
VŠB–TU Ostrava, FEECS, Department of Computer Science
Czech Technical University in Prague, FEE, Dept. of Computer Science & Eng.

Charles University in Prague, MFF, Department of Software Engineering
Czech Society for Cybernetics and Informatics

Proceedings of the Dateso 2006 Workshop

http://www.cs.vsb.cz/dateso/2006/
http://www.ceur-ws.org/Vol-176/

Sc.

Group

AMPHORA RESEARCH GROUP

A GR

Amphor

April 26 – 28, 2006
Desná – Černá Ř́ıčka

http://www.cs.vsb.cz/dateso/2006/
http://www.ceur-ws.org/Vol-176/

DATESO 2006
c© V. Snášel, K. Richta, J. Pokorný, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Technical editor:
Pavel Moravec, pavel.moravec@vsb.cz

VŠB – Technical University of Ostrava,
Faculty of Electrical Engineering and Computer Science,
Department of Computer Science

Page count: 132
Impression: 200
Edition: 1st

First published: 2006

This proceedings was typeset by PDFLATEX.
Cover design by Pavel Moravec (pavel.moravec@vsb.cz) and Tomáš Skopal.
Printed and bound in Ostrava, Czech Republic by TiskServis Jǐŕı Pustina.

Published by VŠB – Technical University of Ostrava,

Faculty of Electrical Engineering and Computer Science,

Department of Computer Science

Preface

DATESO 2006, the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming,
was held on April 26 – 28, 2006 in Desná – Černá Ř́ıčka. This was the 6th an-
nual workshop organized by VŠB-Technical University Ostrava, Department of
Computer Science, FEL ČVUT Praha, Department of Computer Science and
Engineering and MFF UK Praha, Department of Software Engineering. The
DATESO aims for strengthening the connection between this various areas of
informatics. The proceedings of DATESO 2006 are also available at DATESO
Web site http://www.cs.vsb.cz/dateso/2006/
http://www.ceur-ws.org/Vol-176/.

The Program Committee selected 12 papers (11 full papers and 1 poster)
from 14 submissions, based on two independent reviews.

We wish to express our sincere thanks to all the authors who submit-
ted papers, the members of the Program Committee, who reviewed them
on the basis of originality, technical quality, and presentation. We are also
thankful to the Organizing Committee and Amphora Research Group (ARG,
http://www.cs.vsb.cz/arg/) for preparation of workshop and its proceedings.

March, 2006 V. Snášel, K. Richta, J. Pokorný (Eds.)

http://www.cs.vsb.cz/dateso/2006/
http://www.ceur-ws.org/Vol-176/
http://www.cs.vsb.cz/arg/

Program Committee

Václav Snášel (chair) VŠB-Technical University of Ostrava, Ostrava
Karel Richta Czech Technical University, Prague
Jaroslav Pokorný Charles University, Prague
Vojtěch Svátek University of Economics, Prague
Peter Vojtáš Charles University, Prague

Organizing Committee

Pavel Moravec VŠB-Technical University of Ostrava
Jan Martinovič VŠB-Technical University of Ostrava
Yveta Geletičová VŠB-Technical University of Ostrava

Table of Contents

Full Papers

Using Object And Object-Oriented Technologies for XML-native
Database Systems . 1
David Toth, Michal Valenta

Compression of a Dictionary . 11
Jan Lánský, Michal Žemlička

Syllable-based Compression for XML Documents . 21
Katsiaryna Chernik, Jan Lánský, Leo Galamboš

CellStore – the Vision of Pure Object Database . 32
Jan Vraný

Conceptual Modeling for XML: A Survey . 40
Martin Nečaský

Transforming Data from DataPile Structure into RDF 54
Jiř́ı Dokulil

Towards Better Semantics in the Multifeature Querying 63
Peter Gurský

Viewing FOAF – Development of a Metadata Explorer 74
Josef Petrák

Using WordNet Glosses to Refine Google Queries . 85
Jan Nemrava

GeKon – Applying Novel Approaches to GIS Development 95
Tomáš Richta

A Comparison of Element-based and Path-based Approaches to
Indexing XML Data . 103
Michal Krátký, Radim Bača

Posters

Comparison of Native XML Databases and Experimenting with INEX . . . 116
Petr Kolář, Pavel Loupal

Author Index . 120

Using Object And Object-Oriented Technologies
for XML-native Database Systems∗

David Toth and Michal Valenta

Dept. of Computer Science and Engineering,
FEE, Czech Technical University

Karlovo náměst́ı 13, 121 35 Praha 2
Czech Republic

dejvikl@gmail.com, valenta@fel.cvut.cz

Using Object And Object-Oriented Technologies
for XML-native Database Systems?

David Toth and Michal Valenta

Dept. of Computer Science and Engineering
FEE, Czech Technical University

Karlovo náměst́ı 13, 121 35 Praha 2
Czech Republic

dejvikl@gmail.com, valenta@fel.cvut.cz

Abstract. The aim of this article is to explore and investigate pos-
sibilities of reuse already known techniques from object and object-
oriented processing for effective processing in XML-native database sys-
tems. The article provides explanation of impedance problem, specifically
impedance mismatch problem of the middleware, semi-orthogonal persis-
tency methods, and also presents results of experiments with XML:DB
API implementation over GOODS object persistent data storage and
JAXB technology which were done in January 2006 on Dept. of Com-
puter Science FEE CTU in Prague.

1 Introduction

The main motivation for the work was the participation on project of implemen-
tation of an application programming interface designed for work with XML-
native database system over a persistent object storage. We used GOODS [3]
persistent object storage in the project and tried to implement XML:DB API
[2] which claims to be a broadly accepted standard for access to XML-native
databases. XML:DB API is supposed to play similar role as ODBC or JDBC
APIs in accessing relational databases.

The results of above mentioned project were very controversial. The storage
and memory efficiency of implementation was very poor, but the efficiency of
application development was amazing. It is possible to design and implement
the whole system for storing and processing XML documents and adapt it to
match a concrete application requirements in one week.

The main idea of the article is then the attempt to investigate the impedance
mismatch problem between object oriented programming language and XML
data model. The problem is presented from the point of view of two projects
based on very different technologies (both projects are implemented in Java
programming language):

1. Implementation of XML:DB API over OO persistent storage GOODS.

? The research was partially supported by the grant GAČR 201/06/0648

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 1–10, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

2 David Toth, Michal Valenta
2

2. Implementation of a simple application based on JAXB [4] technology.

The efficiency of processing of XML documents in the first project was tested
using INEX[1] XML database collection.

While XML:DB API provides a unified interface to XML databases, JAXB
approaches above mentioned impedance mismatch problem in opposite way. In-
dividual parts of XML documents are treated as instances of Java classes in
JAXB. It means that the developper (programmer) is limited by given XML
schema in his object model of the application.

The rest of the article is organized as follows: the section 2 provides our
understanding of XML-native database management systems, section 3 discusses
in detail the impedance problem, its consequences, and modifications. Section
4 is dedicated to XML:DB API interface and the cases in which it was found
useful. Section 5 presents GOODS project and also discusses the principle of
semi-orthogonal persistency which is implemented in it. Section 6 provides brief
introduction to JAXB technology. Section 7 presents results of our experiments
in the form of tables and graphs. The measurements provide information of
efficiency of implementations and also of efficiency of design of applications.
The last section summarizes our results and suggests the possibilities of effective
employing of discussed technologies.

2 XML Databases

This section claims to specify XML-native database, the circumstances of their
appearance, their evolution and future. The discussion is done in order of better
understanding of impedance problem consequences.

There is no broadly accepted definition what XML-native databases exactly
mean. Using and understanding of this term can therefore very differ by indi-
vidual authors and communities. For example XML database is defined as a
system which simply provides XML API and therefore enables to process XML
documents in [6].

We will prefer the terminology which is done for example in [7] in our dis-
cussion. Its understanding of XML-native databases are like this:

– database system is a system, which enables a mass data processing - it pro-
vides operations store and retrieve. Typically it also provides data consis-
tency, redundancy, multiuser access, and crash recovery mechanisms.

– XML-database system is a database system which provides storing and
retrieving of XML documents. Typically a query language like XPath or
XQuery are supported.

– XML-native database systems are XML-database systems whose inner data
representation is XML-compliant.

Why XML-database systems? Their appearance is a consequence of evolution of
internet technologies and also the success of XML standard which was posted
in 1998 by W3C consortium and accepted by IETF (Internet Engineering Task
Force).

Using Object And OO Technologies for XML-native DB Systems 3
3

The main reasons of XML success are:

– XML is open international standard
– User can define him/her-self which data and in which structure have to

be stored; the data and structural information are stored together in one
document

The second of above mentioned reasons directly leads to the idea of semantic
web [5]. The [5] is a web portal which provides a complete information of a given
area. From this idea arised for example SOAP (Simple Object Access Protocol)
standard.

B2B applications seems to be todays top area for XML data format employ-
ing. These applications are typical for companies which are doing their business
in web environment. XML format is used as data exchange format in heteroge-
neous environment. The amount of transfered data in XML format all over the
internet increases rapidly. Individual companies, due to nature of B2B applica-
tion and due to very complicated business structure of todays market, have to
process many XML documents. This requirement of processing is consequently
followed by the requirement of data storing. But if the data models of used
storages are different from XML (typically relational or object oriented models)
then appears the problem of data transformation. These transformations causes
the slow-down of the whole system. Moreover - the storing of XML data in non-
native data models (relational, object-oriented) brings problem of efficiency of
such kind of mapping. All these kind of problems we will address of impedance
problem in this article.

Let us provide a small example for illustration of impedance problem: a com-
pany obtain orders in the form of XML documents. These orders are transformed
and stored in company’s (say relational) database. The company needs to use
information from the orders for creating a forms for accounting department. The
data are retrieved from relational database, transformed into XML documents
and using XSLT transformation (posted by accounting department or company)
transformed into acceptable format. It is easy to see that large amount of data
following this way of several transformation can easily slow-down the whole sys-
tem.

The aim of XML-native database system is to eliminate above mentioned
impedance problem.

3 Impedance Mismatch Problem

We have explained what we mean by impedance problem in previous section.
XML-native database systems seems to be perspective mainly due to their abil-
ity to overcome it. Let us now discuss the special case of impedance problem
called impedance mismatch problem of the middleware (just called impedance
mismatch problem) more in detail in this section.

Impedance mismatch problem is an integral part of every interface between
different data models. It is embedded inside a mapping layer between these two
models.

4 David Toth, Michal Valenta
4

Impedance mismatch problem can be observed on several layers of software
systems1. It appears in the layer of middleware in typical database applications
— i.e. it is part of interface between programming language (the language of ap-
plication) and database model (the model of data storage). Nowadays program-
ming languages use almost object data model2. Therefore from the viewpoint
of XML-native database systems we have to focus our research to mismatch
between the data model of OOPL and XML data models.

Actually there are two approaches to the solution of impedance mismatch
problem between OO an XML data models:

1. we use an approach that is independent on a concrete database structure;
this approach is represented by unified API, that is very similar to ODBC
or JDBC solutions,

2. we have to limit the data model of application language in such a way it
match concrete application domain data model.

Both possibilities has its advantages and disadvantages. Let us discuss them
generally:

Ad 1: Universal API to data storage guarantees uniformity of each application. It
means the development of a new application is faster because developers already
know how to communicate with data storage, they do not need to study any
new techniques of data access.

On the other hand if the real application data requirements (model) is very
different from storage data model, we have to investigate a lot of work in a
mapping layer.

Ad 2: In this approach we can design the most suitable data storage interface
— such that exactly meets requirements of concrete application. It means the
application developer can work standalone — without the need of consultation
of a database expert for given storage model.

On the other hand this approach requires to application developer to build
a data storage API again and again for each concrete application.

One should conclude that the second approach to solution of impedance
mismatch problem is too ineffective to be used in practice. But we will try
to show in following sections that also this approach can be very usefull and
perspective in some specific circumstances.

The advantage of this approach lies in the fact that we have to know exactly
the structure of data we are going to process by the application. Hence our
application can become very efficient from the viewpoint of data processing. On
the other hand we are losing the potential power which is embedded in concept
of self-defining XML [8].
1 It appears at every transformation layer of system — for example at the layer of

network communication, at the layer of human-machine communication etc.
2 The impedance mismatch problem is also addressed in the theory of programming

languages, mainly object-oriented languages. Sometimes it is also referred as se-
mantic gap.

Using Object And OO Technologies for XML-native DB Systems 5
5

4 XML:DB API

XML:DB initiative [2] is interested in database-related aspects of XML. Its prod-
ucts consider mainly XML:DB API and XUpdate. Actually XUpdate is only one
existing unofficial standard for changing the content of collection of XML docu-
ments (XML database). There is no official standard for these purposes, hence
many of real XML database implementations use XUpdate provided by XML:DB
initiative.

XML:DB API interface is already implemented by many native and non-
native XML database systems. The list of them can be found in [2].

According to previous section XML:DB API represents the universal ap-
proach to solution of impedance mismatch problem It is universal solution in-
dependent on used implementation platform and application programming lan-
guage. It is simple and very similar to very known and popular solution for
relational databases systems — ODBC and JDBC. It is easy to use for applica-
tion developers.

But this approach has also its problems — mainly object creation perfor-
mance problem. It also supports only XPath but not XQuery language.

5 GOODS

GOODS (Generic Object Oriented Database System) [3] is implementation of
object-oriented database management system. Generally it is intended for storing
of persistent objects. It provides TCP/IP interface and also a library modules for
access from Java language. These properties makes GOODS a very interesting
platform independent solution for many applications.

GOODS is an open source project founded by Konstantin Knizhnik as his
PhD thesis. It supports transactional management, distributed transactions,
multiuser access, possibility of user-defined solution of data access conflicts, and
many other features that are not relevant in the context of our topic.

The main property of GOODS which seems to have major effect using XML
data is its transparency to the application developer. Such transparency is re-
alized by semi-orthogonal persistency mechanism. Let us now to explain this
mechanism.

Transparency to the application developer means that developer is not bother
by a special methods to call the storage (database) methods. From that point
of view he/she works only with objects and does not care if the objects are
persistent or not (i.e. transient)3.

The lot of work had been investigated into transparency mechanism in GOODS
implementation. Due to this property the development time of application in
GOODS is much more shorter than development the same application using
classical database API.
3 Let us remark that this kind of transparency is in contrast with the requirement to

have a uniform independent database API

6 David Toth, Michal Valenta
6

Typical object database systems like Gemstone/S are using mechanism of
orthogonal data persistency. It means each object in application can be classified
either as persistent or transient (non-persistent; it means the object and its
attributes are lost at the end of application). The method how to distinguish
between this two kinds of objects is based on principle of accessibility. There is
one object at the beginning, which is classified as persistent root object. Then
the object is persistent if it is accessible from the persistent root4. Objects which
are not accessible from persistent root are transient.

It is easy to see that orthogonal persistency is very comfortable for application
programmers. They do not care about methods like store and retrieve. But on
the other hand this functionality has to be done on background. It results in a
very high overhead of such systems for large amount of data.

GOODS does not employ orthogonal persistency completely but only par-
tially, hence semi-orthogonal persistency. The motivation is decreasing of about
mentioned overhead of orthogonal persistency implementation. Semi-orthogonal
persistency allows to define persistent only such objects that are inherited from
object called Persistant.

Such model of persistency is very similar to the approach which we mentioned
in our discussion of impedance mismatch problem and its solution in JAXB
(section 6). Once again — it means to reduce application data model (at least
the part which should remain persistent) to be fully compliant with storage data
model. This analogy and also a very rapid application development phase give
as the arguments for using GOODS in our measurements.

6 JAXB

JAXB [4] (Java API for XML Bindings) is part of package JWSDP (Java Web
Service Development Pack). The work of JAXB is to generate system of Java
classes whose structure is equivalent with XML data which are going to be
processed by application. The information about the structure of each possible
input XML document is included in XML Schema specification. In other words
— we have to know the XML Schema of input data before we can start with
application design. Java classes which are generated by JAXB represents the
(common) data model for the application and also for data storage. These classes
have only limited functionality — they provides put and get methods. The data
model classes are maintained by JAXB framework and they are available directly
to the application.

JAXB framework resides in system in the form of java archives libraries (.jar
files), which are to be included into application. Practical using of JAXB consists
of several (standard) steps. We omit here the detail description how to set up
and work with JAXB, this information can be found in [9] or [4].

4 We can also say if there is a path beginning from root persistent object and leading
by pointers from one object to another to the given object

Using Object And OO Technologies for XML-native DB Systems 7
7

Using this approach in the context of XML databases requires that the data-
base is able to provide whole XML document on its interface. This requirement
is typically met in all XML databases.

7 Efficiency of discussed technologies — Pilot
Applications and Measurements

There was designed and developed system XMLStoreExt which implements
XML:DB API core level 0 by specification of [2]. XMLStoreExt uses GOODS as
a data storage. It can be really regarded as a XML-native database system from
the viewpoint of application developer. Unfortunately it does not support any
query language like XQuery or XPath.

Then there was designed and implemented system JAXBStore, which also
provides basic database functionality like does XMLStoreExt, but except multi-
user access, transactional processing and crash recovery.

System XMLStoreExt was tested using database set INEX [1]. JAXBStore
used a datafiles generated by an use case which is published on XQuery Use
Case pages — see [10] for details. With regard to systems latency the test data
size was used only until 15MB.

The measurement of XMLStoreExt was done in following steps:

– reading a XML file into operational memory,
– storing XML into database (through XML:DB API over GOODS),
– reading XML from database and saving it into another file.

The measurement of JAXBStore consists of following steps:

– unmarshalling of XML document (reading XML into its object representa-
tion),

– validation document over XML schema,
– change (update) of data in objects representing the XML tree,
– validation of object tree over XML schema,
– marshalling into XML file.

Here are our measurements included in two simple tables:

Table 1. Measurements in XMLStoreExt

XML data in MB 0,1 0,5 1 2 5 10 15

amount of files 5 12 32 72 133 294 442

storage size in MB 0,43 3,7 6,9 14 32 64 97

time in seconds 3 14 24 46 104 207 322

Here are graphical representation of measurements for both technologies.

8 David Toth, Michal Valenta
8

Table 2. Measurements in JAXBStore

XML data in MB 0,1 0,5 1 2 5 10 15

amount of files 3 15 30 60 150 300 450

time in seconds 4 6 7 8 14 20 27

Fig. 1. XMLStoreExt — time dependency on amount of processed files

8 Conclusions

It is easy to see from above mentioned measurements that JAXB technology is
faster than GOODS with XML:DB API implementation. On the other hand it
is important to remark, that JAXB works only on file level. It does not provide
typical database management system features like multiuser access, transac-
tional management, crash recovery and others. All these features are available
in GOODS implementation, but with the overhead penalization due to this com-
fort. GOODS implementation also shows slow-down with the amount of process-
ing data. Also the storage size increases rapidly with the amount of stored data
in GOODS implementation. We can see that for 15 MB of input XML data the
size of GOODS storage is near to 6times bigger then the input data itself.

Both tested technologies (and applications) shows a tendency to become
clogged rapidly with the amount of input data. But they were very good for
smaller data amounts. JAXB seems to be a serious candidate for application
development, but we have exactly know the structure of data which are going to
be processed by application. Measurements also proved our guess that GOODS
is very good for very rapid development cycle of application. It seems to be very

Using Object And OO Technologies for XML-native DB Systems 9
9

Fig. 2. XMLStoreExt — storage size dependency on size of stored XML data

Fig. 3. JAXBStore — time dependency on amount of processed files

suitable for a full functionally prototype application development. It was proved
as inefficient for large data.

10 David Toth, Michal Valenta
10

Fig. 4. Efficiency measurement of both referred technologies

We can conclude that application prototyping is suitable domain for both
discussed technologies.

References

1. INEX 2003 - home page. http://inex.is.informatik.uni-duisburg.de:2003/index.html.
2. XML:DB initiative - Application Programming Interface for accessing native XML

databases. http://xmldb-org.sourceforge.net.
3. GOODS Home Page. http://www.garret.ru/˜knizhnik/goods.html.
4. JAXB Home Page. http://java.sun.com/webservices/jaxb/
5. Semantic Web. http://www.semanticweb.org.
6. R. P. Bourret. http://www.rpbourret.com/xml.
7. Chaudri, Rashid, Zicari: XML Data Management. Addision-Wesley. 2003. USA.

ISBN 0-201-84452-4.
8. McGoveran: The age of XML databases (self-defining concepts).

http://www.eaijournal.com/pdf/XMLMcGoveran.pdf
9. D. Toth: Object And Object-oriented Approaches In XML-native Databases. Master

Thesis on Dept. of Computer Science FEE, CTU Prague. Ferbruary 2006 (in Czech).
10. XQuery Use Cases. http://www.w3.org/TR/2005/WD-xquery-use-cases-20050915

Compression of a Dictionary

Jan Lánský and Michal Žemlička

Charles University, Faculty of Mathematics and Physics
Department of Software Engineering

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
zizelevak@gmail.com, michal.zemlicka@mff.cuni.cz

Compression of a Dictionary

Jan Lánský and Michal Žemlička

Charles University, Faculty of Mathematics and Physics
Department of Software Engineering

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
zizelevak@gmail.com, michal.zemlicka@mff.cuni.cz

Abstract. Some text compression methods take advantage from using
more complex compression units than characters. The synchronization
between coder and decoder then can be done by transferring the unit
dictionary together with the compressed message. We propose to use a
dictionary compression method based on a proper ordering of nodes of
the tree-organized dictionary. This reordering allows achieving of bet-
ter compression ratio. The proposed dictionary compression method has
been tested to compress dictionaries for word- and syllable-based com-
pression methods. It seems to be effective for compressing dictionaries of
syllables, and promising for larger dictionaries of words.

1 Introduction

Dictionary is used in many applications. Sometimes the space occupied by a
dictionary is important and should be taken into account. Then it is reasonable to
consider storing the dictionary in a compressed form. We propose here a method
for the compression of dictionaries. We have focused on dictionaries used for text
compression – or even more precisely: on a compression of dictionaries used by
word- or syllable-based document compression methods. The comparisons with
other methods are therefore oriented to this topic.

The paper is structured as follows: At first (in part two) we describe the
dictionaries and give some formal definitions. Then, in part three, we remember
some existing methods used to store the dictionaries. Part four is dedicated to the
newly proposed methods. The comparisons of the tested methods are presented
in part five. Last part (sixth) is dedicated to the summary.

2 Dictionary

We suppose that a dictionary is a set of ordered pairs (string, number), where
the string is a string over an alphabet Σ and the number is an integer of the
range 1–n where n is the number of the ordered pairs in the dictionary.

It is sometimes useful to partition the set of all strings (dictionary items)
into several disjoint categories. It is possible that the join of the categories does
not cover the set of all possible strings over Σ. In this case it is necessary to
ensure that the input strings always fit in the given categories.

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 11–20, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

12 Jan Lánský, Michal Žemlička

For the text compression purposes this requirement can be met e.g. by a
proper input string selection (partition of the input message into properly formed
subparts). Words and syllables are special types of such strings.

3 Existing Methods for the Compression of a Dictionary

It is quite common for the papers on word- and syllable-based compression meth-
ods that their authors give no big importance to the compression of the dictio-
nary as the dictionary often makes only a small part of the resulting compressed
message. It is probably true for very large documents but for middle-sized doc-
uments the importance of a dictionary size grows as the dictionary takes larger
part of the compressed message.

The following two approaches are the most widely used: The first approach
is based on coding of a succession of strings (words or syllables) contained in it.
In the second approach the dictionary is compressed as a whole. All the strings
are concatenated using special separators. The resulting file is then compressed
using some general method.

3.1 Compression of Dictionary character-by-character – CD

There is described a method in [1] for the encoding of strings using a partitioning
of the strings into five categories, similarly to the method TD3 described below.
Every string is encoded as a succession of string type codes followed by encoded
string length and by the codes for individual symbols. String type is encoded
using binary phase coding (c1), string length is encoded by adaptive Huffman
code (c2), and individual symbols are coded also using adaptive Huffman code
(letters by c3, numbers by c4, and other characters by c5). Lower and upper
case letters use the same code value c3, they are distinguished by the syllable
type. All adaptive Huffman trees are initialized according language specification.
Examples are given in Fig. 1.

code("to") = c1(mixed), c2(2), c3(’t’), c3(’o’)

code("153") = c1(numeric), c2(3), c4(’1’), c4(’5’), c4(’3’)

code(". ") = c1(other), c2(2), c5(’.’), c5(’0’)

Fig. 1. An example of a coding a string by the CD method

It is not necessary to know the whole dictionary at the beginning. It is possible
to compress individual items on the fly. It is then possible to encode new items
whenever they are encountered. Other methods discussed in this paper need to
compress the whole dictionary at once.

Compression of a Dictionary 13

3.2 External Compression of a Dictionary

Let us have a separator being not part of the used alphabet. Let all the strings
forming the dictionary are concatenated to a single string using this separator.
The resulting string is then encoded using an arbitrary compression method.
In [2] the authors tried to encode the dictionary of word using gzip, PPM, and
bzip2 methods and recognized as best for this purpose bzip2. We tried to encode
the dictionary using bzip2 [3] (in the tables denoted as BzipD – bzip compressed
dictionary) and LZW [4] (denoted in the tables as LZWD – LZW compressed
dictionary).

4 Trie-Based Compression of a Dictionary

When designing here introduced methods TD1, TD2, and TD3 we decided to
represent the dictionary by a data structure trie [5, Section 6.3: Digital Searching,
pp. 492–512]. Trie T is a tree of maximal degree n, where n is the size of the
alphabet of symbols Σ and satisfies following conditions: The root represents
an empty element. Let the string α be represented by the node A, the string
β represented by the node B. If the node A is father of the node B, then the
string β is created by concatenation of the string α by one symbol from Σ. For
all nodes A and B exists a node C, that represents common prefix of strings α
and β and this node is on both paths (including border points) from the root to
B and from the root to A.

The dictionary trie is created from the strings appearing in the text. Then
the trie is encoded. Duriung this encoding there is a unique number assigned to
each string using depth-first traversal of the trie.

4.1 Basic Version – TD1

Trie compression of a dictionary (TD) is based on coding structure of a trie
representing the dictionary. For each node in the trie we know the following:
whether the node represents a string (represents), the number of sons (count),
the array of sons (son), and the first symbol of an extension for each son (ex-
tension). Basic version of such encoding (TD1) is given by a recursive procedure
EncodeNode1 in Fig. 2 which traverse the trie by a depth first search (DFS)
method. For encoding the whole dictionary we call this procedure on the root of
the trie representing the dictionary.

In procedure EncodeNode1 we code only a number of sons and the distances
between the extensions of sons. For non-leaf nodes we must encode in one bit
whether that node represents a dictionary item (e.g. syllable or word) or not.
Leafs represent dictionary items always, it is not necessary to code it. Differences
between extensions of the sons are given as distances of binary values of the ex-
tending characters. For coding of a number of sons and the distances between
them we use gamma and delta Elias codes [6]. We have tested other Elias codes
too, but we achieved the best results for the gamma and delta codes. The num-
bers of sons and the distances between them can reach the value 0, but standard

14 Jan Lánský, Michal Žemlička

00 EncodeNode1(node) {

01 output->WriteGamma0(count + 1); /* We encode number of sons */

02 if (count = 0) return;

/* Mark whether the node represents a string*/

03 if (represents)

04 output->WriteBit(1);

05 else output->WriteBit(0);

06 previous = 0;

/* We iterate and encode all sons of this modes */

07 for(i = 0; i < count; i++) {

/* We count and encode distance between sons */

08 distance = son[i]->extension - previous;

09 output->WriteDelta0(distance + 1);

/* Recursive calling of procedure on the given son */

10 EncodeNode1(son[i]);

11 previous = son[i]->extension;

12 }

13 }

Fig. 2. Procedure EncodeNode1

versions of gamma and delta codes starts from 1 what means that these codings
do not support this value. We therefore use slight modifications of Elias gamma
and delta codes: gamma0(x) = gamma(x + 1) and delta0(x) = delta(x + 1).

\n 10

?

. 46

M 77

?

C 67

?

A 65

?

e 101

?

h 104

?

t 116

o 111

������)

PPPPPPq

PPPPPPq

λ

Fig. 3. Example of dictionary for TD1

An example is given in Fig. 3. The example dictionary contains the strings
".\n", "ACM", "AC", "to", and "the". Let us introduce the TD1 method by
coding the root of the trie representing our example dictionary:

Compression of a Dictionary 15

In the node we must first encode the number of its sons. Root has 3 sons,
hence we say that gamma0-code of the 3 (sons) is a string of bits ‘00001’ and
we write gamma0(3) = 00001.

Then we state that the already represented word (an empty string) is not
part of the dictionary by writing a bit 0.

Value of the the first son is encoded as a distance between its value and zero
by delta0(46− 0) = 0100101111.

Then the first subtrie is encoded by a recursive call of the encoding procedure
on the first son of the actual node.

When the first subtrie is fully encoded, we should specify what the second
son is. The difference between the first and the second son is 65− 46, hence we
write delta0(65− 46) = 000110011.

Then we encode the second subtrie and the third son and the subtrie rooted
in it. Now the whole node and all it subtries are encoded. As our example node
is the root, we have encoded the whole trie representing the dictionary.

4.2 Version with Translator – TD2

In TD1 version the distances between sons according binary values of the ex-
tending symbols are coded. These distances are encoded by Elias delta coding
representing smaller numbers by shorter codes and larger numbers by longer
codes. In version TD2 we reorder the symbols in the alphabet according the
types of the symbols and their frequencies typical for given language. In our
exmaple the symbols 0–27 are reserved for lower-case letters, 28–53 for upper-
case letters, 54–63 for digits and 64–255 for other symbols. There are some
examples in table 1.

Table 1. An example of new ordering of the symbols

symbol ’e’ ’t’ ’a’ ’I’ ’T’ ’A’ ’0’ ’1’ ’2’ ’ ’ ’,’ ’.’

ord(symbol) 0 1 2 28 29 30 54 55 56 64 65 66

Improving procedure TD1 by a replacement of the expression ”son[i] →
extension” by the expression ”ord(son[i]→ extension)” in the lines 08 and 11
we get procedure TD2 (Fig. 4).

Let us demonstrate this method on an example (Fig. 5). The example dic-
tionary contains again the strings ".\n", "ACM", "AC", "to" and "the". We will
describe the work of the coding procedure EncodeNode2 on the node labelled
by ’t’.

In a node we must first encode the number of its sons. Our node has two
sons, hence we write gamma0(2) = 011.

Then we state that the already represented word (the string ”t”) is not part
of the dictionary by writing a bit 0.

16 Jan Lánský, Michal Žemlička

00 EncodeNode2(node) {

01 output->WriteGamma0(count + 1); /* We encode number of sons */

02 if (count = 0) return;

/* Mark whether the node represents a string*/

03 if (represents)

04 output->WriteBit(1);

05 else output->WriteBit(0);

06 previous = 0;

/* We iterate and encode all sons of this modes */

07 for(i = 0; i < count; i++) {

/* We count and encode distance between sons */

08 distance = ord(son[i]->extension) - previous;

09 output->WriteDelta0(distance + 1);

/* Recursive calling of procedure on the given son */

10 EncodeNode2(son[i]);

11 previous = ord(son[i]->extension);

12 }

13 }

Fig. 4. Procedure EncodeNode2

Value of the the first son of ’t’ is encoded as a distance between its value 3
and zero by delta0(3− 0) = 01100.

Then the first subtrie of node ’t’ is encoded by a recursive call of the en-
coding procedure on the first son of the actual node.

When the subtrie of node ’t’ is fully encoded, we should specify what the
second son of the root is. The difference between first and second son is 6 − 3,
hence we write delta0(6− 3) = 01100.

Then we encode second subtrie. Now the whole node and all it subtries are
encoded.

4.3 Version Using Types of Strings – TD3

Words and syllables are special types of strings. We recognize these five types of
words (and syllables): lower-words (from lower-case letters), upper-words (from
upper-case letters), mixed-words (having the first letter upper-case and the fol-
lowing letters lower-case), numeric-words (from digits) a other-words (from spe-
cial characters). We know the type of a coded string for some nodes in the trie
(in Fig. 6 IsKnownTypeOfSons) and we can use this information.

If a string begins with a lower-case letter (lower-word or lower-syllable), the
following letters must be lower-case too. In a trie each son of a lower-case letter
can be only a lower-case letter too. Similar situation is for other-words and
numeric-words. If a string begins with an upper-case letter, we must look at
the second symbol to recognize the type of the string (mixed or upper). In our
example (Fig. 5) we know for the nodes ’t’, ’o’, ’h’ and ’e’ that all their
sons are lower-case letters.

Compression of a Dictionary 17

λ

o 3

e 0

?

h 6

?

t 1

M 33

?

C 34

?

A 30

?

\n 76

?

. 66

������)

PPPPPPq

������)

Fig. 5. Example of a dictionary for TD2 and TD3

In the new ordering described in version TD2 it is given for each symbol type
some interval of the new orders. Function first returns for each type of symbols
the lowest orders available for given symbol type. Function first is described in
Tab. 2.

Table 2. Values of function first

type of symbols lower-case letter upper-case letter digit other

first(type) 0 28 54 64

We are counting (Fig. 6, line 10) and coding (Fig. 6, line 11) the distances
between the sons. For the first sons of some nodes of a known type, we can use
function first and decrease the value of the distance and shorten the code. We
modify version TD2 by a modifying of the line 06 and inserting the lines 07 and
08 getting version TD3.

Let us show the differences between TD3 and TD2 on our example (Fig. 5).
Let us go directly to the node ’t’. Here we must first encode the number of

the sons of this node (2), we write gamma0(2) = 011.
Then we state that the already represented word (string "t") is not part of

the dictionary by writing a bit 0.
Value of the the first son of our node is encoded as a distance between its

value (3) and and zero (it is the first son) decreased by value of function first for
a lower-case letter (0). Encoded value is delta0(3−0−0) = 01100. It is possible to
restrict the shift interval by first of the encoded character type as we know this
type – in a subtrie of the node ’t’ occur only lower-case letters. The encoded
value is the same as in TD2 but there is a diference is in the calculation.

Other codings are made accordingly.

18 Jan Lánský, Michal Žemlička

00 EncodeNode2(node) {

01 output->WriteGamma0(count + 1); /* We encode number of sons */

02 if (count = 0) return;

/* Mark whether the node represents a string*/

03 if (represents)

04 output->WriteBit(1);

05 else output->WriteBit(0);

/* Using knowledge of type of node (improvent of method TD3) */

06 if (IsKnownTypeOfSons)

07 previous = first(TypeOfSymbol(This->Symbol))

08 else previous = 0;

/* We iterate and encode all sons of this node */

09 for(i = 0; i < count; i++) {

/* We count and encode distances between sons */

10 distance = ord(son[i]->extension) - previous;

11 output->WriteDelta0(distance + 1);

/* Recursive calling of the procedure on the given son */

12 EncodeNode2(son[i]);

13 previous = ord(son[i]->extension);

14 }

15 }

Fig. 6. Procedure EncodeNode3

5 Results

We have tested three versions of the method compressing the dictionary using
the trie data structure (TD – variants TD1, TD2, TD3), one method compressing
the dictionary character-by-character (CD), and two methods using an external
compressing tool for the concatenated directory items (LZWD, BzipD).

We have tested the dictionaries of words and syllables for variously sized
documents written in following three languages: English (EN), German (GE),
and Czech (CZ).

The best for the dictionaries of syllables it appears to be the method TD3 that
outperfomed all other tested methods on all tested document sizes. For example,
when compressing a 10KB document, TD3-compressed dictionary takes about
770 bytes whereas the second best method (CD) takes about 1450 bytes. In the
case of the compression of dictionaries of words the best-performing method has
been for small documents (up to 10kB) CD, for middle-sized documents BzipD,
and for large documents TD3. The boundary between ‘middle-sized’ and ‘large’
documents is in this case dependent on the used language: for Czech it was about
50kB, for English about 200kB and for German about 2MB.

It seems that the success of the TD methods (TD3 inclusive) grows with the
average arity of the trie nodes. The syllables are short and the trie representing a
dictionary of syllables is typically dense, hence the TD3 method has been always
the best.

Compression of a Dictionary 19

Table 3. Dictionary of syllables: Compression ratio (Compared with the size of a whole
file) in bits per character

— File size 100 B 1 kB 10 kB 50 kB 200 kB 500 kB 2 MB
Lang. Method 1 kB 10 kB 50 kB 200 kB 500 kB 2MB 5 MB

CZ LZWD 5.359 3.233 1.423 0.562 0.343 0.204 —–
CZ CD 3.741 2.432 1.130 0.461 0.284 0.169 —–
CZ BzipD 5.285 2.952 1.227 0.468 0.285 0.168 —–
CZ TD1 4.124 2.232 0.870 0.315 0.185 0.115 —–
CZ TD2 2.944 1.594 0.638 0.240 0.143 0.093 —–
CZ TD3 2.801 1.532 0.612 0.226 0.134 0.081 —–

EN LZWD 4.580 1.715 0.732 0.426 0.269 0.152 0.059
EN CD 2.983 1.287 0.583 0.360 0.234 0.133 0.052
EN BzipD 4.390 1.523 0.626 0.353 0.222 0.124 0.047
EN TD1 3.792 1.276 0.506 0.272 0.158 0.086 0.033
EN TD2 2.871 0.954 0.384 0.212 0.124 0.069 0.028
EN TD3 2.666 0.890 0.354 0.195 0.116 0.063 0.024

GE LZWD 4.259 2.995 1.139 0.580 0.345 0.202 0.104
GE CD 3.068 2.360 0.997 0.530 0.315 0.185 0.091
GE BzipD 4.127 2.689 0.949 0.479 0.285 0.166 0.087
GE TD1 3.952 2.539 0.832 0.377 0.207 0.122 0.045
GE TD2 3.020 1.914 0.627 0.284 0.157 0.097 0.035
GE TD3 2.730 1.805 0.599 0.275 0.150 0.086 0.033

German language has a lot of different and long word forms, the trie repre-
senting such dictionary is quite sparse and therefore the TD3 method outper-
formed other methods only for dictionary of very large documents.

English typically uses less word forms than Czech and German. These word
forms are often shorter than the ones used in Czech and German. The trie is
then for smaller documents quite sparse and therefore our compression method
outperforms the other ones only for larger documents.

In Czech the documents are typically made form lots of middle-sized word
forms and the dictionary tries are therefore quite dense. It is the reason why the
method has been so successful for the dictionaries of Czech documents.

6 Conclusion

We have proposed three methods for compression of dictionaries based on the
representation of the dictionary by a trie data structure. One of them (TD3) has
compressed the dictionary of syllables for given files better than all other tested
methods have. It has been also the most successful method for compression of
dictionaries of words of large documents.

Such dictionaries are used by many word- and syllable-based compression
algorithms. Improving compression ratio of the dictionary improves (although
with smaller impact) the overall compression ratio of these methods.

20 Jan Lánský, Michal Žemlička

Table 4. Dictionary of words: Compression ratio (Compared with the size of a whole
file) in bits per character

— File size 100 B 1 kB 10 kB 50 kB 200 kB 500 kB 2 MB
Lang. Method 1 kB 10 kB 50 kB 200 kB 500 kB 2MB 5 MB

CZ LZWD 5.984 4.549 3.076 1.934 1.557 1.161 —–
CZ CD 4.378 3.830 2.948 1.968 1.648 1.260 —–
CZ BzipD 5.784 4.045 2.559 1.582 1.255 0.921 —–
CZ TD1 8.443 6.520 4.146 2.250 1.713 1.178 —–
CZ TD2 5.935 4.531 2.874 1.550 1.176 0.814 —–
CZ TD3 5.781 4.462 2.844 1.534 1.167 0.800 —–

EN LZWD 4.699 2.195 1.203 0.872 0.687 0.443 0.189
EN CD 3.100 1.776 1.095 0.847 0.695 0.454 0.197
EN BzipD 4.508 1.915 1.002 0.714 0.563 0.361 0.154
EN TD1 6.320 3.144 1.698 1.108 0.813 0.498 0.191
EN TD2 4.526 2.142 1.144 0.753 0.554 0.341 0.132
EN TD3 4.219 2.062 1.110 0.734 0.544 0.333 0.128

GE LZWD 4.712 3.634 1.819 1.227 0.996 0.706 0.716
GE CD 3.582 3.091 1.787 1.293 1.096 0.799 0.789
GE BzipD 4.409 3.216 1.506 1.001 0.797 0.558 0.565
GE TD1 7.187 5.748 2.585 1.700 1.383 0.945 0.844
GE TD2 4.985 3.885 1.691 1.094 0.875 0.601 0.534
GE TD3 4.699 3.776 1.660 1.085 0.867 0.591 0.532

References

1. Lánský, J., Žemlička, M.: Text compression: Syllables. In Richta, K., Snášel, V.,
Pokorný, J., eds.: DATESO 2005, Prague, Czech Technical University (2005) 32–
45 Available from http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS//Vol-129/paper4.pdf.

2. Isal, R.Y.K., Moffat, A.: Parsing strategies for BWT compression. In: Data Com-
pression Conference, Los Alamitos, CA, USA, IEEE CS Press (2001) 429–438

3. Seward, J.: (The bzip2 and libbzip2 official home page)
http://sources.redhat.com/bzip2/ as visited on 6th February 2005.

4. Welch, T.A.: A technique for high performance data compression. IEEE Computer
17 (1984) 8–19

5. Knuth, D.: The Art of Computer Programming, Volume 3: Sorting and Searching.
Third edn. Addison-Wesley (1997)

6. Elias, P.: Universal codeword sets and representation of the integers. IEEE Trans.
on Information Theory 21 (1975) 194–203

Syllable-based Compression for XML Documents

Katsiaryna Chernik, Jan Lánský, and Leo Galamboš

Charles University, Faculty of Mathematics and Physics
Department of Software Engineering

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
kchernik@centrum.cz, zizelevak@gmail.com, leo.galambos@mff.cuni.cz

Syllable-based compression for XML documents

Katsiaryna Chernik, Jan Lánský, and Leo Galamboš

Charles University, Faculty of Mathematics and Physics
Malostranske nam. 25, 118 00 Praha 1, Czech Republic

kchernik@centrum.cz, zizelevak@gmail.com, leo.galambos@mff.cuni.cz

Abstract. Syllable-based compression achieves sufficiently good results
on text documents of a medium size. Since the majority of XML docu-
ments are of that size, we suppose that the syllable-based method can
give good results on XML documents, especially on documents that have
a simple structure (small amount of elements and attributes) and rela-
tively long character data content.
In this paper we propose two syllable-based compression methods for
XML documents. The first method, XMLSyl, replaces XML tokens (ele-
ment tags and attributes) by special codes in input document and then
compresses this document using a syllable-based method. The second
method, XMillSyl, incorporates syllable-based compression into the ex-
isting method for XML compression XMill. XMLSyl and XMillSyl are
compared with a non-XML syllable-based method and with other exist-
ing method for XML compression.

1 Introduction

The Extensible Markup Language (XML) [5] is a simple text format for struc-
tured text documents. XML provides flexibility in storing, processing and ex-
changing data on the Web. However, due to their verbosity, XML documents
are usually larger in size than other exchange formats containing the same data
content. One solution to this problem consists of compressing XML documents.
Because XML is a text format, it is possible to compress XML documents with
existing text compression methods. These methods are more effective, when
XML documents have simple structure and long character data content. There
are different types of text compression: text compression by characters and text
compression by words. There is also a novel method: text compression by symbols
[12]. In our work an application of this method to XML documents was devel-
oped. Since single text compression is not able to discover and utilize the redun-
dancy in the structure of XML, we modify syllable-based compression method
for XML.

At the beginning we supposed that XML syllable-based compression will
be suitable for middle-sized textual XML documents. There are many XML
documents that meet these conditions, for example any documentation written
in DocBook [16] format or news in RSS format [18]. Moreover we suppose that
our compression would be more suitable for documents in languages with rich
morphology (for example Czech or German [12]).

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 21–31, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

22 Katsiaryna Chernik, Jan Lánský, Leo Galamboš

2 Syllable-based compression method

Syllable-based compression [12] is the method where compression is performed
at the syllable level. There are two syllable-based compressors. The first one is
syllable-based LZW, and the second one is syllable-based Huffman.

Algorithm LZW [11] is a dictionary compression character-based method.
The syllable-based version is called LZWL. In the initialization step, the syllable
dictionary is filled with empty syllable and syllables from a database of frequent
syllables. The following steps are similar with character-based version of LZW,
but LZWL works over an alphabet of syllables.

The second syllable-based compression method is called HuffSyllable. It is a
statistical compression method based on the adaptive Huffman coding. For our
purposes, we use only LZWL syllable-based compression method. Adaptation of
HuffSyllable for XML compression gave worse results than LZWL.

3 XMLSyl

Our goal was to modify the syllable-compression method to compress XML doc-
uments efficiently. We attempted to modify existing syllable-based compressor
so, that it treats XML tokens (element tags and attributes) as single syllables
instead of decomposing them into many syllables. There were two possibilities
to compel the syllable-based compressor to treat XML tokens as syllables:

1. Modify parser used in the syllable-based tool and combine it with an XML
parser, so that it can recognize XML tokens and treat them as a single
syllable.

2. Replace XML tokens with bytes in the input document and then compress
such a document with an existing syllable-based tool.

We decided to implement the second way because this implementation allows
us to make some future improvements easily. For example, we may compel the
syllable-based compressor to assign codes with minimal length to XML tokens
by adding this single bytes to the syllable dictionary [12]. This improvement
is impossible in the first variant. The encoding of XML tokens is inspired by
existing XML compression methods like XMLPPM [3], XGrind [6], XPress [9],
XMill [8].

3.1 Architecture and principles of XMLSyl

The architecture of XMLSyl is shown in Figure 1. It has four major modules: the
SAX Parser, the Structure Encoder, the Containers and the Syllable Compressor.
First, the XML document is sent to the SAX Parser. Next the parser decomposes
document into SAX events (start-tags, end-tags, data items, comments and etc.)
and forwards them to the Structure Encoder.

The Structure Encoder encodes the SAX events and routes them to the
different Containers. There are three containers in our implementation:

Syllable-based Compression for XML Documents 23

SAX Parser

Structure Encoder

Element Container Data and Structure Container

XML Document

Attribute Container

Compressed XML document

Syllable Compressor Syllable Compressor Syllable Compressor

Fig. 1. The Architecture of XMLSylCompressor

1. Element Container: The Element Container stores the names of all ele-
ments that occur in an XML document. The Structure Encoder also uses
the Element Container as the dictionary for encoding XML structure.

2. Attribute Container: The Attribute Container stores the names of all
attributes which occur in an XML document. The Structure Encoder also
uses the Attribute Container as the dictionary for encoding XML structure.

3. Structure and Data Container: The Structure and Data Container stores
an XML document, in which all meta-data are replaced with special codes.
The encoding process is presented in section 3.2.

When a document is parsed and separated into the containers completely,
the contents of the containers are sent to the Syllable Compressor. It compresses
the content of each container separately using syllable-based compression and
sends the result to the output.

We have not written the SAX parser by ourselves, rather we have used the
Expat parser[10] which is an open-source SAX parser written in C.

3.2 Encoding the structure of XML document

The structure of XML document is encoded in XMLSyl as follows. Whenever a
new element or attribute is encountered, its name is sent to the dictionary and the
index of the element is sent to the Data and Structure Container. Two different
dictionaries are used for attributes and elements: the Element Dictionary and
the Attribute Dictionary. The Attribute Container operates as the Attribute
Dictionary and the Element Container as the Element Dictionary. Whenever
an end tag is encountered a token END_TAG is sent to the Data and Structure
container. Whenever a character sequence is encountered, it is sent to the Data
and Structure Container without changes. Start and end of character sequences
are indicated by special tokens. We distinguish four different character sequences:

24 Katsiaryna Chernik, Jan Lánský, Leo Galamboš

value of attribute, value of element, comment, and white spaces between tags, if
white spaces are preserved.

To illustrate the encoding process, consider the encoding of the following
small XML document:

<book>
<title lang="en">XML</title>
<author>Brown</author>
<author>Smith</author>
<price currency="EURO">49</price>

</book>
<!-- Comment-->

First, the XML document is converted into a corresponding stream of SAX
events:

startElement("book")
startElement("title",("lang","en"))
characters("XML")
endElement("title")
startElement("author")
characters("Smith")
endElement("author")
startElement("author")
characters("Brown")
endElement("author")
startElement("price","currency","EURO")
characters("49")
endElement("price")
endElement("book")
comment("Comment")

The tokens in the SAX event stream are sent to the Structure Encoder.
It encodes them and sends them to their corresponding containers. When the
book start element token is encountered, the string book is sent to the Element
Container since this element name was not encountered before. An index E0 is
assigned to this entry. This index is sent to the Data and Structure Container.
The same operation is executed for title start element. String title is sent to The
Element Container and an index E1 is assigned to it. The index E1 is sent to
the Data and Structure Container. The element title has the attribute lang. The
attribute name is sent to the Attribute Container and the index A0 is assigned
to it. The index A0 is sent to the Data and Structure Container. Then attribute
value ”en” is sent without modification to the Data and Structure Container.
The ”en” attribute is followed by the token END_ATT, that signals the end of the
attribute value. When an element value such as ”XML” is encountered, the token
CHAR, signaling the beginning of character sequence, the data value and then the
token END_CHAR are all sent to the Data and Structure Container. Finally, all

Syllable-based Compression for XML Documents 25

the end tags are replaced by the token END_TAG. When a comment event is
encountered, the code CMNT is put into the Data and Structure Container. The
comment is also sent to the container and is enclosed by END_CMNT code. The
final state of all containers is shown in Figure 2.

Element Container

element index

book E0
title E1
author E2
price E3

Attribute Container

attribute index

lang A0

currency A1

Data and Structure Container

<book> <title lang="en"> XML </title> <author>

E0 E1 A0 en END_ATT CHAR XML END_CHAR END_TAG E2

Brown </author> <author> Smith </author> <price

CHAR Brown END_CHAR END_TAG E2 CHAR Smith END_CHAR END_TAG E3

currency="EURO"> 49 </price> </book> <!--Comment-->

A1 Euro END_ATT CHAR 49 END_CHAR END_TAG END_TAG CMNT Comment END_CMNT

Fig. 2. Content of containers

In this example we have ignored white spaces between tags, e.g. <book> and
<title>, so the decompressor then produces a standard indentation. Optionally,
XMLSyl can preserve the white spaces. In that case, it stores the white spaces as
the sequence of characters in the Data and Structure Container between tokens
WS and END_WS.

3.3 Containers

The containers are the basic units for grouping XML data. The Attribute Con-
tainer holds attribute names and the Element Container holds element names.
As long as the number of all element and attribute names in any XML docu-
ment is not high, this two containers are kept in main memory. During parsing,
the containers size increases as the container is filled with entries. Each entry
in the Element container is assigned a byte in the range 00-A9. These bytes
are used for encoding the element names. Each entry in the Attribute container
is assigned a byte in the range AA-F9. These bytes are used for encoding the
attribute names. The residual 6 bytes are reserved for special codes like CHAR,
END_TAG etc. In most cases, 170 (or 80) bytes are enough to encode element (or
attribute) names. If the number of elements (or attributes) are greater than 170
(or 80), entries are encoded with two bytes, then tree and so on.

There is another situation with The Data and Structure Container. We do not
know the size of the input XML document. The size of XML document can be
so big, that document will not fit into memory, and it is not possible to increase

26 Katsiaryna Chernik, Jan Lánský, Leo Galamboš

the size of container endlessly. Therefore, the container consists of two memory
block of constant size. The content of the first memory block is compressed, as
soon as the container is filled. We don’t compress two blocks at once, because
the context of the second memory block is used for compression of the first one.
After the compression, the compressed content of the first block is sent to the
output and the first block swaps its purpose with the second one. Now the first
block is filled with data. When it is full, the second block is compressed, and so
on.

3.4 The Syllable Compressor

The Syllable Compressor compresses the Structure and Data Container first
and sends the output to the output file. Then the Attribute Containers are
compressed and sent to the output file and finally the same happens with the
Element Container. LZWL is used for the compression of data. HuffSyll could
be also chosen, but the performance is worse, so we decided to use only LZWL.

4 XMillSyl

This chapter introduces our second syllable-based XML compressor, XMillSyl.
This second method incorporates syllable-based compression with the existing
method for XML compression of XMill [8]. XMill has two main principles in
order to optimize XML compression:

– separating structure from data content, and
– grouping Data values with related semantics in the same ”container”.

Each data container is then compressed individually with gzip [21]. In XMillSyl,
containers are compressed with LZWL.

We do not suppose that XMillSyl method gives better results than XMill
because gzip compression performs better than LZWL. We have implemented
XMillSyl in order to compare the power of XMLSyl with the power of two main
principles of XMill.

4.1 Implementation

We did not write XMill compressor. We decided to use existing sources of XMill.
XMill operates as follows: a SAX parser parses the XML file and the SAX

events are sent to the core module of the XMill called the path processor. It
determines how to map tokens to containers: element tag names and attribute
names are encoded and sent to the structure container, while the data values
are sent to various data containers, according to their semantic. Finally, the
containers are gzipped independently and stored on disk.

We have modified compression and decompression functions (operating on
containers) in the way they compress and decompress the data containers with

Syllable-based Compression for XML Documents 27

SAX Parser

Path Processor

Structure Container Large
Data Container k

Small
Data Container

Input XML file

Large
Data Container 1

Compressed XML file

GZip GZip LZWL LZWL

…

Fig. 3. Architecture of XMillSyl

the syllable-based method (see Figure 3). Moreover we have modified the syllable-
based method so that it can work with the containers of XMill implementation
instead of a file stream.

XMillSyl discerns the difference between small and large containers. Since
LZWL is not suitable for extremely small data, the small containers are com-
pressed with gzip. The structure container is also gzipped in XMillSyl. The large
containers are compressed with LZWL.

Table 1. The first data set.

Size Lang Description

elts 103919 English Periodic table of the elements in XML
pcc 2600257 English Formal proofs transformed to XML
stats 869059 English One year statistics if baseball players
tal 1364576 English Safe-annotated assembly language converted to XML
tpc 313193 English The XML representation of the TPC_D benchmark database.

Size Lan Description

errors 153530 English "The Comedy of Errors" marked up as XML
hamlet 314677 English "The Tragedy of Hamlet, Prince of Denmark" marked up as XML
antony 289865 English "The Tragedy of Antony and Cleopatra" marked up as XML
much_ado 220495 English "Much Ado about Nothing" marked up as XML
ch00 13916 English "DocBook: The Definitive Guide" in DocBook format (1)
ch01 55015 English "DocBook: The Definitive Guide" in DocBook format (2)
ch02 160728 English "DocBook: The Definitive Guide" in DocBook format (3)
ch03 27799 English "DocBook: The Definitive Guide" in DocBook format (4)
ch04 137440 English "DocBook: The Definitive Guide" in DocBook format (6)
ch05 67142 English "DocBook: The Definitive Guide" in DocBook format (7)
glossary 24701 English "DocBook: The Definitive Guide" in DocBook format (8)
howto 42853 English "DocBook V5.0, Transition Guide" in DocBook format.
hledani 16429 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (1)
komunikace 50881 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (2)
navihace 18495 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (3)
robot 25405 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (4)
xml 28467 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (5)
rur1 59609 Czech "R.U.R" marked up as XML.

V set2 Murkup menshe chem 50% I harakter dannych tekstovyj=>
pokazyvajet horoshije rezultaty.

5 Comparison Experiments

To show the effectiveness of XMLSyll and XMillSyl, we compared the perfor-
mance of this two compressors with one representative of XML compressors
XMill and the syllable-based compressor LZWL [12].

28 Katsiaryna Chernik, Jan Lánský, Leo Galamboš

5.1 XML data sources

XMLSyl and XMillSyl were tested on two data sets that cover a wide range
of XML data formats and structures. The first data set is shown in Table 1.
It contains English XML documents with different inner structure. It includes
regular data that has regular markup and short character data content (elts,
stats, weblog, tpc). It also includes irregular data, that has irregular markup
(pcc, tall).

The second data set is shown in Table 2. It contains textual XML documents
of simple structure with long character data content. It contains five stage plays
marked up as XML, four in English and one in Czech. It also contains data in
DocBook format in Czech and in English.

Some data was distributed with the XMLPPM [3] and the Exalt [4] com-
pressors while others were found on Internet [15], [16]. All Czech documents use
Windows-1250 encoding.

Table 2. The second data set.

Size Lang Description

elts 103919 English Periodic table of the elements in XML
pcc 2600257 English Formal proofs transformed to XML
stats 869059 English One year statistics if baseball players
tal 1364576 English Safe-annotated assembly language converted to XML
tpc 313193 English The XML representation of the TPC_D benchmark database.

Size Lan Description

errors 153530 English "The Comedy of Errors" marked up as XML
hamlet 314677 English "The Tragedy of Hamlet, Prince of Denmark" marked up as XML
antony 289865 English "The Tragedy of Antony and Cleopatra" marked up as XML
much_ado 220495 English "Much Ado about Nothing" marked up as XML
ch00 13916 English "DocBook: The Definitive Guide" in DocBook format (1)
ch01 55015 English "DocBook: The Definitive Guide" in DocBook format (2)
ch02 160728 English "DocBook: The Definitive Guide" in DocBook format (3)
ch03 27799 English "DocBook: The Definitive Guide" in DocBook format (4)
ch04 137440 English "DocBook: The Definitive Guide" in DocBook format (6)
ch05 67142 English "DocBook: The Definitive Guide" in DocBook format (7)
glossary 24701 English "DocBook: The Definitive Guide" in DocBook format (8)
howto 42853 English "DocBook V5.0, Transition Guide" in DocBook format.
hledani 16429 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (1)
komunikace 50881 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (2)
navihace 18495 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (3)
robot 25405 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (4)
xml 28467 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (5)
rur1 59609 Czech "R.U.R" marked up as XML.

V set2 Murkup menshe chem 50% I harakter dannych tekstovyj=>
pokazyvajet horoshije rezultaty.

5.2 Compression Performance Metrics

The compression ratio is defined as follows:

CR =
sizeof(compressed file)× 8

sizeof(original file)
bits/byte.

We compare XMillSyl and XMLSyl compression ratios with those of XMill.
The compression ratio factor shows normalization of the compression ratio of

Syllable-based Compression for XML Documents 29

Table 3. The first data set.

CRLZWL CRXmill CRXMillSyl CRFXMillSyll CRXMLSyl CRFXMLSyl 1
1 elts 1,04 0,47 0,54 1,15 0,72 1,53
2 pcc 0,22 0,02 0,03 1,50 0,04 2,00
3 stats 0,67 0,33 0,40 1,21 0,39 1,18
4 tal 0,36 0,09 0,12 1,33 0,15 1,67
5 tpc 1,82 1,05 1,54 1,47 1,60 1,52

Average 0,82 0,39 0,53 1,33 0,58 1,58

CRLZWL CRXmill CRXMillSyl CRFXMillSyll CRXMLSyl CRFXMLSyl
1 errors 1,98 1,83 2,00 1,09 1,83 1,00
2 hamlet 1,96 1,91 2,00 1,05 1,85 0,97
3 antony 1,84 1,79 1,88 1,05 1,69 0,94
4 much_ado 1,88 1,80 1,89 1,05 1,77 0,98
5 ch00 3,28 2,69 3,00 1,12 2,88 1,07
6 ch01 2,69 2,20 2,43 1,10 2,46 1,12
7 ch02 1,76 1,43 1,70 1,19 1,57 1,10
8 ch03 2,90 1,87 2,70 1,44 2,08 1,11
9 ch04 2,09 1,66 1,78 1,07 1,83 1,10

10 ch05 2,28 1,81 2,03 1,12 2,04 1,13
11 glossary 2,07 1,64 1,84 1,12 1,89 1,15
12 howto 6,69 2,30 2,50 1,09 2,59 1,13
13 hledani 3,79 3,13 3,62 1,16 3,40 1,09
14 komunikace 3,25 2,65 2,93 1,11 3,01 1,14
15 navihace 3,79 3,14 3,68 1,17 3,44 1,10
16 robot 3,43 2,86 3,22 1,13 3,04 1,06
17 xml 3,74 3,23 3,69 1,14 3,30 1,02
18 rur1 2,33 2,07 2,37 1,14 2,15 1,04

Average 2,88 2,22 2,51 1,13 2,38 1,07

ch 1,84 1,61 1,78 1,11 1,70 1,06 1,11
books 1,71 1,79 1,75 0,98 1,66 0,93
ch+books 1,80 1,74 1,76 1,01 1,72 0,99

3,13 2,63 2,81 1,07 2,93 1,11 0,935943
2,83 2,32 2,51 1,08 2,60 1,12 0,924303
2,78 2,28 2,47 1,08 2,57 1,13 0,923077
2,58 2,14 2,30 1,07 2,40 1,12 0,930435
2,49 2,15 2,32 1,08 2,34 1,09 0,926724
2,40 2,07 2,22 1,07 2,25 1,09 0,932432
2,30 1,97 2,17 1,10 2,15 1,09 0,907834
2,21 1,90 2,08 1,09 2,06 1,08 0,913462
2,17 1,89 2,10 1,11 2,03 1,07 0,9
2,07 1,80 2,01 1,12 1,93 1,07 0,895522
1,98 1,73 1,93 1,12 1,84 1,06 0,896373
1,92 1,68 1,88 1,12 1,79 1,07 0,893617
1,89 1,65 1,85 1,12 1,76 1,07 0,891892
1,88 1,64 1,83 1,12 1,74 1,06 0,896175

XMillSyll or XMLSyl with respect to XMill. The compression ratio factor is
defined as follows:

CRFXSyl =
CRXSyl

CRXMill
.

5.3 Experimental Results

The compression ratio statistics of two sets of XML documents are shown in
Table 3 and Table 4.

The syllable-based method performed worse on documents from the first data
set. On the other hand, both XMLSyl and XMillSyl shows great improvement
comparing to LZWL. They compressed the input to 50-60% of the size of the
compressed file with LZWL.

On XML documents of the second data set, LZWL provides a reasonably
good compression ratio - on the average, about two-thirds that of XMill. This
confirms our prediction, that syllable-based compression is effective for textual
XML documents. Moreover our compression methods show even greater im-
provement.

On the document of the second data set, XMillSyl achieves about 15% and
XMLSyl is about 20% better compression ratio than LZWL. Compared to XMill,
both methods perform slightly worse. XMillSyl compresses about 13% and XML-
Syl about 7% worse than XMill.

Figure 4 shows the variation of the compression ratio as a function of XML
data size for ”DocBook: The Definitive Guide”.The compression was run on
several subsets. On small files XMillSyl performs better than XMLSyl. The ex-
planation is, that the data are split into many small containers in XMillSyl,
which are compressed with gzip (gzip outperforms LZWL, especially on small
data). On middle-sized and large files XMLSyl outperforms XMillSyl. We can
observe that the bigger size also implies a better compression.

6 Conclusion

In this work we introduced syllable-based compression tools for XML documents
called XMLSyl and XMillSyl. We presented the architecture and implementation

30 Katsiaryna Chernik, Jan Lánský, Leo Galamboš

Table 4. The first data set.

CRLZWL CRXmill CRXMillSyl CRFXMillSyll CRXMLSyl CRFXMLSyl 1
1 elts 1,04 0,47 0,54 1,15 0,72 1,53
2 pcc 0,22 0,02 0,03 1,50 0,04 2,00
3 stats 0,67 0,33 0,40 1,21 0,39 1,18
4 tal 0,36 0,09 0,12 1,33 0,15 1,67
5 tpc 1,82 1,05 1,54 1,47 1,60 1,52

Average 0,82 0,39 0,53 1,33 0,58 1,58

CRLZWL CRXmill CRXMillSyl CRFXMillSyll CRXMLSyl CRFXMLSyl
1 errors 1,98 1,83 2,00 1,09 1,83 1,00
2 hamlet 1,96 1,91 2,00 1,05 1,85 0,97
3 antony 1,84 1,79 1,88 1,05 1,69 0,94
4 much_ado 1,88 1,80 1,89 1,05 1,77 0,98
5 ch00 3,28 2,69 3,00 1,12 2,88 1,07
6 ch01 2,69 2,20 2,43 1,10 2,46 1,12
7 ch02 1,76 1,43 1,70 1,19 1,57 1,10
8 ch03 2,90 1,87 2,70 1,44 2,08 1,11
9 ch04 2,09 1,66 1,78 1,07 1,83 1,10

10 ch05 2,28 1,81 2,03 1,12 2,04 1,13
11 glossary 2,07 1,64 1,84 1,12 1,89 1,15
12 howto 6,69 2,30 2,50 1,09 2,59 1,13
13 hledani 3,79 3,13 3,62 1,16 3,40 1,09
14 komunikace 3,25 2,65 2,93 1,11 3,01 1,14
15 navihace 3,79 3,14 3,68 1,17 3,44 1,10
16 robot 3,43 2,86 3,22 1,13 3,04 1,06
17 xml 3,74 3,23 3,69 1,14 3,30 1,02
18 rur1 2,33 2,07 2,37 1,14 2,15 1,04

Average 2,88 2,22 2,51 1,13 2,38 1,07

ch 1,84 1,61 1,78 1,11 1,70 1,06 1,11
books 1,71 1,79 1,75 0,98 1,66 0,93
ch+books 1,80 1,74 1,76 1,01 1,72 0,99

3,13 2,63 2,81 1,07 2,93 1,11 0,935943
2,83 2,32 2,51 1,08 2,60 1,12 0,924303
2,78 2,28 2,47 1,08 2,57 1,13 0,923077
2,58 2,14 2,30 1,07 2,40 1,12 0,930435
2,49 2,15 2,32 1,08 2,34 1,09 0,926724
2,40 2,07 2,22 1,07 2,25 1,09 0,932432
2,30 1,97 2,17 1,10 2,15 1,09 0,907834
2,21 1,90 2,08 1,09 2,06 1,08 0,913462
2,17 1,89 2,10 1,11 2,03 1,07 0,9
2,07 1,80 2,01 1,12 1,93 1,07 0,895522
1,98 1,73 1,93 1,12 1,84 1,06 0,896373
1,92 1,68 1,88 1,12 1,79 1,07 0,893617
1,89 1,65 1,85 1,12 1,76 1,07 0,891892
1,88 1,64 1,83 1,12 1,74 1,06 0,896175

1,50
1,55
1,60
1,65
1,70
1,75
1,80
1,85
1,90

1,95
2,00
2,05
2,10
2,15
2,20
2,25
2,30
2,35
2,40
2,45
2,50
2,55
2,60
2,65
2,70
2,75
2,80

2,85
2,90
2,95
3,00
3,05
3,10
3,15
3,20
3,25

16149 27481 36483 58149 86991 112592 145116 168453 201423 217322 232569 254382 281915 303018 328481 355426 385967 399688 424093 446610

Size (byte)

C
om

pr
es

si
on

 R
at

io
 (B

it/
B

yt
e)

LZWL

XMillSyl

XMLSyl

XMill

Fig. 4. Compression ratio under different sizes.

Syllable-based Compression for XML Documents 31

of our tools and tested their performance on a variety of XML documents. In our
experiments, XMLSyl and XMillSyl were compared with LZWL and XMill. Both
methods are more suitable for textual XML documents. XMill outperformed
our methods only marginally. XMLSyl performs better than XMillSyl. It implies
that in our case encoding of XML structure is more efficient than separating a
structure from data and grouping data values with related meaning. XMillSyl
and XMLSyl show better results for Czech language.

In the future, we want implement some modifications to enhance the com-
pression ratio. For example, the information in the DTD section can be extracted
and utilized to create a special syllable dictionary for elements and attributes.

References

1. Wilfred Ng, Lam Wai, Yeung James Cheng. Comparative Analysis of XML Com-
pression Technologies. World Wide Web Journal, 2005

2. Smitha S. Nair. XML Compression Techniques: A Survey.
www.cs.uiowa.edu/~rlawrenc/research/Students/SN_04_XMLCompress.pdf

3. J. Cheney. Compressing XML with Multiplexed Hierarchical PPM Models In
Proc. Data Compression Conference, 2001.

4. V. Toman. Compression of XML Data. MFF UK, 2003
5. World Wide Web Consorcium. Extensive Markup Language (XML) 1.0.

http://www.w3.org/XML/
6. P. Tolani, J. R. Haritsa. XGrind: A Query-friendly XML Compressor. In Proc.

IEEE International Conference on Data Engineering, 2002.
7. SAX: A Simple API for XML.

http://www.saxproject.org
8. H. Liefke, D. Suciu. XMill: an Efficient Compressor for XML Data. In Proc. ACM

SIGMOD Conference, 2000.
9. Jun-Ki Min, Myung-Jae Park, Chin-Wan Chung, XPRESS: A Queriable Com-

pression for XML Data SIGMOD 2003, June 912, 2003, San Diego, CA, 2000.
10. Expat XML Parser.

http://expat.sourceforge.net
11. T. A. Welch. A technique for high performance data compression. IEEE Computer,

1984.
12. J. Lansky, M. Zemlicka. Text Compression: Syllables. DATESO, 2005
13. J. Lansky, Slabiková komprese. MFF UK, 2005
14. V. Toman. Komprese XML dat.

http://kocour.ms.mff.cuni.cz/~mlynkova/prg036/
15. J. Kosek. Inteligentńı podpora navigace na WWW s využit́ım XML.

http://www.kosek.cz/diplomka/, 2002
16. DocBook http://www.docbook.org/
17. A Quick Introduction to XML.

http://www.cellml.org/tutorial/xml_guide
18. M. Pilgrim. What Is RSS.

http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
19. XML Processing.

http://diveintopython.org/xml_processing/
20. SAX And DOM Overview.

http://www.jezuk.co.uk/cgi-bin/view/arabica/SAXandDOMIntro
21. The gzip home page.

http://www.gzip.org/

CellStore – the Vision of Pure Object Database

Jan Vraný

Department of Computer Science, FEE, Czech Technical University in Prague,
Karlovo náměst́ı 13, 120 00, Praha, Czech Republic

vranyj1@fel.cvut.cz

CellStore – the Vision of Pure Object Database

Jan Vrany

Department of Computer Science, FEE, Czech Technical University in Prague,
Karlovo namesti 13, 120 00, Praha, Czech Republic

vranyj1@fel.cvut.cz

Abstract. This paper describes a vision of CellStore, a kind of univer-
sal database system, which would be capable of storing and operating on
several different data models – object, network, hierarchical and even re-
lational one. Features of CellStore will be described as well as underlying
storage model and database architecture.

1 Motivation

The world’s mainstream programming paradigm for robust, large scale, mission-
critical application is object-oriented programming (OOP). Many of such ap-
plications need support of database to maintain its data. But nobody doubts
that the database should be relational or object-relational one. The semantic
gap between those two totally different paradigms brings some problems, that
has to be solved. Basically, there are three possible solutions:

– The application operates on data in a “relational way”, i.e. the programmer
has to use SQL queries to access data directly. In this case, usage of objects
is limited only to usage of OO libraries for GUI and so on.

– Some kind of object-relational mapper is used (GLORP [5] or Hibernate [6]
are examples of such O-R mappers). This allows programmers to manipulate
data in a “object” way, but architecture and capabilities of O-R mapper
limits the design of application and underlying database schema.

– Network or object database is used instead of relational one.

2 Currently available object-oriented databases

There are currently many so-called “object databases” – OmniBase, DB4Objects,
ZODB, GOODS, Elephant, GemStone/S. In fact many of them are network
rather than object ones. Both network and object database are very similar.
Both can store any arbitrary object structure. The difference is that an object
database also stores code (methods) together with regular data. Object database
can execute any code stored in it itself, no client environment is needed.

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 32–39, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

CellStore – the Vision of Pure Object Database 33

2.1 OmniBase

OmniBase [7] is embedded network database written in smalltalk. It is available
for many different smalltalk dialects – Doplhin Smalltalk, Squeak, VisualWorks,
Smalltalk/X and VAST. OmniBase supports multi-version concurrency control,
object clustering, online backups and thread-safe operations.

Garbage collecting is supported, but cannot be performed on live database.

2.2 DB4Objects

DB4Objects [8] is less or more similar to OmniBase, but there are two differences:

1. DB4Objects is targeted on Java and .NET (C#) platforms.
2. DB4Objects can operate as embedded database or can run as normal data-

base server which communicates with clients over the network.

2.3 GemStone/S

GemStone/S [9] is full-featured object database based on smalltalk dialect called
Smalltalk DB. GemStone application consists of three parts: a client (usually
VisualWorks smalltalk), a Gem (a part of GemStone responsible for evaluating,
transaction processing and so on) and a Stone (a part responsible for managing
low-level storage). Each part can run on different node in a network. A special
Gem called GcGem is responsible for garbage collecting, which is performed
during normal processing of client requests.

3 The CellStore project

The basic motivation for CellStore project was development of an experimental
database, which can be used as a basis for experimenting with various database
algorithms like locking and caching strategies, transaction policies, different data
type models, etc.

The project is divided into three relatively independent parts:

– CellStore low-level storage, which provides a basic storage management,
– CellStore/OODB, an experimental object database,
– CellStore/XML, an experimental native XML database.

The design and implementation of CellStore is focused more on simple OO
design and modularity than on implementation performance. As long as Cell-
Store is experimental system, saving several bytes of memory or several processor
instructions doesn’t matter.

34 Jan Vraný

3.1 The low-level storage model

The low-level storage model gave CellStore its name. It is combination of storage
models of Lisp, Smalltalk and Oracle RDBM. Basically, the storage is divided
into two main spaces.

– Cell space, which contains only the structural information about stored data.
Structure is kept in fixed-size cells. Each cell has several fields, which can
contain pointer to another cell in the cell space or a pointer to a record
in the data space. Cells describe only relationships between data elements
(objects) stored in a CellStore database.

– Data space, which contain actual data, i.e. a byte arrays. Data space is
organised into blocks, each block may contain several records. Each record
in data space is identified by a unique data pointer. The internal organisation
of data space is similar to data blocks in Oracle or in any other relational
database.

This approach has several advantages:

1. usage of fixed-length cell simplifies cell allocation and automatic storage
reclamation

2. it is possible to store many different object models

The second advantage is a more important one. It allows to store different
data (class-based objects, prototype-based objects, XML data and even rela-
tional data) together in the same database. Thus CellStore can act as a pure
object database or as an XML database. Note that data are stored in their native
form, mapping of data to cell and data space is less or more straightforward.
This is why we call CellStore a universal database.

Mapping objects into cell and data space In this section, mapping of
objects will be described. Consider class-based object model and eight-field cells.

Each object occupies at least one cell, called the head cell and zero or more
cells called tail cells.

The head cell contains cell header, which contains cell type (non-indexable
class-based instance for example), other information like the number of cells
occupied by this instance, gc support information, tail-cell flag and more.

Second field of the head cell contains pointer to ACL set, pointer to another
object (in fact, pointer to another object’s head cell), which contains all informa-
tion needed for access control to this object (because we are designing multi-user
database).

Third field of the head cell contains pointer to object’s class, which is also
an object represented by head cell.

Other fields contain pointers to ordinary instance variables. If all instance
variables cannot be stored in a single cell, the last field contains pointer to the
next (possibly tail) cell. Another possibility is to use something like indirect
pointers as used in inode-based file systems.

CellStore – the Vision of Pure Object Database 35

Data of indexed classes (arrays, byte arrays) are stored in the data space.
An example of objects structure and its mapping to cell and data space is

on figure 1 and figure 2. Note, that integers are stored as immediate values [1].

Person

’Bob’

a CarModel(Ford)

a Car(id 1234)

a MethodDictionary

a Car(id 5678)

a Person(Bob)

Fig. 1. Example of object structure

Mapping XML data into cell and data space Another example of data
that can be stored in CellStore is XML data. Although XML data can be stored
into CellStore as normal objects (DOM nodes) as shown above, we are using
more efficient, XML specific mapping.

There are 9 types of cells:

– character data cell
– attribute cell
– element cell
– document cell
– document type cell
– processing instruction cell
– comment cell
– xml resource cell
– collection cell

The last two cell types represent XML:DB objects as described in [2]. Each
cell has a pointer to its parent cell, first child cell and sibling cell. Meanings of
the last four fields depend of the type of the cell (see table 1).

Children of any cell are linked through the sibling pointer and parent holds
pointer to the first child.

36 Jan Vraný

’Bob’

a Car(id 1234)

a Car(id 5678)

a CarModel(Ford)

a MethodDictionary

Person

a Person(Bob)

Cell Space

Data Space

B o b

head acl pointer class instvar 1 instvar 2 instvar 3 instvar 4 instvar 5

1234

5678

A l i c e . . .

Fig. 2. Example mapping objects into the cell and data space

3.2 The CellStore’s virtual machine

Classic virtual machine consists of an object memory and an interpreter. Object
memory is responsible for managing objects in memory, for efficient storage
reclamation and the interpreter defines all the execution semantics. We think
that it’s possible to implement virtual machine on the top of CellStore storage,
so one can think about CellStore as one large multi-user virtual machine with
persistent, transaction-capable object memory.

The idea is to move as much functionality as possible to CellStore’s virtual
machine. This includes indexing algorithms, garbage collector, jitter etc. The
CellStore should provide only basic object memory management and common,

Table 1. Meanings of fields in XML cells

Field
Cell type 5 6 7 8

character data data 1 (data 2) (data 3) (data 3)

attribute local name namespace qualifier namespace uri value

element local name namespace qualifier namespace uri first attribute

document document type encoding unused unused

document type public id system id unused unused

processing instruction target data unused unused

comment data 1 (data 2) (data 3) (data 3)

xml resource resource name unused unused unused

collection name unused unused first resource

CellStore – the Vision of Pure Object Database 37

flexible object model. Everything else could be implemented on the top of Cell-
Store.

This allows user (programmer) to experiment with different algorithms, jit-
ters, garbage collectors and, as long as the interpreter itself will be implemented
on the top of CellStore, with different programming languages and code seman-
tics.

The CellStore’s virtual machine should provide only the following:

– object memory management supporting only common object model as de-
scribed in section 3.1

– dumb, built-in interpreter which is capable if interpreting simple, limited
language (bytecode) – we called it the bootstrap interpreter

– capability of trap out unknown language (bytecode) and let user-level inter-
preter to evaluate them.

– basic support for installing native (jitted) code into VM’s native code cache

There is no need for speed of any interpreter as long as the interpreter will be
able to interpret jitter (implemented in any language). The jitter can translate
itself into the native code to make itself fast and then translate the rest.

3.3 Architecture of CellStore database

The high level architecture of CellStore is shown on figure 3.

Bootstrap
interpreter

Java interpreter

Storage Manager

Cache Manager

OODB TM XML TM

executor

XQuery/XPath

CellStore/OODB CellStore/XML

Low−level
storage

Cell space Data space

Jitter

St. interpreter

Object memory

Fig. 3. High level architecture of CellStore

From the VM’s side of view, OODB transaction manager plays the role of
object memory, so it should provide interface similar to Smalltalk-80’s object

38 Jan Vraný

memory [1]. In addition, it must provide an interface for transaction managing
(start, commit, abort) and an interface for garbage collector.

3.4 Status of the CellStore project

The Cellstore project is developed at Department of Computer Science, FEE
CTU Prague by Michal Valenta, Jan Vrany, Pavel Strnad, Karel Prihoda and
Jan Zak.

Whole the project is developed in Smalltalk/X – a free smalltalk imple-
mentation. Smalltalk/X has been chosen because of its pure object orientation,
source code availability, outstanding development tools and because of its ex-
treme agility. To achieve practical performance, system can be translated to C
[4].

In these days, only the lowest level storage manager is implemented. It can
manage cell and data spaces. First experiments show that the storage is able to
store whole INEX database [10] (about 500MB of XML documents) using map-
ping described in section 3.1 without significant performance lost, that means
that the document reconstruction time of single, randomly chosen document n
was almost independent on database size.

First versions of cache and XML transaction managers are implemented and
tested but they are not integrated to the rest of the system, yet.

4 Conclusion and future work

This paper presented the vision of a pure object database built on the top
of CellStore storage model. In CellStore virtual machine, as much components
as possible is lifted up to “user-space”, making experiments with different lan-
guages, semantics, jitter, garbage collectors and other algorithms and techniques
very easy.

To make such system working, several things has to be developed:

– OODB transaction manager and its interface to bootstrap interpreter.
– tiny bootstrap interpreter
– experimental, naive one-to-one non optimising jitter
– other language interpreter

Once things mentioned above will be implemented and tested, we will have a
working database system, which can be used as test bed for many different algo-
rithms. Such system will make development of new approaches and algorithms
very easy.

References

1. A. Goldberg, D. Robson. Smalltalk-80: The Language and its Implementation,
Addison-Wesley, 1983.

CellStore – the Vision of Pure Object Database 39

2. XML:DB initiative. XML:DB Working Draft, http://xmldb-org.sourceforge.

net/xapi/xapi-draft.html

3. Camp Smalltalk. VM Issues, http://wiki.cs.uiuc.edu/CampSmalltalk/VM+

Issues

4. D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay. Back to the Future. The
Story of Squeak, A Practical Smalltalk Written in Itself http://users.ipa.net/

~dwighth/squeak/oopsla_squeak.html

5. Camp Smalltalk. GLORP: Generic Lightweight Object-Relational Persistence,
http://glorp.org/

6. Relational Persistence for Java and .NET, http://www.hibernate.org/
7. OmniBase, http://www.gorisek.com
8. DB4Objects, http://db4objects.org
9. GemStone/S, http://www.gemstone.com

10. INEX: Initiative for the Evaluation of XML Retrieval, http://inex.is.

informatik.uni-duisburg.de/2006/

Conceptual Modeling for XML: A Survey∗

Martin Nečaský

Charles University, Faculty of Mathematics and Physics,
Malostranske nam. 25, 118 00 Praha 1, Czech Republic

martin.necasky@mff.cuni.cz

Conceptual Modeling for XML: A Survey⋆

Martin Necasky

Charles University, Faculty of Mathematics and Physics,
Malostranske nam. 25, 118 00 Praha 1, Czech Republic

martin.necasky@mff.cuni.cz

Abstract. Recently XML is the standard format used for the exchange
of data between information systems and is also frequently applied as a
logical database model. If we use XML as a logical database model we
need a conceptual model for the description of its semantics. However,
XML as a logical database model has some special characteristics which
makes existing conceptual models as E-R or UML unsuitable. In this pa-
per, the current approaches to the conceptual modeling of XML data are
described in an uniform style. A list of requirements for XML conceptual
models is presented and described approaches are compared on the base
of the requirements.

Keywords: conceptual modeling, XML, XML Schema

1 Introduction

Today XML is used for the exchange of data between information systems and
it is frequently used as a logical database model for storing data into databases.
If we use XML as a logical database model we need a conceptual model for
modeling XML data. There is the Entity-Relationship (E-R) [19] model for the
conceptual modeling of relational data. However, XML as a logical database
model has some special differences which makes the E-R model unsuitable for
the conceptual modeling of XML data. The main differences are the following:

– hierarchical structure
– irregular structure
– ordering on siblings
– mixed content

These features cannot be properly modeled in the E-R model. There are
some approaches, for example Extended E-R [1], EReX [11], EER [12], XER
[17], ERX [16], and C-XML [5], trying to extend the E-R model to be suitable
for the conceptual modeling of XML data. It is possible to extend the E-R model
to model ordering, mixed content and irregular structure of XML data. However,
there is a problem with the modeling of a hierarchical structure of XML data.

⋆ This paper was supported by the National programme of research (Information so-
ciety project 1ET100300419)

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 40–53, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

Conceptual Modeling for XML: A Survey 41

Suppose an E-R diagram with a relationship type Enroll between two entity
types Student and Course representing courses enrolled by students. Each stu-
dent may enroll zero or more courses and each course may be enrolled by zero
or more students. The diagram is shown in Figure 1(a).

Fig. 1. Representation of E-R relationship type in a hierarchical structure

Figures 1(b), (c), and (d) show possible representations of the relationship
type in a hierarchical structure. Oriented arrows denote a nesting. There is not
the best nesting of the concepts. The nesting of courses into students illustrated
by Figure 1(b) is suitable when we need to see students and the courses they
enrolled. The nesting of students into courses illustrated by Figure 1(c) is suitable
when we need to see courses and the students enrolled in them.

The previous example shows another difference between the conceptual level
of XML and the E-R model. This difference is not in the structure but it is
in the usage of XML. It is shown that there may be many ways of how to use
entity types connected together by a relationship type. If we represent data in
the form of XML, each of these ways may require another hierarchical ordering
of the entities. However, this feature cannot be effectively modeled by the E-R
model.

Another possibility of how to model XML data is to start from a hierarchical
structure. This approach may be called the hierarchical approach. There are
conceptual models based on the hierarchical approach, for example X-Entity
[10], ORA-SS [4], and Semantic Networks for XML [6]. The base of a schema in
the hierarchical approach is a tree, whose nodes are entity types and edges are
relationship types between entity types. Figures 1(b), (c), and (d) show examples
of a basic hierarchical schemata.

The hierarchical approach is able to solve the mentioned problem with dif-
ferent views of the same data. For each of the views there is a separate tree.
However, a problem with the modeling of attributes of relationship types or with
the modeling of n-ary relationship types, effectivelly solved in the E-R model,

42 Martin Nečaský

arises. Another problem arises when deciding which of hierarchical organizations
of the same data is the best to select as the basic organization used for the data
storage.

The goal of this paper is to describe the existing conceptual models for XML
based on the E-R model and on the hierarchical approach. There are approaches
based on the UML (Unified Modeling Language) [15] and ORM (Object Role
Modeling) [8] models, too. However, we do not describe them in this paper. We
propose a list of requirements for conceptual models for XML and compare the
described models against the requirements. The main contributions of this paper
are the unified descriptions of the conceptual models and the comparison of the
models against the list of requirements. This paper is an abbreviated version of
the full paper [14] where all the conceptual models mentioned in this paper are
compared in detail and described in an unified formalism.

Section 2 introduces the list of requirements for conceptual models for XML.
Section 3 describes representatives of the conceptual models for XML based on
the well-known E-R model. Section 4 describes representatives of the hierarchical
conceptual models for XML. Section 5 compares the described conceptual models
against the requirements introduced in Section 2.

2 Requirements for Conceptual Models for XML

Requirements for conceptual models for XML are summarized in this section.
There are two groups of the requirements described. The first group consists of
general requirements covering general goals of the XML conceptual modeling.
The second group consists of modeling constructs requirements covering require-
ments on what kinds of modeling constructs should XML conceptual models
support.

2.1 General Requirements

Independence on XML schema languages The conceptual model should
be independent on a certain XML schema language (XML Schema [7], DTD,
. . .). The constraints given by a certain XML schema language should not
be propagated to the conceptual level.

Formal foundations The modeling constructs of the conceptual model should
be described formally, which allows to compare the model with other con-
ceptual models or to describe the operations on the model structures and
modeled data (for example, data transformation between two conceptual
schemata or their integration).

Graphical notation A user-friendly graphical notation for the formal model-
ing constructs should be offered by the conceptual model.

Logical level mapping There should be algorithms for mapping of the con-
ceptual modeling constructs to the XML logical level. The logical schema
should implement as many integrity constraints arised from the conceptual
schema as possible. It may require the usage of more than one XML schema

Conceptual Modeling for XML: A Survey 43

language for the logical level description (XML Schema and Schematron [9],
for example). The hierarchical structure of the XML data should be utilized
as much as possible on the logical level.

Different structures on the logical level The XML logical level is hierar-
chical. However, there are different users with different requirements ac-
cessing the modeled data on the logical level. Hence, there can be different
hierarchical views of the same data. Each of the views suits to different re-
quirements. It should be possible to model the different hierarchical views
on the conceptual level and translate them to the corresponding views on
the logical level. Moreover, there should be algorithms allowing automatic
translation of data from one logical view to another logical view (using XSLT
[2], for example).

Semantic web mapping With the increasing usage of the semantic web tech-
nologies the problem of publishing data in the form of RDF [13] triples
described by RDF Schema [13] or OWL [18] arises. One possible solution is
to have the data internally represented in the form of XML and translate
them to the RDF triples represented in the form of RDF/XML [13] utiliz-
ing XSLT. The conceptual model for XML should consider this problem. It
would be useful to have algorithms for the translation from the conceptual
level to the semantic web level where the structures from the conceptual level
are described using OWL. It would allow companies to publish their inter-
nally represented data on the semantic web and, backwards, to obtain data
from the semantic web and integrate them to the internal representation
automatically.

2.2 Modeling Constructs Requirements

Hierarchical structure Although it can be useful to keep a document de-
signer out of the hierarchical structure of XML data on the conceptual level,
the conceptual model should offer modeling constructs for modeling nesting
explicitly. For example, aggregation relationship types can be used. How-
ever, non-hierarchical relationship types (for example, association relation-
ship types or references) should be offered too. The conceptual model should
introduce contructs for modeling a recursive structure.

Cardinality for all participants The hierarchical structure of XML data re-
stricts the specification of cardinality constraints only to the nested partic-
ipants of the relationship type. However, it should be possible to specify
cardinality constraints for the all participants on the conceptual level.

N-ary relationship types For the same reason, the modeling of n-ary rela-
tionship types and their translation to the XML logical level is problematic.
However, it should be possible to model n-ary relationship types on the
conceptual level.

Attributes of relationship types For the same reason again, the modeling
of attributes of relationship types is problematic. Nor the nesting nor the
concept of referential integrity on the XML logical level do not allow to

44 Martin Nečaský

directly express attributes of relationship types. However, the conceptual
model should allow to model attributes of relationship types.

Ordering XML is ordered and this property should be propagated to the con-
ceptual level. It should be possible to express the ordering on values of
attributes, the ordering on concepts connected with another concept (for
example, a book has a title page first, followed by an abstract, chapters, ap-
pendixes and a bibliography in this order) and the ordering on a participant
of a relationship type (for example, the list of authors of a book or the list
of chapters of a book are ordered).

Irregular and heterogeneous structure XML data may have irregular and
heterogeneous structure. The conceptual model should introduce constructs
for modeling such a structure. For example, variant-valued constructors for
constructing attributes or disjunctive relationship types should be intro-
duced.

Document-centric data The difference between the conceptual models for
XML and the other conceptual models is that the conceptual models for
XML must allow to model document-centric data. It means that not only
the real-world objects with attributes and relationships but also the certain
parts of documents are modeled on the conceptual level. Hence, there should
be corresponding modeling constructs offered by the conceptual model. It
means to allow attributes and relationships of a given concept to be mixed
with a text when represented in a document content. However, the mixed
content should not be restricted as it is restricted by XML Schema. Some
form of generalized mixed content should be introduced allowing to specify
where the text values may appear exactly (as it is possible in Relax NG [3]
schemata, for example).

Reuse of content The reuse of content should be supported by the concep-
tual model. For example, the concept inheritance (modeled by IS-A rela-
tionship types in E-R, for example) supports the reuse of content. However,
the conceptual model may be inspired in the XML Schema language and
may support named types and named groups of concepts on the conceptual
level.

Integration of conceptual schemata XML data are often used for the data
integration. However, it can not be done effectivelly and automatically with-
out the support on the conceptual level. A conceptual model for XML should
offer modeling constructs to support an integration of schemata on the con-
ceptual level and it should allow to merge different conceptual schemata to
an overall conceptual schema. Further, it would be useful to generate XSLT
transformation scripts to translate data corresponding to one conceptual
schema to data corresponding to another conceptual schema.

3 E-R Based Conceptual Models for XML

In this section, we describe two representatives of the conceptual models for
XML based on the E-R model. The first representative is the Extended E-R
model [1] and the second representative is the EReX model [11].

Conceptual Modeling for XML: A Survey 45

3.1 Extended E-R Model (by Antonio Badia)

Extended E-R model proposed by Badia in [1] is a minimalistic extension to the
E-R model. The extension is based on the idea of integration of structured and
semistructured data where an overall conceptual schema is needed. Moreover,
the author proposes algorithms for the translation of E-R schemata to relational
schemata and to DTD schemata. Further, he studies the utilization of combina-
tion of relational schemata and DTD schemata for a data representation. The
author proposes the following DTD based extensions to the E-R model.

– Each attribute is marked as optional or required. If an entity type has an
optional attribute its entities may or may not have a value of the attribute.
If an entity type has a required attribute its entities must have a value of
the attribute.

– A choice between two or more attributes called choice attribute can be mod-
eled. A choice attribute can be inclusive or exclusive. If an entity type has an
inclusive choice attribute its entities may have values of one or more of the
attributes in the choice. If an entity type has an exclusive choice attribute
its entities may have only a value of one of the attributes in the choice.

In a graphical representation, an optional attribute is connected to the cor-
responding entity type by a solid line with two dashes crossing it. A choice of
attributes is expressed by marking the choice with an upward triangle, with the
choices in the opposed side of the triangle.

Figure 2 displays the entity type Student having the optional attribute
phone and the exclusive choice attribute involving the attributes hosteladdr

and homeaddr, i.e. each student has a hostel address or a home address but not
both.

Fig. 2. Extended E-R Diagram

3.2 EReX

EReX is an extension to the E-R model proposed by Mani in [11]. The author
introduces the following extensions to the E-R model:

– Categorization of entity types can be modeled using category relationship

types. Category relationship types are a special kind of binary relationship
types similar to IS-A relationship types from the well-known E-R model. A

46 Martin Nečaský

category relationship type is displayed by an arrow with the label CAT going
from its category entity type to its categorizied entity type. The difference
between the IS-A relationship types and the category relationship types is
that a categorized entity type may have an empty key (i.e. an entity type
with an empty key must be categorized). Moreover the integrity constraints
called coverage constraints can be specified on categorizied entity types.

– Total and exclusive coverage constraints can be specified for categories and
for roles of entity types in relationship types. A total coverage constraint
specifies that the union of sets of instances of all included categories or roles
must be the same as a set of instances of the categorizied entity type or the
entity type with the included roles. An exclusive coverage constraint specifies
the disjunction between the sets of instances of the included categories or
roles. We do not formally define the coverage constraints here. We show them
only in a form of the examples illustrated in Figure 3.

– Order constraints can be specified for participants of a relationship type. An
ordering on a participant E of a relationship type R is displayed by a thick
solid line between R and E. If an ordering on E in R is specified, then for a
given entity e of the entity type E the set of relationships of the relationship
type R with e as a participant is ordered.

The extending modeling constructs of the EReX model are demonstrated by
the schema in Figure 3. It displays the categorized entity type Person and its
categories Student and Professor. The key of Person is empty. Further, there
are the entity types Book and Paper connected with Professor by the relation-
ship types AuthorOfB and AuthorOfP , respectively. Attributes of Book and
Paper are not displayed. There is an ordering specified on the entity types Book

and Paper in the relationship types AuthorOfB and AuthorOfP , respectively.
It means, that the authors of a given paper or a given book are ordered.

The total coverage constraint Student + Professor = Person specifies,
that each person is a student or a professor and there are no other persons.
The exclusive coverage constraint Student|Professor specifies that students
and professors are disjoint. The total coverage constraint AuthorOfB.pbook +
AuthorOfP.ppaper = Professor specifies that each professor is an author of
some paper or book.

Fig. 3. EReX Diagram

Conceptual Modeling for XML: A Survey 47

4 Hierarchical Conceptual Models for XML

The extensions of the E-R model allow to model conceptual schemata with a
graph structure. However, XML schema languages allow to express relationship
types only by nesting and references. It is possible to express all the relationship
types from an E-R schema by references, but it leads to flat schemata and the
advantages of the hierarchical structure of XML are not utilized. On the other
hand, if the hierarchical structure is used to express relationship types in a
conceptual schema the problem with the decision about what to nest arises.
Another problem is how to represent n-ary relationship types and attributes of
relationship types.

In this section we describe a basic hierarchical conceptual model for XML
first. In the next subsections, we describe two representatives of the conceptual
models for XML based on the hierarchical approach. The first representative is
the ORA-SS model [4] and the second representative is the Semantic Networks
for XML model [6].

4.1 Basic hierarchical conceptual model for XML

The basic hierarchical conceptual model for XML can be easily defined as a
restriction of the E-R model where only the binary relationship types with car-
dinality types (1, 1) : 1 or (1, 1) : N and without attributes are allowed. Each
relationship type is oriented from the entity type with the arbitrary cardinality
called the parent participant to the entity type with the cardinality (1, 1) in the
relationship type called the child participant. We say that the child participant
is nested in the parent participant. This kind of relationship types may be called
nesting binary relationship types. When modeling XML data, the nesting binary
relationship types are represented by a nesting of elements on the XML logical
level. They express a hierarchical structure on the XML logical level explicitly
on the conceptual level. However, the semantics of nesting relationship types do
not have to be only ”part-of”. It may be a general association too.

Such restrictions are too strong and do not allow to model conceptual schemata
with richer semantics. Nor n-ary relationship types, nor attributes of relationship
types can be modeled. Moreover, lots of redundancies may appear in schemata.
There are some approaches extending this basic hierarchical model described in
the following subsections.

4.2 ORA-SS

ORA-SS is a rich hierarchical conceptual model for XML proposed by Dobbie
et al. in [4]. ORA-SS has three basic modeling constructs: object types, rela-
tionship types and attributes. The object type construct is similar to the entity
type from the E-R model. Relationship types between object types represent
hierarchical relationships. Non-hierarchical relationships can be modeled by the
references. The authors introduce the concept of n-ary hierarchical relationship

48 Martin Nečaský

types and attributes of hierarchial relationship types. Moreover, the authors offer
the following extending features:

– Cardinality constraints for the both participants of hierarchical relationship
types.

– An ordering on different concepts. The first type is an ordering on values of
a multivalued attribute of an object type. The second type is an ordering
between the attributes of an object type and nesting relationship types going
from the object type. The third type is an ordering on a relationship type
going from an object type. It allows to specify ordering between the objects
nested by the ordered relationship type in the parent object.

– A disjunction between two or more attributes or nesting relationship types.
It allows to model irregular structure.

Figure 4 displays an ORA-SS schema representing professors as employees of
departments and professors as members of projects. Each professor is employed
by exactly one department and each department employes one or more profes-
sors. Each professor is a member of zero or more projects and each project has
one or more members. There is a ternary relationship type AuthorOf between
the object types Project, Professor and Paper. It represents papers written
by a professor participating in a project. Each professor is an author of zero
or more papers in a project and each paper has one or more authors. For each
project there is a list of member professors and for each member professor there
is a list of papers he wrote during his work in the project. Moreover, there is
the attribute pages of the relationship type AuthorOf . For a professor being
an author of a paper in a project the value of pages is the number of pages the
professor wrote in the paper. However, the attribute pages cannot be directly
assigned to the relationship type AuthorOf . It must be assigned to the nested
object type Paper. For each Professor instance nested in a Project instance
there must be a Professor instance nested in a Department instance containing
the name and address values of the professor. This is modeled by the reference
between the object types.

Fig. 4. ORA-SS Diagram

Conceptual Modeling for XML: A Survey 49

4.3 Semantic Networks for XML

The semantic network model for XML was introduced by Feng et al. in [6]. The
model is a little extension to the basic hierarchical conceptual model described
in Section 4.1. Schemata in the semantic network model for XML are called se-
mantic networks. Nodes in semantic networks are used for modeling objects from
the real world and their attributes, and edges are used for modeling relationships
between the objects.

Only binary hierarchical relationship types without attributes can be mod-
eled in the semantic network model. Moreover the parent participant cardinality
constraint of a hierarchical relationship type must be equal to (1, 1). Beside the
hierarchical relationship types it is possible to use non-hierarchical relationship
types for modeling associations.

Different constraints can be specified in the semantic network schema for
XML. Constraints can be specified over a node, over an edge and over a set of
edges. These constraints are a uniqueness, order, disjunction, etc.

Figure 5 displays a semantic network schema. There are departments repre-
sented by the node Department and professors in the departments represented
by the node Professor. The content of the node Professor is ordered. For each
professor there are the papers he wrote represented by the node Paper. Each
paper may be composed of chapters or sections, but not both (the exclusive
constraint). The courses offered by a department are represented by the node
Course. Professor is associated with Course. It represents the relationships
between a professor and the courses he teaches.

Fig. 5. Semantic Network Diagram

5 Comparison of Described Conceptual Models

In this section, we compare the conceptual models mentioned in this paper.
The comparison is made against the general requirements and the modeling
constructs requirements introduced at the beginning of the paper.

50 Martin Nečaský

There are two comparative tables. Table 1 compares the models against the
general requirements and Table 2 compares the models against the modeling
constructs requirements. The well-known E-R model and the basic hierarchical
model are compared too.

We are not able to decide, which of the previous two approaches (E-R ex-
tensions, hierarchical modeling) is better for the conceptual modeling of XML
data. Conceptual models based on the E-R model allow user to create a schema
with no metadata redundancy, but there is the problem with the modeling of the
specific XML features. Hierarchical conceptual models solve the problem with a
hierarchical structure of XML, but there arises problems such as data and meta-
data redundancy, modeling of attributes of relationship types, and modeling of
n-ary relationship types.

There are requirements that are not met by the described models. The mod-
eling of document centric data and the reuse of content is problematic. The
important requirement on the integration of conceptual schemata is solved only
by the ORA-SS model. None of the models solves the problem of the integration
with the semantic web technologies.

Table 1. Comparison Against the General Requirements

ER ER-B EReX EER XER ERX C-XML Hier X-Entity ORA-SS Sem.net.

· independence on XML schema languages
√

−
√ √

−
√ √ √ √ √ √

· formal foundations
√ √ √

− −
√

−
√ √ √ √

· graphical notation
√ √ √ √ √ √ √ √ √ √ √

· logical level mapping

− relational model
√ √

− − − − − − − − −

− tree grammar based XML schema languages

−
√ √ √ √

1 −
√ √ √ √ √

− pattern based XML schema languages

− − − − − − − − − − −

− utilization of hierarchical structure of XML

− −
√ √ √

−
√ √ √ √ √

· different structures on the logical level

− conceptual hierarchical views

− − − − − − − − −
√

−

− translation between hierarchical views

− − − − − − − − −
√

−

· semantic web mapping

− − − − − − − − − − −

1 formal description is missing

Conceptual Modeling for XML: A Survey 51

Table 2. Comparison Against the Modeling Constructs Requirements

ER ER-B EReX EER XER ERX C-XML Hier X-Entity ORA-SS Sem.net.

· hierarchical relationship types

− − −
√

−
√

−
√ √ √ √

− M : N cardinality
− N-ary
− attributes

− − − − − − − − −
√

−

· non-hierarchical relationship types
√ √ √ √ √ √ √

− −
√ √

− M : N cardinality
√ √ √ √

−
√ √

− − − 5 −

− N-ary
− attributes

√
1

√ √ √
− −

√
− − − 5 −

· ordering

− on the values of an attribute
√

1 − − − − − −
√

−
√ √

− on the content of a concept

− − − −
√

2 −
√

− −
√ √

− on the participant of a relationship type

− −
√ √

−
√

3 − − −
√

−

· irregular and heterogeneous structure

− variant-valued attribute constructor
√

1
√

− − − − −
√

−
√ √

− disjunctive constraints on relationship types

−
√

4
√

4 − −
√

− −
√ √ √

· document-centric data

− basic mixed content

− − − −
√

− − − − − −

− generalized mixed content

− − − − − − − − − − −

· reuse of content

− IS-A or the category concept
√ √ √

−
√ √ √ √

−
√ √

− named types and groups of concepts

− − − − − − − − − − −

· integration of conceptual schemata

− modeling constructs

− − − − −
√

− − −
√

−

− algorithms for merging schemata

− − − − − − − − −
√

−

− algorithms for the data translation between schemata

− − − − − − − − −
√

−

1 with the complex attributes extension

2 unordered content is restricted by the restrictions of xsd:all

3 only by ordered attributes, native XML ordering is not utilized

4 using the category concept

5 indirect modeling using hierarchical relationship types is possible

52 Martin Nečaský

6 Conclusions

In this paper, we describe a state of the art of the conceptual modeling for XML.
There has been several papers proposing new conceptual models for XML. We
selected some representants of the models and describe them in this paper. We
propose a list of requirements conceptual models for XML should satisfy and
compare the mentioned conceptual models against the requirements.

The comparison of the models shows that there is a poor support for some
specific XML features as ordering or mixed content as described by the modeling
constructs requirements proposed in Section 2. Moreover, the models poorly
concentrates on the usage of conceptual schemata for the data integration and
the integration with the semantic web technologies as described by the general
requirements proposed in Section 2.

For these reasons, there is an open space for a research in the area of the
conceptual modeling for XML. Not only new modeling constructs should be
proposed to support specific XML features. The utilization of the conceptual
models for the data integration between different data sources including semantic
web resources should be explored too.

References

1. A. Badia. Conceptual Modeling for Semistructured Data. In Proceedings of the
3rd International Conference on Web Information Systems Engineering Workshops
(WISE 2002 Workshops), p. 170-177. Singapore, December 2002.

2. J. Clark. XSL Transformations (XSLT) Version 1.0. World Wide Web Consortium,
Recommendation REC-xslt-19991116. November 1999.

3. J. Clark, M. Makoto. RELAX NG Specification. Oasis. December 2001.
4. G. Dobbie, W. Xiaoying, T.W. Ling, M.L. Lee. ORA-SS: An Object-Relationship-

Attribute Model for Semi-Structured Data. Technical Report, Department of Com-
puter Science, National University of Singapore. December 2000

5. D.W. Embley, S.W. Liddle, R. Al-Kamha. Enterprise Modeling with Conceptual
XML. In Proceedings of the 23rd International Conference on Conceptual Modeling
(ER 2004), p. 150-165. Shanghai, China, November 2004.

6. L. Feng, E. Chang, T. Dillon. A Semantic Network-Based Design Methodology for
XML Documents. ACM Transactions on Information Systems, Volume 20, Number
4, p. 390-421. October 2002.

7. D. C. Fallside, P. Walmsley. XML Schema Part 0: Primer Second Edition. World
Wide Web Consortium, Recommendation REC-xmlschema-0-20041028. October
2004.

8. T. Halpin. Information Modeling and Relational Databases From Conceptual
Analysis to Logical Design. Morgan Kaufmann Publishers, 2001. ISBN: 1-55860-
672-6

9. International Organization for Standardization. Information Technology Doc-
ument Schema Definition Languages (DSDL) Part 3: Rule-based Validation
Schematron. ISO/IEC 19757-3, February 2005.

10. B.R. Loscio, A.C. Salgado, L.R. Galvao. Conceptual Modeling of XML Schemas. In
Proceedings of the Fifth ACM CIKM International Workshop on Web Information
and Data Management (WIDM 2003), p. 102-105. New Orleans, Louisiana, USA,
November 2003.

Conceptual Modeling for XML: A Survey 53

11. M. Mani. EReX: A Conceptual Model for XML. In Proceedings of the Second Inter-
national XML Database Symposium (XSym 2004), p. 128-142. Toronto, Canada,
August 2004.

12. M. Mani, D. Lee, R.R.Muntz. Semantic Data Modeling Using XML Schemas. In
Proceedings of the 20th International Conference on Conceptual Modeling (ER
2001), p. 149-163. Yokohama, Japan, November 2001.

13. F. Manola, E. Miller. RDF Primer. World Wide Web Consortium, Recommenda-
tion REC-rdf-primer-20040210. February 2004.

14. M. Necasky: Conceptual Modeling for XML: A Survey. Technical Report No. 2006-
3, Dep. of Software Engineering, Faculty of Mathematics and Physics, Charles
University, Prague, 2006, 54 p.

15. Object Management Group. UML 2.0 Superstructure Specification. October 2004.
16. G. Psaila. ERX: A Conceptual Model for XML Documents. In Proceedings of the

2000 ACM Symposium on Applied Computing, p. 898-903. Como, Italy, March
2000.

17. A. Sengupta, S. Mohan, R. Doshi. XER - Extensible Entity Relationship Model-
ing. In Proceedings of the XML 2003 Conference, p. 140-154. Philadelphia, USA,
December 2003.

18. M. K. Smith, Ch. Welty, D. L. McGuinness. OWL Web Ontology Language Guide.
World Wide Web Consortium, Recommendation REC-owl-guide-20040210. Febru-
ary 2004.

19. B. Thalheim. Entity-Relationship Modeling: Foundations of Database Technology.
Springer Verlag, 2000, Berlin, Germany. ISBN: 3-540-65470-4

Transforming Data from DataPile Structure
into RDF

Jǐŕı Dokulil

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

dokulil@gmail.com

Transforming Data from DataPile Structure into RDF

Jiří Dokulil

Faculty of Mathematics and Physics, Charles University Prague
dokulil@gmail.com

Abstract. Huge amount of interesting data has been gathered in the DataPile
structure since its creation. This data could be used in the development of RDF
databases. When limited to basic information stored in the DataPile the
transformation into RDF is straightforward. It still provides millions of RDF
triples with complex structure and many irregularities.

1 Introduction

While it is easy to find huge relational or XML data rich in structure there is still not
much data available in the RDF format. Such data could be obtained by simple
conversion from a relational database but this data would be simple and with a regular
structure.

In this paper we propose a transformation of data stored in the DataPile structure
[1] into the RDF [2]. We expect to receive huge amount of RDF triples with more
interesting structure and much less regular than data from relational databases. This
expectation is based on the way the DataPile structured is being used in practice.

The DataPile system was developed to integrate data from a heterogeneous set of
databases. Among main design goals were storage of historical versions of data and
easy adaptation to global schema changes.

First of all we present the DataPile and RDF models, then describe the
transformation of metadata and data and finally give results of an experimental
implementation of the transformation.

2 The Data Models

In this section we present the data models that take part in the transformation.

2.1 The DataPile

The terminology used in DataPile systems is different from those used in relational
and RDF databases. Entity is a rough equivalent of a table scheme. It has a name and
consists of attributes, which can be compared to column definitions. Each attribute
defines an attribute name and data type. The set of allowed data types had to be very

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 54–62, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

Transforming Data from DataPile Structure into RDF 552 Jiří Dokulil

limited because of implementation reasons. The only supported types are string,
number, timestamp, BLOB (Binary Large Object) and a typed reference (foreign
key). The DataPile system allows definition of multiple entities each having zero or
more attributes. One attribute can not be a member of multiple entities. On the other
hand, multiple attributes with the same name can exist, as long as they are members
of different entities.

Entities and attributes are metadata. They define structure of the actual data that
can be stored in the system.

The data consist of attribute values. An attribute value is one data item together
with type information (identifier of an entity attribute), validity period, relevance and
source of the value. Attribute values describing one object are grouped together into
an entity instance. Each entity instance is assigned a unique eighteen-digit number
called entity instance identifier. Only attributes of one entity can be used as types of
attribute values forming one entity instance. This entity is called a type of that entity
instance.

All entity instances of one type can be viewed as a relational table with each row
containing one entity instance. Then one attribute value would be one item of this
table.

All this information (matadata and data) is stored in a relational database with
special schema called the DataPile structure. This structure and a set of applications
and tools form the DataPile system.

In order to achieve the goals set for the DataPile the data could not be stored using
one table for each entity type. Instead, a special DataPile structure was created. The
center of the structure is one table called PILE capable of storing all attributes of all
entities along with their history was used. This table is supplemented by other tables
that store metadata, e.g. list of entities and their attributes.

One row of the PILE table contains entity instance identifier, attribute identifier,
attribute value, validity period, and other information used in the data integration
process. The attribute value is stored in more table columns. It requires one column
for each data type. This is the reason why only fixed and very limited set of data types
was allowed in the DataPile structure.

Let us look at an example. Consider a system for storing basic information about
people. Relational schema could look like this:

PERSON(id, first_name, last_name, date_of_birth).

In a data pile system this schema would require metadata containing one entity
called “PERSON” consisting of three attributes (first_name, last_name and
date_of_birth). Data type of first_name and last_last name would be a string in both
models. On the other hand there is no exact equivalent for “date” data type, which
would probably be the type of the date_of_birth column in a relational database. The
“timestamp” data type would have to be used.

Table 1. Example data to be stored in the DataPile

id First_name last_name date_of_birth
1 John Smith 5.8.1962
2 Jane Doe 23.2.1971

56 Jǐŕı Dokulil Transforming Data from DataPile Structure into RDF 3

We can now transform relational data from the Table 1 into the DataPile structure.

First of all, both records have to be assigned an entity instance identifier. Normally it
would have been an eighteen-digit number but for convenience we use 101 and 102 as
the identifiers.

Two instances of entity “PERSON” with identifier 101 and 102 have to be created.
Then the appropriate attribute values are to be created in the PILE table. PILE table
containing these attributes is displayed in the Table 2.

The table also contains an example of storing historical version of data. On
5.7.2005 the name of Jane Doe was changed to Joan Doe.

Table 2. PILE table with example data (simplified, some columns omitted). Ent_id stands for
entity instance identifier.

ent_id attribute string value time value valid from valid to
101 first_name John null 28.5.2005

15:31:20
null

101 last_name Smith null 28.5.2005
15:31:20

null

101 date_of_birth null 5.8.1962
0:00:00

28.5.2005
15:31:20

null

102 first_name Jane null 27.5.2005
10:12:25

5.7.2005
9:25:05

102 first_name Joan null 5.7.2005
9:25:05

null

102 last_name Doe null 27.5.2005
10:12:25

null

102 date_of_birth null 23.2.1971
0:00:00

27.5.2005
10:12:25

null

2.2 The RDF

One of the goals of the RDF is integration of data gathered about resources on the
World Wide Web. Such data tend to be rich in structure and often incomplete.

The RDF is used to make statements about resources. A RDF statement is a triple
consisting of a subject, a predicate and an object. This states that the subject has a
property (predicate) with a certain value (object). The statement is modeled as a graph
with one node for the subject, one node for the object and an arc for the predicate,
directed from the subject node to the object node.

A typical example looks like this:

<http://example.org/book/book1>
<http://purl.org/dc/elements/1.1/>
”John Smith”

This states that the book identified by URI <http://example.org/book/book1> was
created by John Smith. The book is the subject, “created” is the predicate and John
Smith is the object of the triple. In this example we represent John Smith by a literal

Transforming Data from DataPile Structure into RDF 574 Jiří Dokulil

“John Smith”. A literal is a constant expression that can be typed or untyped (plain).
They are used to represent values like numbers and dates by their lexical
representation. It is always possible to use URI instead of a literal, e.g.
<http://www.example.org/staffid/8574>. Then we could also make statements about
John Smith. Literals can only be used as objects while URI can take any place in a
triple.

URIs are represented by named nodes in the RDF graph. However we do not
always need direct access to every node in the graph. Some nodes are always accessed
using arcs from other nodes. These nodes do not need universal identifiers like URIs.
They can be created as blank nodes. These nodes can be used as subjects and objects.
Blank nodes are usually assigned a unique identifier when the graph is serialized to a
triples representation. Common way of writing such identifiers is _:identifier, e.g.
“_:blank123”. This identifier represents the same blank node in the whole
representation of the graph. Different identifiers represent different blank nodes.

3 The Transformation

The basic idea behind the transformation is that by making a projection of the PILE
table on the columns containing entity instance identifier, attribute and attribute value
we receive a set of triples representing statements very similar to RDF statements.

3.1 The Entity Instance Identifiers

All entity instances in the DataPile are assigned a unique eighteen digit number called
entity instance identifier.

We need a way to create nodes with unique names in the RDF graph that will
represent the objects we want to make statements about. The entity instance identifier
is ideal for this. It can be used either as a part of an URI represented by the node or as
an identifier of a blank node if we choose not to give a name to the node. In this paper
we describe the latter approach since we wanted to create data that would help in the
development of RDF databases and queries containing or returning blank nodes are an
important feature of the database we want to test.

If naming of the nodes is required then the transformation process can easily be
modified to create nodes with URIs.

3.2 The Metadata

Processing of the data in the DataPile is controlled by metadata that is stored in
relational tables. In order for the transformation to work at least some part of the
metadata must be stored in the RDF as well.

The most important piece of metadata to transform is attributes of the entities.
They serve as predicates (arcs of the RDF graph). The very basic RDF representation
of a single attribute looks like this (TURTLE notation [3]).

58 Jǐŕı Dokulil Transforming Data from DataPile Structure into RDF 5

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix mt : <http://example.org/stoh/metadata/> .

mt:person__name rdf:type rdf:Property .

This defines http://example.org/stoh/metadata/person__name to be an attribute.
The original version in the DataPile was an attribute called “name” belonging to an
entity called “person”. We can represent this information in the RDF as well.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix mt : <http://example.org/stoh/metadata/> .

mt:person rdf:type rdfs:Class .
mt:person__name rdf:type rdf:Property .
mt:person__name rdfs:domain mt:person .

Alternatively we could name the attribute only by its name in the DataPile and
omit the name of the entity. This would allow us to make queries like “Give me the
name of all entity instances that have a name”. On the other hand it would complicate
type checking of the values. Because of this we chose the more specific names.

With the information about entities we can specify a type (entity) of an entity
instance.

_:568421369754123695 rdf:type mt:person .

The subject of the triple is a blank node with an eighteen digit identifier identical to
the entity instance identifier in the DataPile.

3.3 The Data Types

The DataPile uses a limited number of data types for the attributes. They are listed in
Table 1 together with their equivalents after the transformation.

Table 3. Data types in the DataPile and after the transformation

string http://www.w3.org/2001/XMLSchema#string
number http://www.w3.org/2001/XMLSchema#decimal
timestamp http://www.w3.org/2001/XMLSchema#dateTime
entity reference reference to a blank node

Using these data types we can extend the transformed metadata representation.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

Transforming Data from DataPile Structure into RDF 596 Jiří Dokulil

@prefix mt : <http://example.org/stoh/metadata/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

mt:person rdf:type rdfs:Class .
mt:person__name rdf:type rdf:Property .
mt:person__name rdfs:domain mt:person .
mt:person__name rdfs:range xsd:string .

The entity references in the DataPile are typed references. One attribute can only
be used to reference one specified entity. This is equivalent to specifying one class as
a range of a property.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix mt : <http://example.org/stoh/metadata/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

mt:person rdf:type rdfs:Class .
mt:address rdf:type rdfs:Class .
mt:person__address rdf:type rdf:Property .
mt:person__address rdfs:domain mt:person .
mt:person__address rdfs:range mt:address .

3.4 Transforming the Data

After storing the necessary metadata in the RDF graph we can start transforming the
real data. Since every row of the PILE table contains entity instance identifier,
attribute identifier and typed value we can make a simple projection of the PILE table
on these columns and create one RDF triple from each row.

An example output could look like this:

@prefix xsd : <http://www.w3.org/2001/XMLSchema> .

_:568421369754123695 mt:person__name “John Smith” .
_:568421369754123695 mt:person__date_of_birth
 “1980-08-14T00:00:00”^^xsd:dateTime .
_:568421369754123695 mt:person__height
 “1.82”^^xsd:decimal .
_:568421369754123695 mt:person__father
 _:684258941535789524 .

The last triple is a reference to another entity instance (a foreign key).

60 Jǐŕı Dokulil Transforming Data from DataPile Structure into RDF 7

3.5 Multilingual Attributes

Although the presented general transformation is capable of handling all types of date
stored in the DataPile there is one case that could be handled in a better way. Practical
application of the DataPile showed that it is sometimes necessary to handle string
values that need to be expressed in different languages. For instance name of a
department in Czech and English or same word in different cases.

Using the DataPile it was necessary to create two new entities causing this feature
to be hard to use. The RDF offers an easier way of achieving the same results. The
standard offers a way to specify a language tag for every string literal. The language
tags are defined by RFC 3066 [4] which is flexible enough to specify not only
language but different cases as well.

_:469751359754692454 rdf:type mt:department .
_:469751359754692454 mt:department__name
 “Katedra softwarového inženýrství”@cs .
_:469751359754692454 mt:department__name
 “Department of Software Engineering”@en .

_:954783125769542934 rdf:type mt:place .
_:954783125769542934 mt:place__name
 “Praha”@cs-CZ-singular-nominative .
_:954783125769542934 mt:place__name
 “v Praze”@cs-CZ-singular-locative .

3.6 Reification

On of the important features of the RDF is the ability to make statements about
statements. This is called reification. It can be used e.g. to specify an author of a
statement.

There is no such universal feature in the DataPile. On the other hand the
supplementary columns of the PILE table can be viewed as a special case of
reification with a fixed set of predicates. The columns contain information about
source of the value, its validity period etc.

Unfortunately, expressing reification in RDF is not very compact. It requires using
a new blank node and making at least four statements. The identifier of the blank
node can be generated from primary key of the PILE table. The primary key contains
sequential numeric value.

_:568421369754123695 mt:person__name “John Smith” .
_:r65413 rdf:type rdf:Statement .
_:r65413 rdf:subject _:568421369754123695 .
_:r65413 rdf:predicate mt:person__name .
_:r65413 rdf:object “John Smith” .
_:r65413 mt:valid_from “20050703T15:21:49” .
_:r65413 mt:valid_to “20050821T09:35:12” .

Transforming Data from DataPile Structure into RDF 618 Jiří Dokulil

The example shows a triple stating a name of a person together with triples that

give validity period of the statement.

4 The Experimental Implementation

An experimental implementation of the presented transformation has been created and
tested on real data.

4.1 Limitations

The implementation does not include direct support for multilingual attributes nor
does it support reification.

4.2 The Data

The data for the experiment has been gathered into the DataPile from different
information systems at the Charles University in Prague. Variability of these systems
provided us with data that have not only complex schema but also greatly vary in their
completeness.

Because the implementation does not support reification the data was limited only
to records that are considered to be currently valid. Working with historical versions
of data requires access to supplementary columns of the PILE table which requires
reification. If all of the data was extracted without the supplementary information it
would have created multiple attribute values for one attribute of one entity instance
without a way to distinguish the valid values from the historical ones.

4.3 The Test Environment

The current implementation of the DataPile uses Oracle Database 10g for storage. The
database was running on a dual XEON P4 2.4 GHz with 2GB RAM and SCSI RAID.

The extractor itself was running on a separate machine with four XEON P4 2.5
GHz CPUs with 16GB RAM and SCSI RAID. It accessed the database directly using
Oracle Call Interface with thin abstraction layer on top of it.

The performance of the extraction process depends mostly on the performance of
the database. Processing of records returned from the database does not require much
memory or CPU time.

4.3 The Extraction

The extraction generated a TURTLE file with 26 813 044 RDF triples. We made two
runs of the extraction. In the first run the data was sorted by the entity instance

62 Jǐŕı Dokulil Transforming Data from DataPile Structure into RDF 9

identifier and attribute. The sorting of the data was done by the database system that
contains the DataPile. Although it is not required for the transformation to work it can
improve performance of further processing of the data and help with debugging.

In the second run the data was not sorted at all.
The sorted version finished in 1738 seconds while the unsorted took 1073 seconds

to complete.

5 Conclusion

Even the very basic version of the extraction provided great amount of interesting
data. Implementation of a version handling multilingual attributes is planned in the
near future.

We plan to use the extracted data in the development of an experimental RDF
database that uses a SPARQL language [5]. It will help us test and tune the
performance of such database. The data was gathered from systems that are used in
practice and so their schema, size and structure represent real requirements of such
systems. The test results should tell us how the database would behave when
deployed as a basis for large scale information system or a system integrating large
heterogeneous data.

References

1. Bednarek D., Obdrzalek D., Yaghob J., Zavoral F.: Data Integration Using DataPile
Structure. In proceedings of the 9th East-European Conference on Advances in Database
and Information Systems, Tallinn, Estonia, 2005

2. Carroll J. J., Klyne G.: Resource Description Framework (RDF): Concepts and Abstract
Syntax, W3C Recommendation, 10 February 2004
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

3. Beckett D.: Turtle - Terse RDF Triple Language
http://www.dajobe.org/2004/01/turtle/

4. Alvestrand H.: Tags for the Identification of Languages
http://www.ietf.org/rfc/rfc3066.txt

5. Prud'hommeaux E., Seaborne A.: SPARQL Query Language for RDF, W3C Working Draft,
23 November 2005
http://www.w3.org/TR/2005/WD-rdf-sparql-query-20051123/

Acknowledgement

This research was supported in part by the National programme of research
(Information society project 1ET100300419).

Towards Better Semantics in the Multifeature
Querying∗∗

Peter Gurský

Institute of Computer Science, Faculty of Science
P.J.Šafárik University Košice

Jesenná 9, 040 01, Košice, Slovakia
gursky@upjs.sk

Towards better semantics in the multifeature
querying

Peter Gurský

Institute of Computer Science, Faculty of Science??

P.J.Šafárik University Košice
Jesenná 9, 040 01, Košice, Slovakia

gursky@upjs.sk

Abstract. Nowadays the natural requirement of users is to retrieve the
best answers for the criteria they have. To explain, what kind of objects
user prefers, we need to know, which values of properties are suitable for
the user. We assume that each property is possibly provided by an ex-
ternal source. Current algorithms can effectively solve this requirement,
when the sources have the same ordering as the user preferences. Com-
monly, two users prefer different values of a given property. In this paper
we describe how we can consider this feature.

Key words: multifeature querying, top-k objects, aggregation, fuzzy function

1 Introduction

Many times users want to find the best object or top k objects in the possible
huge set of objects. The decision which object is better than the other, is based
on the properties of the objects. Typical objects are job offer, document, web-
site, picture, book, presentation, conference, hotel, vacation destination etc.

Such objects have typically some properties (attributes). Users can search
and decide, which objects are the best using these properties. Such searching is
made by a multifeature deciding.

The property of an object is, typically, one of four types. First type of proper-
ties is boolean or yes/no property. Examples can be: work at home, if somebody
is married, breakfast included, aspect at the sea, Springer proceedings etc. Sec-
ond type of properties is properties, that are graded in some way to finite number
of classes. Typical properties are: number of stars of hotels, quality of an article,
level of education etc. Third type is real or integer number, for example: salary,
price, number of pages, properties in multimedia databases, date etc. The last
type of properties is text. In multifeature querying we can use this kind of at-
tribute to reduce searching space (user could search only IT jobs), especially,
?? This work was partially supported by the project ’Štátna úloha výskumu a vývoja

”Nástroje pre źıskavanie, organizovanie a udržovanie znalost́ı v prostred́ı het-
erogénnych informačných zdrojov” prierezového štátneho programu ”Budovanie in-
formačnej spoločnosti”.’

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 63–73, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

64 Peter Gurský

when such a property is organized in some hierarchical structure e.g. ontology.
We can also derive some other properties from a text. These properties should
be one of the three previous types. For example from the human first name we
can learn a gender, from the name of a town we can find out a distance from a
specific location.

Useful condition is to assume that each property is provided by a possibly
remote source. For example to find out distances, we can use servers of traffic
companies. Information about free places in hotels can be provided by a server,
which collects such information. We can say that sources are distributed, also
when the information are on the same computer, but stored in different reposi-
tories (RDBS, Ontology, files). This condition is suitable also in cases, when we
want to combine several search methods and aggregate them to one list of the
best objects. In this case the sources are typical input streams. In the rest of
the paper we assume that the properties of objects are provided by distributed
sources.

The problem is, how to specify, whose objects are the best. First approach
to this problem is to use a monotone aggregation function. Ronald Fagin in
1996 introduced ”Fagin’s algorithm”, which solves this problem first time in
[6]. Fagin et al. [7] presented ”threshold” algorithm that made the search much
faster. Güntzer et al. [1] defined ”quick-combine” algorithm using first heuristic.
Other heuristics was presented by P. Gurský and R. Lencses [10]. M.Vomlelová
and P. Vojtáš [9] propose a probabilistical heuristic. All these solutions use two
types of accesses - sorted access and random access. The sorted access is a
sequential access to a sorted list. Using this type of access the grades of objects
are obtained by proceeding through the list sequentially from the top. Random
access returns the property value for a specified object. Further papers deal with
the situation, when some kind of accesses is slow or impossible. There was defined
a ”combined algorithm” in [7] that count with the prices of accesses. In the same
paper authors propose algorithm NRA (no random access) that does not use the
random access. Güntzer et al. [2] present algorithm ”Stream-combine” that uses
some heuristics. Combination of last two approaches is ”3P-NRA” algorithm
presented by P. Gurský [13] with a new heuristic holes. All three approaches use
only sorted access.

The second way to specify the objects to retrieve is a skyline. In the skyline,
there are objects that are pareto optimal. An object is pareto optimal, if it is
not dominated by any other object. Object x dominates object y if x has greater
or equal score in all properties and is strictly greater in at least one property
than y. Skyline was firstly presented by S. Börzsönyi et al. [8]. Authors put a
proposed algorithm to the database query processor. First solution in the field of
multifeature querying was presented by W. Balke et al.[3]. In [4] authors combine
features of skylining and aggregation functions as ”multi-objective retrieval”. In
this approach we can specify several monotone aggregation functions. The final
set of objects is a skyline with respect to the values of the aggegation functions.
In this case, values of aggegation functions are construed as the properties for
a skyline. W. Balke at al. [5] propose an algorithm for the case of weak pareto

Towards Better Semantics in the Multifeature Querying 65

optimality. It differs from ”normal” pareto optimality by partial ordering on
domains of the properties. In this case object x dominates object y, if x is
strictly greater in at least one property and there is no property such that y has
greater score than x.

P.Gurský and T.Horváth in [12] use induction of generalized annotated pro-
grams (IGAP) to learn monotone graded classification described by fuzzy rules.
Fuzzy rules play role of the monotone aggregation function. As input for this
approach is classification of several objects by a scale from the worst to the best.

All current solutions assume, that the sources send their property information
ordered from the best value to the worst value. None of these solutions allow
the user to specify, which values of a property are better than the other. In this
paper we discuss about the possibility of preference specification and effective
retrieval of top k objects.

Imagine that we want to find a hotel in a city and we can decide using the
properties ”distance from the centre”, ”price” and ”number of stars”. The main
problem is that we cannot universally set the orderings from the best distance
to the worst distance or from the best number of stars to the worst. One user
can say that the best is to sleep in the centre in the low quality and cheap hotel,
a second one may prefer hotels in the country (far from the centre) and with
highest possible number of stars. The other one prefer rather quiet suburb place
and accepts (and needs) traveling to the centre, but not very long. So he or she
prefers middle values of the distance. It is possible that 90 % of people prefer
cheap hotels before the expensive ones, but, for example, if somebody is on the
business travel and the accommodation is paid by the company, he or she may
prefer luxury expensive hotels.

Such properties with unknown default orderings are quite common, also in
the case of other types of objects. To explain the preferences by a user we can
use fuzzy functions. The explanation can be done by a different method too.
Since the fuzzy function is an explicit assignment, we assume that there is a
transformation to fuzzy functions. We will consider four types of fuzzy sets (see
Figure 1). On the axis x, there are property values e.g. price or number of stars.
On the axis y we have preferences of a user, where 1 means strong preference
and 0 means no preference. Imagine that we want to explain our preference to
the property ”distance from the center”. If we prefer hotels in the center, our
fuzzy function will look like the fuzzy function A on the figure 1. Fuzzy function
B means that we prefer hotels far away from the center, fuzzy function C means
our preference for hotels in suburb. Fuzzy function D means that we want to be
right in the center or out of the city. Fuzzy function A in the case of the price
property means, that we prefer cheap hotels, and in the case of number of stars
it means our inclination to low quality hotels (low number of stars).

These 4 types of fuzzy functions were strong enough to use for user specifi-
cation in all domains we considered. It is quite unusual to say, for example, that
we prefer middle values but not exactly in the middle, thus the fuzzy function
should have two local maximums and three local minimums. The question, if

66 Peter Gurský

A

B

D

C

1 1

1 1

0

0 0

0

Fig. 1. Fuzzy functions

these 4 types of fuzzy function are enough, is more philosophical. We assume
that it is enough.

Interesting way to define user fuzzy functions is to learn them from the
evaluation of objects in sample collection. The evaluation can be done in some
scale from the best to the worst. It is possible to learn them by the system QUIN
(QUalitative INduction). The approach was suggested by Šuc [15].

When the fuzzy functions are defined, the same evaluation of objects can be
used by system IGAP to learn monotone graded classification. If we will be able
to find top k objects using these fuzzy functions the system presented in [12]
should lead to better results. The technique presented in [12] uses only linear
regression to learn fuzzy functions so it works good if a user has preferences of
properties described by fuzzy functions of type A and B from Figure 1.

In this paper we try to propose a way to extend the functionality of mul-
tifeature querying. In the next sections we describe two main approaches to
the distributed multifeature querying. Then we propose new extensions of these
algorithms.

2 Model

First of all we need to specify basic model and determine useful terms. Assume
we have a finite set of objects. Cardinality of this set is n. Every object x has
m attributes x1, . . . , xm. All objects (or identifiers of objects) are in lists L1,
. . . , Lm, each of length N . Objects in list Li are ordered descending by values
of attribute xi. As we said, we can define two functions to access objects in lists.
Let x be an object. Then ri(x) = xi is a grade (or score, rank) of object x in the

Towards Better Semantics in the Multifeature Querying 67

list Li and si(j) is an object in the list Li at the j-th position. Using the function
ri(x) we can realize the random access to the lists, i.e. for object x we retrieve
the value of i-th property. The second type of access we will use, is the sorted
access or sequential access to a sorted list. Formally we can say, that sorted access
can be described by function ri(si(j)). Using this type of access the grades of
objects are obtained typically by proceeding through the list sequentially from
the top. Let’s assume that we have also a monotone aggregation function F ,
which combines grades of object x from lists L1, . . . , Lm. We denote the overall
value of an object x as S(x) and it is computed as F (r1(x), . . . , rm(x)).

Our task is to find top k objects with highest overall grades. We also want
to minimize time and space. It means that we want to use as low sorted and
random accesses as possible.

We will discuss two main cases. In the first case an algorithm will use both
sorted and random accesses, and in the second case we will permit only sorted
access. We will show one generalized algorithm for each case. Then we will try
to adapt these algorithms to the user preference specifications. Note that all
proposed methods can be easily modified for the use of skyline or monotone
graded classification.

3 Generalized Threshold algorithm (TA) - uses both
random and sorted access

First version of this algorithm was proposed by R. Fagin [7]. Generalized version
was published in Gurský et al. [10, 11].

For each list Li, let ui = ri(si(zi)) be the value of the attribute of the last
object seen under sorted access, where zi is the position in the list Li. Define
the threshold value τ to be F (u1, . . . , um). We assume that we have a monotone
aggregation function F and the lists are sorted descend by their values from the
best to the worst. During the execution of an algorithm we retrieve values from
the lists form the greatest to the smallest, thus the threshold τ is the value,
which none of still unseen objects can reach [7]. Hence when all objects in the
top k list have their property values greater or equal than the threshold, then
this top k list is the final and there is none unseen object with greater value.
This property is very important to have the algorithm correct.

Let z = (z1, . . . , zm) be a vector, which assigns for each i = 1, . . . , m the
position in list Li last seen under sorted access. Let H be a heuristic that de-
cides which list (or lists) should be accessed next under sorted access. More-
over, assume that H is such, that for all j ≤ m we have H(z)j = zj or H(z)j

= zj+1 and there is at least one i ≤ m such that H(z)i = zi+1. The set
{i ≤ m : H(z)i = zi +1} we call the set of candidate lists (or simply candidates)
for the next sorted access.

The generalized Threshold algorithm is as follows:

0. Set z:=(0,. . . ,0)
1. Set the heuristic H and do the sorted access in parallel to each of the sorted

lists to all positions where H(z)i = zi+1. Put zi = H(z)i .

68 Peter Gurský

2. First check: Compute the threshold value τ . As soon as at least k objects
have been seen whose grade is at least equal to τ , then go to step 5.

3. For every object x that was seen under sorted access in the step 2, do the
random access to the other lists to find the grade xi = ri(x) of object x in
every list. Then compute the grade S(x) = F (x1, . . . , xm) of object x. If this
grade is one of the k highest ones we have seen, then remember object x and
its grade S(x).

4. Second check: As soon as at least k objects have been seen whose grade is
at least equal to τ , then go to step 5, otherwise go to step 1.

5. Let Y be a set containing the k objects that have been seen with the highest
grades. The output is then the graded set {(x, S(x)) : x ∈ Y }.

The easiest heuristic is the heuristic in Threshold algorithm [7]. This heuris-
tic chooses all the lists as candidates, i.e. H(z)i = zi+1 for every i. For overview
of other heuristics see [9, 10]. This algorithm is correct [7] for any heuristic and
instance optimal for some of heuristics [7, 10, 11]. The instance optimality guar-
antee that for any data the algorithm do at most m2 times more accesses then
in the ideal case.

4 Three phased no random access (3P-NRA) algorithm -
uses only sorted access

3P-NRA algorithm was firstly presented by P.Gurský in [13] and it is an im-
provement of NRA algorithm [7].

First of all we need to define worst and best value. Given an object x and
subset V (x) = {i1, . . . , in} ⊆ {1, . . . ,m} of known attributes of x, with values
xi1 , . . . , xin

for these fields, define WV (x) (or shortly W (x) if V is known from
context) to be minimal (worst) value of the aggregation function F for the object
x. Because we assume that F is monotone aggregation function, we can compute
its value by substituting for each missing attribute i ∈ {1, . . . ,m}\S the value
0. For example if V (x) = {1, . . . , g} then WV (x) = F (x1, . . . , xg, 0, . . . , 0).

Analogously we can define maximal (best) value of the aggregation function
F for object x as BV (x) (or shortly B(x) if V is known from context). Since we
know that values in the lists are ordered descended we can substitute for each
missing property the values along the vector z. For example if V (x) = {1, . . . , g}
then BV (x) = F (x1, . . . , xg, ug+1, . . . , um).

The real value of the object x is W (x) ≤ S(x) ≤ B(x). Note that the unseen
object (no attribute values are known) has B(x) = τ = F (u1, . . . , um) and
W (x) = F (0, . . . , 0). On the other hand if we know all the values W (x) =
B(x) = S(x) = F (x1, . . . , xm).

The 3P-NRA algorithm is as follows:

I. Descending with the threshold and the heuristic H1
0. Set z:=(0,. . . ,0)
1. Set the heuristic H1 and do the sorted access in parallel to each of the

sorted lists to all positions where H1(z)i = zi+1. Put zi = H1(z)i .

Towards Better Semantics in the Multifeature Querying 69

2. For every object x seen under sorted access in the step 1, compute W (x)
and B(x). If the object x is relevant, put x in the list T , that is the list
of relevant objects ordered by worst value (an object x is relevant, if less
than k objects was seen or B(x) is grater than k-th biggest worst value
in T). If the object x is not relevant remove it from T .

3. If we have at least k objects in T with greater worst value than τ go to
phase II. otherwise go to step 1 of phase I.

II. Removing irrelevant objects
Compute best value for each object in T between the (k + 1)-th and the
last one. If an object is not relevant remove it from T . If |T | = k return T
otherwise go to phase III.

III. Descending with the heuristic H2
1. Set the heuristic H2 and do the sorted access in parallel to each of the

sorted lists to all positions where H2(z)i = zi+1. Put zi = H2(z)i .
2. For every object x that was seen under sorted access in the step 1 of this

phase do: If x /∈ T ignore it, otherwise compute W (x) and B(x). If the
object x is relevant, move x to the right place in the list T . If the object
x is not relevant remove it from T .

3. If |T | = k return T
4. If by moving in T the k-th value of T was changed or the value of τ was

decreased go to phase II, otherwise repeat phase III.

As heuristic H1 we can choose the heuristic from Threshold algorithm again.
As heuristic H2 we can use heuristic holes [13], which chooses as candidates the
lists with lowest number of known values in T . This algorithm is also correct [7]
and instance optimal with the use of heuristic from Threshold algorithm.

5 Extensions

In all proposed extension we assume that the lists L1, . . . , Lm are ordered by
real values of properties from the smallest to the biggest, thus not from the best
to the worst (it is not possible in general case). For example the distances from
the centre of the city will be ordered from nearest to the most far. Next we
assume that we have user fuzzy function for each property and it is one of 4
types like on figure 1. Let fi be the fuzzy function for the list Li. The overall
fuzzy score of the object x will be Sf (x) = F (f1(x1), . . . , fm(xm)). We will call
fi(xi) the fuzzy value of i-th property of the object x.

The main principle of both TA and 3P-NRA algorithms is to retrieve top
k objects correctly without reading whole lists, thus using as low number of
accesses as possible. Adding fuzzy functions, the situation is getting more com-
plicated. Descending the lists by the real value causes that the threshold in
previous algorithm does not guarantee the correctness any more. However the
situation can be better when for some lists we have the fuzzy functions of type
A. In this case such lists provide data from the best to the worst i.e. as it was
in previous algorithms.

70 Peter Gurský

In the following we assume that lists L1, . . . , La are all lists with fuzzy func-
tions of type A, La+1, . . . , Lb are all lists with fuzzy functions of type B, and
Lb+1, . . . , Lc and Lc+1, . . . , Lm are all lists with fuzzy functions of types C and
D respectively.

5.1 Restricting sorted access

Bruno, Gravano, and Marian [14] discuss a scenario where it is not possible
to access certain of the lists under sorted access. They did not consider fuzzy
functions, but their solution can be correctly used in our case without any change.
The only condition is that we have at least one list with the fuzzy function of
type A, so we can do sorted access to this list. This solution is correct and
instance optimal [7]. Algorithm is as follows.

1. Do sorted access in parallel to each list L1, . . . , La. For an object x seen
under sorted access in some list, do random access as needed to the other
lists to find the grade xi of object x in every list Li. Then compute the
grade Sf (x) = F (f1(x1), . . . , fm(xm)) of object x. If this grade is one of the
k highest we have seen, then remember object x and its grade Sf (x).

2. For each list Li with i ∈ {a + 1, . . . ,m}, let ui = 1. As soon as at least k
objects have been seen whose grade is at least equal to τ , then halt.

3. Let T be a set containing the k objects that have been seen with the highest
grades. The output is then the graded set {(x, Sf (x)), x ∈ T}.

5.2 Reading whole list or waiting for a maximum

Now we propose the first solution for extension of 3P-NRA. We will read all the
lists that have fuzzy functions of types B or D. Next we will read all the lists that
have fuzzy functions of type C until they grow to the maximum fuzzy value. We
can save accesses mainly to the lists with fuzzy function of type A and partially
in the lists with type C. This solution can be helpful especially when we extend
3P-NRA algorithm. We will add a phase zero before the algorithm 3P-NRA:

0. Waiting for descending values
0. For all i set ui = 1 and compute the threshold value τ = F (u1, . . . , um) =

F (1, . . . , 1). In this phase ui is fixed for all i because we need to keep the
threshold to be the upper bound of all unseen object values.

1. Choose one list Li from La+1, . . . , Lb, Lc+1, . . . , Lm and read whole list
Li by sorted accesses. If there is no such a list go to step 3. Put all
objects to list T ordered by the worst value. Set ui = 0 and compute
new threshold. If any object seen is no more relevant (when its best value
is smaller than worst value of the k-th object in T), remove it from T .
After all, set zi = n i.e. to the last position in the list.

2. If |T | = k and τ is smaller or equal than the worst value of the k-
th object in T , return T and halt. If there are unread lists with fuzzy
function of type B or D and there are more than k relevant objects in T
go to step 1. Otherwise go to step 3.

Towards Better Semantics in the Multifeature Querying 71

3. For each list Li from Lb+1, . . . , Lc read the list Li up to position where
the fuzzy value of the property reach the maximum value i.e. value 1. If
there is no such a list go to step 1 of phase I. After each list do the same
check as in step 2.

It can be easily seen that adding the phase 0 before 3P-NRA solves our
problem correctly. The main idea of this phase is to reach the best values in
all lists after whose we have the same start situation as we had in the original
3P-NRA algorithm.

Theorem 1. The last extension of the algorithm 3P-NRA is correct.
Proof. The objects are removed only when they are not relevant. The question
is: if an object become irrelevant, should it become relevant again? By other
words if its best value is smaller than worst value of the k-th object in T should
its best value be later greater? Since ui is fixed to 1 for all i for current read list
(it does not change by sorted access), it is larger or equal to the real value of the
object. Moreover we assume that the aggregation function is monotone. Hence
the best value of any object decreases only. Since the list T is ordered by worst
values and worst values of all objects increase only, the worst value of the k-th
object in T increases only. Considering both these facts, we can see that when
the object become irrelevant it cannot become relevant anymore. The last thing
to solve is the question if all possible objects are considered to be in top k. If at
least one whole list is read in step 1 all objects are considered automatically. If
we read the lists in phase 0 only in step 3 again all objects up to highest fuzzy
value are read. The rest of values are read in other phases (I.-III.) and as it was
shown in [13], these phases are correct. �

The phase 0 can also be put before algorithm TA. This algorithm works well,
when we do not have the property with the fuzzy function of type A too.

5.3 Two ways descending

The next extension of both TA and 3P-NRA algorithms will cause the same
performance in the case of each fuzzy function type as the algorithms TA and
3P-NRA in the original task. To reach such a performance, we need lightly
upgrade the functionality of data sources. We will require:

– A source will provide two lists for sorted access - first will send objects with
property values ordered from the biggest to the smallest (descending order)
and second will send data from the smallest to the biggest (ascending order).
It can be implemented for example as two pointers on the same ordered list
- one goes from left to right and the second goes from right to left.

– Lists can start sending data from the specified value.

When we have such functionality we can easily simulate the source that sends
data from the best to the worst. Moreover we guarantee that we do not need
any reordering or any other computation on the side of source.

When we have a property with fuzzy function of type A or B we can easily
simulate the ”best-worst” source by choosing the suitable list of the source -

72 Peter Gurský

ascended or descended. In this case, one request for a sorted access from a central
algorithm means to do one sorted access to the real source and computation of
fuzzy value.

To simulate the source using the fuzzy function of type D, we can use both
lists and start from the first record in each list. Thus we get the biggest value of
the active domain of the given property from the first list and the smallest value
of the same property from the second list. After the computation of fuzzy values
of both retrieved values, we can send to the algorithm the greater one. After next
request from the algorithm, we must do the sorted access to the list from which
we sent the value last time and again compare fuzzy values computed from both
lists.

Assume that from the top of the first list we will retrieve fuzzy (computed
by fuzzy function) values (o1, 1.0), (o2, 0.8), (o3, 0.7), . . . and from the second list
fuzzy values (o4, 0.9), (o5, 0.8), (o6, 0.6), After first request we need to do
sorted access to both lists and retrieve objects o1 and o4 with fuzzy values 1.0
and 0.9 respectively. 1.0 is greater than 0.9, so we send to the algorithm (o1, 1.0).
After next request, we will do the sorted access to the first list and retrieve object
o2 with fuzzy value 0.8. We send greater (o4, 0.9), thus the next request will cause
the sorted access to the second list. After receiving (o5, 0.8), we can randomly
choose, which object has to be sent. If we choose o2, the next sorted access will
be to the first list. The objects o5, o3 and o6 will be sent at the end.

The simulation of the source using the fuzzy function of type C needs also
the second requirement - to start sending data from the specified value. If we
want to send the values from the best to the worst, we need to start from the
value with maximal fuzzy value. It means to start in the ”middle” of the list to
both ends, or also from the same specified value in both ordered lists. Now we
are in the same situation as in the case of fuzzy function of type D and we can
use the same combination procedure of two ordered lists.

As can be seen using this approach we can simulate the ”best-worst” sources
with the same number of accesses to the sources except one sorted access for each
source with fuzzy function of type C or D. Thus we can use all known algorithms
developed for the ”best-worst” sources with the same good performace.

We use the two ways descending method in the tool top − k aggregator in
the project NAZOU1. The main task of this tool it to find top k job offers for a
user.

6 Conclusion

In this paper we extended the model of distributed multifeature querying by
adding user specification of preferences to properties values. Such a model allows
better specification of the idea of good object using object properties. We propose
the extensions of known algorithms to work over this model. Proposed solutions
are needed especially in the cases when we cannot reorder the lists in provided

1 http://nazou.atrip.sk

Towards Better Semantics in the Multifeature Querying 73

sources. Reordering is quite difficult when fuzzy functions come together with
the query.

In the future work is the comparison of proposed algorithms over real data.
In present we have implementation of the last extension. We can see from the
design of the algorithms that it is the best, because it works as good as current
well known algorithms over simplest model. Other algorithms should be useful,
when there cannot be required functionality in the sources. On the other side
the extensions work with individual sources, hence the approaches should be
combined.

References

1. U.Güntzer, W.Balke, W.Kiessling Optimizing Multi-Feature Queries for Image
Databases, proceedings of the 26th VLDB Conference, Cairo, Egypt, 2000

2. U.Güntzer, W.Balke, W.Kiessling Towards Efficient Multi-Feature Queries in Het-
erogeneous Environments, proceedings of the IEEE International Conference on
Information Technology: Coding and Computing (ITCC 2001), Las Vegas, USA,
2001

3. W.Balke, U.Güntzer, J. Zheng Efficient Distributed Skylining for Web Information
Systems, proceedings of the 9th International Conference on Extending Database
Technology (EDBT 2004), LNCS 2992, Heraklion, Crete, Greece, Springer, 2004

4. W.Balke, U.Güntzer Multi-objective Query Processing for Database Systems, pro-
ceedings of the 30th International Conference on Very Large Databases (VLDB
2004), Toronto, Canada, 2004

5. W.Balke, U.Güntzer Efficient Skyline Queries under Weak Pareto Dominance, pro-
ceedings of the IJCAI-05 Multidisciplinary Workshop on Advances in Preference
Handling (PREFERENCE 2005), Edinburgh, UK, 2005

6. R.Fagin Combining fuzzy information from multiple systems, J. Comput. System
Sci., 58:83-99, 1999

7. R.Fagin, A.Lotem, M.Naor Optimal Aggregation Algorithms for Middleware, proc.
20th ACM Symposium on Principles of Database Systems, pages 102-113, 2001

8. S.Börzsönyi, D.Kossmann, K.Stocker The Skyline Operator, ICDE 2001: 421-430,
Heidelberg, Germany, 2001

9. M.Vomlelová, P.Vojtáš Pravděpodobnostńı pohled na v́ıceatributové dotazy v dis-
tribuovaných systémech, Proceedings of ITAT 2005, p. 167-175, 2005

10. P.Gurský, R.Lencses Aspects of integration of ranked distributed data, proc.
Datakon , ISBN 80-210-3516-1, pages 221-230, 2004

11. P.Gurský, R.Lencses, P.Vojtáš Algorithms for user dependent integration of ranked
distributed information, technical report, 2004

12. P.Gurský, T.Horváth Dynamic search of relevant information, Proceedings of
Znalosti 2005, pages 194-201, 2005

13. P.Gurský Algoritmy na vyhľadávanie najlepš́ıch k objektov bez priameho pŕıstupu,
Proceedings of Znalosti 2006, pages 95-105, 2006

14. N. Bruno, L. Gravano, and A. Marian Evaluating top-k queries over web-accessible
databases, proceedings of the 18th International Conference on Data Engineering.
IEEE Computer Society, 2002.

15. Šuc, D. Machine Reconstruction of Human Control Strategies, Volume 99 of Fron-
tiers in Artificial Intelligence and Applications. Amsterdam, IOS Press, 2003.

Viewing FOAF – Development of a Metadata
Explorer

Josef Petrák

Faculty of Informatics and Statistics, University of Economics, Prague
Winston Churchill Sq. 4, 130 67, Praha 3, Czech Republic

jspetrak@gmail.com

Viewing FOAF – Development of a Metadata Explorer

Josef Petrák

Faculty of Informatics and Statistics, University of Economics, Prague
Winston Churchill Sq. 4, 130 67, Praha 3, Czech Republic

jspetrak@gmail.com

Abstract. Social networks are widely accepted application of Semantic Web
technologies and are also interesting for general public. Nowadays there is a
lack of quality user-friendly browser which could express meaning of the
metadata stored in the most of FOAF profiles and present this knowledge in
human-understandable form. The aim of the article is to inform about
development of the AFE (Advanced FOAF Explorer) which is intended to
perform these services and supersede one similar project.

Keywords: social networks, Semantic Web, RDF, FOAF, PHP5

1 Introduction

Friend Of A Friend vocabulary (FOAF) [1], an ontology used for description of
personal profiles and relations among people, is well-known and popular in the
Semantic Web [2] community. Thank to the user-friendly tools such as FOAF-a-
Matic [5] people who are not familiar with RDF [14] can create their own profiles and
publish them on the Internet. This is a good because may start spreading of the
Semantic Web technologies to the public.

But if these users create such profiles, they also require having a chance to view
their profiles or to browse the profiles of other people. Nowadays there are several
“viewers” but their features are limited. These restrictions do not allow to wide
spreading of FOAF users. These limitations are discussed in section 2.

The aim of the project “Advanced FOAF Explorer” [9] is to develop an FOAF
explorer with user-friendly XHTML [17] output. To allow the developers to easily
extend the code and add support for new vocabularies which may extend existing
ontology. The most important task is the show relations among various resources
because this is the main positive of using FOAF.

I already developed a first beta version based on PHP. It shows randomly chosen
subset of FOAF terms and relations defined in the ontology extension called
“relationship” [13]. The structure of the output shows how should be the data
presented. History of this version and details about implementation are discussed in
the section 3. Further development should produce new version of this application.
The basic ideas and implementation details are described in the section 4.

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 74–84, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

Viewing FOAF – Development of a Metadata Explorer 75

1.1 Brief introduction into social networks

If we consider definition of social networks published on the Wikipedia [3], we have
to restrict the term to on-line social networks. It is an on-line community based on a
Website which allows each member to communicate, make friends among other
members, to discuss topics which are interesting to this community … FOAF allows
to store information about member of any community, the relationships among them
(and type of the relation such as friend of someone, parent of someone, enemy of
someone, roommates with someone …). This is interesting for most of the people
because making contacts, making friends and entertainment are the basic needs of
almost everyone.

1.2 What is FOAF?

The basic explanation is that FOAF is ontology. It is defined using RDF Schema [18]
and OWL [15]. If you see the specification [13], you can find there a lot of classes
and their properties. Using them you can create various RDF1 statements about you,
your relatives, friend and the people who you know. You can describe your work,
schools, interests, your Websites and if you use some additional modules, you can
also describe countries you have already visited, languages which you reads, speaks
or writes and many other more or less interesting information.

Let’s have a look at the basic structure of a FOAF profile. In the Figure 1. I gave
an example in XML [16] syntax of RDF. It contains some information about a person,
and statement that this person knows somebody else.

As you can see, the FOAF defines terms for commonly required properties such as

name, mailbox, and gender. But the specification defines many more of them such as
chat IDs for instant messaging services (AIM, ICQ, Jabber, Yahoo!, and MSN), it
allows to state, that any person has a homepage, a weblog, to link depiction, personal
interests. The most interesting property is <foaf:knows> which states that a
person knows any other person. The type of the relation is not defined. If you want to
explicitly define the quality of the relationship between to persons, you have to use
extension RELATIONSHIP [13] which contains a lot of interesting sub-properties,
e.g. previously mentioned friend of, enemy, of, roommates with and many other such
as works with, employees, knows by reputations, sibling of, loves, … The complete
view about the vocabulary you can make reviewing the specification.

1.3 How to display it on the Website

There are some technical limitations which do not allow to directly put the FOAF
profile into the code of any Website. You can store your profile in the file and link it
to the page using element <link> with parameter rel=”meta”.

1 More information about Resource Description Framework and also the specification you

can find at http://w3.org/RDF

76 Josef Petrák

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

 xmlns:foaf="http://xmlns.com/foaf/0.1/"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

 <foaf:Person rdf:ID="adam-smith">

 <foaf:name>Adam Smith</foaf:name>

 <foaf:gender>male</foaf:gender>

 <foaf:mbox rdf:resource="mailto:adam@smith.name" />

 <foaf:knows>

 <foaf:Person>

 <foaf:name>John Doe</foaf:name>

 <foaf:knows rdf:resource="#adam-smith"/>

 </foaf:Person>

 </foaf:knows>

 </foaf:Person>

</rdf:RDF>

Fig. 1. The example of basic structure of FOAF profiles.

2 Motivation for development

To have a complete view to the history we have to explain why the development of
this explorer started was, and why it is called to be “advanced”. In the years in which
the FOAF itself was created there was a need for quality and extendible browser
which could serve information stored in such profiles to the user in XHTML format.
There are several applications used for parsing in viewing these profiles, e.g. FOAF
Web View [7] or Plink.org [8] which also integrated a simple storage for viewed
metadata. But they have various problems. First of all they do not interpret all or at
least most of the FOAF terms. If an application interprets all terms, its output does not
have a nice look or the information are presented in illogical order so the user is
confused and cannot find what he is looking for. They often do not show relations
among various resources (people, people and projects ...). Another problem is that
FOAF allows easy extendibility and there are many widely used 3rd party extensions.
Usually these browsers do not support these extensions. And the last problems is that
the interface does not explicitly explain the meaning of the terms and do not allow
internationalization so the non-English speak users cannot use them.

Viewing FOAF – Development of a Metadata Explorer 77

Nowadays the most used application is FOAF Explorer [6] developed by Morten
Frederiksen. It is based on XSL Transformations. It supports various extensions,
displays some relations among the resources. But the look of the output could be
created better, show more information in a user-friendlier way. And this is chance for
the project of AFE!

3 History of the project

The development was started by two students – Josef Petrák and Michal Trna - in the
summer 2004. The very first goal was to quickly create first beta-version for viewing
of authors’ profiles. Further development should have focused on cleaning the
application code and to implements most commonly used FOAF extensions.
Unhappily its development was frozen in the same year. This beta version is still
available [9] and the community was informed about it on the IRC channel [4].

3.1 The first beta – details of the implementation

Parsing of the RDF files is done using the library RDF API for PHP [11] which is
broadly accepted library for manipulation with RDF files in the PHP applications. The
scenario of producing result is easy.

1. User writes URL of any profile which he wants to browse into the form.
2. Application tries to download the FOAF file. If it is successful, it parses the RDF

and generates in memory a RDF graph.
3. To simplify later generating the output, the application transforms a special

structure from the graph. In fact the structure is an 3D associative array where the
indexes represents:

− URIref of the resource
− URIref of the property describing the resource
− Auto incremented integer identifying the values of the property.

The algorithm of creating the array structure is shown in the Figure 2.

After that, huge function format_person($data, $model, $id_person)
goes through this array and for each resource generates XHTML code which will
appear in the output page. It also generates anchors which allow the user to click on it
and see the relations between the resources (on the figure 3 there is shown simple
output from an existing profile). You can imagine that this solution is quite “dirty”, it
lacks any design patterns but it was chosen for quick implementation of the problem.
And as we can see, it works well.

78 Josef Petrák

function get_data_structure ($model) {

 $res = array();

 for ($iter = $model->getStatementIterator();
 $iter->hasNext();) {

 $statement = $iter->next();

 $predicate = $statement->getLabelPredicate();

 if (!is_array($res)) {

 if (!is_array($res[$predicate])) {

 $res[$predicate] = array();

 }

 }

 $res[$predicate][] = $statement->getLabelObject();

 }

 return $res;

}

Fig. 2. The algoritm for generating array structure from a RDF graph.

Now is time to change the implementation, clean-up the design and remake the
output. Future plans are all described in the section 4.

4 Future plans

4.1 MVC Design Pattern

In any well-designed application it is necessary to separate data model, view layer and
logic which loads and manipulates with the data. In modern programming languages
such as Java or .NET there various frameworks, which allows simple use of the
pattern of Model – View – Controller. We can mention Struts2 and JavaServer
Faces in Java, package Web.Forms in .NET. For PHP there are only limited amount
of such frameworks. The most advanced is component-driven framework called
PRADO3, but it is too complex to be easily implemented. Better way is to implement
own simple MVC solution. The new library is based on PHP5 object model. All
important components are defined using interfaces andd errors are handled using
exceptions.

2 http://jakarta.apache.org/struts/
3 http://www.xics.com/

Viewing FOAF – Development of a Metadata Explorer 79

Fig. 3. An example of output from the first version of Advanced FOAF Explorer. The address
of the profile is shown in the address bar. Clicking on the link “Parse it!” we can show other

linked profiles in the viewer.

Each application is started using static method, such as
AfeApplication::run();, the application will recognize name of template
from the PHP file name. For index.php is assigned the template

80 Josef Petrák

views/_index.php. The templates are written also in PHP using foreach
construction and using getter methods of all objects from data model.

The application class manages all operations. It starts loading resources; stores got
data in any model object and the calls a viewer which uses given template and
according to the instruction views the information. The core class also catches any
thrown exception and accesses it by a getter method. Using getter and setter methods
is the basic concept of the design of this class – it makes the API clearer.

There is a class which parses all information from server configuration variables,
request variables (information sent by GET or POST methods) as well. Further
development of this MVC framework will introduce common configuration files in
INI or XML4 format.

4.2 History of viewed profiles

To control viewed files and have a chance, how to explore unknown extensions of
FOAF, it is necessary to store the data about browsed files. To maximally simplify the
task, it is designed simple database table containing three columns: URI of the viewed
file, date and time when the request was received from a user and count of triples
stored in the profile. Data may be store in any relation database but the best for simple
use in PHP5 are integrated database SQLite or MySQL 4.1 Both of them offers
object-oriented approach to the API (through the SQLiteDatabase, or mysqli
object respectively). The structure of the database table is shown in figure 3.

CREATE TABLE ‘history’ (

 ‘uri’ VARCHAR(255) NOT NULL,

 ‘dt’ DATETIME NOT NULL,

 ‘triples’ INT UNSIGNED NOT NULL,

 PRIMARY KEY (‘uri’ , ‘dt’)

);

Fig. 4. Structure of SQL table for storing the history

To create fully persistent approach, there is a class History in the application
with methods for loading and saving the data. If it is necessary to change the database,
the implementation will be changed only in this class and the rest of the application
will be not influenced by this change. The question is if implement this class straight
or define an interface and implement classes using drivers for all considered database
drivers (which were mentioned previously).

4 eXtensible Markup Language

Viewing FOAF – Development of a Metadata Explorer 81

To complete the persistence, there is the object HistoryItem which represents
one row from the table. It defines getter and setter methods for manipulation with the
data in the object.

4.3 Data model

The biggest change from the first version is the data model. Due to ineffective work
with the solution of an associative array it was left and now fully object – oriented
solution is going to be created. The basic concept is to represent all known RDF
resources as classes and their properties as getter methods which return array with
values of property of the same type. We can also describe the hierarchy of the
resource, e.g. that <foaf:Person> is a subclass of <foaf:Agent> (using
keyword extends). It means, that Person may have all of properties, which are
defined for the Agent and it also may have some new properties which the Agent does
not have. It also allows easily extend the application model. Changing the properties
or creating new classes is a question of seconds.

In the Java, the class in the hierarchy of classes is java.lang.Object. Also
our data model has a super class which defines common methods and properties.
They are common for all types of resources. This class represents the resource
<rdf:Resource>. There is also interface Labelable which defines one
common methods called getCommonLabel(). This method offers label which will
appear in the name resource (such as headers or image titles). The code of this
interface and the super class RdfResource is shown in the figure 5.

As you can see, the method __toString() is used for testing purposes. It
returns the dump of structure of the class. The most interesting method is
parseRequiredProperty() it has to be called in the constructor of the model
classes for every property which we intend to read from the RDF graph. Note down
that it is necessary that if we declare any subclass, we have to send the parameters to
the super class otherwise it will not be loaded values of properties defined in the
parent classes.

82 Josef Petrák

interface Labelable {

 public function getCommonLabel();

}

class RdfResource implements Labelable {

 private $uriRef;

 private $rdfType;

 private $foafName;

 public function __construct(&$model, &$resource) {

 $this->uriRef = $resource;

 $this->parseRequiredProperty($model, $this->rdfType,
RDF::TYPE());

 $this->parseRequiredProperty($model, $this->foafName,
FOAF::NAME());

 }

 protected function parseRequiredProperty(&$model,
&$objectProperty, &$property) {

 for ($i = $model->find($this->uriRef, $property, NULL)->
getStatementIterator(); $i->hasNext();) {

 $stmt = $i->next();

 if (is_null($objectProperty)) $objectProperty =
array();

 $objectProperty[] = $stmt->getLabelObject();

 }

 }

 public function getRdfType() { return $this->rdfType; }

 public function getFoafName() { return $this->foafName; }

 public function __toString() { return print_r($this, true);
}

 public function getCommonLabel() {

 if (count($this->foafName)>0) return explode(', ', $this
->foafName);

 else return $this->uriRef->getUri();

 }

}

Fig. 5. The code of the RdfResource class and the interface Labelable

Viewing FOAF – Development of a Metadata Explorer 83

4.4 Internationalization

Internationalization allows non-English speaking users to use this application. We
have to separate labels from the index and output page, store them in one place and
create multiple translations. If we consider existing solutions for internationalizations,
there is mechanism represented by function gettext5. It is standard for PHP
application so it is not necessary to create any other now framework.

There is also one important problem. We have to find volunteers who can translate
these texts into languages different from Czech or English. In sure, that if we
announce new version on the FOAF IRC [4] channel and inform about possibility to
translate the user-interface, we will find the volunteers who can help us to translate
the UI into their mother language.

4.5 Data-binding

We considered implementing a mechanics of data-binding which could automatically
generate data model classes from given RDF Schemas and ontology. Even if it is a
good idea, we did not find any existing tool for this purpose. Our project is not
targeted to create any kind of this application. But it could be useful for developers
from the Semantic Web community. There is space for other developers to implement
it …

One problem of this solution could be that the definition of FOAF ontology and its
modules are stored in different files. Some of them are Ontologies in OWL and some
of them only RDF Schemas. So this tool should generalize the generate model and
ignore some constructions which are not common for RDFS and OWL (and its
versions).

5 Conclusion

It is necessary to define all necessary objects in the data model and to consider
which extension support – the most important extension is the module
RELATIONSHIP, which extends the basic concept of making relations among people
defining a lot of new sub-properties. After that there should not be any problem which
could slow down the development. The most important goal of this project is to show
that building of any Semantic Web application is not so hard as many of developers
think.

After releasing the tool and announcing it to the international FOAF community
we expect big interest in the source codes, details about the implementations and
volunteers who can create multiple translations. The aim of the project is to pay
attention to the Semantic Web, especially FOAF and to promote its using among
ordinary (understand non-programmers) users. After finishing all of these tasks, we

5 Documentation of gettext: http://php.net/gettext

84 Josef Petrák

can focus on improving our MVC framework, to the development of other RDF tools
which may help our author easier build their applications based on RDF graphs.

References

1. Project Friend of a Friend: http://foaf-project.org/
2. Wikipedia. Term Social Networks: http://en.wikipedia.org/wiki/Social_network
3. Wikipedia. Term the Semantic Web: http://en.wikipedia.org/wiki/Semantic_Web
4. IRC channel of the FOAF developers: Server irc:irc.freenode.net, channel #foaf
5. Application FOAF-a-Matic: http://www.ldodds.com/blog/archives/000087.html
6. Application FOAF Explorer: http://xml.mfd-consult.dk/foaf/explorer/
7. Application FOAF Web View: http://eikeon.com/foaf
8. Application People Link.org: http://beta.plink.org/, the project was shut down.
9. Application Advanced FOAF Explorer (AFE): http://foaf-explorer.zapisky.info/
10. Article “Jednoduchý MVC framework napsaný v PHP” (Simple MVC framework written in

PHP) posted by Josef Petrák on 8th February 2006: http://zapisky.info/?item=jednoduchy-
mvc-framework-napsany-v-php

11. Library PHP API for PHP: http://www.wiwiss.fu-berlin.de/suhl/bizer/rdfapi/
12. Specification of the FOAF Vocabulary: http://xmlns.com/foaf/0.1/
13. RDF Schema RELATIONSHIP: A vocabulary for describing relationships between people:

http://vocab.org/relationship/.
14. RDF Primer, Frank Manola, Eric Miller, W3C Recommendation from 10th February 2004,

The latest version is available at http://www.w3.org/TR/rdf-primer/.
15. OWL Web Ontology Language Reference, Dean M., Schreiber G (Editors); van Harmelen

F., Hendler J., Horrocks I., McGuinness D.L., Patel-Schneider P.F., Stein L.A. (Authors),
W3C Recommendation, 10 February 2004. The latest version is http://www.w3.org/TR/owl-
ref/.

16. Extensible Markup Language (XML) 1.0, Second Edition, Bray T., Paoli J., Sperberg-
McQueen C.M., Maler E. (Editors), World Wide Web Consortium, 6 October 2000. The
latest version is http://www.w3.org/TR/REC-xml.

17. XHTML 1.0 The Extensible HyperText Markup Language (Second Edition), World Wide
Web Consortium. 26 January 2000, revised 1 August 2002. The latest version of XHTML 1
is available at http://www.w3.org/TR/xhtml1/.

18. RDF Vocabulary Description Language 1.0: RDF Schema, Brickley D., Guha R.V.
(Editors), W3C Recommendation, 10 February 2004. The latest version is
http://www.w3.org/TR/rdf-schema/.

Using WordNet Glosses to Refine
Google Queries

Jan Nemrava

Department of Information and Knowledge Engineering,
University of Economics, Prague, W.Churchill Sq. 4, 130 67 Praha 3, Czech Republic

nemrava@vse.cz

Using WordNet glosses to refine Google queries

Jan Nemrava

Department of Information and Knowledge Engineering,
University of Economics, Prague, W.Churchill Sq. 4, 130 67 Praha 3, Czech Republic

nemrava@vse.cz

Abstract. This paper describes one of the ways how to overcome some
of the major limitations of current fulltext search engines. It deals with
synonymy of the web search engine results by clustering them into rele-
vant synonym category of given word. It employs WordNet lexical database
and several linguistic approaches to classify results in search engine re-
sult page (SERP) in appropriate synonym category according to Word-
Net synsets. Some methods to refine the classification are proposed and
some initial experiments and results are described and discussed.

Keywords: text mining, text classification, web search engine, WordNet gloss

1 Introduction

Fulltext search engines have recently become a basic tool for acquiring arbitrary
information from the World Wide Web. The amount of queries inserted into
Google rises rapidly and so does the number of indexed pages. ’To Google’ be-
came a commonly used verb describing the act of searching any information on
the Internet. Nowadays, Google has an Internet domain in 135 world countries
and with its 88 language interfaces is a world most leading search engine. This
determines to use Google and other search engines as a most suitable tool for
an easy access to any kind of information from our desktop PC and makes the
proclaimed information society viable. Nevertheless, still there exist some limi-
tations that play an important role in searching information within a keyword
based search interfaces. One of the keyword-based web search major problems
is that people tend to insert too general queries (according to Search Engine
Journal [1], in 2004 more than 50% of all queries inserted were one or two words
long), which leads to huge amount of returned hits to a given query. The way
how to deal with a huge amount of returned web pages is to arrange the results
according to their proper meaning using their synonyms or the word sense dis-
ambiguation. The purpose of this paper is to describe some techniques how to
arrange returned web sites into appropriate synonym classes using large lexical
database WordNet1 for discovering the synonyms and Hearst Patterns for dis-
covering is-a relations between the queried term and its possible superclass (i.e.
hypernym) concept.
1 http://wordnet.princeton.edu/

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 85–94, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

86 Jan Nemrava

The structure of this paper is as follows: Section 2 describes our motivation, sec-
tion 3 contains description of all information sources that were used. Our goals
and techniques used for this approach according with a given examples, some
drawbacks and limitations are discussed in section 4. Before concluding, section
5 discusses some relevant work on this topic.

Fig. 1. A context suggestion interface

2 Motivation

As it was stated in the Introduction, the problem of ambiguous queries presents
a strong limitation of current web search technology. There are already emerging
some query refinement techniques, which allow users to zoom into more specific
query, but most of the time they only provide a ”query modification” lists as a
single list without distinguishing between the real meanings of given word (e.g.
Ask Jeeves2). Another query refinement method recently introduced by leading
fulltext search engine is offering real time suggestions while the user is typing
in his query. One of the advantages is that the user sees the most suitable word
form for a particular search in the realtime (though the suggested word may
not be the grammatically or semantically best one, but it is the one that is

2 http://www.ask.com

Using WordNet Glosses to Refine Google Queries 87

used by the most of the users). Google Suggest3 is good example of this method.
To our knowledge there isn’t any fulltext search engine that would be able to
separate returned results according to their meanings. Some efforts can be seen
in Vivisimo4, but is not known in public.
In this paper we would like to present approach that use existing dictionary and
glosses describing its concepts together with the largest text corpora available,
the Internet, to discover meanings that the word inserted can carry. This work
was inspired by Philipp Cimiano’s work on Pankow [4] system and the idea of
using heterogenous evidence for confirming is-a relation.

3 Information Sources

In this section, we will describe the above mentioned techniques in detail. All
approaches used here are well known among the Semantic Web [2] community
for a long time. They are frequently used for ontology learning and creating is-a
relations and taxonomies. Namely they are:

– WordNet - large lexical database containing words ordered in synsets (syn-
onym sets).

– Hearst Patterns - technique exploiting certain lexico-syntactic patterns to
discover is-a relations between two given concepts.

– monothetic clustering - information retrieval technique used for grouping
documents according to specified feature.

– fulltext search engine - GoogleTM API interface.
– NLP - natural language processing techniques.

3.1 WordNet

The main source of information is WordNet [7]. WordNet is a huge lexical
database containing about 150,000 words organized in over 115,000 synsets for
a total of 203,000 word-sense pair. Each word comes along with a short descrip-
tion called a gloss. The glosses are usually one or two sentences long. Beside the
fact that all ordinary part of speech are present it contains nouns which are of
major importance for us, because one of them is most likely a super concept (a
hypernym) to the given word. This is a key idea of this paper.
After a user inserts some proper noun, it is looked up in a WordNet and all
its meanings saved in WordNet are extracted together with their glosses. Each
synonym contains just one gloss. Each gloss is preprocessed and then labeled
by POS tagger. The preprocessing contains elimination of punctuation, hyphen-
ation and stop words. Next step is POS tagging and only nouns are kept and
saved as candidate nouns. Candidate nouns are words that can be potentially
selected as a hypernym for a given term.

3 http://www.google.com/webhp?complete=1
4 http://www.vivisimo.com

88 Jan Nemrava

3.2 Hearst Patterns

Hearst patterns are lexico-syntactic patterns firstly used by M.A.Hearst[8] in
1992. These patterns indicate the existence of class/subclass relation in unstruc-
tured data source, e.g. web pages. Examples of lexico-syntactic patterns that
were described in [8] are following:

– NP0 such as NP1, NP2,. . .,NPn−1 (and | or) NPn

– such NP0 as NP1, NP2,. . .,NPn−1 (and | or) NPn

– NP1, NP2,. . .,NPn−1 (and | or) other NP0

– NP0 (including—especially) NP1, NP2,. . .,NPn−1 (and | or) NPn

– and very common ”NPi is a NP0”

Hearst firstly noticed that from patterns above we can derive that for all NPi,
1 ≤ i ≤ n, hyponym(NPi, NP0). Given two term t1 and t2 we are able to record
how many times some of these patterns indicate an is − a-relation between
given t1 and t2. Some normalizing techniques should be employed as some of the
patterns will likely occur more frequently than the others. Although Cimiano
[3] noticed that Hearst patterns occur relatively rarely in closed corpus and as
described later, it is applicable also on Internet, their results provide valuable
information. The main drawback is that Google search does not offer to use prox-
imity operators and with the query requested as an exact match user must enter
exact order of the whole pattern. For example searching for pattern ”planets
such as Pluto, Neptune and Uranus” will provide about 50 results, while ”plan-
ets such as Pluto, Uranus and Neptune” won’t return any. The most powerful
pattern that we use for primary decisions is the ”NPi is a NP0”.

3.3 Clustering

Associating documents to relevant category (synonym category in our case) is
a task very similar to a classic information retrieval task named by van Rijs-
bergen[16] polythetic clustering, where documents’ membership to a cluster is
based on sufficient fraction of the terms that define the cluster. As stated in [17]
creating is-a relations is a special case of polythetic clustering where subclass
belongs only to one superclass and this means that the membership is based
only on one feature, called monothetic clusters.
This alternative form of clustering has two advantages over the polythetic va-
riety. The first is the relative ease with which one can understand the topic
covered by each cluster. The second advantage of monothetic clusters is that
one can guarantee that a document within a cluster will be about that clusters
topic. None of this would be possible with polythetic clusters.

3.4 Google API

The world leading fulltext search engine provides direct access to its huge databases
through Google API5. It has limited daily number of queries and compared to
5 http://www.google.com/apis

Using WordNet Glosses to Refine Google Queries 89

HTML based interface it is relatively slow, but it provides easy access from
any programming language. Each query is responded in the same way as is the
HTML interface. User can get number of results, web page titles, links and snip-
pets (short description of web page based either on META tag description or
part of text with emphasized keywords). Our algorithm search for very specific
text patterns and we are interested only in aggregate number of results.

Next session describes application of above described information sources and
some initial results.

4 Discovering the synonym classes

It was already described in a section about WordNet, that certain nouns from
so called glosses are of our main interest. According to our observation glosses
mostly contain one noun that is a hypernym to the given concept. This is a core
prerequisite for our method as our aim is to find that hypernym noun among the
words in gloss. After some simple NLP methods are applied, we retrieve candidate
nouns for each gloss. What follows is a description of concrete situation that our
script has to deal with. The example is a term Pluto which can be found in three
different contexts according to WordNet. Pluto can be either a planet, a god or
a cartoon.

– WordNet glosses for concept Pluto
- SYN 1 a small planet and the farthest known planet from the sun; has

the most elliptical orbit of all the planets
- SYN 2 (Greek mythology) the god of the underworld in ancient mythology;

brother of Zeus and husband of Persephone
- SYN 3 a cartoon character created by Walt Disney

– Candidate nouns for concept Pluto.
- SYN 1 planet;sun;orbit;planets;
- SYN 2 Greek;god;underworld;mythology;brother;Zeus;husband;Persephone;
- SYN 3 cartoon;character;Walt;Disney;

– Patterns applied on SYN 1 - number of returned results is in brackets
- ”Pluto is a planet” (1550), ”Pluto is planet” (145)
- ”Pluto is a sun” (2), ”Pluto is sun” (0)
- ”Pluto is a orbit” (0), ”Pluto is orbit” (1)
- ”Pluto is a planets” (0), ”Pluto is planets” (0)

It is necessary to take into a consideration the total amount of web pages where
the words are mentioned and use this value to normalize the values.

w(i) = tf(i)/TC(i) (1)

where i represents the i−th synonym class, tf is number of results for given
pattern and TC is number of web pages returned when querying two terms
without any constraints, it represents the popularity of the given pair of terms.

90 Jan Nemrava

Candidate for the hypernym noun is then simply the highest value from all
synonymic class array.

W = max(w(i)) (2)

This candidate noun needs to be validated and confirmed by another Hearst
patterns. The problem with a necessity of strict word order was mentioned in
previous session. We must cope with this problem in order to find another pattern
to validate the results from ”is a” step. Pattern NPn−1 and other NP0 was
chosen, because we predict its bias with strict word order to be the lowest among
all remaining patterns. In this pattern we had to deal with creating a plural form
of each candidate noun. Some simple rules were adopted, such as adding ”ies”
suffix at the end of the word when the last character is ”y” etc.. No language
exceptions were taken into consideration.

– Patterns tested in a validation step (returned hits are in brackets)
- ”Pluto and other planets” (57)
- ”Pluto and other planet” (0)
- ”Pluto and other suns” (0)
- ”Pluto and other sun” (0)
- ”Pluto and other orbits” (0)
- ”Pluto and other orbit” (0)
- ”Pluto and other planetss” (0)
- ”Pluto and other planets” (57)

Maximum value from the array is considered as hypernym noun. If both pat-
terns determine the same noun, it is considered as a hypernym noun. In the
opposite case some other techniques to confirm or reject this hypothesis should
be applied. The possibilities are discussed in last section. The process of search-
ing for the right hypernym noun is repeated for all synonym classes that were
given by WordNet. Next paragraph discusses some results that were gained on
a test set.
The test set consisted of about 50 of proper nouns from space, travel and zodiac
area. At the beginning it was necessary to manually check whether all the words
from the test set are listed in WordNet. The result was that 96% (i.e. 48 from
50) proper nouns have their gloss in WordNet. Then the above described script
has been run on each of 50 test words. After all the tests has been carried out,
it was necessary to check the correspondence of the discovered hypernym with
the real world concepts.
We discovered, that from the test set, 62% (31 words which contained 61 syn-
onymic classes in total) were assigned with a hypernym correctly and they cor-
responded to real life objects. 9 words and all their meanings were assigned
wrongly. The remaining 16% contained mistake in assigning some of the syn-
onym class. More detailed analysis of words that were incorrectly labeled can be
found in Table 2.

Mining for other synonyms than those explicitly stated in WordNet would
definitely provide better results in some cases, on the other hand the certainty
of wrongly assigned hypernym noun would undoubtly rise.

Using WordNet Glosses to Refine Google Queries 91

Table 1. Overall precision

Total number of words in list 50 (100%)

Words listed in WordNet 48 (96%)
Correct 39 (78%)
- completely correct 31 (62%)
- partially correct 8 (16%)
Wrong 9 (18%)

Table 2. Statistics of wrongly discovered terms

Number of wrong instances 17 (100%)

Both patterns wrong 7 (41%)
”is a” correct, ”and other” wrong 4 (23%)
”is a” wrong, ”and other” correct 6 (35%)

Table 3. Examples of negatively labeled synonyms.

Proper Noun ”Is a” pattern ”and other” pattern

Greenland island Arctic
Reykjavik Iceland Iceland
Kenya Great Great
Luxembourg - -
Luxembourg city city

92 Jan Nemrava

4.1 Results

We tested a set of 50 proper nouns from several different areas such as astronomy
and zodiac. Some of these were chosen because they were tested with the above-
mentioned PANKOW system. From these 50 test concepts with 92 synonyms in
total, we got precision 62 percent. The results were appropriate to estimations
and with regard to the fact, that this technique has been recently implemented
and is far from mature, we found them satisfying. There are several drawbacks
and suggestion for future work that will be discussed in this section and in the
conclusion.
One of the drawbacks is the system speed which depends on Google API re-
sponses which are quite slow recently. The average time to resolve one synonymic
class is about 50 seconds with average 20 Google queries per one synonym class.
Another objective drawback is the limitation of current Google web search in-
terface. It has no proximity operators and the query must be either inserted as
an exact match or connected with AND boolean operator. Besides these techno-
logical problems there is also a limited amount of daily queries to one thousand
which is sufficient only to process about two tens of concepts, which currently
presents the main obstacle.

5 Related work

This section discusses work related to exploitation of WordNet glosses to use
them with query refinements. Since word ambiguity presents an important is-
sue in Information Retrieval community, there has been a lot of efforts invested
to discover how to deal with the problem. The importance of disambiguated
words and concept further increased with introduction of ontologies as a core of
the so called Semantic Web. Nowadays, there is an enormous effort on this re-
search field. The most successful approaches so far, either reuse some knowledge
stored existing sources (exploiting Web directories structure [9], dictionaries or
tagged corpuses) or make use of the inherited redundancy of information that
are present on Internet (e.g. Armadillo [5] or KnowItAll [6]). Both of these sys-
tems continually and automatically expands the initial given lexicon by learning
to recognize regularities in the large repositories, either internal regularity to a
single document or external across set of documents.
Query refinement based on a concept hierarchies was discussed in for example
in [12] or by Kruschwitz in [10]. Project that also use similar ideas to ours is
one called WordNet::Similarity [13]. It is a tool kit written in Perl implementing
several algorithms for measuring semantic similarity and relatedness between
WordNet concepts. Two of algorithms (lesk and vector measures in concrete)
uses WordNet glosses. Lesk finds overlaps between two given glosses to count
the relatedness of them. The vector measure creates a cooccurrence matrix for
each word used in the WordNet glosses from a given corpus, and then represents
each gloss/concept with a vector that is the average of these cooccurrence vec-
tors.
Project that inspired this work is called PANKOW (Pattern-based Annotation

Using WordNet Glosses to Refine Google Queries 93

through Knowledge on the Web) and was created by Cimiano et al. [4]. This
work focuses on application of Hearst patterns over a given ontology to discover
is-a relations solely from Internet. Some of the data tested in our paper were
actually taken from their work.

6 Conclusions

In this paper we presented an approach for discovering synonym classes of given
proper nouns. We used some freely accessible information sources and connected
them together to get new features for discovering meanings of given proper
noun. List of some commonly used proper nouns was collected and the proposed
method was tested with this list. From 50 test concepts with 92 synonyms in
total, we got precision 62 percent.
It remains for further work to find out how to exploit the WordNet hierarchy and
involve glosses from class instances and subconcepts. Introducing another vali-
dation pattern would definitely increase the precision of the system. So far, the
system can handle only single word queries. Handling more words queries and
deriving proper synonyms categories could be an interesting challenge. Another
task would be to implement a way how to deal with words and concepts not
included in WordNet. Cimiano’s PANKOW similar system might be beneficial
for this task.
Although this application has certain drawbacks, we showed that the idea of
exploiting WordNet glosses for discovering certain facts about given concepts is
viable and with some improvements in speed and precision it could serve as a
helpful tool for unexperienced Internet users.

ACKNOWLEDGEMENTS
The author would like to thank to Vojtech Svatek for his comments and help.
The research has been partially supported by the FRVS grant no. 501/G1.

References

1. Baker L.:Search Engine Users Prefer Two Word Phrases, Search Engine Journal
http://www.searchenginejournal.com/index.php?p=238

2. Berners-Lee T., Hendler J.,Lassila O.:The semantic web. Scientific American, May
2001.

3. Cimiano P. et al.: Learning Taxonomic Relations from Heterogeneous Evidence
4. Cimiano, P. and Staab S.:Learning by googling. SIGKDD Explor. Newsl. 6, 2 (Dec.

2004), 24-33.
5. Ciravegna F. et al.:Learning to Harvest Information for the Semantic Web, Pro-

ceedings of the 1st European Semantic Web Symposium, Heraklion, Greece, May
10-12, 2004

6. Etzioni O. et al.:KnowItNow: Fast, Scalable Information Extraction from the Web,
Proceedings of Human Language Technology Conference and Conference on Em-
pirical Methods in Natural Language Processing, p.563–570, October 2005

7. Fellbaum C.: WordNet, an electronic lexical database, MIT Press, 1998.

94 Jan Nemrava

8. Hearst M. A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In
Proceedings of the Fourteenth International Conference on Computational Lin-
guistics, pages 539–545, Nantes, France, July 1992

9. Kavalec, M, Svatek, V.: Information Extraction and Ontology Learning Guilded by
Web Directory, Lyon 21.07.2002 26.07.2002. In: AUSSENAC-GILLES, Nathalie,
MAEDCHE, Alexander (ed.). Workshop 16. Natural Language Processing and
Machine Learning for Ontology Engineering. Lyon : University Claude Bernard,
2002, s. 3942.

10. Kruswitz U.: Intelligent document retrieval : exploiting markup structure, Dor-
drecht : Springer 2005, ISBN - 1-4020-3767-8

11. Navigli R., Velardi P.:Structural Semantic Interconnections: A Knowledge-Based
Approach to Word Sense Disambiguation, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27, no. 7, pp. 1075-1086, July 2005.

12. Parent S., Mobasher B., and Lytinen S.: An adaptive agent for web exploration
based on concept hierarchies. In Proceedings of the International Conference on
Human Computer Interaction. New Orleans, LA, August 2001

13. Pedersen S., et al.:Wordnet::similarity - measuring the relatedness of concepts. In
Appears in the Proceedings of the Nineteenth National Conference on Artificial
Intelligence (AAAI-04), 2004.
http://citeseer.ist.psu.edu/644388.html

14. Porter M.: Porter Stemmer Algorithm, [online],
http://tartarus.org/~martin/PorterStemmer/

15. Ratnaparkhi A.: Adwait Ratnaparkhi’s Research Interests, [online],
http://www.cis.upenn.edu/~adwait/statnlp.html.

16. Van Rijsbergen C.J.: Information retrieval (second edition), Chapter 3, Butter-
worths, London, 1979.

17. Sanderson M., Croft B.:Deriving concept hierarchies from text,[online]
citeseer.ist.psu.edu/cimiano03deriving.html

18. Weiss S.M. et al.: Text Mining - Predictive Methods for Analyzing Unstructured
Information. Springer, 2005, ISBN 0-387-95433-3.

GeKon – Applying Novel Approaches to GIS
Development

Tomáš Richta

Department of Computer Science, FEE, CTU - Czech Technical University in Prague,
Karlovo nám. 13, 708 33, 121 35 Prague 2, Czech Republic

richtt1@fel.cvut.cz

GeKon - applying a novel approaches to GIS
development

Tomas Richta

Department of Computer Science, FEE, CTU - Czech Technical University in Prague,
Karlovo nam. 13, 708 33, 121 35 Prague 2, The Czech Republic

richtt1@fel.cvut.cz

Abstract. This paper describes a few ideas concerned with geograph-
ical information systems (GIS) development. Those ideas come from a
GIS development project named GeKon, which is now held on the De-
partment of Computer Science at CTU. The first of them deals with a
huge semantic gap between the complex structure of real world and its
representation in GIS. Some papers describe this problem as a conse-
quence of wide usage of procedural programing languages and relational
database management systems in contemporary GIS development. The
object-oriented approach is usually recommended as a better way of con-
structing such systems. We demonstrate here our findings in object mod-
elling, programing and data management achieved in GeKon project.
The other idea shows the fact, that not always the term object-oriented
is understood in the same way. People usually have in mind some spe-
cific programing language and its structures, instead of the real problem
and its solution. In this paper we want to clarify those misleadings and
try to describe requirements, that should be fulfilled to achieve expected
benefits of this approach. We also introduce next supposed steps in the
GeKon project.

Keywords: GIS, semantic gap, object-orientation, data modelling, Smalltalk, OODBMS

1 Introduction

At the beginning, we have to slightly describe geographical information systems
(GIS) evolution process to reader be more familiar with questions connected with
this area of research. Present GIS were principally constructed as tools for com-
puter based maintenance of geo-referenced data formerly kept in cartographical
tools, like maps, atlases, cadastral plans, etc. Evolution of such systems probably
started with the idea of cartography digitalization drawn ahead by the vision of
map producing acceleration, and also faster access to carographical data, includ-
ing sorting, searching, and other functions that could lead to better utilization
of geo-referenced data.

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 95–102, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

96 Tomáš Richta

1.1 Present GIS data management

Present problems of GIS systems have probably their origin in the way of GIS
data production. The process of cartography digitalization consists of scanning
cartographical tool, and then its vectorization by laying vector paths over the
lines in the map. The data produced by this process tend to come under three
main geometry types:

– spotted, when some interesting spot had been captured, like a church, a tree,
a well, etc.

– linear, when some linear data had been captured, like roads, borders, rail-
ways, networks, etc.

– planar, where some area of interest had been captured, like cadastre area,
city district, etc.

This separation lead to three main data types used in present GIS: points,
lines and polygons. Almost all such systems use as its storage device those three
elements. One of the first companies in GIS field named ESRI had invented
special file format named shapefile (SHP) for storing these data. SHP becomes
something like a standard in GIS data management. Probably for better preser-
vation of cartographical information, data were collected separately in thematic
parts. It means, that all churches in observed area were vectorized in one point-
based shapefile, all roads in one line-based shapefile, etc. This approach lead
to very discrete representation of real world. When the map is to be retrospec-
tively reconstructed in GIS, all thematic files has to be layered over themselves
to obtain proper cartographical representation. Layers are not connected among
themselves, so ie. the information about roads leading to a well is not present.

Further needs of additional information capturing and storage lead to ex-
tension of shape format with so called attribute data component like names,
numbers, etc. At the same time as this problem arose, the relational approach
to data management achieved great concern. So the GIS files were extended
with database file (DBF) including attribute data, connected to their geometry
representation in shapefiles. Both those files were stored separately. Relational
tables consist of domains, and records, so the real world information has to be
separated and simplified into these parts to be stored in DBF. This approach
also lead to more discrete GIS data quality and omitting of more complicated
information.

Both stated approaches have not changed since the beginning of GIS. The
only novel approach is to store SHP and DBF files into relational database
management system and reach them through the SQL. But this way only leads
to bigger conservation of the problem.

1.2 Semantic gap

Wikipedia describes semantic gap as a mismatch caused by some conflicts emerg-
ing in layered systems, when a high level of abstraction need to be translated

GeKon – Applying Novel Approaches to GIS Development 97

to lower, more concrete artifacts [1]. When we try to imagine our modern infor-
matical world as a very complex layered system, we see the real world structure,
semantics, and topology on one side and its computer based representation in
information systems on the other side. Between them, there are multiple sensors,
but not only mechanic ones, but also human senses as a main set of tools used
in present digitalization process. Rapant defines the term of geoinformatics as
a scientific discipline dealing with quality, behavior, and reciprocal interactions
of spatial objects, phenomena, and processes by force of their digital models
combined with information technologies [2]. When a GIS may be able to serve
as a tool for better understanding of the real world, its way of storing real data
must be as natural as possible. But present GIS with their fragmented data
model, layered representation, and relational simplicity are not able to provide
it. For example, when we want to describe a village, we need to prepare a number
of layers covering all fields of our interest, ie. buildings, roads, fields, gardens,
forests, sewages, electrical wring, gas pipelines, churches, wells, pubs, shops, bus
stations, etc. For each theme, we need a relational table blueprint that describes
whether there are points, lines, or polygons, and what attributes we want to
store along with geometry. This leads to strenuous process of uniformization of
gathered information and quanta of discrete data production. All houses must be
described by the same group of attributes, and the information whether house
is a pub is stored somewhere else, than the number of its stories. Also when
we want to combine together villages belonging to some administrative area, we
need to flatten out all the villages thematic layers to be coherent and thus com-
parable together. This process isn’t very natural and its results do not exactly
cover described original. And that is why the semantic gap emerges.

2 Object-oriented approach

Merunka recommends an object-oriented approach (OOA) as a good solution of
semantic gap in information systems development [3]. He states that OOA solves
this problem by introducing the idea of higher level of abstraction in software
development with emphasis on modularity, reusability, and standardization. He
also summarizes main criteria of object-oriented system:

1. Data and its functionality are encapsulated in one logical entity, which is
called object.

2. Objects communicate by sending messages to each other.
3. Objects are able to inherit their properties from other objects.
4. Objects are collected in classes together with other similar objects.
5. Different objects are able to react to the same message, which is called

polymorphism.
6. Objects could also have other relationships like composing, dependency, or

delegation.
7. Methods are programs consisting of operations over object data. Methods

are components of objects.

98 Tomáš Richta

8. Object identity is independent on object data.

Comparing OOA ideas with GIS problems gives a new horizon to their so-
lution. Our natural way of perception of material aspect of the real world is
that everything is an object, and now with OOA everything is possible to be
an object in our computer memory. What we only need is to start using OOA
in instant. No more thinking about geometrical representation of objects or the
way how to store them into tables.

Of course, this is not the novel idea. Mitrovic and Djordjevic-Kajan described
in 1996 OOA as natural paradigm for highly complex domains, especially be-
cause it maintains a direct correspondence between real world and application
objects [4]. Kofler in in 1998 in his PhD. thesis about large 3D GIS databases
recommended OOA as an obvious choice for any new GIS [5]. Chance et al.,
key developers of GE Smallworld GIS, describe OOA as highly effective when
applied to the requirements of GIS [6]. The question may arise, why nothing
has changed yet, even if those articles had already been written within past ten
years.

2.1 Object-oriented modelling

Looking for some indications of OOA emerging in GIS, we could find a few
papers describing object modelling in GIS, especially when the 3rd dimension
has to be introduced to those systems. For example, Nebiker wrote in 2003 about
his fully object-oriented model for 3D geo-objects [7]. Also Kolbe and Groeger
work on their unified standard for 3D city models that is strictly based on OOA
[8].

2.2 GIS development projects

There are also some projects, that have already implemented parts of GIS using
OOA. One of them is already cited in Koflers PhD. thesis [5] where he described
a few tests of GIS database implemented over two examples of object-oriented
database management systems - ObjectStore and O2. Kofler used as a platform
SGI Indigo workstations with MIPS R4400 CPU at 250 MHz and 128 Mbyte
main memory, which is not very strong but it is adequate to the year of publish-
ing. He states that OODBMS has bigger performance demands than traditional
file systems, but still recommends them as a best solution for GIS database.

Balovnev et al. implemented software for 3D/4D geo-scientific applications
developement named GeoToolKit [9]. They used C++ and ObjectStore as core
technology tools. GeoToolKit is a class library for the storage and retrieval of
spatial objects within an object-oriented database. Developers state that their
approach lead to separation of focus on the geoapplication semantics and the
need of spatial objects assembly from multiple relational tables. They also men-
tion the reduction of the code written, improvement of its understandability,
and they descibe some interesting applications implemented with the use of
GeoToolKit library.

GeKon – Applying Novel Approaches to GIS Development 99

One of the other projects is GeoViewer implemented by Lurie et al. in 1997
[10]. Its an object-oriented GIS framework with optimized spatial geometry rep-
resentation providing transparent linkage to data objects. GeoViewer is written
in Smalltalk with small amount coded in C. Minimal documented configura-
tion for running GeoViewer is Sun Sparc 10 with 64MB of RAM or Pentium
166 with 64MB of RAM. This project is remarkable because it incorporates our
main ideas about design of GIS, such modelling natural relationships between
the geodata, or independent representation of objects and its geometric repre-
sentation. Taking the year of publication into account, the measure of innovation
ideas is stunning. Also the question arises, why this is not the main approach in
nowadays GIS.

2.3 GeKon project

Because we see all of those projects very important as a way to improve present
GIS applications, we have also opened research project concerning OOA used
in GIS development. The name of this project is GeKon an it was started as
a semestral work in one of our Software engineering courses. Members of the
development team were three undergraduate students - Ivo Kondapaneni, Petr
Novosad, Jiri Verunek, and author himself. Ivo Kondapaneni had to leave our
project later for his other academic duties, so project extent had to be partially
narrowed.

GeKon system is now able to load data from shapefiles and display it on the
computer screen. It is also possible to zoom displayed data and move over it. As
a test case the city GIS problem was chosen and as a development platform we
used Squeak Smalltalk dialect. In Fig. 1. we introduce our object model.

This model shows the GeKon structure - space subdivision, geometry and
city object model. In the space subdivision part we formed our idea that it was
necessary to maintain some sophisticated indexed structure that allowed fast
searching. We use two trees here. First one is responsible for logical subdivision
of the city (city districts, basic settlement units, and counting districts) and
it is implemented with collections. Second one is responsible for searching the
physical space within the counting district and it is implemented as a R-tree.
Loaded objects are primarily classified according to the logical space subdivision
and then inserted into R-tree of relevant counting district.

Geometry part of our model is responsible only for the geometric represen-
tation of objects. Now it contains only necessary representations - point, line
and polygon, expanded with 3D solid representations. Each shape has its own
bounding box which is stored in space subdivision structures.

The logical object structure of city is the only demonstrative example of
part of the city configuration. Its main purpose is to show how we need to model
the reality - naturally. We expect that in the future this part of the GIS will be
constructed in some visual metamodeller directly by the GIS user at the moment
of data import. This approach assumes strict clear disjunction of the data and
its representation.

100 Tomáš Richta

Fig. 1. GeKon object model

Visualization was partly implemented using OpenGL, but after loss of I. Kon-
dapaneni we had to choose easier way. So we used Squeak morphic visualization
system, which is sufficient, but lacks possibilities to improve graphics perfor-
mance in the future like redrawing using textures etc. So we plan to redevelop
OpenGL rendering engine for GeKon in future.

Data management has not been covered yet, we are storing all data in
Smalltalk image. In future, we plan to incorporate OmniBase as a database
management system, which ensures native storage and retrieval of objects. We
also plan to cooperate with another project held on our department named Cell-
Store, which deals with heterogeneous data storage and now serves as native
XML database.

During the development we used sample data from the ICIP (Institute of City
Informatics - Prague), covering the Josefov city district. The average loading
time was 1749ms per 1MB and the refreshing time about 320ms, which is not
bad. But we see these results orientational only, because the sample is too small
to give evidence of the GeKon capabilities. Further we want to use bigger data
collections for testing, but they were not available at the moment.

GeKon – Applying Novel Approaches to GIS Development 101

3 Conclusion and future work

In this paper we described semantic gap problem between the real world and
its computer based representation. This problem was described from the GIS
point of view. GIS are still very tightly coupled with the old fashioned represen-
tation of the real world by using files and relational tables. We discussed here
OOA as one of the approaches that are able to overcome semantic gap. Some
interesting projects concerning object modelling and object-oriented implemen-
tations of GIS systems were slightly introduced. In the end of our paper, we
also presented our own project GeKon, in which we developed the prototype of
object-oriented GIS. Now we want to summarize discovered requirements for the
GIS development and also planned work in the GeKon project.

3.1 GIS development requirements

Based on our experience in GeKon system development and also on the knowl-
edge from previously cited papers we strongly recommend following rules to be
applied in OOA GIS development:

– Separate geometric representation from object itself to be independent on
its shape.

– Use R-trees or other indexing structures for fast searching in space and
efficient data retrieval.

– Pay attention to very fast rendering algorithms to prepare the most com-
fortable environment for users.

– Use metamodeller controlled by the user to obtain the logical structure of
the place of interest.

– Use strictly pure non-hybrid object-oriented language to avoid programmers
cheating (for details see [3]).

3.2 Further steps in GeKon project

In future, we want to continue in development of GeKon system on our depart-
ment, partly in the form of dissertation, diploma and other thesis, partly as
student semestral projects. Fig. 2. describes the roadmap of planned work.

References

1. Wikipedia, the free encyclopedia, encyclopedia, www.wikipedia.org.
2. Rapant P.: Zaklady geoinformatiky I. (Geoinformatics fundamentals I.), course

lecture, Ostrava, The Czech Republic, 2005.
3. Merunka V.: Objektove orientovany pristup k projektovani informacnich systemu

(Object oriented approach to information systems development), habilitation the-
sis, Department of Information Engineering, CUA in Prague, The Czech Republic,
2005.

102 Tomáš Richta

Fig. 2. GeKon structure model

4. Mitrovic A., Djordjevic-Kajan S.: OO paradigm meets GIS: a new era in spa-
tial data management,invited paper, presented at YUGIS’96, Belgrade, Yugoslavia,
1996, http://www.cosc.canterbury.ac.nz/tanja.mitrovic/

5. Kofler M.: R-trees for Visualizing and Organizing large 3D GIS Databases, PhD.
Thesis, TU Graz, Austria, 1998.

6. Chance A., Newell R.G., Theriault D.G.: Smalworld GIS: An Object-Oriend GIS
- Issues and Solutions, Smallworld GIS white paper, 2000, http://www.logis.ro/
downloads/

7. Nebiker S.: Support for visualization and animation in scalable 3D GIS environ-
ment - motivation, concepts and implementation, scientific paper, International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, Vol. XXXIV-5/W10, 2003.

8. Kolbe T.H., Groeger G.: Towards unified 3D city models, article in: Proceeding
if the ISPRS Comm. IV Joint Workshop on ”Challenges in Geospatial Analysis,
Integration and Visualization II”’, Stuttgart, 2003.

9. Balovnev O., Breunig M., Cremers A.B., Shumilov S.: GeoToolKit: Opening the
access to object-oriented geo-data, scientific paper, Interoperating Geographic In-
formation Systems, Boston: Kluwer Academic Publishers, 1999.

10. Lurie G.R., Korp P.A., Christiansen J.H.: A Smalltalk-based Extension to Tra-
ditional Geographic Information Systems, students paper, http://www.dis.anl.
gov/geoviewer/, 1997

A Comparison of Element-based and Path-based
Approaches to Indexing XML Data∗

Michal Krátký, Radim Bača

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava–Poruba
{michal.kratky,radim.baca}@vsb.cz

Czech Republic

A Comparison of Element-based and Path-based
Approaches to Indexing XML Data?

Michal Krátký, Radim Bača

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava–Poruba
{michal.kratky,radim.baca}@vsb.cz

Czech Republic

Abstract. The mark-up language XML (Extensible Mark-up Language)
is recently understood as a new approach to data modeling. A well-
formed XML document or a set of documents is an XML database and
the associated DTD or schema specified in the language XML Schema
is its database schema. Implementation of a system enabling us to store
and query XML documents efficiently (so called native XML databases)
requires a development of new techniques that make it possible to index
an XML document in a way that provides an efficient evaluation of a user
query. Most of XML query languages are based on the language XPath
and use a form of path expressions for composing more general queries.
In the paper we compare element-based and path-based approaches to
indexing XML data. In the case of element-based approaches query is
evaluated step by step. Each step produces a lot of elements which may
be refused in the next evaluation step. In the paper we show that the
previously published multi-dimensional path-based approach overcomes
conventional element-based approaches.

Key words: indexing XML data, XPath, element-based approach, path-
based approach, multi-dimensional data structures

1 Introduction

The mark-up language XML (Extensible Mark-up Language) [20] is recently
understood as a new approach to data modelling [16]. A well-formed XML doc-
ument or a set of documents is an XML database and the associated DTD or
schema specified in the language XML Schema [23] is its database schema. Imple-
mentation of a system enabling us to store and query XML documents efficiently
(so called native XML databases) requires a development of new techniques [16,
5].

An XML document is usually modelled as a graph the nodes of which corre-
spond to XML elements and attributes. The graph is mostly a tree (we consider
no attribute IDREFS now). To obtain specified data from an XML database a

? Work is partially supported by Grant of GACR No. 201/06/P113.

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 103–115, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

104 Michal Krátký, Radim Bača

number of special query languages have been developed, e.g. XPath [22], and
XQuery [21]. A common feature of these languages is a possibility to formulate
paths in the XML graph. Such a path is a sequence of element or attribute names
from the root element to a leaf. Regular expressions provide a valuable method
for paths specifications. In fact, most of XML query languages are based on the
XPath language that uses a form of path expressions for composing more general
queries. The XPath defines a family of 13 axes, i.e. relationship types in that an
actual element can be associated to other elements represented in the XML tree.
The family of axes defined in the XPath is designed to allow the set of graph
traversal operations that are seen to be atomic in XML document trees.

In the past, there were many considerations about use of existing relational
or object-relational DBMSs for storing and querying XML data. Since a tree
is accessed during evaluation of a query, conventional approaches through the
conventional database languages SQL or OQL fail or they are not too efficient.
Consequently, a form of indexing is necessary.

Recently there are several approaches to indexing XML or, more general,
semistructured data. Some of them are based on a traditional relational tech-
nology (e.g. Lore [15] and XISS [14]), the others use special data structures for
representation of XML data like trie (e.g. Index Fabric [7] and DataGuide [17])
or multi-dimensional data structures (e.g. XPath Accelerator [9]). The latter ap-
proach uses R-trees but also B-trees as database indices in environment of a
relational DBMS. As it was expected, R-trees outperforms B-trees in this pro-
posal. The work [7] presents an index over the prefix-encoding of the paths in an
XML document tree, in which each leaf uL of the document tree is prefixed by
the sequence of element tags that one encounters during a path traversal from
the document root to uL. A more complete summary of various approaching to
indexing XML data is e.g. [6].

In the course of the development of XML databases the need for a benchmark
framework has become more and more evident: many different ways to store and
query XML data have been suggested in the past, e.g. XMark [18] and XML Data
Repository [19].

From the other point of view we distinguish element-based (e.g. XPath Ac-
celerator [9] or XISS [14]) and path-based (e.g. [13, 11]) approaches to indexing
XML data. In the case of an element-based approach a query is evaluated step
by step. Each step produces a lot of elements which may be refused in the next
evaluation step.

In the paper we compare XPath accelerator (XPA) element-based approach
and the multi-dimensional (MDA) path-based approach. We show that the previ-
ously published multi-dimensional path-based approach (e.g. [13, 11]) overcomes
conventional element-based approaches. In Section 2 we describe XPA as a typ-
ical representative of element-based approaches. In Section 3 we describe MDA
to indexing XML data. Section 4 reports on results of experiments for selected
XPath queries. In conclusion we summarize the paper content and outline pos-
sibilities of a future work.

A Comparison of Element-based and Path-based Approaches. . . 105

2 XPath Accelerator (XPA)

XPA [9] is an indexing method for efficient evaluation of XPath queries. XPA
is an element-based approach to indexing semi-structured data applying multi-
dimensional data structures like R-tree or UB-tree but it can be realized in a
relational database as well.

2.1 Model of XML documents

Every XML document can be modelled as a tree where one tree node corresponds
to exactly one element or attribute of XML document. For support all XPath
axes XPA assigns 5-dimensional descriptor desc(v) to every node v

desc(v) = 〈pre(v), post(v), par(v), att(v), tag(v)〉 .

The first attribute in the descriptor is preorder rank pre(v) of node v. Pre(v)
corresponds to a document order of node v. Document order is defined as an
order in which nodes appear in XML serialization of a document. Otherwise
said, document order corresponds to the order in which nodes come in sequential
reading of text representation of XML document. Pre(v) is assigned to node v
before any of its children is visited in sequential reading. The second attribute
is postorder rank post(v) of node v. This number is assigned to node v after all
its children are visited. Let v and v′ be evaluated nodes of XML tree. Then

– v′ is descendant of v ⇔ pre(v) < pre(v′) ∧ post(v′) < post(v),
– v′ is following of v ⇔ pre(v) > pre(v′) ∧ post(v′) < post(v).

Similarly, relations ancestor and preceding can be evaluated between any
two nodes. If every node v of the tree has assigned pair (pre(v), post(v)) then
we are able to determine four major axes descendant, ancestor, following and
preceding for the node v with a single query. We call this node a context node.
The determination of axe for a context node means finding all nodes which are
in the appropriate relation with the context node.

Example 1 (Evaluation of four major axis for context node).
In Figure 1(a) we can see an XML document modelled as a tree. All nodes are

evaluated with the preorder and postorder rank. In Figure 1(b) we see pre/post
plane divided into four regions where every region corresponds to one axis. The
division is made for a context node h. Major axes for the context node h contain
the following nodes:

– a, f in axis ancestor :: ∗,
– k in axis following :: ∗,
– i, j in axis descendant :: ∗,
– b, c, d, e, g in axis preceding :: ∗.

106 Michal Krátký, Radim Bača

Fig. 1. (a) Evaluation of an XML tree with pairs (pre(v), post(v)). (b) Node distribu-
tion in pre/post plane and four major axes for a context node h.

Descriptor desc(v) for a node v includes an attribute par(v) for support of
axes parent, child, following − sibling and preceding − sibling. The attribute
stores the parent’s preorder rank of a node v. Boolean attribute att(v) is true
if the node v is attribute. The attribute att is included to support of attribute
axis. Finally, attribute tag stores element (or attribute) name id. There is an
algorithm which can compute the descriptor desc for every node of an XML tree
during single sequential reading of an XML document.

We use a term index for mapping term to its id. Every term which occurs
during parsing XML document is faced with term index and mapped to appro-
priate id. Attribute and element names are stored in XPA index as a part of
descriptor dest, but also terms in an element content or attribute value should
be stored somehow. We decided to use the inverted list [2]. Value of every el-
ement or attribute v is parsed into single words which are mapped to ids. We
store pairs (id, pre(v)) for every word in the inverted list. Consequently, we can
retrieve pre(v) of all nodes to be contain searched word.

2.2 Querying in the XPA index

XPA index is done after we map the whole XML document into 5-dimensional
space. We resolve location steps of XPath query step by step. The location step
consists of name of the axis, name of the node (nodeName) and predicate. The
predicate is optional but in the case there is some predicate we have to solve
axis::nodeName part and predicate separately and then we have to union the
results. We designed implementation of XPA so that it is possible to handle
nested predicates. Solving axis::nodeName part of one location step is realized
using query upon 5-dimensional space. We find all nodes inside 5-dimensional
cube as it is shown in Table 1 in more detail.

Wildcard ’*’ in Table 1 means that this attribute can have any value to match
corresponding axis, but value of attribute tag depends on value of nodeName of

A Comparison of Element-based and Path-based Approaches. . . 107

Table 1. Intervals of each attribute for evaluation of corresponding XPath axe.

axe pre post par att tag

child (pre(v),∞) [0, post(v)) pre(v) false *
descendant (pre(v),∞) [0, post(v)) * false *
descendant-or-self [pre(v),∞) [0, post(v)) * false *
parent [par(v), par(v)] [post(v),∞) * false *
ancestor [0, pre(v)) (post(v),∞) * false *
ancestor-or-self [0, pre(v)] [post(v),∞) * false *
following (pre(v),∞) (post(v),∞) * false *
preceding [0, pre(v)) [0, post(v)) * false *
following-sibling (pre(v),∞) (post(v),∞) par(v) false *
preceding-sibling [0, pre(v)) [0, post(v)) par(v) false *
attribute (pre(v),∞) [0, post(v)) pre(v) true *

location step. When the index applies R-trees or other multi-dimensional data
structure retrieving of all nodes inside 5-dimensional cube can be performed by
a single range query.

XPath query is evaluated from one context node vc. XPath query consists of
a sequence of location steps. Query processing is done in these phases:

1. We obtain a set of nodes S1 as a result of evaluation of the first location step
from context node vc. We set i = 1.

2. The set Si is established as a set of context nodes for the following step.
3. We evaluate (i + 1)th location step for every context node from the set Si

and the result is a set of nodes Si+1. We increment i by one.
4. Phases 2 and 3 are repeated until the last location step of XPath query is

evaluated.
5. Set of nodes Si is the result of the XPath query.

That means running many range queries during every phase 3. With increas-
ing number of location steps the execution time of the query increases as well.
Size of the set Si which is created during each location step may be much larger
then the size of the XPath query result. Such inefficiency leads to unnecessary
execution time overhead.

3 Multi-dimensional Approach to Indexing XML Data

In [13, 11, 12] MDA was introduced. This path-based approach applies to in-
dexing XML data paged and balanced multi-dimensional data structures like
UB-trees [3], R-trees [10], R∗-trees [4], and BUB-trees [8].

108 Michal Krátký, Radim Bača

3.1 Model of XML documents

As mentioned above an XML document may be modelled by a tree, whose nodes
correspond to elements and attributes. String values of elements or attributes or
empty values occur in leafs. An attribute is modelled as a child of the related
element. Consequently, an XML document may be modelled as a set of paths
from the root node to all leaf nodes. Note, unique number idU (ui) of a node ui

(element or attribute) is obtained by counter increments according to the docu-
ment order [9]. Unique numbers may be obtained using an arbitrary numbering
schema. Of course, document order must be preserved.

Let P be a set of all paths in a XML tree. The path p ∈ P in an XML tree is
sequence idU (u0), idU (u1), . . . , idU (uτP (p)−1), s, where τP (p) is the length of the
path p, s is PCDATA or CDATA string, idU (ui) ∈ D = {0, 1, . . . , 2τD − 1}, τD is the
chosen length of binary representation of a number from domain D. Node u0

is always the root node of the XML tree. Since each attribute is modelled as a
super-leaf node with CDATA value, nodes u0, u1, . . . , uτP (p)−2 represent elements
always.

<!DOCTYPE books [
<!ELEMENT books(book)>
<!ELEMENT book(title,author)>
<!ATTLIST book id CDATA #REQUIRED>
<!ELEMENT title(#PCDATA)>
<!ELEMENT author(#PCDATA)>

]>

<?xml version="1.0" ?>
<books>

<book id="003-04312">
<title>The Two Towers</title>
<author>J.R.R. Tolkien</author>

</book>
<book id="001-00863">

<title>The Return of the King</title>
<author>J.R.R. Tolkien</author>

</book>
<book id="045-00012">

<title>Catch 22</title>
<author>Joseph Heller</author>

</book>
</books>

Fig. 2. (a) DTD of documents which contain information about books and authors.
(b) Well-formed XML document valid w.r.t DTD.

A labelled path lp for a path p is a sequence s0, s1, . . . , sτLP (lp) of names of
elements or attributes, where τLP (lp) is the length of the labelled path lp, and si

is the name of the element or attribute belonging to the node ui. Let us denote
the set of all labelled paths by LP. A single labelled path belongs to a path,
one or more paths belong to a single labelled path. If the element or attribute
is empty, then τP (p) = τLP (lp), else τP (p) = τLP (lp) + 1.

Example 2 (Decomposition of XML tree to paths and labelled paths).
In Figure 2 we see an example of an XML document. In Figure 3 we see an XML
tree modelling the XML document. We see that this XML document contains
paths:

A Comparison of Element-based and Path-based Approaches. . . 109

books

book book book

title author title author id author

J.R.R.
Tolkien

(7)

J.R.R.
Tolkien

(7)

Joseph
Heller
(12)

The Two
Towers

(5)

The Return
of the King

(9)

045-
00012

(10)

1
(1)

2
(2)

4
(6)

11
(4)

0
(0)

5
(1)

9
(1)

3
(4)

7
(4)

8
(6)

10
(2)

12
(6)

id

003-
04312

(3)

id 6
(2)

title

001-
00863

(8)

Catch 22

(11)

Fig. 3. Example of XML tree with unique numbers idU (ui) of elements and attributes
ui and unique numbers idT (si) of names of elements and attributes and their values si

(values in parenthesis).

– 0,1,2,’003-04312’; 0,5,6,’001-00863’ ; and 0,9,10,’045-00012’ belong
to the labelled path books,book,id,
– 0,1,3,’The Two Towers’; 0,5,7,’The Return of the King’; and 0,9,11,
’Catch 22’ belong to the labelled path books,book,title,
– 0,1,4,’J.R.R. Tolkien’; 0,5,8,’J.R.R. Tolkien’; and 0,9,12,’Joseph
Heller’ belong to the labelled path books,book,author.

Definition 1 (point of n-dimensional space representing a labelled path).

Let ΩLP = Dn be an n-dimensional space of labelled paths, |D| = 2τD , and
lp ∈ LP be a labelled path s0, s1, . . . , sτLP (lp), where n = max(τLP (lp), lp ∈
LP) + 1. Point of n-dimensional space representing a labelled path is
defined tlp = (idT (s0), idT (s1), . . . , idT (sτLP (lp))) ∈ ΩLP , where idT (si) is a
unique number of term si, idT (si) ∈ D. A unique number idLP (lpi) is assigned
to lpi.

Definition 2 (point of n-dimensional space representing a path).
Let ΩP = Dn be an n-dimensional space of paths, |D| = 2τD , p ∈ P be a
path idU (u0), idU (u1), . . . , idU (uτLP (lp)), s and lp a relevant labelled path with
the unique number idLP (lp), where n = max(τP (p), p ∈ P) + 2. Point of n-
dimensional space representing path is defined tp = (idLP (lp), idU (u0), . . . ,
idU (uτLP (lp)), idT (s)) ∈ ΩP .

We define three indexes:

1. Term index. This index contains a unique number idT (si) for each term
si (names and text values of elements and attributes). The unique numbers
can be generated by counter increments according to the document order.

110 Michal Krátký, Radim Bača

We want to get a unique number for a term and a term for a unique number
too. This index can be implemented by the B-tree.

In Figure 3 we see the XML tree with unique numbers of terms in parenthesis.

2. Labelled path index. Points representing labelled paths together with
labelled paths’ unique numbers (also generated by counter increments) are
stored in the labelled path index.

In Figure 3 we see that the document contains three unique labelled paths
books,book,id; books,book,title; and books,book,author. We create
points (0,1,2); (0,1,4); and (0,1,6) using idT of element’s and attribute’s
names. These points are inserted into a multi-dimensional data structure
with idLP 0, 1, and 2.

3. Path index. Points representing paths are stored in the path index.

In Figure 3 we see unique numbers of elements. Let us take the path to the
value The Two Towers. Relevant labelled path book,book,title has got
idLP 1 (see labelled path index). We get point (1,0,1,3,5) after insert-
ing unique numbers of labelled path idLP , unique numbers of elements idU

and term The Two Towers. This point is stored in a multi-dimensional data
structure.

An XML document is transformed to points of vector spaces and XML
queries are implemented using a multi-dimensional data structure queries. The
multi-dimensional data structures provide a nature processing of point or range
queries [3]. The point query probes if the vector is or is not present in the data
structure. The range query searches all points in a query box T1 : T2 defined by
two points T1, T2.

3.2 Queries for values of elements and attributes

Now, implementation of a query for values of elements and attributes and query
defined by a simple path based on an ancestor-descendent relation will be de-
scribed. Query processing is performed in three phases which are connected:

1. Finding unique numbers idT of query’s term in the term index.

2. Finding labelled paths’ idLP of query in the labelled path index.
We search the unique numbers in a multi-dimensional data structure using
point or range queries.

3. Finding points in the path index. We find points representing paths in
this index using range queries. Now, we often want to retrieve (using labelled
paths and term index) names or values of elements and attributes.

A Comparison of Element-based and Path-based Approaches. . . 111

In Figure 4(a)
we see that we
can model the
query (a) as a
tree. Consequently,
we can create the
range queries in
the same way as
the XML tree
is decomposed
to vectors of
multi-dimensional
spaces.

Fig. 4. Trees modelling XPath queries for values of ele-
ments or attributes: (a) /books/books[author=’Joseph
Heller’] (b) /books//author.

Example 3 (Evaluation plan of the XPath query /books/book[author="Joseph

Heller"]).
By the query we want to retrieve all books written by Joseph Heller:

1. Find idT of terms books, book, author, and Joseph Heller in the term
index.

2. Find a unique number idLP of the labelled path books,book,author in the
labelled path index, which was transformed to the point representing the
labelled path. We retrieve idLP = 2 of labelled path by the point query
(0,1,6).

3. Create two points defining a query box, which searches points relevant to
this query. The query box is defined by points (2,0,0,0,12) and (2,maxD,
maxD,maxD,12), where maxD is the maximal value of domain D of space
ΩP . idLP of the labelled path retrieved during the last phase is located in the
first points’ coordinates. idT of term Joseph Heller is located in the last
points’ coordinates. Since, we search points with arbitrary values of 2nd–4th

coordinates, the first point contains the minimal values of multi-dimensional
space’s domain and the second point contains the maximal values of the
domain.

We need to distinguish labelled paths and paths belonging to element or
attribute. We solve it using flags added to points. Similarly, we can solve indexing
of more XML documents, which can be valid w.r.t different schema. Hence,
the multi-dimensional approach is hopeful for implementation of a native XML
database.

4 Experimental results

In our experiments we compare XPA element-based approach with MDA path-
based approach. We show the element-based XPA is less effective than MDA.

112 Michal Krátký, Radim Bača

Both approaches are based on multi-dimensional data structures (R-tree [10]
and Signature R-tree [12], respectively). The framework ATOM [1] is applied
in our implementation of data structures. Although compared approaches are
very different we can compare some same parameters (e.g. DAC). Consequently,
we show the main disadvantage of element-based approaches. Single steps are
evaluated step by step during a query evaluation. Each step produces a lot of
elements which may be refused in the next evaluation step. We show the number
of the refused elements is rather large in the case of XPA.

In our experiments1 we use the XMARK collection [18]. The collection con-
tains one file of the size 111MB. It includes 2,082,854 elements. Table 2 shows
statistics of XPA indices. In Table 3 tested queries are put forward. These queries
were selected wilfully. The first one includes 180 elements in the result, whereas
the second one includes 7.5× elements more than the first query, that is 1,350.

Table 2. Statistics of XPA indices (element index, inverted list, and term index)

XPA index Inverted list Term indexes

Tree level 4 3 1 - 4
Number of items 2,081,550 8,130,422 376,906
Number of inner nodes 1,378 1,574 1,038
Number of list nodes 31,980 71,638 6,559
Average filling [%] 74.8 65.9 61
Size of inner node [B] 2,028 2,044
Size of leaf node [B] 2,048 2,048
Item size of inner node [B] 40 16
Item size of leaf node [B] 24 12
Dimension 5 2

Table 3. Two XPath queries evaluated in our experiments

Query XPath query Result Size

Q1 /site/closed_auctions/closed_auction/annotation/

description/parlist/listitem/parlist/listitem/text/

emph/keyword/

180

Q2 /site/regions/africa/item[location=’United’] 1,350

Tables 5 and 6 show results of evaluation of queries Q1 and Q2, respectively,
in XPA. Tables includes surveyed parameters for each location step. In Table 4
such parameters are described.

Inefficiency of element-based approach is obvious in the difference between
Nodes and Useful values. In the case of Q1 55,383 elements are retrieved but

1 The experiments were executed on an Intel Pentium r4 2.4Ghz, 1GB DDR400,
under Windows XP.

A Comparison of Element-based and Path-based Approaches. . . 113

Table 4. Surveyed parameters during query evaluation in XPA

Nodes Number of nodes in the result set after evaluation of one location step
Useful Number of nodes which leads to at least one node in the next location step
Time Time for processing the step
DAC Number of access in indices

the result contains only 180 elements. In the case of Q2 27,493 elements are
retrieved but the result contains only 1,350 elements.

Table 5. Statistics of query Q1 evaluated with XPA

Step Nodes Useful Time [s] DAC

site 1 1 0.02 5
closed auctions 1 1 0 5
closed auction 9,750 9,750 1.9 1,386
annotation 9,750 9,750 4.6 50,594
description 9,750 2,934 5 50,252
parlist 2,934 2,934 4.64 49,773
listitem 8,512 1,713 1.9 15,448
parlist 1,713 1,713 4.02 43,114
listitem 4,964 4,964 1.02 8,872
text 4,964 1,890 2.11 24 999
emph 2,864 173 1.97 24,806
keyword 180 180 0.95 14,070

Sum 55,383 36,003 28.27 283,324

Table 6. Statistics of query Q2 evaluated with XPA

Step Nodes Useful Time DAC

site 1 1 0 5
regions 1 1 0 5
africa 1 1 0 5
item 550 550 0.08 27
location ∼= ’United’ 26,940 1,350 3.34 5,673

Sum 27,493 1,903 3.48 5,716

Table 8 shows results of queries Q1 and Q2 in the case of MDA. Surveyed
parameters are put forward in Table 7. We can see the time and DAC of query
evaluation is lower than in the case of XPA. The advantage of MDA is obvious.

114 Michal Krátký, Radim Bača

Table 7. Surveyed parameters during query evaluation in MDA

DACt Number of access in term index
DACp Number of access in labeled path index
DAClp Number of access in path index
DAC Whole number of access in indices
Time Time of query evaluation

Table 8. Statistics of queries Q1 and Q2 evaluated with MDA

Q1 Q2

DACt 211 60
DAClp 1 144
DACp 723 2,400

DAC 934 2,604

Time [s] 0.49 0.26

5 Conclusion

In the paper we compare XPA element-based approach and MDA path-based
approach. In the case of an element-based approach a query is evaluated step
by step. Each step produces a lot of elements which may be refused in the next
evaluation step. Results of our experiments prove the previously published MDA
path-based approach overcomes conventional element-based approaches. In our
future work, we would like further to improve the abilities and the efficiency
of MDA. In particular, we are going to develop an implementation of another
complex XML querying such XPath and XQuery query languages defined it. We
would like to use data types described by XML Schema for querying and develop
an efficient implementation of approximate querying of XML documents.

References

1. Amphora Research Group (ARG). Amphora Tree Object Model (ATOM),
http://arg.vsb.cz/, 2006.

2. R. Baeza-Yates and B. Ribiero-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

3. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts.
In Proceedings of World-Wide Computing and Its Applications’97 (WWCA’97),
Tsukuba, Japan, Lecture Notes in Computer Science. Springer–Verlag, 1997.

4. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient
and robust access method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD, pages 322–331. ACM Press, 1990.

5. R. Bourret. XML and Databases, 2001,
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

6. A. B. Chaudhri, A. Rashid, and R. Zicari. XML Data Management: Native XML
and XML-Enabled Database Systems. Addison Wesley Professional, 2003.

A Comparison of Element-based and Path-based Approaches. . . 115

7. B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A Fast
Index for Semistructured Data. In Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB’01), pages 341–350. Morgan Kaufmann, 2001.

8. R. Fenk. The BUB-Tree. In Proceedings of 28rd VLDB International Conference on
Very Large Data Bases (VLDB’02), Hongkong, China. Morgan Kaufmann, 2002.

9. T. Grust. Accelerating XPath Location Steps. In Proceedings of the 2002 ACM
SIGMOD, Madison, USA. ACM Press, June 4-6, 2002.

10. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of the 1984 ACM SIGMOD International Conference on Management
of Data, Annual Meeting, Boston, USA, pages 47–57. ACM Press, June 1984.

11. M. Krátký, J. Pokorný, T. Skopal, and V. Snášel. The Geometric Framework
for Exact and Similarity Querying XML Data. In Proceedings of First EurAsian
Conference, EurAsia-ICT 2002, Shiraz, Iran, volume 2510 of Lecture Notes in
Computer Science. Springer–Verlag, October 27-31, 2002.

12. M. Krátký, J. Pokorný, and V. Snášel. Implementation of XPath Axes in the
Multi-dimensional Approach to Indexing XML Data. In Current Trends in Data-
base Technology, International Workshop on Database Technologies for Handling
XML information on the Web, DataX, Int’l Conference on Extending Database
Technology (EDBT 2004), volume 3268 of Lecture Notes in Computer Science.
Springer–Verlag, 2004.

13. M. Krátký, J. Pokorný, and V. Snášel. Indexing XML data with UB-trees. In
Proceedings of Advances in Databases and Information Systems, ADBIS 2002, 6th
East European Conference, Bratislava, Slovakia, volume Research Commmunica-
tions, pages 155–164, September 8-11, 2002.

14. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expres-
sions. In Proceedings of 27th International Conference on Very Large Data Bases
(VLDB’01). Morgan Kaufmann, 2001.

15. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database
Management System for Semistructured Data. ACM SIGMOD Record, 26(3):54–
66, 1997.

16. J. Pokorný. XML: a challenge for databases?, pages 147–164. Kluwer Academic
Publishers, Boston, 2001.

17. J. W. R. Goldman. DataGuides: Enabling Query Formulation and Optimization
in Semistructured Databases. In Proceedings of 23rd International Conference on
Very Large Data Bases (VLDB’97), pages 436–445. Morgan Kaufmann, 1997.

18. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, and
R. Busse. The XML Benchmark. Technical Report INS-R0103, CWI, Amsterdam,
The Netherlands, April, 2001, http://monetdb.cwi.nl/xml/.

19. University of Washington’s database group. The XML Data Repository, 2002,
http://www.cs.washington.edu/research/xmldatasets/.

20. W3 Consortium. Extensible Markup Language (XML) 1.0, W3C Recommendation,
10 February 1998, http://www.w3.org /TR/REC-xml.

21. W3 Consortium. XQuery 1.0: An XML Query Language, W3C Working Draft, 12
November 2003, http://www.w3.org/TR/xquery/.

22. W3 Consortium. XML Path Language (XPath) Version 2.0, W3C Working Draft,
15 November 2002, http://www.w3.org/TR/xpath20/.

23. W3 Consortium. XML Schema Part 1: Structure, W3C Recommendation, 2 May
2001, http://www.w3.org/TR/xmlschema-1/.

Comparison of Native XML Databases and
Experimenting with INEX

Petr Kolář and Pavel Loupal

Dept. of Computer Science and Engineering
FEE, Czech Technical University

Karlovo náměst́ı 13, 121 35 Praha 2
Czech Republic

kolarp3@fel.cvut.cz, loupalp@fel.cvut.cz

Comparison of Native XML Databases and

Experimenting with INEX

Petr Kolář and Pavel Loupal

Dept. of Computer Science and Engineering
FEE, Czech Technical University

Karlovo náměst́ı 13, 121 35 Praha 2
Czech Republic

kolarp3@fel.cvut.cz, loupalp@fel.cvut.cz

Abstract. The aim of the article is to summarize and compare ap-
proaches of design and architecture of native XML databases. We dis-
cuss our results accomplished by utilizing the INEX data set in two open
source database systems - eXist and Apache Xindice. There is also a basic
performance comparison outlined as a basis for discussion about suitabil-
ity for particular database system and for our consecutive experiments.

1 Introduction

XML documents can be stored in a native XML database. Storage of semi-
structured data in a native XML database (NXD) has an advantage in the fact
that it has a regular structure but the structure varies enough that what means
that mapping this structure into a relational database results in either a large
number of columns with null values which wastes spaces or a large number of
tables which is inefficient. Another advantage of storing data in a native XML
database is the retrieval speed. It is much faster to retrieve data from a native
XML database than relational database.

The term native XML database is used in different ways by various groups.
For our purposes we consider the XML:DB definition – but, to distinguish from
XML-enabled databases, we require a native XML database to have the following
two properties as well:

– The XML data model (either in the XML Infoset or the XQuery/XPath
Data Model) is the fundamental logical data model both used internally by
the database and exposed to database users when XML is the data type.

– The XML data model is the fundamental unit of physical storage of all XML
data, without mapping to a different data model.

This narrowed definition means that XML is more than an externalized data
type - it is how the data is handled both logically and physically. The data is
represented as XML right down to its physical storage schema on the disk. This
model is the best for efficient searching of the XML data.

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2006, pp. 116–119, ISBN 80-248-1025-5.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2006.

Comparison of Native XML Databases and Experimenting with INEX 117
2 Kolář, P., Loupal, P.

2 Comparison of Exist and Xindice XML Native

Database

Due to limited space we mention only basic attributes and features of two
database systems in following table. In our work we consider Xindice XML
database version 1.0 [1] and eXist XML database version 1.0-dev-20060124 [2].
We would like also test Timber or Sedna database, but we decided not to test
these databases. Both Timber and Sedna database accept only load of one XML
document into database container.

Feature eXist Xindice

Technology Java Java
Data storage B+-trees and paged files.

Persistent DOM
Natively as indexed text
files, Hoffman codes

Binary files No No
Transaction Support No No
Authorization Unix like, permissions at col-

lection and document level
No Support

Supported Standards XPath/XQuery, XUpdate,
Xinclude/XPointer

XPath, XUpdate, AutoLink-
ing

APIs XML:DB XML:DB, command line
Client GUI Yes No
Indices Structural, Fulltext, Range

3 Experiments, basic performance comparison

3.1 INEX Dataset

For our experiments we use the INEX XML data set. The INEX data set (we use
version 1.4) has 536MB of XML data. It is exactly 12,107 articles from 6 IEEE
transactions and 12 journals from years 1995 to 2002. Pictures are not included
– data set consists only of XML formated text.

Data set is organized in a file structure. Root directory consists of two subdi-
rectories – dtd (holds structure information - DTD specification article element)
and xml. Each journal/transaction has its own two-letter named subdirectory
inside xml directory. Journal/transaction is further divided into the directories
by the year of publication. Finally each article is stored in an individual xml file,
which name consists of a letter followed by four-digit number and xml suffix.

In average each article contains 1,532 XML nodes, where the average depth
of node is 6.9. See [5] for detailed characteristics of data set.

3.2 XPath

XPath [3, 4] is a language for finding information in an XML document – navi-
gating through elements and attributes in an XML document. XPath is a major

118 Petr Kolář, Pavel Loupal
Comparison of Native XML Databases and Experimenting with INEX 3

element in the W3C’s XSLT standard - and XQuery and XPointer are both built
on XPath expressions. So an understanding of XPath is fundamental to a lot of
advanced XML usage.

We prepared set of XPath queries in following categories:

Selecting nodes. XPath uses path expressions to select nodes in an XML docu-
ment – e.g. /article or /article/fm/hdr/hdr1/crt/issn. Queries 1 to 3 in Ta-
ble 1.

Predicates. Predicates are used to find a specific node or a node that con-
tains a specific value. Predicates are always embedded in square bracket. E.g.
/article/bdy/sec[1] or /article/bdy/sec[position() < 3]. Queries 4 to 11 in Ta-
ble 1.

Selecting Unknown Nodes. XPath wildcards can be used to select unknown XML
elements – e.g. / ∗ / ∗ [@∗]. Queries 12 to 14 in Table 1.

Selecting Several Paths. By using the | operator in an XPath expression we can
select several paths – e.g. //article/fm/hdr|//article/bdy/sec. See queries 15
and 16 in Table 1.

4 Results

We measured duration time of each query five times. Then we discarded the
largest and the smallest value and counted arithmetic mean.

The time needed to load INEX data set into database was 25 minutes for
Xindice and 97 minutes for eXist. The data on filesystem took 600 MB for
Xindice and 1300 MB for eXist. Our hardware configuration was based on a per-
sonal computer with Intel Celeron 1.7 Ghz processor, 512MB RAM and Windows
XP(SP2) operating system. INEX XML data set in version 2003 (1.4). Detailed
information about the data set and its structure is shown in Section 3.1.

4.1 Summary

Our results do not meet our expectations – Xindice has totally failed in our
experiments. With regard to our results this database system is impracticable
for more extensive XML data sets. Althought we tried to create indices for all
elements and attributes but without any significant improvement.

Most of XPath queries running over Xindice returned an empty result set
– it seems that Xindice does not fully support the XPath 1.0 specification but
only its limited subset. On the contrary, eXist showed much better behavior.
This can be induced by its automatically generated structural index that is very
efficient. eXist has also an user friendly GUI for both database management and
ad-hoc query processing.

Comparison of Native XML Databases and Experimenting with INEX 119
4 Kolář, P., Loupal, P.

Query duration time [s]
No. Query Records retrieved eXist Xindice

1 /article 12104 1,3 230
2 /article/fm/hdr/hdr1/crt/issn 11666 2,2 98
3 //issn 11666 1,3 447
4 /article/bdy/sec[1] 11955 1,9 NA
5 /article/bdy/sec[last()] 11955 5,6 NA
6 /article/bdy/sec[last() − 1] 11019 5,8 NA
7 /article/bdy/sec[position() < 3] 22974 8,1 NA
8 //sec[@type] 868 1,0 more than 10 min
9 //sec/p/ref [@type =′

bib
′] 108496 81,3 NA

10 /article/fm/hdr/hdr2/pdt[yr =′

1995′]
1623 2,6 NA

11 /article/fm/hdr/hdr2/pdt[yr =′

1995′
andmo =′

Spring
′]

72 4,0 NA

12 /article/∗ 58472 164,3 NA
13 / ∗ / ∗ [@∗] 49 352,0 NA
14 //fig[@∗] 52857 70,6 NA
15 //article/fm/hdr|

//article/bdy/sec

77487 8,6 NA

16 //article/fm/hdr/hdr1|
//article/fm/hdr/hdr2

24208 3,8 NA

Fig. 1. Results of given queries

5 Conclusion

The aim of our experiment – to test some of native XML databases and perform
basic performance comparison – was in principle not successful. We were not able
to import the INEX data set into all proposed native XML databases. Therefore
we carried out only basic tests for the eXist and Xindice databases. Our results
show that for further experiments we should consider only the eXist database.
Xindice can be used just as an example of a basic native XML database.

We would like to perform further comparisons among other native XML
databases. Also, we plan to add some of non-native (or hybrid) XML databases.

References

1. Apache Xindice - Native XML database. http://xml.apache.org/xindice.
2. eXist Native XML database. http://exist.sourceforge.net/.
3. D. Chamberlin, A. Berglund, and e. a. Scott Boag. XML Path Language (XPath)

2.0, September 2005. http://www.w3.org/TR/xpath20/.
4. J. Clark and S. DeRose. XML Path Language (XPath) 1.0, November 1999.

http://www.w3.org/TR/xpath.
5. Fuhr, N., Gvert, N., Kazai, G., Lalmas, M. Initiative for the evaluation of xml

retrieval (INEX), 2003.

Author Index

Bača, Radim, 103

Dokulil, Jǐŕı, 54

Galamboš, Leo, 21
Gurský, Peter, 63

Chernik, Katsiaryna, 21

Kolář, Peter, 116
Krátký, Michal, 103

Lánský, Jan, 11, 21
Loupal, Pavel, 116

Nečaský, Martin, 40
Nemrava, Jan, 85

Petrák, Josef, 74

Richta, Tomáš, 95

Toth, David, 1

Valenta, Michal, 1
Vraný, Jan, 32

Žemlička, Michal, 11

	Using Object And Object-Oriented Technologies for XML-native Database Systems
	David Toth, Michal Valenta
	Compression of a Dictionary
	Jan Lánský, Michal Zemlicka
	Syllable-based Compression for XML Documents
	Katsiaryna Chernik, Jan Lánský, Leo Galamboš
	CellStore -- the Vision of Pure Object Database
	Jan Vraný
	Conceptual Modeling for XML: A Survey
	Martin Necaský
	Transforming Data from DataPile Structure into RDF
	Jirí Dokulil
	Towards Better Semantics in the Multifeature Querying
	Peter Gurský
	Viewing FOAF -- Development of a Metadata Explorer
	Josef Petrák
	Using WordNet Glosses to Refine Google Queries
	Jan Nemrava
	GeKon -- Applying Novel Approaches to GIS Development
	Tomáš Richta
	A Comparison of Element-based and Path-based Approaches to Indexing XML Data
	Michal Krátký, Radim Baca
	Comparison of Native XML Databases and Experimenting with INEX
	Petr Kolár, Pavel Loupal

