returned by IR system. One of the possibilities how

to solve the disproportion are systems for automatic query expansion, and topic

development observing systems.

Approach based on clustering (see [7]) will be described in this paper. Ba-

sic version of our system was given in [5]. This version allows us to expand

query through special index. Hierarchical agglomerative clustering of the whole

document collection generates the index [6, 5].

Basic definitions of vector model will be briefly repeated in section 2. Sec-

tion 3 contains introduction to cluster analysis, and description of agglomerative

clustering. Section 4 is dedicated to query expansion algorithms that are based

on work [5], including conclusions from tests. Description of topic development

observing system, and its relationship to clustering algorithms are given in sec-

tion 5. Section 6 gives us some conclusions and presents possibilities of future

works.

2 Vector model

Vector model is dated back to 70th of the 20th century. The main goal of vector

model is to enhance IR system based on Boolean model. Let’s suppose vector IR

system containing information about n documents. The documents are indexed

by set of m terms. m dimensional vector represents each document in document

collection, where every part of the vector corresponds to weight of particular

term in given document. Formally:

di = (wi,1, wi,2, . . . , wi,m) ∈ 〈0, 1〉m

Index of vector IR systems is the represents by matrix

D =

⎛
⎜⎜⎜⎝

w1,1 w1,2 . . . w1,m

w2,1 w2,2 . . . w2,m

...
...

. . .
...

wn,1 wn,2 . . . wn,m

⎞
⎟⎟⎟⎠ ∈ 〈0, 1〉n×m

Query in vector model is again m dimensional vector:

Q = (q1, q2, . . . , qm) ∈ 〈0, 1〉m

Similarity between query Q and each document di can be computed as

Sim(Q, di) =

∑m
k=1 qkwi,k√∑m

k=1(qk)2
√∑m

k=1(wi,k)2

There are many formulæ how to compute the similarity, we use one of the

most frequent - cosine measure. The similarity can be understood as ”distance”

between query vector and vectors of documents in some vector subspace defined

by matrix M .

Detail information about vector model can be found for example in [3].

Query Expansion and Evolution of Topic in Information Retrieval Systems 119

3 Cluster analysis

The weight matrix M described above represents vast amount of numbers, that

can be interpreted in some way. Among others, there is possibility to put doc-

uments together, which have approximately same coefficient of similarity to the

potential query.

Finding of group of objects with the same or similar features within given

set of objects i the goal of cluster analysis. These groups are called clusters. In

other words, the group of similar objects forms the cluster.

Hierarchical clustering methods are important tool of cluster analysis. Hierar-

chical methods create hierarchy of clusters, grouped in cluster levels. The cluster

levels arise during the computation and represents structure of hierarchy.

Hierarchical clustering methods can be divided into two groups:

agglomerative - At the beginning each object is considered as one cluster.

Clusters are joined step by step together. The algorithm is over, when all

objects form only one cluster.

divisive - The method works in reverse manner. At the beginning there is one

cluster containing all objects. The clusters are sequentially divided until each

cluster contains only one object.

Agglomerative clustering algorithm

1. Create matrix of objects’ distances
Matrix of objects’ distances will be equal to term-document weight matrix

D.

2. Define each object as cluster
At the beginning each object is considered as one cluster i.e. there are as

many clusters as objects. Sequentially, clusters are joined together and num-

ber of clusters drops down, when finally there is one cluster.

3. Join pair of clusters with the least mutual distance
There many strategies, how to compute the distance. Among the most fre-

quently used strategies belong:

– strategy of forthcoming neighbour - Distances among all objects in two

clusters are computed. The distance of clusters is then defined as minimal

distance between any objects in these two clusters.

– strategy of farthermost neighbour - Same as strategy of forthcoming

neighbour, but maximum distance is chosen.

– average distance strategy - Distances among all objects in two clusters

are computed. The distance of clusters is then defined as average distance

among any objects in these two clusters.

– median strategy - The distance of clusters is then defined as median of

distances among objects in these two clusters.

– Ward’s method - two cluster are joined together, if increase of sum of

distances from centroid of clusters is minimal.

120 Jǐŕı Dvorský, Jan Martinovič, Václav Snášel

4. recalculation of objects distance matrix
There are several strategies how to recalculate distance between new cluster,

and other clusters:

– Recalculation of all possible distances among new cluster and other clus-

ters.

– Already known distances between clusters, forming new cluster, can be

exploited. Let c3 be a cluster that is union of clusters c1 a c2. The distance

of new cluster c3 in respect of other clusters ci can be determined as:

d(c3, ci) = min(d(c1, ci), c(c2, ci))

This recalculation strategy is faster than previous one, because there is

no need of calculation of all distances for new cluster again.

5. if there are more than one cluster, go to step 3

4 Query expansion

Query expansion algorithms at first evaluate given query on collection of docu-

ments, and then select from relevant documents appropriate terms1. The original

query is expanded with such selected terms. The expanded query is used to re-

trieve new set of relevant documents. The method is called feedback.

The feedback method has one important drawback. User query must be per-

formed at first. And after searching, query is expanded with terms selected from

retrieved documents. In our approach the relevant documents are replaced with

the documents from cluster that is the most similar to the user query.

Two algorithms for query expansion were proposed (for details see [5]).

4.1 Description UP-DOWN-1 method

1. Algorithm begins at root of cluster hierarchy (cluster tree).

2. Similarity coefficient between the user query and the current cluster is cal-

culated. If the similarity is greater than given threshold value, stop the al-

gorithm and return current cluster.

3. If current cluster is a leaf in cluster hierarchy (i.e. the cluster contains only

one object - document), stop the algorithm and return current cluster.

4. The similarity coefficients are calculated for both clusters that form current

cluster.

5. The number of documents is determined in both clusters that form current

cluster.

1
What is appropriate term is another question. Good selection algorithm should pre-

fer terms, that are specific for relevant documents to general terms in collection of

documents. The selection algorithms therefore evaluate all terms in documents, con-

sidered in query expansion, and then they select terms with the highest value. For

evaluation are often used Rocchio’s weights, Robertson Selection Value, or Kullback-

Leibler distance [4].

Query Expansion and Evolution of Topic in Information Retrieval Systems 121

6. If the number is less than documents’ number threshold, stops the algorithm,

and return cluster with greater similarity coefficient.

7. In other case current cluster become cluster with greater similarity coeffi-

cient, and goes to step 2.

4.2 Description UP-DOWN-2 method

1. Algorithm begins at root of cluster hierarchy (cluster tree).

2. Similarity coefficient between the user query and the current cluster is cal-

culated. If the similarity is greater than given threshold value, stop the al-

gorithm and return current cluster.

3. If current cluster is a leaf in cluster hierarchy (i.e. the cluster contains only

one object - document), stop the algorithm and return current cluster.

4. The number of documents is determined in both clusters that form current

cluster.

5. The algorithm goes to step 2 for all clusters with nonzero similarity coeffi-
cient, and with the number of documents greater than the threshold value.

4.3 Experimental results

The UP-DOWN-1 method was tested at first. Original vector query, and vector

query expanded with UP-DOWN-1 method was tested. Average improvement

(rather impairment) of number of relevant documents can be seen at Fig 1.

0%

20%

40%

60%

80%

100%

120%

140%

160%

Vector model UP-DOWN-1
Rel 5

UP-DOWN-1
Rel 10

UP-DOWN-2
Rel 5

UP-DOWN-2
Rel 10

Fig. 1. Comparison of UP-DOWN-1 and UP-DOWN-2 methods

Graph 1 clearly shows that in case of using UP-DOWN-1 method, there

is only 48% of relevant documents among the first five retrieved documents,

with respect to the original vector query. Situation become better in case of

the first ten documents, but only half of retrieved documents are relevant. The

UP-DOWN-1 method does not ensure finding of the most similar cluster to the

query, but it finds only one of similar clusters. After extensive exploration we

122 Jǐŕı Dvorský, Jan Martinovič, Václav Snášel

found out that the similarity coefficient partially depends on size of cluster. In

other words document with less similarity to the query in one document cluster

can have greater similarity coefficient than more similar documents in bigger

cluster. In that case the query is expanded according to less similar cluster.

The UP-DOWN-2 method was proposed to eliminate this disadvantage. The

method was tested on the same documents, and queries as UP-DOWN-1 method.

The results can be seen at Fig 1. There can be seen that UP-DOWN-2 method

gives much better results than UP-DOWN-1 method. There are three times

more relevant documents in the first five documents with respect to the query

expanded with the UP-DOWN-1 method. Moreover this method can find more

relevant documents than original vector query.

5 Monitoring evolution of topic

Our research concern with he topics undergo an evolution. Let’s assume docu-

ment from collection of documents, that describes some topic. It is clear, that

there will be some other documents in the collection that describes the same

topic, but use different words to characterize the topic. The difference can be

caused by many reasons. Among reasons belong evolution of topic in time. The

first document about the topic use some set of words, that can change after some

time period due to for example exploration of new circumstances, new fact, new

political situation etc. Our experimental method should search an evolution for

a given document and sort the result of the query.

Example 1. We want to search documents about an operation system. We have a

document about the very latest operation system. Name of the operation system

is changed during evolution. We want to search documents about all versions

operation system.

Expansion
Cluster

Original vector query

Fig. 2. Query extension

In the first way, vector query was expanded by terms from as close as possible

cluster (see Figure 2). Experiments show, that our assumption was not correct.

Query Expansion and Evolution of Topic in Information Retrieval Systems 123

Expanded vector query was not moved on clusters but only growing up (see

Figure 3). This query expansion decreased coefficient of relevance, because non

relevant documents are contained in result of expanded vector query.

Expansion

Cluster

Vector query

Fig. 3. Increase neighborhood

These experiments show that query expansion do not satisfy expectation.

This results lead to drop this method whereas it leads to other method. The

method finds cluster with similar documents and evolution of topic is examined

in this cluster only. In the first instance we verify whether clusters include similar

documents or not. And consequently when we obtain better result than vector

query or not.

5.1 Experimental results

Collection of documents for testing purposes contain 1065 randomly selected

documents from Parliament library from 1996 and 1998. The test consists of

three steps:

1. Executing of vector query. Document 96-T0419 represents the query. Re-

sults of the query is given in table 1. The evolution of topic starts from

document 96-T0419 i.e. query documents and ends in document 98-T0506

(see Figure 4).

2. Summarization2 of documents in evolution of topic (see table 2).

3. Selection of the most important terms in documents from evolution (see

table 3).

6 Conclusion

There are plenty of large text collections in the world. In connection with expan-

sion of Internet these collections get bigger and bigger. Amount of processed data

2
The summarization was done in MS Word. It is intended for checking the results.

124 Jǐŕı Dvorský, Jan Martinovič, Václav Snášel

9
6
-T

0
4
1
9

9
6
-T

0
1
9
8

9
6
-T

0
0
0
4

9
6
-T

0
2
1
1

9
6
-T

0
0
6
2

9
8
-T

0
2
9
0

9
8
-T

0
5
2
7

9
8
-T

0
0
7
8

9
8
-T

0
2
1
8

9
8
-T

0
1
1
6

9
8
-T

0
3
4
8

9
8
-T

0
5
0
6

9
8
-T

0
6
5
6

F
ig

.
4
.

C
lu

s
t
e
r

t
r
e
e

c
o
r
r
e
s
p
o
n
d
in

g
t
o

e
v
o
lu

t
io

n
o
f

t
o
p
ic

.
Q

u
e
r
y

d
o
c
u
m

e
n
t

is
t
h
e

le
ft

m
o
s
t
,

a
n
d

t
h
e

la
s
t

d
o
c
u
m

e
n
t

in
e
v
o
lu

t
io

n
is

t
h
e

r
ig

h
t
m

o
s
t
.

Query Expansion and Evolution of Topic in Information Retrieval Systems 125

Document Similarity Contained in topic

evolution?

96-T0419 1.0000 yes

96-T0198 0.7550 yes

96-T0179 0.2385

96-T0182 0.2766

96-T0226 0.1514

98-T0656 0.1290 yes

98-T0506 0.1098 yes

Table 1. Vector query results

96-T0419 na obdob́ı 1998 - 2000PROTIDROGOVÉ POLITIKY VLÁDY

NA OBDOBÍ 1998 - 2000Oblast snižováńı nab́ıdky drog

93.3Oblast koordinace protidrogové politiky 213.5PROGRAM

PROTIDROGOVÉ POLITIKY NA OBDOBÍ 1998 - 2000

305.1Oblast snižováńı nab́ıdky drog 315.3- Počet předčasných

úmrt́ı v d̊usledku už́ıváńı drog se na začátku 90. 3.2 OBLAST

SNIŽOVÁNÍ NABÍDKY DROG

96-T0198 1. Rozsah už́ıváńı drog v ČR 2. Oblast snižováńı nab́ıdky drog 1.

Rozsah už́ıváńı drog v ČR Přibližně 10% dlouhodobých uživatel̊u

drog je bez stálého bydlǐstě. ČR je významnou tranzitńı zemı́

kokainu. Opatřeńı proti š́ı̌reńı a zneuž́ıváńı drog v ČRNa tzv. 2.

Oblast snižováńı nab́ıdky drog drog

96-T0004 Zpráva o bezpečnostńı situaci na územı́ ČRMateriál se předkládá

na základě usneseńı vlády ČR č. 280Zpráva o bezpečnostńı situaci

na územı́ ČR7. Bezpečnostńı rizika na rok 1996 - shrnut́ı Zpráva

o bezpečnostńı situaci na územı́ ČR/viz Př́ıloha č. 1//viz Př́ıloha

č. 2

96-T0211 Zpráva o bezpečnostńı situaci na územı́ ČR v roce1996Materiál se

předkládá na základě usneseńı vlády ČR č. 308 2.5 Oběti trestné

činnosti 5.2 Prevence kriminality Na objasněné trestné činnosti

páchané na železnici se pod́ıleli 40,23% (-13,08%).Na územı́ hl.

Počet trestných čin̊u policist̊u vzrostl na 37,4 (+16,5%, +53 tr.

č.).

96-T0062 května 1996 metodiku programů sociálńı prevence a prevence

kriminality na mı́stńı úrovni, - přehled systému sociálńı prevence

a prevence kriminality na ústředńıch orgánech státńı správy.3.

Plněńı programu sociálńı prevence a prevence kriminality v

předcházej́ıćım obdob́ıPř́ıloha č. 1 Schéma prevence kriminality

f) projekty prevence kriminality na mı́stńı úrovni

Table 2. Summarization of documents in evolution of topic

126 Jǐŕı Dvorský, Jan Martinovič, Václav Snášel

96-T0419 drog drogách drogami drogové drogy oblast politiky prevence pro-

tidrogové snižováńı

96-T0198 drog drogách drogami drogové heroin pervitin prevence protidro-

gové předevš́ım resocializace

96-T0004 bezpečnostńı cizinc̊u čin̊u kriminalita kriminality migrace počet

rizika trestné trestných

96-T0211 bezpečnostńı čin̊u kriminalita kriminality objasněnosti počtu

policie trestné trestných zjǐstěných

96-T0062 kriminality prevence prevenci preventivńıch republikového

sociálńı úrovni vnitra výboru východiska

98-T0290 malého malých podnikáńı podnik̊u podporu podpory podpořeno

projekt̊u středńıho středńıch

98-T0527 čmzrb podnikatelského podnikatelský podporu podpory poskyt-

nut́ı program programu projektu úvěru

98-T0078 doporučeńı malých měli mı́st podnićıch podnik̊u podniky pra-

covńıch pracovńık̊u středńıch

98-T0218 bilance czechtrade deficitu dovozu egap exportu proexportńı

proexportńıch r̊ustu vývozu

96-T0116 bilance deficitu dovozu firem obchodu předevš́ım r̊ust r̊ustu

vývozu zahraničńıho

96-T0348 aktivity exportńı exportu obchodu podporu politiky proexportńı

vláda vývozu zahraničńıho

98-T0506 acquis evropské harmonizace legislativy oblast phare politiky pro-

gramu př́ıpravy vstupu

98-T0656 evropské nato politika politiky programovým pr̊umyslu schválila

systému vláda vládě

Table 3. The most important terms in documents contained in evolution of topic

Query Expansion and Evolution of Topic in Information Retrieval Systems 127

reach in present time dimensions that statistical properties of texts in collection

become evident. This fact leads to new approaches, which involve methods from

statistics, linear algebra, neural networks, and other (see [1, 9]).

We can characterize a distribution of topics in a document with using clusters.

These clusters are possible to use for the vector model and analysis how the topics

undergo an evolution.

We developed the UP-DOWN-2 method which increase amount of founded

relevant document.

In the future work we want to use large collection as a WebTrec for check

whether this method. Next step we want to use Latent Semantic Indexing for

computing document similarity [8].

References

1. Berry, M. W.; Browne, M.: Understanding Search Engines: Mathematical Modeling

and Text Retrieval. SIAM Book Series: Software, Environments, and Tools, 1999.

2. Berry, M. W. (Ed.): Survey of Text Mining: Clustering Classification, and Re-

trieval. Springer Verlag 2003.

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,

New York, 1999.

4. Carpineto C., de Mori R., Romano G., Bigi B.: An information-theoretic approach

to automatic query expansion., in ACM Trans. Inf. Syst. 19(1), pp. 1-27, 2001

5. Dvorský J., Martinovič J., Pokorný J., Snášel V.: A Search topics in Collection of

Documents. (in Czech), Znalosti 2004, in print.

6. Downs G.: Clustering in chemistry (an overview w.r.t. chemoinformatics), Math-

FIT Workshop, Belfast, 27th April 2001 - Barnard Chemical Information Ltd.

7. Jain A., Dubes R.: Algorithms for Clustering Data. Prentice-Hall, Englewood

Cliffs, NJ, 1988.

8. Praks, P., Snášel, V., Dvorský, J.: Latent Semantic Indexing for Image Retrieval

Systems, SIAM LA, International Linear Algebra Society (ILAS), 2003.

9. Shumsky S., Yarovoy A.: Assocative searching of textual information, Neuroinfor-

matics 1-99. MIFI, Moscow 1999.

Using Blind Search and Formal Concepts
for Binary Factor Analysis

Aleš Keprt

Dept. of Computer Science, FEI, VŠB Technical University Ostrava, Czech Republic
ales.keprt@vsb.cz

Abstract. Binary Factor Analysis (BFA, also known as Boolean Factor
Analysis) may help with understanding collections of binary data. Since
we can take collections of text documents as binary data too, the BFA
can be used to analyse such collections. Unfortunately, exact solving of
BFA is not easy. This article shows two BFA methods based on exact
computing, boolean algebra and the theory of formal concepts.

Keywords: Binary factor analysis, boolean algebra, formal concepts

1 Binary factor analysis

1.1 Problem definition

To describe the problem of Binary Factor Analysis (BFA) we can paraphrase
BMDP’s documentation (Bio-Medical Data Processing, see [1]).

BFA is a factor analysis of dichotomous (binary) data. This kind of analysis
differs from the classical factor analysis (see [16]) of binary valued data, even
though the goal and the model are symbolically similar. In other words, both
classical and binary analysis use symbolically the same notation, but their senses
are different.

The goal of BFA is to express p variables X = (x1, x2, . . . , xp) by m factors
(F = f1, f2, . . . , fm), where m � p (m is considerably smaller than p). The
model can be written as

X = F �A

where � is matrix multiplication. For n cases, data matrix X, factor scores F ,
and factor loadings A can be written asx1,1 . . .x1,p

...
. . .

...
xn,1. . .xn,p

 =

f1,1 . . .f1,m

...
. . .

...
fn,1. . .fn,m

�
a1,1 . . . a1,p

...
. . .

...
am,1. . .am,p


where elements of all matrices are valued 0 or 1 (i.e. binary).

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 128–140, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

Using Blind Search and Formal Concepts for Binary Factor Analysis 129

1.2 Difference to classical factor analysis

Binary factor analysis uses boolean algebra, so matrices of factor scores and
loadings are both binary. See the following example: The result is 2 in classical
algebra

[1 1 0 1] ·


1
1
0
0

 = 1 · 1 + 1 · 1 + 0 · 0 + 1 · 0 = 2

but it’s 1 when using boolean algebra.

[1 1 0 1] ·


1
1
0
0

 = 1 · 1⊕ 1 · 1⊕ 0 · 0⊕ 1 · 0 = 1

Sign ⊕ marks disjunction (logical sum), and sign · mars conjunction (logical
conjunction). Note that since we focus to binary values, the logical conjunction
is actually identical to the classic product.

In classical factor analysis, the score for each case, for a particular factor, is a
linear combination of all variables: variables with large loadings all contribute to
the score. In boolean factor analysis, a case has a score of one if it has a positive
response for any of the variables dominant in the factor (i.e. those not having
zero loadings) and zero otherwise.

1.3 Success and discrepancy

It is obvious, that not every X can be expressed as F �A. The success of BFA is
measured by comparing the observed binary responses (X) with those estimated
by multiplying the loadings and the scores (X̂ = F �A). We count both positive
and negative discrepancies. Positive discrepancy is when the observed value (in
X) is one and the analysis (in X̂) estimates it to be zero, and reversely negative
discrepancy is when the observed value is zero and the analysis estimates it to
be one. Total count of discrepancies d is a suitable measure of difference between
observed values xi,j and calculated values x̂i,j .

d =
n∑

i=1

p∑
j=1

|x̂i,j − xi,j |

1.4 Terminology notes

Let’s summarize the terminology we use. Data to be analyzed are in matrix X.
Its columns xj represent variables, whereas its rows xi represent cases. The

130 Aleš Keprt

factor analysis comes out from the generic thesis saying that variables, we can
observe, are just the effect of the factors, which are the real origin. (You can
find more details in [16].) So we focus on factors. We also try to keep number of
factors as low as possible, so we can say ”reducing variables to factors”.

The result is the pair of matrices. Matrix of factor scores F expresses the
input data by factors instead of variables. Matrix of factor loadings A defines
the relation between variables and factors, i.e. each row ai defines one particular
factor.

1.5 An example

As a basic example (see [1]) we consider a serological problem1, where p tests are
performed on the blood of each of n subjects (by adding p reagents). The outcome
is described as positive (a value of one is assigned for the test in data matrix),
or negative (zero is assigned). In medical terms, the scores can be interpreted as
antigens (for each subject), and the loading as antibodies (for each test reagent).
See [14] for more on these terms.

1.6 Application to text documents

BFA can be also used to analyse a collection of text documents. In that case the
data matrix X is built up of a collection of text documents D represented as p-
dimensional binary vectors di, i ∈ 1, 2, . . . , n. Columns of X represent particular
words. Particular cell xi,j equals to one when document i contains word j, and
zero otherwise. In other words, data matrix X is built in a very intuitive way.

It should be noted that some kind of smart (i.e. semantic) preprocessing
could be made in order to let the analysis make more sense. For example we
usually want to take world and worlds as the same word. Although the binary
factor analysis has no problems with finding this kind similarities itself, it is
computationally very expensive, so any kind of preprocessing which can decrease
the size of input data matrix X is very useful. We can also use WordNet, or
thesaurus to combine synonyms. For additional details see [5].

2 The goal of exact binary factor analysis

In classic factor analysis, we don’t even try to find 100% perfect solution, be-
cause it’s simply impossible. Fortunately, there are many techniques that give a
good suboptimal solution (see [16]). Unfortunately, these classic factor analysis
techniques are not directly applicable to our special binary conditions. While
classic techniques are based on the system of correlations and approximations,

1 Serologic test is a blood test to detect the presence of antibodies against microor-
ganism. See serology entry in [14].

Using Blind Search and Formal Concepts for Binary Factor Analysis 131

these terms can be hardly used in binary world. Although it is possible to apply
classic (i.e. non-boolean non-binary) factor analysis to binary data, if we really
focus to BFA with restriction to boolean arithmetic, we must advance another
way.

You can find the basic BFA solver in BMDP – Bio-Medical Data Processing
software package (see [1]). Unfortunately, BMDP became a commercial product,
so the source code of this software package isn’t available to the public, and even
the BFA solver itself isn’t available anymore. Yet worse, there are suspicions
saying that BMDP’s utility is useless, as it actually just guesses the F and
A matrices, and then only explores the similar matrices, so it only finds local
minimum of the vector error function.

One interesting suboptimal BFA method comes from Húsek, Frolov et al.
(see [15], [7], [6], [2], [8]). It is based on a Hopfield-like neural network, so it finds
a suboptimal solution. The main advantage of this method is that it can analyse
very large data sets, which can’t be simply processed by exact BFA methods.

Although the mentioned neural network based solver is promising, we actu-
ally didn’t have any one really exact method, which could be used to proof the
other (suboptimal) BFA solvers. So we started to work on it.

3 Blind search based solver

The very basic algorithm blindly searches among all possible combinations of F
and A. This is obviously 100% exact, but also extremely computational expen-
sive, which makes this kind of solver in its basic implementation simply unusable.

To be more exact, we can express the limits of blind search solver in units
of n, p and m. Since we need to express matrix X as the product of matrices
F � A, which are n ×m and m × p in size, we need to try on all combinations
of m · (n + p) bits. And this is very limiting, even when trying to find only
3 factors from 10 × 10 data set (m = 3, n = 10, p = 10), we end up with
computational complexity of 2m·(n+p) = 260, which is quite behind the scope of
current computers.

4 Revised blind search based solver

In order to make the blind search based solver more usable, we did several
changes to it.

4.1 Preprocessing

We must start with optimizing data matrix. The optimization consist of these
steps:

132 Aleš Keprt

Empty rows or columns All empty rows and empty columns are removed,
because they has no effect on the analysis. Similarly, the rows and columns full of
one’s can be removed too. Although removing rows and columns full of one’s can
lead to higher discrepancy (see sec. 1.3), it doesn’t actually have any negative
impact on the analysis.

Moreover, we can ignore both cases (rows) and variables (columns) with too
low or too high number of one’s, because they are usually not very important
for BFA. Doing this kind of optimization can significantly reduce the size of
data matrix (directly or indirectly, see below), but we must be very careful,
because it can lead to wrong results. Removing too many rows and/or columns
may completely degrade the benefit of exact BFA, because it leads to exact
computing with inexact data. In regard to this danger, we actually implemented
only support for removing columns with too low number of one’s.

Duplicate rows and columns With duplicate rows (and columns resp.) are
the ones which are the same to each other. Although this situation can hardly
appear in classic factor analysis (meaning that two measured cases are 100%
identical), it can happen in binary world much easier, and it really does. As for
duplicate rows, the main reason of their existence is usually in the preprocessing.
If we do some kind of semantic preprocessing, or even forcibly remove some
columns with low number of one’s, the same (i.e. duplicate) rows occur. We
can remove them without negative impact to the analysis, if we remember the
repeat-count of each row. We call it multiplicity.

Then we can update the discrepancy formulae (see sec. 1.3) to this form:

d =
n∑

i=1

p∑
j=1

(mR
i ·mC

j |x̂i,j − xi,j |)

where mR
i and mC

j are multiplicity values for row i and column j respectively.
We can also compute the multiplicity matrix M :

M =

m1,1 . . .m1,p

...
. . .

...
mn,1. . .mn,p


where mi,j = mR

i · mC
j . Although this leads to simpler and better readable

formulae

d =
n∑

i=1

p∑
j=1

(mi,j |x̂i,j − xi,j |)

it isn’t a good idea, since the implementation is actually inefficient, since it needs
a lot of additional memory (n · p numbers compared to n + p ones).

The most important note is, that the merging of duplicate rows and columns
lead to a significant reduction in computation time, and still doesn’t bring any
errors to the computation.

Using Blind Search and Formal Concepts for Binary Factor Analysis 133

4.2 Bit-coded matrices

Using standard matrices is simple, because it is based on classic two-dimensional
arrays and makes the source code well readable. In contrast, we also implemented
the whole algorithm using bit-coded matrices and bitwise (truly boolean) oper-
ations (like and, or, xor). That resulted in not so nice source code, and also
required some tricks, but also saved a lot of computation speed. We actually
sped up the code by 20% by using bit-coded matrices and bitwise (boolean)
operations.

4.3 The strategy

Although all the optimizations presented above lead to lower computation time,
it is still not enough. To save yet more computation time, we need a good
strategy.

The main problem is that we need to try too many bits in matrices F and
A. Fortunately there exist a way of computing one of these matrices from the
other one, thanks to knowing X. Since we are more concerned in A, we check
out all bits in that one, and then find the right F . In summary:

1. Build up one particular candidate for matrix A.
2. Find the best F for this particular A.
3. Multiply these matrices and compare the result with X. If the discrepancy

is smaller to the so far best one, remember this F,A pair.
4. Back to step 1.

After we go through all possible candidates for A, we’re done.

4.4 Computing F from A and X

Symbolically, we can express this problem as follows. We are trying to find F
and A, so X = F � A. Let we know X and A, so we only need to compute
F . If we take a parallel from numbers, we can write something like F = X/A.
Unfortunately, this operation isn’t possible with common binary matrices.

If we bit-code matrices X and A on row-by-row basis, so X = [x1, . . . , xn]T

and A = [a1, . . . ap]T , then

xi =
m∑

k=1

fi,k · aj

From this formulae we can compute F on row-by-row basis, which signif-
icantly speeds up whole algorithm. The basic idea still relies on checking out
all bit combinations for each row of F , which is 2m · m in total, but we can
possibly find a better algorithms in future. In our implementation we compute
discrepancy together with finding F , so we can abort the search whenever the

134 Aleš Keprt

partial discrepancy is higher than the so far best solution. This way we get some
speedup which could be made yet higher by pre-sorting rows of A by the dis-
crepancies caused by particular rows, etc. Exploration of these areas isn’t very
important, because the possible speedup is quite scanty.

Note that in this place we can also focus to positive or negative discrepancy
exclusively. It can be done using boolean algebra without any significant speed
penalties.

5 Parallel implementation

The bind-search algorithm (including the optimized version presented above)
can exploit the power of parallel computers (see [9]). We used PVM interface
(Parallel Virtual Machine, see [4]) which is based on sending messages. The BFA
blind search algorithm is very suitable for this kind of parallelism, because we
just need to find a smart way of splitting the space of possible solutions to be
checked out to a set of sub-spaces, and distribute them among available processor
in our parallel virtual machine.

We tested this method using 2 to 11 PC desktop computers on a LAN (local
area network). We managed to gain the absolute efficiency around 92%2, which
is very high compared to usual parallel programs. (The number 92% says that
it takes 92% of time to run 11 consecutive runs on the same data, compared to
a single run of the parallel version on the network of 11 computers).

6 Concept lattices

Another method of solving BFA problem is based on concept lattices. This sec-
tion gives minimum necessary introduction to concept lattices, and especially
concepts, which are the key part of the algorithm.

Definition 1 (Formal context, objects, attributes).
Triple (X, Y,R), where X and Y are sets, and R is a binary relation R ⊆ X×Y ,
is called formal context. Elements of X are called objects, and elements of
Y are called attributes. We say ”object A has attribute B”, just when A ⊆ X,
B ⊆ Y and (A,B) ∈ R. ut

Definition 2 (Derivation operators).
For subsets A ⊆ X and B ⊆ Y , we define

A↑ = {b ∈ B | ∀a ∈ A : (a, b) ∈ R}
B↓ = {a ∈ A | ∀b ∈ B : (a, b) ∈ R}

ut
2 It was measured in Linux, while Windows 2000 performed a bit worse and its per-

formance surprisingly fluctuated.

Using Blind Search and Formal Concepts for Binary Factor Analysis 135

In other words, A↑ is the set of attributes common to all objects of A, and
similarly B↓ is the set of all objects, which have all attributes of B.

Note: We just defined two operators ↑ and ↓:

↑ : P (X) → P (Y)
↓ : P (Y) → P (X)

where P (X) and P (Y) are sets of all subsets of X and Y respectively.

Definition 3 (Formal concept).
Let (X, Y,R) be a formal context. Then pair (A,B), where A ⊆ X, B ⊆ Y ,
A↑ = B and B↓ = A, is called formal concept of (X, Y,R).

Set A is called extent of (A,B), and set B is called intent of (A,B). ut

Definition 4 (Concept ordering).
Let (A1, B1) and (A2, B2) be formal concepts. Then (A1, B1) is called subconcept
of (A2, B2), just when A1 ⊆ A2 (which is equivalent to B1 ⊇ B1). We write
(A1, B1) ≤ (A2, B2). Reversely we say, that (A2, B2) is superconcept of (A1, B1).

ut

In this article we just need to know the basics of concepts and their meaning.
For more detailed, descriptive, and well understandable introduction to Formal
Concept Analysis and Concept Lattices, see [3], [11] or [13].

7 BFA using formal concepts

If we want to speed up the simple blind-search algorithm, we can try to find
some factor candidates, instead of checking out all possible bit-combinations.
The technique which can help us significantly is Formal Concept Analysis (FCA,
see [11]). FCA is based on concept lattices, but we actually work with formal
concepts only, so the theory we need is quite simple.

7.1 The strategy

We can still use some good parts of the blind-search program (matrix optimiza-
tions, optimized bitwise operations using boolean algebra, etc.), but instead of
checking out all possible bit combinations, we work with concepts as the factor
candidates. In addition, we can adopt some strategy optimizations (as discussed
above) to concepts, so the final algorithm is quite fast; its strength actually relies
on the concept-building algorithm we use.

136 Aleš Keprt

So the BFA algorithm is then as follows:

1. Compute all concepts of X. (We use a standalone program to do this.)
2. Import the list of concepts, and optimize it, so it correspond to our optimized

data matrix X. (This is simple. We just merge objects and attributes the
same way, as we merged duplicate rows and columns of X respectively.)

3. Remove all concepts with too many one’s. (The number of one’s per factor
is one of our starting constraints.)

4. Use the remaining concepts as the factor candidates, and find the best m-
element subset (according to discrepancy formulae).

This way we can find the BFA solution quite fast, compared to the blind
search algorithm. Although the algorithm described here looks quite simple3,
there is a couple of things, we must be aware of.

7.2 More details

The most important FCA consequence is that 100% correct BFA solution can
always be found among all subsets of concepts. This is very important, because
it is the main guarantee of the correctness of the concept based BFA solver.

Other important feature of FCA based concepts is that they never directly
generate any negative discrepancy. It is a direct consequence of FCA qualities,
and affects the semantic sense of the result. As we discussed above (and see also
[1]), negative discrepancy is a case when F �A gives 1 when it should be 0. From
semantic point of view, this (the negative discrepancy) is commonly unwanted
phenomenon. In consequence, the fact that there’s no negative discrepancy in
the concepts, may have negative impact on the result, but the reality is usually
right opposite. (Compare this to the quick sort phenomenon.)

The absence of negative discrepancies coming from concepts applies to A
matrix only. It doesn’t apply to F matrix, we still can use any suitable values
for it. In consequence, we always start with concepts not generating negative
discrepancy, which are semantically better, and end up with best suitable factor
scores F , which give the lowest discrepancy. So it seems to be quite good feature.

7.3 Implementation issues

It’s clear that the data matrix X is usually quite large, and makes the finding
of the formal concepts the main issue. Currently we use the standalone CL
(concept lattice) builder. It is optimized for finding concept lattices, but that’s
not right what we need. In the future, we should consider adopting some kind
of CL building algorithm directly into BFA solver. This will save a lot of time

3 Everything’s simple, when you know it.

Using Blind Search and Formal Concepts for Binary Factor Analysis 137

when working with large data sets, because we don’t need to know the concept
hierarchy.

We don’t even need to know all the formal concepts, because the starting
constraints limit the maximum number of one’s in a factor, which is directly
applicable to CL building.

8 Comparing the results and the computation times

The two algorithms presented in this article were tested on the test data suite
taken from the neural algorithm mentioned above (see [15], [7], [6], [2], [8]). We
focused to test data sets p2 and p3, which are both 100× 100 values in size, and
differs in the ones’ density. All three algorithms gave the same results, so they
all appear to be correct (from this point of view).

Table 1. Computation times

data set factors one’s time (m:s) discrepancy notes

p3.txt 5 2–4 61:36 0 375 combinations
p3.txt 5 3 0:12 0 120 combinations
p3.txt 5 1–10 0:00 0 8/10 concepts

p2.txt 2 6 11:44 743 54264 combinations
p2.txt 5 1–10 0:07 0 80/111 concepts
p2.txt 5 6–8 0:00 0 30/111 concepts

The results are shown in table 8. Data set p3 is rather simple, its factor load-
ings (particular rows of A) all have 3 one’s. The first row in the table shows that
it takes over 61 minutes to find these factors, when we search all combinations
with 2, 3 or 4 one’s per factor. If we knew that there are just 3 one’s per factor,
we can specify it as a constraint, and we get the result in just 12 seconds (see
table 1, row 2). Indeed we usually don’t know it in real situations.

Third row shows that when using formal concepts, we can find all factors in
just 0 seconds, even when we search all possible combinations with 1 to 10 one’s
per factor. You can see the concept lattice in picture 1, with factors expressively
circled.

Data set p2 is much more complex, because it is created from factors con-
taining 6 one’s each. In this case the blind-search algorithm was able to find just
2 factors. It took almost 12 minutes, and discrepancy was 743. In addition, the
two found factors are wrong, which is not a surprise according to the fact that
there are actually 5 factors, and they can’t be searched individually. It was not
possible to find more factors using blind-search algorithm. Estimated times for
computing 3 to 5 factors with the same constraints (limiting number of one’s
per factor to 6) are shown in table 8. It shows that it would take up to 3.5×109

years to find all factors. Unfortunately, we can’t afford to wait so long. . .

138 Aleš Keprt

0a

0

100o

1a

77

77o

2a

84

42o

1a

36

36o

3a

69

23o

3a

69

23o

3a

66

22o

3a

57

19o

3a

39

13o

30a

0

0o

Fig. 1. Concept lattice of p3 data set.

Table 2. Estimated computation times

data set factors one’s estimated time

p2.txt 3 6 440 days
p2.txt 4 6 65700 years
p2.txt 5 6 3.5×109 years

As you can see at the bottom of table 1, we can find all 5 factors of p2 easily
in just 7 seconds, searching among candidates containing 1 to 10 one’s. The time
can be reduced to 0 seconds once again, if we reduce searching to the range of 6
to 8 one’s per factor. You can see the concept lattice in picture 1, with factors
marked as well. As you can see, the factors are non-overlapping, i.e. they are
not connected to each other. Note that this is not a generic nature. Generally,
factors can arbitrarily overlap.

9 Conclusion

This article presented two possible algorithms for exact solving of Binary Factor
Analysis. The work on them originally started as a simple blind search algorithm
in order to check out the results of P8M of BMDP (see [1]), and the promising
neural network solver (see [15], [7], [6], [2], [8]). As the work progressed, the
theory of Concept Lattices and Concept Analysis was partially adopted into it,
and it was with an inexpectably good results. For sure, the future work will more

Using Blind Search and Formal Concepts for Binary Factor Analysis 139

2a
200

100o
3a

282

94o

3a

279

93o

3a

264

88o
4a
348

87o

3a

258

86o

3a

258

86o
4a
328

82o

4a
324

81o

4a
320

80o

4a
320

80o

4a
316

79o

4a
316

79o
5a

375

75o

4a
296

74o

4a
296

74o
5a

365

73o

5a

365

73o

4a
288

72o
5a

340

68o

5a

340

68o

7a

469

67o

5a

335

67o

5a

335

67o

5a

330

66o

5a

325

65o

6a
372

62o
8a

496

62o

6a

366

61o

6a

366

61o

5a

300

60o
6a

354

59o

7a

392

56o

8a

440
55o

6a

330
55o

9a

495

55o

7a

385
55o

7a

378

54o
6a

324

54o

8a

424
53o

6a

318

53o

8a

424
53o

7a

350

50o
7a

343

49o

8a

392

49o

9a

432

48o

8a

384

48o
9a

432

48o

7a

336

48o
7a

329

47o

8a

376

47o
8a

352

44o

7a

301

43o

8a

344

43o

8a

336

42o
10a
410

41o

9a

369

41o

9a

369

41o

8a

328

41o

9a

369

41o
10a
410

41o

8a

320

40o
9a

351

39o
9a
333

37o

8a
296

37o

11a
396

36o

8a

288

36o
9a
315

35o

12a
420

35o

12a
408

34o

9a

306

34o
12a
408

34o

10a
340

34o

9a

297

33o
9a
279

31o

9a
270

30o

10a
290

29o

9a
261

29o

12a
336

28o

10a
270

27o
12a

324

27o

13a

351

27o

10a
270

27o
10a

250
25o

12a

288

24o

10a

230
23o

11a
253

23o

10a
230

23o
12a

264

22o

13a

273

21o

13a

273

21o

13a

273

21o

13a

260
20o

13a

260
20o

10a

190
19o

11a

187

17o

11a

187

17o

12a

204

17o

12a

192
16o

16a

224
14o

13a

182

14o
16a

224
14o

15a
195

13o

13a
156

12o

16a
160

10o

14a
140

10o

15a
105

7o

15a
105

7o

16a

112
7o

13a
78

6o
30a

0
0o

Fig. 2. Concept lattice of p2 data set.

focus on the possibilities of exploiting formal concepts and concept lattices for
BFA.

References

1. BMDP (Bio-Medical Data Processing). A statistical software package. SPSS.
http://www.spss.com/

2. A.A.Frolov, A.M.Sirota, D.Húsek, I.P.Muraviev, P.A.Polyakov: Binary factoriza-
tion in Hopfield-like neural networks: Single-step approximation and computer sim-
ulations. 2003.

3. Bernhard Ganter, Rudolf Wille: Formal Concept Analysis: Mathematical Founda-
tions. Springer–Verlag, Berlin–Heidelberg–New York, 1999.

4. Al Geist et al.: PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for
Networked Parallel Computing. MIT Press, Cambridge, Massachusetts, USA, 1994.

5. Andreas Hotho, Gerd Stumme: Conceptual Clustering of Text Clusters. In Proceed-
ings of FGML Workshop, pp. 37–45. Special Interest Group of German Informatics
Society, 2002.

6. D.Húsek, A.A.Frolov, I.Muraviev, H.Řezanková, V.Snášel, P.Polyakov: Binary Fac-
torization by Neural Autoassociator. AIA Artifical Intelligence and Applications -
IASTED International Conference, Benalmádena, Málaga, Spain, 2003.

7. D.Húsek, A.A.Frolov, H.Řezanková, V.Snášel: Application of Hopfield-like Neu-
ral Networks to Nonlinear Factorization. Proceedings in Computational Statistics
Compstat 2002, Humboldt-Universitt, Berlin, Germany, 2002.

140 Aleš Keprt

8. D.Húsek, A.A.Frolov, H.Řezanková, V.Snášel, A.Keprt: O jednom neuronovém
př́ıstupu k redukci dimenze. In proceedings of Znalosti 2004, Brno, CZ, 2004. ISBN
80-248-0456-5.

9. Aleš Keprt: Paralelńı řešeńı nelineárńı booleovské faktorizace. VŠB Technical Uni-
versity, Ostrava (unpublished paper), 2003.

10. Aleš Keprt: Binary Factor Analysis and Image Compression Using Neural Net-
works. In proceedings of WOFEX 2003, Ostrava, 2003. ISBN 80-248-0106-X.

11. Christian Lindig: Introduction to Concept Analysis. Hardvard University, Cam-
bridge, Massachusetts, USA.

12. Christian Lindig: Fast Concept Analysis. Harvard University, Cambridge, Mas-
sachusetts, USA.
http://www.st.cs.uni-sb.de/~lindig/papers/fast-ca/iccs-lindig.pdf

13. Christoph Schwarzweller: Introduction to Concept Lattices. Journal Of Formalized
Mathematics, volume 10, 1998. Inst. of Computer Science, University of Bialystok.

14. Medical encyclopedia Medline Plus. A service of the U.S. National Library of
Medicine and the National Institutes of Health.
http://www.nlm.nih.gov/medlineplus/

15. A.M.Sirota, A.A.Frolov, D.Húsek: Nonlinear Factorization in Sparsely Encoded
Hopfield-like Neural Networks. ESANN European Symposium on Artifical Neural
Networks, Bruges, Belgium, 1999.

16. Karl Ueberla: Faktorenanalyse (2nd edition). Springer–Verlag, Berlin–Heidelberg–
New York, 1971. ISBN 3-540-04368-3, 0-387-04368-3.
(slovenský překlad: Alfa, Bratislava, 1974)

Finite State Automata and Image Recognition

Marian Mindek

Department of Computer Science, FEI, VŠB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

marian.mindek@vsb.cz

Finite State Automata and Image Recognition.

Marian Mindek1

1Katedra informatiky, FEI, VŠB – Technická Univerzita Ostrava, 17. listopadu 15,
708 33, Ostrava-Poruba

marian.mindek@vsb.cz

Abstract. In this paper we introduce finite automata as a tool for specification
and compression of gray-scale image. We describe, what are interests points in
pictures and idea if they can hang together with resultant finite automata.

Keywords: finite automata, interest points, image recognition

1 Introduction

Karel Culik II and Vladimir Valenta have proposed fractal-coding technique which is
based on automata theory. In their paper [1] describe a inference algorithm for
generalized finite automata and a lossy compression system for bi-level images based
on this algorithm and vector quantization. In another paper [2] describe a similar
algorithm for gray-scale image, which use a weighted finite automata (WFA). We're
issue these ideas and describe algorithm for gray-scale pictures based on simple
solution for bi-level pictures.

2 Finite automata

A digitized image of the finite resolution m x n consists of m x n pixels each of which
takes a Boolean value (1 for black, 0 for white) for bi-level image, or real value
(practically digitized to an integer value 0 and 256) for a gray-scale image.
 Here we will consider square images of resolution 2n x 2n (typically 6 ≤ n ≤ 11). In
order to facilitate the application of finite automata to image description we will
assign each pixel at 2n x 2n resolution a word of length n over the alphabet
Σ={0,1,2,3} as its address. A pixel at 2n x 2n resolution corresponds to a sub square of
size 2-n of the unit square. We choose ε as the address of the whole unit square. Its
quadrants are addressed by single digits as shown in Fig. 1 on the left. The four sub
square of the square with address w are addressed w0, w1, w2 and w3, recursively.
Address of all the sub square (pixels) of resolution 4 x 4 are shown in Fig. 1, middle.
The sub square (pixel) with address 3203 is shown on the right of Fig. 1.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 141–151, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

142 Marian Mindek

Figure 1. The addresses of the quadrants, of the sub square of resolution 4 x 4, and the sub
square specified by the string 3203.

In order to specify a black and white image of resolution 2m x 2m, we need to specify
a Boolean function Σm → {0,1}, or alternately we can specify just the set of pixels
which are black, i.e. a language L ⊆ Σm. Frequently, it is useful to consider multi-
resolution images, that is images which are simultaneously specified for all possible
resolution, usually in some compatible way. (We denote Σm the set of all words over
Σ of the length m, by Σ* the set of all words over Σ)
 In our notation a bi-level multi-resolution image is specified by a language L ⊆
Σ*, Σ={0,1,2,3}, i.e. the set of addresses of all the black squares, at any resolution.
Now, we are ready to give some examples. We assume that the reader is familiar with
the elementary facts about finite automata and regular sets, see e.g. [4].
 A finite automaton is displayed by its diagram which is directed graph whose
nodes are states, with the initial node indicated by an incoming arrow and the final
nodes by double circles. An edge labeled a from state i to state j indicates that input a
causes the transition from state i to state j. A word in the input alphabet is accepted by
the automaton if it labels a path from the initial state to the final state. The se
(language accepted by automaton A) is denoted L(A).

Example. The 2 x 2 chess-board in Fig. 2 looks the same for all resolution 2m x 2m,
m ≥ 1. For depth m, the specification is the finite set {1,2}Σm-1, the multi-resolution
specification is the regular set {1,2}Σ*. The 8 x 8 chess-board in Fig. 2 as a multi-
resolution image is described by the regular se Σ2{1,2}Σ* or by automaton A of Fig.
3.

Figure 2. 2 x 2 and 8 x 8 chess-boards.

Finite State Automata and Image Recognition 143

Figure 3. Finite automaton A defining the 8 x 8 chess-board.

Notice that here we used the fact that the regular expression Σ2{1,2}Σ* is the
concatenation of two regular expression Σ2 and {1,2}Σ*. It is easy to show that in
general if the image is described by the concatenation of two languages L=L1L2,, then
the image L is always obtained by placing copes of the image L2 into all the squares
addressed by the 4 x 4 chess-board Σ{1,2}Σ* into the squares addressed 0,1,2 and 3,
that is as concatenation of Σ and Σ{1,2}Σ*.

Our concatenation decomposition L=L1L2,, works even when language L1, is infinite
as shown by the following example.

Example. Clearly, L1= {1,2}*0 are addresses of the infinitely many squares
illustrated at the left of Fig. 4. If we place the completely black square defined by
L2=Σ* into all these squares we get the image specified by the concatenation
L1L2={1,2}*0Σ* which is the triangle shown in the middle of Fig. 4.

Figure 4. The squares specified by {1,2}*0, a triangle defined by {1,2}*0Σ*, and the
corresponding automaton.

Example. By placing the triangle L= L1L2 from the previous example into all the
squares with addresses L3={1,2,3}*0 we get the image L3L={1,2,3}*0{1,2}*0Σ*
shown at the left of Fig. 5.

 Zooming is easily implemented for images represented by regular sets. Let an
image be represented by language L. Zooming to sub square with address w, i.e.
expanding the image in square w to the whole unit square, is done as follows. We take
the left quotient of L with respect to w, that is Lw={x∈Σ | wx∈L}. This is especially
easy when L is specified by a deterministic finite automaton (DFA) A. The DFA Aw

144 Marian Mindek

accepting Lw is obtained by simply replacing the initial state of A by the state reached
by input string w.

Figure 5. The diminishing triangles defined by {1,2}*0Σ*, and the corresponding automaton.

We have just shown that a necessary condition for black and white multi-resolution
image to be represented by a regular set, is that is has only a finite number of different
sub images in all the sub squares with addresses from Σ*. We will show that this
condition is also sufficient. Therefore, images that can be perfectly (i.e. with infinite
precision) described by regular expressions (finite automata) are images of regular or
fractal character. Self-similarity is a typical property of fractals. Any image can by
approximated by a regular expression (finite automaton), however, an approximation
with a smaller error might require a larger automaton.
 Now, we will give a theoretical procedure which, given a multi-resolution image,
finds a finite automaton perfectly specifying it, if such an automaton exists.

Procedure Construct Automaton
For given image I, we denote Iw the zoomed part of I in the square addressed w. The
image represented by state number x is denoted by ux.

1. i=j=0.
2. Create state 0 and assign u0=I.
3. Assume ui=Iw. Process state i, that is for k=0,1,2,3 do:

If Iwk=uq for some atate q, then create an edge labeled k from state i to state q;
otherwise assign j=j+1, uj=Iwk ,and create an edge labeled k from state i to the
new state j,

4. if i=j, that is all states have been processed, stop;
otherwise i=i+1, go to 3.

The procedure Construct Automaton terminates if there exists an automaton that
perfectly specifies the given image and produces a deterministic automaton with the
minimal number of states. Our algorithm for gray-scale image is based on this
procedure, but it will use valuated finite automata (as like WFA) introduced in the
section 4 and only replacing black and white color to 256 color (or grayness) image
and no creating loop.
 For the image diminishing triangles in Fig. 5, the procedure constructs the
automaton shown at the right-hand side of Fig. 5. First the initial state D is created an

Finite State Automata and Image Recognition 145

processed. For 0 a new state T is created, for 1,2 and 3 a loop to itself. Then state T is
processed for 0 a new state S is created, for 1 and 2 a loop to T. There is no edge
labeled 3 coming out of T since the quadrant 3 for T (triangle) is empty. Finally the
state S (square) is processed by creating loops back to S for all 4 inputs.

3 Interest points

Follows section is based on [4]. The system for image capturing produce mostly the
images that are represented discretely by matrices of value. Each element in the
matrix expresses either the brightness or the intensities of the color components at the
corresponding image point (pixel). In order to capture the image precisely, many
pixels are usually used, which yields high volumes of data. If an image is to be
analyzed, it is often difficult or even impossible to use all this information directly.
Many systems work in such a way that they divide the process of analyzing the image
into two steps. In the first step, the important features in the images are found in a
rather „mechanical“ way. The features are then used for analyzing the image in the
second step. (Let us recall the well-known fact that this scheme need not be accepted
without exceptions. The desired result of the first step may depend on the image
content which, however, is not known at the time when the first step is carried out.)

The first step, in which the important features are found (usually without deeper
understanding the content of the image), has grown into a large and important field in
digital image processing that includes finding areas, edges, and corners. Great
attention was paid to solve the mentioned problems in the past. Despite this effort, the
research in the are does not seem to be closed. If more effective and especially more
reliable solutions were available, it could improve the overall performance of the
whole systems.

This part of work focuses on the problem of detecting the corners (points of interest,
feature points, junction points, dominant points). By the term corner, we mean the
point at which the direction of the noundary of object changes abruptly. The object is
a continuos image area with a constant (or nearly constant) brightness or color.
Alternatively, we could say that the corner is an intersection point between two or
more edge segments. Let us use Figs. 6-10 to illustrate the term more clearly. Fig. 6
depicts a very simple image containing several objects with the corners indicated in
the figure. Fig. 7 shows an example of a typical shape of function of brightness in the
neighborhood of a corner. A more complicated brightness function is depicted in Fig.
8. Fig. 9 and 10 show an artificial and real image, respectively, with the corners
indicated in them. The simplest possible type of corner depicted in Fig. 7 is called the
L-cornel. The image may also contain more complicated corners referee to as T, Y,
and X-corners. The corner depicted in Fig. 8, for example, is T-corner. Various types
of corners are depicted in Fig. 11. We remark that some authors use the term corner
only for the points at which two edges intersect. They then use the term junction or
vertex for more complicated situations. To be concise, we use the term corner in all
that cases.

146 Marian Mindek

Figure 6. A simple image counting objects (gray areas). The boundaries (solid lines) and
corners (small circles) are indicated in the image.

Figure 7. A typical shape of the surface that is defined by the function of brightness in the
neighborhood of corner (L-corner). The arrow indicates the theoretical corner point.

Figure 8. A more complicated surface of brightness (T-corner).

Finite State Automata and Image Recognition 147

Figure 9. Detected corners (white crosses) in an artificial image.

Figure 10. Detected corners in an image obtained from a CCD camera.

Figure 11. How the corners manifest themselves in real images. L-corners(a,b,c), T-corner (d),
Y-corner (e), X-corner (f).

148 Marian Mindek

Since the corners convey rich information for many applications in digital image
processing and computer vision, the problem of detecting the corners is recognized
and well known. Corner detection is often an important step in various image-
understanding and scene-reconstructing systems, in which objects are to be detected,
tracked, recognized and reconstructed. Some authors claim that the corners play the
important role in human perception, which seems probable. It also explain why the
use of corner detection may be a logical step in artificial systems too.

If a theoretical analysis is to be carried out, a certain mathematical model of corner is
usually required. We will show a widely used model of the L-corner. Let ψ(ξ) be the
unit step function defined as follows

ψ(ξ) = () 1 if ξ ≥ 0, 0 otherwise (3.1)

Consider an L-corner that is created as an intersection of two non-collinear straight
edges. Let ϕ1, ϕ2∈<0,2π) be the directions perpendicular to the edges oriented to the
side with higher brightness. We set ni=(cosϕi, sinϕi), i=1,2. Consider the image
containing a single convex corner at a point C, The brightness function, denoted by
b(X), in such an image can be described by the following equations (the term ni(X-C)
expresses the signed distance of X from the i-th edge)

b0(X) = ψ(n1 . (X - C)) ψ(n2 . (X - C)) ,
b(X) = G(X)*b0 (X) (3.2)

where * means the convolution, * denotes the dot product, and G(X) stands for the
two dimensional Gaussian filter.

The corner depicted in Fig. 7 was generated by making use of Eq- (3.1) too. For more
complex corners (T, Y, X-corners) the corresponding models can also be introduced
[4]. These, however, will not be necessary in this work.

Detecting the corners reliably and effectively in real images that are processed in
practice is a difficult problem (Fig. 10). Although many detectors usually work well
on simple test images, all the existing algorithm have problem in practical
applications if more complicated images are to be processed.

For more information about corners detection, and much more see [5].

4 Image recognition

Our algorithm is based on algorithm shown in section 2. From every node graph lead
maximum 4 edges, which they are evaluation numbers of represented image part. At
every node is storage information of average grayness in sub square represented
thereby state.

Finite State Automata and Image Recognition 149

Procedure Construct Automaton for Recognition
For given image I, we denote Iw the zoomed part of I in the square addressed w. The
image represented by state number x is denoted by ux.

1. i=j=0.
2. Create state 0 and assign u0=I. (Image represented by empty word) and define

average grayness of image I.
3. Assume ui=Iw. Process state i, that is for k=0,1,2,3 do:

If Iwk=uq (with small error) or if the image Iwk can be expressed as a part or
expanded part of the image uq for some state q, then create an edge labeled
k from state i to state q;
otherwise assign j=j+1, uj=Iwk ,and create an edge labeled k from state i to the
new state j,

4. if i=j, that is all states have been processed, stop;
otherwise i=i+1, go to 3.

The procedure Construct Automaton for Recognition terminates if there exists an
automaton that perfectly (or with small defined error) specifies the given image and
produces a deterministic automaton with the minimal number of states. The number
of state can be small reduced, or extended by changing error or do tolerance for
average grayness of image part. For reconstruct image from automata and compute a
interesting point for image recognition we propose follow recursively algorithm.

Procedure Reconstruct Image for Recognition
For given automata A, we make image Iw the zoomed part of I in the square addressed
w. The image represented by state number x is denoted by ux.

1. Assign the initial state qo to the image represented by the empty word, that is, to

the whole image I, and define i(qo)=1, t(qo)=∅(ε), the average grayness of the
image I, which we change to computed color, if we wont that.

2. Recursively, for a state q assign to square specified by a string u, consider four sub
square specified by a string u0, u1, u2, u3. Denote the image in square by Iua. If
the image is everywhere t(qo) and word has shorter then requested, assign a new
input state q that representative image specified by a input word uX where X is
denoted part of image. Otherwise, assign a new input state q(uY) where Y is a
next part of image.

3. Repeat step 3 for each state, and stop if no founded new input state, or input word
is a equal to requested.

The procedure Reconstruct Image for Recognition was stop for every automata
computed by a procedure Construct Automaton for Recognition, or other similar
algorithm.
 With previous procedure can mark the interest point for recognition. There is
many method for reflecting point. For example on Fig. 12 (for this and another
example on left is original image and on right-hand computed image) is on the left
image where lighter color is for state, that construct later (part has longest word) on

150 Marian Mindek

the right is lighter color for the state with less sub square (white color is for state, has
not sub square).

Figure 12. Reconstructed image on the left-hand with marked later state, on the right-hand with
state, has not sub square.

Figure 13. Reconstructed image with marked state.

On Fig. 13 is reconstructed image from automata which have deep 5 and compression
is not loss. Number of state is 3317 and 43 latest has not a sub square. Lighter point
on right-hand part is marked state without neighbor with same over squere. Some of
this point is correspond with interest point (corners) on right part Fig. 10. Finally on
Fig. 14 is decompressed image with error 16%, only 16 level of gray and computed
automata have 175 state (latest 8 have not sub square). White dot on middle part is
state without sub square. On right-hand is marked corners (red dot) computed by
method described in [5], many of this point correspond with automata state. For
compare on Fig. 15 is all state marked, where darkness color is newer state and white
color have latest state.

Figure 14. Reconstructed image with marked state.

Finite State Automata and Image Recognition 151

Figure 15. States of computed automata represented by color (on right-hand).

5 Conclusions

In this paper we have proposed an alternative solution for image recognition and
finding a interesting points as a corners. This method is based on finite automata
compression. The interesting property of this approach is an ability of similarity
recognition.

References

1. K. Culik II and V. Valenta. Finite automata based compression of bi-level and
Simple Color Images.

2. K. Culik II and J. Kari. Image compression Using Weighted Finite Automata, in
Fractal Image Compression: Theory a Techniques, Ed. Yuval Fisher, Springer
Verlag, pp 243-258 (1994)

3. R. Deriche and G.Giraudon, A computational approach for corner and vertex
detection, International Jurnal of Computer Vision, 10(2), 101-124 (1993)

4. J.E.Hopcroft and J.D.Ullman. Introduction to automata theory, languages and
computation. Addison-Wesley (1979).

5. E. Sojka, A New Algorithm for Direct Corner Detection in Digital Images, VŠB-
Technical University of Ostrava, Faculty of Electrical Engineering and Computer
Science, (2002)

Multi-dimensional Sparse Matrix Storage?

Jǐŕı Dvorský, Michal Krátký

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava–Poruba
{jiri.dvorsky,michal.kratky}@vsb.cz

Abstract. Large sparse matrices play important role in many modern
information retrieval methods. These methods, such as clustering, latent
semantic indexing, performs huge number of computations with such
matrices, thus their implementation should be very carefully designed.
In this paper we discuss three implementations of sparse matrices. The
first one is classical, based on lists. The second is previously published
approach based on quadrant trees. The multi-dimensional approach is
extended and usage of general multi-dimensional structure for sparse
matrix storage is introduced in this paper.

Key words: sparse matrix, multi-dimensional data structure, quadrant
tree, BUB-tree, R-tree

1 Introduction

Numerical computations represent serious problem for generations of mathemati-
cians. There were not suitable device to make the computations, only human
being. Development of computers gives to people power to perform computa-
tions, which were impossible in past. Many of these computations have matrix
character. Thus one of the first task for computers was matrix and vector com-
putations i.e. liner algebra. Although amount of memory in computers grows
very rapidly, there are still matrices that are bigger than available memory. But
many of these matrices are sparse, so that storage only non-zero values can solve
the problem. Large sparse matrices play important role in industrial computa-
tions (e.g. FEM - Finite Elements Method), in computer science (indexing of
class hierarchy [5]), and in many modern information retrieval methods. These
methods, such as clustering, latent semantic indexing, performs huge number
of computations with such matrices, thus their implementation should be very
carefully designed.

This paper is organized as follows. Section 2 describe state-of-art in sparse
matrix implementation. A previously published approach for sparse matrix stor-
age [10] based on finite automata is given in Section 3. The multi-dimensional
approach is extended and usage of general multi-dimensional structure for sparse
? This work was done under grant from the Grant Agency of Czech Republic, Prague

No.: 201/03/1318

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 152–161, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

Multi-dimensional Sparse Matrix Storage 153

matrix storage is introduced in this paper. This storage method is described in
Section 4. In Section 6 preliminary experimental results are shown. Finally, we
conclude with a summary of contributions and discussion on future work.

2 Short survey of sparse matrix storage

Let A be a sparse matrix of order n × m. The matrix A can be be efficiently
processed, if the zero elements of A are not stored. There are many methods for
storing the data (see for instance [1]). Here we will discuss Compressed Row and
Column Storage.

2.1 Compressed Row Storage (CRS)

The Compressed Row Storage (CRS) format puts the subsequent nonzeros of the
matrix rows in contiguous memory locations. Assuming we have a nonsymmetric
sparse matrix A, we create 3 vectors: one for floatingpoint numbers (val), and
the other two for integers (colind, rowptr). The val vector stores the values
of the nonzero elements of the matrix A, as they are traversed in a rowwise
fashion. The colind vector stores the column indexes of the elements in the val
vector. That is, if val(k) = ai,j then colind(k) = j. The rowptr vector stores
the locations in the val vector that start a row, that is, if val(k) = ai,j then
rowptr(i) ≤ k < rowptr(i+1). By convention, we define rowptr(n+1) = nnz + 1,
where nnz is the number of nonzeros in the matrix A. The storage savings for this
approach is significant. Instead of storing n2 elements, we need only 2nnz +n+1
storage locations.

The CRS format for this matrix is then specified by the arrays val, colind,
rowptr given in Table 1. If the matrix A is symmetric, we need only store the
upper (or lower) triangular portion of the matrix. The tradeoff is a more com-
plicated algorithm with a somewhat different pattern of data access.

2.2 Compressed Column Storage (CCS)

Analogous to Compressed Row Storage there is Compressed Column Storage
(CCS), which is also called the Harwell-Boeing sparse matrix format [6]. The
CCS format is identical to the CRS format except that the columns of A are
stored (traversed) instead of the rows. In other words, the CCS format is the
CRS format for AT .

The CCS format is specified by the 3 arrays val, rowind, colptr, where rowind

stores the row indices of each nonzero, and colptr stores the index of the elements
in val which start a column of A. The CCS format for the matrix A in equa-
tion (1) is given in Table 2.

154 Jǐŕı Dvorský, Michal Krátký

Example 1. As an example, consider the nonsymmetric matrix A defined by

A=


10000−2 0
3900 0 3
0787 0 0
3087 5 0
0809 9 13
0400 2−1

 (1)

Table 1. The CRS format for the matrix A in equation (1)

val 10 -2 3 9 3 7 8 7 3 . . . 9 13 4 2 -1

colind 1 5 1 2 6 2 3 4 1 . . . 5 6 2 5 6

rowptr 1 3 6 9 13 17 20

Table 2. The CCS format for the matrix A in equation (1)

val 10 3 3 9 7 8 4 8 8 . . . 9 2 3 13 -1

rowind 1 2 4 2 3 5 6 3 4 . . . 5 6 2 5 6

colptr 1 4 8 10 13 17 20

2.3 Properties of CRS and CCS formats

The Compressed Row and Compressed Column Storage formats are general
formats: they make absolutely no assumptions about the sparsity structure of
the matrix, and they does not store any unnecessary elements.

On the other hand, these methods effectively support only part of matrix
operations. While CRS can access any row vector in time O(1), column vector
can be selected in O(m×log2 ∆), where ∆ = rowptr(i)−rowptr(i+1) ie. number of
nonzero elements in row i. Time complexity of these operations in CCS format is
reverse. For example CRS format can effectively perform matrix - colum vector
and CCS row vector - matrix multiplication. Any other matrix operation (eg.
selection of submatrix) can be done with these formats, but time complexity
is very high. Moreover the formats can be used only in the main memory of
computer.

Aim of our work is to develop storage format for large sparse matrices. The
format should support:

Multi-dimensional Sparse Matrix Storage 155

– random access to the matrix,
– effective selection of any submatrix
– persistence of the matrix (usage of secondary memory).

3 Sparse matrices and finite automata

Culik and Valenta [4] introduced finite automata for compression of bi-level and
simple color images. A digitized image of the finite resolution m× n consists of
m × n pixels each of which takes a Boolean value (1 for black, 0 for white) for
bilevel image, or a real value (practically digitized to an integer between 0 and
256) for a grayscale image.

Sparse matrix can be viewed, in some manner, as simple color image too.
Zero element of matrix corresponds to white pixel in bi-level image and nonzero
element to black or gray-scale pixel.

Here we will consider square matrix A of order 2n × 2n (typically 13 ≤ n ≤
24). In order to facilitate the application of finite automata to matrix description
we will assign each element at 2n × 2n resolution a word of length n over the
alphabet Σ = {0, 1, 2, 3} as its address. A element of the matrix corresponds to
a subsquare of size 2−n of the unit square. We choose ε as the address of the
whole square matrix.

Its submatrices (quadrants) are addressed by single digits as shown in Fig-
ure 1(a). The four submatries of the matrix with address ω are addressed ω0,
ω1, ω2 and ω3, recursively. Addresses of all the submatrices of dimension 4× 4
are shown in Figure 1(b). The submatrix (element) with address 3203 is shown
on the right of Figure 1(c).

In order to specify a values of matrix of dimension 2n×2n, we need to specify
a function Σn → R, or alternately we can specify just the set of non-zero values,
i.e. a language L ⊆ Σn and function fA : L → R.

0

1

2

3

(a)

00 02 20 22

01 03 21 23

10 12 30 32

11 13 31 33

(b) (c)

Figure 2: The addresses of the submatrices (quadrants), of the subsmatrices of

dimension 4× 4, and the submatrix specified by the string 3203

Here we will consider square matrix M of order 2n × 2n (typically 13 ≤ n ≤
24). In order to facilitate the application of finite automata to matrix description

we will assign each element at 2n × 2n resolution a word of length n over the

alphabet Σ = {0, 1, 2, 3} as its address. A element of the matrix corresponds to

a subsquare of size 2−n of the unit square. We choose ε as the address of the

whole square matrix.

Its submatrices (quadrants) are addressed by single digits as shown in Fig.

2(a). The four submatries of the matrix with address ω are addressed ω0, ω1,

ω2 and ω3, recursively. Addresses of all the submatrices of dimension 4 × 4 are

shown in Fig. 2(b). The submatrix (element) with address 3203 is shown on the

right of Fig. 2(c).

In order to specify a values of matrix of dimension 2n×2n, we need to specify

a function Σn → R, or alternately we can specify just the set of nonzero values,

i.e. a language L ⊆ Σn and function fM : L → R.

Example 3.1
Let M be a matrix of order 8× 8.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 0

0 4 0 0 1 0 0 0

0 0 3 0 0 6 0 9

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 5 0 0

0 0 0 0 0 0 9 0

0 0 0 0 0 0 0 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4

(a)

0

1

2

3

(a)

00 02 20 22

01 03 21 23

10 12 30 32

11 13 31 33

(b) (c)

Figure 2: The addresses of the submatrices (quadrants), of the subsmatrices of

dimension 4× 4, and the submatrix specified by the string 3203

Here we will consider square matrix M of order 2n × 2n (typically 13 ≤ n ≤
24). In order to facilitate the application of finite automata to matrix description

we will assign each element at 2n × 2n resolution a word of length n over the

alphabet Σ = {0, 1, 2, 3} as its address. A element of the matrix corresponds to

a subsquare of size 2−n of the unit square. We choose ε as the address of the

whole square matrix.

Its submatrices (quadrants) are addressed by single digits as shown in Fig.

2(a). The four submatries of the matrix with address ω are addressed ω0, ω1,

ω2 and ω3, recursively. Addresses of all the submatrices of dimension 4 × 4 are

shown in Fig. 2(b). The submatrix (element) with address 3203 is shown on the

right of Fig. 2(c).

In order to specify a values of matrix of dimension 2n×2n, we need to specify

a function Σn → R, or alternately we can specify just the set of nonzero values,

i.e. a language L ⊆ Σn and function fM : L → R.

Example 3.1
Let M be a matrix of order 8× 8.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 0

0 4 0 0 1 0 0 0

0 0 3 0 0 6 0 9

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 5 0 0

0 0 0 0 0 0 9 0

0 0 0 0 0 0 0 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4

(b)

0

1

2

3

(a)

00 02 20 22

01 03 21 23

10 12 30 32

11 13 31 33

(b) (c)

Figure 2: The addresses of the submatrices (quadrants), of the subsmatrices of

dimension 4× 4, and the submatrix specified by the string 3203

Here we will consider square matrix M of order 2n × 2n (typically 13 ≤ n ≤
24). In order to facilitate the application of finite automata to matrix description

we will assign each element at 2n × 2n resolution a word of length n over the

alphabet Σ = {0, 1, 2, 3} as its address. A element of the matrix corresponds to

a subsquare of size 2−n of the unit square. We choose ε as the address of the

whole square matrix.

Its submatrices (quadrants) are addressed by single digits as shown in Fig.

2(a). The four submatries of the matrix with address ω are addressed ω0, ω1,

ω2 and ω3, recursively. Addresses of all the submatrices of dimension 4 × 4 are

shown in Fig. 2(b). The submatrix (element) with address 3203 is shown on the

right of Fig. 2(c).

In order to specify a values of matrix of dimension 2n×2n, we need to specify

a function Σn → R, or alternately we can specify just the set of nonzero values,

i.e. a language L ⊆ Σn and function fM : L → R.

Example 3.1
Let M be a matrix of order 8× 8.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 0

0 4 0 0 1 0 0 0

0 0 3 0 0 6 0 9

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 5 0 0

0 0 0 0 0 0 9 0

0 0 0 0 0 0 0 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4

(c)

Fig. 1. The addresses of the submatrices (quadrants), of the subsmatrices of
dimension 4× 4, and the submatrix specified by the string 3203

156 Jǐŕı Dvorský, Michal Krátký

This kind of storage system allows direct access to stored matrix. Each of
elements can be accessed independently to previous accesses and access to each
element has same, constant time complexity. Let A be a matrix of order 2n×2n.
Then time complexity of access is bounded by O(log2 n). For detail information
see [10].

Example 2. Let A be a matrix of order 8× 8.

A =



20000000
04001000
00300609
00010000
00001000
00000500
00000090
00000007


The language L ⊆ Σ3 is now

L = {111, 112, 121, 122, 211, 212, 221, 222, 303, 310, 323}.

Then function fA will have following values (see Table 3).

Table 3. Positions in matrix A and corresponding values – function fA

x ∈ L fA(x) x ∈ L fA(x)

111 2 221 9
112 4 222 7
121 3 303 6
122 1 310 1
211 1 323 9
212 5

Now automaton that computes function fA can be constructed (see Fig-
ure 2). The automaton is 4-ary tree, where values are stored only at leaves. This
knowledge leads to multi-dimensional sparse matrix storage and usage of the
quadrant tree.

4 Multi-dimensional sparse matrix storage

In order to a general multi-dimensional data structure can be used for the sparse
matrix storage, the following definitions must be introduced.

Multi-dimensional Sparse Matrix Storage 157

x ∈ L fM (x) x ∈ L fM (x)

111 2 221 9

112 4 222 7

121 3 303 6

122 1 310 1

211 1 323 9

212 5

Table 1: Positions in matrix M and corresponding values – function fM

1
2

2

1 2

4

3

9

1
2

3 1

1

2

3

1
2

1

1 2

5

1
2

9 7

3

6

0
1

2

0

1

Figure 3: Automaton for matrix M

The language L ⊆ Σ3 is now

L = {111, 112, 121, 122, 211, 212, 221, 222, 303, 310, 323}.
Then function fM will have following values (see table 1).

Now automaton that computes function fM cn be constructed (see Fig. 3).

The automaton is four order tree, where values are stored only at leaves.

If matrix M is considered as read-only the automaton can be reduced into

compact form (see Fig. 4).

The global stiffness matrix is assembled from large number of local stiffnes

matrices that have the same structure as it was mentioned in section 2. From the

point of view of finite automaton dividing of whole matrix can be terminated at

the level of local matrices. We need to specify function L → RnDOF,nDOF

This kind of storage system allows direct access to stored matrix. Each of

elements can be accessed independetly to previous accesses and access to each

element has same, constant time complexity. Let A be a matrix of order 2n× 2n.

Then time complexity of access is boudned by O(log2 n).

5

Fig. 2. Automaton for matrix A

Definition 1 (A matrix as tuples of 2-dimensional space).

Let A be a matrix of order n×m and ΩMT = DN ×DM be an 2-dimensional
discrete space (called matrix space), where DN = {0, 1, . . . , 2lN − 1}, DM =
{0, 1, . . . , 2lM − 1}. It holds n ≤ 2lN − 1, m ≤ 2lM − 1. For all ai,j ∈ A there is
mapping α : A → ΩMT such that α(ai,j) = (i, j).

Fig. 3. A matrix as tuples of 2-dimensional space.

The mapping α transforms elements of matrix A to 2-dimensional space
ΩMT . The matrix space can be seen in Figure 3. The matrix space seems to
be 3-dimensional. However, indices of matrix elements have to be indexed. The
value of element is stored as non-index data. Consequently, only two coordinates
must be indexed, so that the matrix space is only 2-dimensional.

4.1 Retrieving of a sub-matrix

A sub-matrix is retrieved using the range query.

Definition 2 (Range query).

158 Jǐŕı Dvorský, Michal Krátký

Let Ω be an n-dimensional discrete space, Ω = Dn, D = {0, 1, . . . , 2lD − 1}, and
points (tuples) T 1, T 2, . . . , Tm ∈ Ω. T i = (t1, t2, . . . , tn), lD is the chosen length
of a binary representation of a number ti from domain D. The range query RQ
is defined by a query hyper box (query window) QB which is determined by two
points QL = (ql1, . . . , qln) and QH = (qh1, . . . , qhn), QL and QH ∈ Ω, qli and
qhi ∈ D, where ∀i ∈ {1, . . . , n} : qli ≤ qhi. This range query retrieves all points
T j = (t1, t2, . . . , tn) in the set T 1, T 2, . . . , Tm such as ∀i : qli ≤ ti ≤ qhi.

Let be Ai1j1i2j2 a sub-matrix of matrix A. Sub-matrix is retrieved from the
matrix space using the range query (i1, j1) : (i2, j2). A column vector and row
vector are special kind of the sub-matrix. Consequently, the column vector cAi ,
1 ≤ i ≤ m, is retrieved using the range query (1, i) : (n, i), the row vector rAj , 1 ≤
j ≤ n, is retrieved using the range query (j, 1) : (j, m). Such range query is called
the narrow range query. Next Section describes some multi-dimensional data
structures, especially a multi-dimensional data structure for efficient processing
of the narrow-range query.

5 Multi-dimensional data structures

Due to the fact that a matrix is represented as a set of points in 2-dimensional
space in the multi-dimensional approach, we use multi-dimensional data struc-
tures for their indexing, e.g., paged and balanced multi-dimensional data struc-
tures like UB-tree [2], BUB-tree [7], R-tree [8], and R∗-tree [3].

(B)UB-tree data structure applies Z-addresses (Z-ordering) [2] for mapping
a multi-dimensional space into single-dimensional. Intervals on Z-curve (which
is defined by this ordering) are called Z-regions. (B)UB-tree stores points of each
Z-regions on one disk page (tree leaf) and a hierarchy of Z-regions forms an index
(inner nodes of tree). In Figure 4(a) we see two-dimensional space with 8 points
(tuples) and Z-regions dividing the space. Figure 4(b) denotes schematically a
BUB-tree indexing this space.

In the case of indexing point data, an R-tree and its variants cluster points
into minimal bounding boxes (MBBs). Leafs contain indexed points, super-leaf
nodes include definition of MBBs and the other inner nodes contain hierarchy
of MBBs. (B)UB-tree and R-tree support point and range queries [11], which
are used in the multi-dimensional approach to sparse matrix storage. The range
query is processed by iterating through the tree and filtering of irrelevant tree
nodes, i.e. (super)Z-regions in the case of (B)UB-tree and MBBs in the case of
R-tree, which do not intersect a query box.

The range query often used in the multi-dimensional approach is called nar-
row range query. Points defining a query box have got some coordinates the
same, whereas the size of interval defined by other coordinates near to the size
of space’s domain. Notice, regions intersecting a query box during processing of
a range query are called intersect regions and regions containing at least one
point of the query box are called relevant regions. We denote their number by

Multi-dimensional Sparse Matrix Storage 159

(a) (b)

Fig. 4. (a) 2-dimensional space 8 × 8 with points t1 – t8. These points define
partitioning of the space to Z-regions [0:2],[7:11],[25:30],[57:62] by capacity of
BUB-tree’s nodes 2. (b) BUB-tree indexing this space.

T

B
l
:B

h
 S

indexed
tuples

index – hierarchy
of MBBs and
n-dimensional

signatures

B
l
:B

h
 S...

B
l
:B

h
 S B

l
:B

h
 S... B

l
:B

h
 S B

l
:B

h
 S...

T... T T......

...

T T... T T.........

... ...

n-dimensional
signature of tuples

in the region

super-region n-dimensional signature of
tuples in the super-region

region
(MBB)

 tuples in the region

...

Fig. 5. A structure of the Signature R-Tree.

NI and NR, respectively. Many irrelevant regions are searched during processing
of the narrow range query in multi-dimensional data structures. Consequently,
a ratio of relevant and intersect regions, so called relevance ratio cR � 1 with
an increasing dimension of indexed space. In [9] Signature R-tree data structure
was introduced. This data structure enables efficient processing of the narow
range query. Items of inner nodes contain a definition of (super)region and n-
dimensional signature of tuples included in the (super)region (see Figure 5).
A superposition of tuples of coordinates by operation OR creates the signature.
Operation AND is used for better filtration of irrelevant regions during process-
ing of the narrow range query. Other multi-dimensional data structures (e.g.
(B)UB-tree) are possible to extend in the same way.

160 Jǐŕı Dvorský, Michal Krátký

6 Experimental results

In our experiments1, we used a randomly generated sparse matrix 107×106. The
matrix contains 5× 106 of non-zero values. The BUB-tree was used for our test.
The index size is 80MB (compare to 38MB of CRS matrix storage). In Table 4
a characterization of the BUB-tree for storage of the matrix is shown.

Table 4. A characterization of BUB-tree used for sparse matrix storage

Dimension 2 Utilisation 68.1%
lN , lM 24 DN , DM 224 − 1
Number of tuples 5,244,771
Number of inner nodes 20,351 Number of leaf nodes 249,297
Inner node capacity 19 Leaf node capacity 30
Item size 12B Node size 308 B

In the test, randomly generated column and row vectors were retrieved from
the BUB-tree. The average number of result tuples (items of a sub-matrix),
searched leaf nodes (Z-regions), disk access cost (DAC), and time were measured.
A ratio of the searched leaf nodes and all leaf nodes is shown in square brackets.
Table 4 shows the result of our tests.

Table 5. Experimental results of the multi-dimensional sparse matrix storage

Number of Number of searched DAC Time
result tuples leaf nodes [s]

199 101 [0.041%] 285 0.04

We see that very small part of the index was searched and time of searching
was low as well. Experiments prove the approach can serve as efficient sparse
matrix storage. The index size is lager than in the case of classical CRS or
CCR sparse-matrix storage, but a arbitrary sub-matrix may be retrieved in our
approach.

7 Conclusion

In this contribution the multi-dimensional approach to indexing sparse matrix
was described. Previously published approach [10] using the quad tree was de-

1 The experiments were executed on an Intel Pentium r4 2.4Ghz, 512MB DDR333,
under Windows XP.

Multi-dimensional Sparse Matrix Storage 161

scribed and a general multi-dimensional approach was introduced. Our exper-
iments prove the approach can serve as efficient sparse matrix storage. In our
future work, we would like further to test our approach over a real matrix and
to compare the approach with other sparse matrix storage approaches.

References

1. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. V. der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia,
PA, 1994.

2. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts.
In Proceedings of WWCA’97, Tsukuba, Japan, 1997.

3. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient
and robust access method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, pages 322–331.

4. K. Culik and V.Valenta. Finite automata based compression of bi-level and simple
color images. In Computer and Graphics, volume 21, pages 61–68, 1997.

5. P. Dencker, K. Drre, and J. Heuft. Optimization of parser tables for portable
compilers. ACM Transactions on Programming Languages and Systems, 6(6):546–
572, 1984.

6. I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM
Trans. Math. Softw., 15(1):1–14, 1989.

7. R. Fenk. The BUB-Tree. In Proceedings of 28rd VLDB International Conference
on VLDB, 2002.

8. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of ACM SIGMOD 1984, Annual Meeting, Boston, USA, pages 47–57.
ACM Press, June 1984.

9. M. Krátký, V. Snášel, J. Pokorný, P. Zezula, and T. Skopal. Efficient Processing
of Narrow Range Queries in the R-Tree. In Submitten at VLDB 2004, 2003.

10. V. Snášel, J. Dvorský, and V. Vondrák. Random access storage system for sparse
matrices. In G. Andrejková and R. Lencses, editors, Proccedings of ITAT 2002,
Brdo, High Fatra, Slovakia, 2002.

11. C. Yu. High-Dimensional Indexing. Springer–Verlag, LNCS 2341, 2002.

Design of Structure and Realisation of Game
Rules Database of Robot-Soccer Game

Bohumil Horák1 and Václav Snášel2

1Department of Measurement and Control, FEI, VŠB - Technical University of
Ostrava, 17.listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

2Department of Computer Science, FEI, VŠB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

{bohumil.horak, vaclav.snasel}@vsb.cz

Abstract. In this paper we developed system for coordinatization the
robot-soccer game. This coordinatization we want to use for strategy
extraction. The robot soccer is bimilar ant-like systems, which take ad-
vantage of agents’ situatedness to reduce or eliminate the need for cen-
tralized control or global knowledge. This reduces the need for complexity
of individuals and leads to robust, scalable systems. Such insect-inspired
situated approaches have proven effective both for task performance and
task allocation. The desire for general, principled techniques for situated
interaction has led us to study the exploitation of abstract situated-
ness – situatedness in non-physical environments. The port-arbitrated
behavior-based control approach provides a well-structured abstract be-
havior space in which agents can participate in situated interaction. We
focus on the problem of role assumption, distributed task allocation in
which each agent selects its own task-performing role. This paper details
our discretization the robot-soccer game.

Keywords: mobile robotics, multi-robot coordination, behavior-based control,

group behavior

1 Introduction

The typical example of distributed control system with embedded systems is the
proposal of control system of mobile robots for the task robot-soccer game. The
selection of this game for laboratory task was the motivation both for students
and for the teachers as well because this was a question of proposal and real-
ization of complicated multidisciplinary task which can be divided into a whole
number of partial tasks (the evaluation of visual information and processing of
image, the hardware and software implementation of distributed control sys-
tem, wireless data transmission and processing of informations and the control
of robots). For sophistication of the own (and opponent) game and strategy is
necessary her description. With it is related design of structure of game-rules-
database of robot-soccer game.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 162–170, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

Design of Structure & Realisation of Game Rules DB of Robot-Soccer Game 163

Ant-like systems take advantage of individual agents’ situatedness to reduce
or eliminate the need for centralized control or global knowledge. This reduces
the need for complexity (of sensing, computation, and communication) of in-
dividuals and leads to robust, scalable systems. Such insect-inspired situated
approaches have proven effective both for task performance see [4,12,5].

The game system is represented by up to 11 own and 11 opponent au-
tonomous mobile robots at game site up to 200x100cm. The core of mobile
robot is digital signal processor Motorola DSP56F805. PWM outputs of signal
processor are connected to pair of power H-bridge circuits, which supply pair of
DC drives with integrated pulse encoders. For communication with the higher
level of control system is used the communication module with the control IC
Nordic nRF2401. The higher level of control system is represented by personal
computer. In the PC entered the signal, which represent the picture of scene with
robots scanned with above the playground placed CCD camera. At the output is
connected radio line which transmits commands for all own mobile robots. The
software part of distributed control system is realized by decision making and
executive agents. The algorithm of the agents cooperation was proposed with
the control agent on higher level. The algorithms for agents realized in robots
are the same. The control agent determines the required behaviour of the whole
control system as the response on dynamic behaviour of robots and on the own
global strategy of the task and knowledge about last situations which are saved
in the database of the scene. The agent on higher level controls the other agents
[11]. The separate task is the transformation which converts the digital picture
into the object coordinates (robots and ball in the task of robots soccer) which
are saved in the database of the scene [1]. This database is common for all agents
in the control system. Each agent sees actual the whole scene and is capable to
control its behaviour in a qualified way. The basic characteristic of control algo-
rithm of subordinate agent is the independence on number of decision making
agents for robots on the game site. Both agent teams (own and opponent) have
common goal, to score the goal and not to have any. For successful assertion of
own game strategy is very important the extraction and knowledge of opponent
game strategy. From object coordinates of samples of picture scene and game-
rules-database create strategy extraction algorithms the own (and opponent)
game strategy database.

2 Game site

Own and opponent robots created by own movements very dynamic changed en-
vironment. This environment is scanned by CCD camera with sample frequency
(in present time) up to 75 fps. Picture sample before processing is demonstrated
at Fig.1.

In our approach, a game is coded as a game matrix. We can extract vector
Vt in time t from game:

164 Bohumil Horák, Václav Snášel

Fig. 1. Picture sample from CCD camera signal before processing.

Vt = {t,X1;Y1;α1;X2;Y2;α2;X3;Y3;α3;X100;Y100;α100;X200;Y200;
α200;X300;Y300;α300;X30;Y30;α30}

Where are:

Xi is x coordinate of own robot i
Yi is y coordinate of own robot i
αi is angle of orientation of own robot i

Xi00 is x coordinate of opponent robot i
Yi00 is y coordinate of opponent robot i
αi00 is angle of orientation of opponent robot i

X30 is x coordinate of ball
Y30 is y coordinate of ball
α30 is angle of motion α ball

A game matrix GM we can define by following way:
GM = (V T

0 , V T
1 , . . . , V T

n−1, V
T
n)

The game matrix GM is very wide matrix (up to 420000 vectors - processed
samples in time of game). This matrix inputs in the proper extraction of game
strategy process by using the latent semantic analysis (LSA).

LSA is a statistical model of word usage that permits comparisons of the se-
mantic similarity between pieces of textual information. Was originally designed

Design of Structure & Realisation of Game Rules DB of Robot-Soccer Game 165

to improve the effectiveness of information retrieval methods by performing re-
trieval based on the derived ”semantic” content of words in a query as opposed
to performing direct word matching. LSA was used for extraction semantic in
many other situations see [2,3,4].

In this paper, LSA is used as a tool for strategy extraction problem. In our
approach, a game is coded as a game matrix.

The results in [2,3,8,9,6] indicate that LSA can perform matching based on
semantic content. The game matrix we analyze by LSA and obtain semantic
information about game. This semantic information we can interpret as strategy.
This strategy is use for for agent management see [10,7].

Fig. 2. Picture sample with transposed marked positions.

Extent of real position-game-matrix is wide (1024x768 pts, this is up to 787
kB). Very important is sequentially data reduction without information loss.
The presented idea of game site description is similar to board game - chess.
Thus be created virtual grid covered the same game site. Dimensions of grid
are calculated from technical parameters of CCD camera and velocity of mobile
robots. This step allows position data reduction without information loss up to
200-times (in dependence on grid dimensions). Reduction of data volume allows
increase computation speed and advantageous motion description.

3 Virtual grid

The virtual grid allows reduction of data volume for game-strategy purposes
and easy motion description. Description system with virtual grid works parallel

166 Bohumil Horák, Václav Snášel

Fig. 3. Picture sample with (similar to chess) transposed grid.

with real coordinate system for exact sensing of subject position. Data volume of
description with primary and secondary virtual grid is dependent on frequency
of samples of used CCD camera (25-75 fps) and velocity of movement of mobile
robot (robot-soccer player) at game site (up to 2,5m/s). In constituent discrete
frame samples is possible study of movements of own (and opponent) robots.
Distance between two points, which drive the robot at two in sequence frames,
determine dimensions of primary virtual grid. To calculate with velocity of move-
ments of robot, was primary virtual grid divided to more (2, 4, 8, . . .) parts. So
was created secondary virtual grid (in next SVG).

Note: Primary virtual grid has, with maximal robot velocity 2,5m/s and
frame samples frequency of CCD camera 25Hz, a dimension 10 x 10cm. By
other velocity of robot and other frame samples frequency will be dimensions of
primary virtual grid others.

Description of robot position and game movements If is for description of
movements and velocity of robot in one frame sample used the secondary virtual
grid, is afterwards possible alphanumeric description of robot and his direction
and velocity of movement. Description is illustrated at Fig.4.

Note: Alphanumeric description of position of robot in given picture sample,
his velocity of movement and direction of movement considering to previous pic-
ture sample by calculation or for prediction for next progression of game situation
is possible describe by symbol (alphabetic) of player e.g. attacker (A), goalkeeper
(G) and defender (D), by symbol (numeric) sequence of player function in team
(1, 2, . . .), by symbol (alphanumeric) his current position in secondary virtual
grid e.g. (HA24) and by symbol (alphanumeric) in case of strategic planning
of his next direction and velocity of movement (HC24). Situation illustrates
Fig.5. Robot goalkeeper No. 1 state at position CHA24 in secondary virtual

Design of Structure & Realisation of Game Rules DB of Robot-Soccer Game 167

Fig. 4. Illustration of robot position description in SVG 1
4 (Goalkeeper at posi-

tion [CHA,24]).

grid (with division 4SVG=1PVG). Is planned strategic expedient movement (at
HC24) with direction y-axis with velocity vT (vT = 3/4 . vmax). Alphanumeric
description of such movement is [G1HA24HC24].

4 Strategic game movements

Strategic game movements each of robotic players can be dynamic changed and
unreeled from their function during game progress and their momentary position
at game site, position of opponents and ball. Game progress can be divided to
three ground playing classes (in next GPC) and two ground playing situations
(in next GPS):

– GPC of game opening (GPCO)
– GPC of movements in game site (GPCS)
– GPC of game end (GPCE)
– GPS attack (GPSA)
– GPS defence (GPSD)

Offensive: Interaction of simple behaviors causes the robots to fall into a
V-formation when the ball is in motion roughly towards the opponent’s goal.
Perceptual properties limit the formation to three robots.

Defensive: When the ball is not moving roughly towards the opponent’s
goal, the robots cluster around it to form an effective barrier and be in good

168 Bohumil Horák, Václav Snášel

Fig. 5. Illustration of robot game movements with description [G1HA24HC24].

positions for recovery. to use similar means of assuming effcient roles. Here we
discuss a system we have implemented for robotic soccer - which is also able to
use local interactions to determine globally efficient roles.

Each GPC have own different movement rules. Classes GPCO and GPCE
consists of finite number of movement variants. These come out from defined
positions of players and ball at game site and defined direction of ball movement.
Class GPCS have infinite number of movement variants, limited in current game
situation (GPS) by ground game rules and game situation supported by own
global game strategy (in next GGS).

Example of limitation of robot movements under the influence of his function
during the game process. Example is presented via robotic player in goalkeeper
function. Charge of goalkeeper is preventing the opponent to score a goal. His
movements are, with only for minor exceptions, limited at own goalmouth near
of goal line. Preferred movements are in goal line direction. Preference of these
movements comes from idea of GGS, when goalkeeper prevent to score of goal
so, that build own new position (near goal line) at line between the central goal
point and ball (their point - centre of gravity and/or ball last movement vector).

Preference of other movement directions be created with GPSA, when move-
ments of goalkeeper must secured kick away the ball from own defence zone.
Situation illustrates Fig.5.

Design of Structure & Realisation of Game Rules DB of Robot-Soccer Game 169

5 Conclusion

The algorithm of the control system should be proposed in a such way so that
it would ensure the requirements for immediate response of control, so that the
system with robots would be controlled in real-time. That is why, it is very
important so that the algorithm for critical speed would be optimized. The
system response should be shorter than time between two frames from camera.
In the event that this limit is exceeded, the frame is cut out and the control
quality is decreased. The main possibilities of the algorithm adjustment are as
follows:

– Dynamic control in control and decision module of control agent.
– The control and decision modules and communication protocol of the deci-

sion agents.
– Strategy of planning in control model of the action agent.
– Extraction of opponent game strategy and using of extraction results for

decision rules generation as a part of rules decision database of decision
agent

It is necessary to know, that the system response should take a shorter time
than the time between the frames from the PAL movie camera, e.g. 20 ms. If
this limit is exceeded, the frame is dropped and a control quality decreases.
Parallel proceed extraction algorithms of own (and opponent) game strategy
collaborated with game-rules-database allows add and refine informations of own
(and opponent) game strategy. This way is expand the rule database of decision
agent for decision making within the bounds of own game strategy given by
control agent.

References

1. Bernat́ık,R., Horák,B., Kovář,P. (2001): Quick image recognize algorithms. In: Pro-
ceeding International workshop Robot-Multi-Agent-Systems R-MAS 2001. VSB
Ostrava 2001, Czech Republic, ISBN 80-7078-901-8 p.53-58.

2. Berry, M. W., Browne, M. (1999): Understanding Search Engines: Mathematical
Modeling and Text Retrieval. SIAM Book Series: Software, Environments, and
Tools, (June 1999), ISBN: 0-89871-437-0.

3. Berry, M. W. (Ed.) (2003): Survey of Text Mining: Clustering Classification, and
Retrieval. Springer Verlag 2003.

4. J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L.
Cretien. The dynamics of collective sorting: Robot-like ants and ant-like robots.
In Proceedings of the First International Conference on Simulation of Adaptive
Behavior: From Animals to Animats, pages 356–363. MIT Press, 1991

5. O. Holland and C. Melhuish. Stigmergy, self-organisation, and sorting in collective
robotics. Artiffcial Life, 5:2:173–202, 2000.

6. Húsek D., Frolov A. A., Řezanková H., Snášel V. (2002): Application of Hopfield-
like Neural Networks to Nonlinear Factorization. COMPSTAT 2002, Proceedings
in Computational Statistics (Eds.: Hrdle W., Rnz B.), 177-182. Physica-Verlag,
Heidelberg 2002. ISBN 3-7908-1517-9.

170 Bohumil Horák, Václav Snášel

7. M.Obitko, Snášel V. (2004):Ontology Repository in Multi-Agent System. IASTED,
International Conference on ARTIFICIAL INTELLIGENCE AND APPLICA-
TIONS (AIA 2004), Innsbruck, Austria.

8. Praks P., Dvorský J., Snášel V.(2003): Latent Semantic Indexing for Image Re-
trieval Systems. SIAM Conference on Applied Linear Algebra (LA03) The College
of William and Mary, Williamsburg, U.S.A. 2003.

9. Praks P., Dvorský J., Snášel V., Černohorský J. (2003): On SVD-free Latent Se-
mantic Indexing for Image Retrieval for application in a hard industrial environ-
ment. IEEE International Conference on Industrial Technology - ICIT’03, Maribor
2003.

10. J.Smid, M.Obitko, Snášel V. (2004): Communicating Agents and Property-Based
Types versus Objects. Sofsem MatfyzPress 2004.

11. Srovnal V., Pavliska,A. (2002): Robot Control Using UML and Multi-agent System.
In: Proceeding 6th World Multiconference SCI 2002. Orlando, Florida, USA, ISBN
980-07-8150-1, p.306-311.

12. B.B.Werger and M.J.Matarič. From Insect to Internet: Situated Control for Net-
worked Robot Teams. Annals of Mathematics and Artiffcial Intelligence (2000).

Author Index

Andrt, Marek, 96

Bartoň, Stanislav, 7
Bělohlávek, Radim, 63

Dvorský, Jǐŕı, 117, 152

Gajdoš, Petr, 74
Gurský, Peter, 38

Horák, Bohumil, 162

Kavalec, Martin, 84
Keprt, Aleš, 128
Kolovrat, Michal, 18
Krátký, Michal, 96, 152

Labský, Martin, 84

Loupal, Pavel, 106

Martinovič, Jan, 117
Mindek, Marian, 141
Moravec, Pavel, 18

Sklenář, Vladimı́r, 63
Skopal, Tomáš, 27
Snášel, Václav, 18, 74, 117, 162
Svátek, Vojtěch, 84

Šváb, Ondřej, 84

Toman, Kamil, 51

Valenta, Michal, 106

Zacpal, Jǐŕı, 63

	Title Page
	Preface
	Table of Contents
	Designing Indexing Structure for Discovering Relationships in RDF Graphs
	Finite State Automata and Image Recognition
	INEX -- a Broadly Accepted Data Set for XML Database Processing?
	LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval
	Multi-dimensional Sparse Matrix Storage
	On Efficient Part-match Querying of XML Data
	Pivoting M-tree: A Metric Access Method for Efficient Similarity Search
	Querying the RDF: Small Case Study in the Bicycle Sale Domain
	Query Expansion and Evolution of Topic in Information Retrieval Systems
	Storage and Retrieval of First Order Logic Terms in a Database
	Storing XML Data In a Native Repository
	Concept Lattices Constrained by Attribute Dependencies
	Concepts Valuation by Conjugate Moebius Inverse
	Design of Structure and Realisation of Game Rules Database of Robot-Soccer Game
	Using Blind Search and Formal Concepts for Binary Factor Analysis

	Author index
	Stanislav Barton
	Radim Belohlávek, Vladimír Sklenár, Jirí Zacpal
	Jirí Dvorský, Jan Martinovic, Václav Snášel
	Jirí Dvorský, Michal Krátký
	Petr Gajdoš, Václav Snášel
	Peter Gurský
	Bohumil Horák, Václav Snášel
	Aleš Keprt
	Michal Krátký, Marek Andrt
	Pavel Loupal, Michal Valenta
	Marian Mindek
	Pavel Moravec, Michal Kolovrat, Václav Snášel
	Tomáš Skopal
	Ondrej Šváb, Vojtech Svátek, Martin Kavalec, and Martin Labský
	Kamil Toman

