
VŠB–TU Ostrava, FEECS, Department of Computer Science
Czech Technical University in Prague, FEE, Dept. of Computer Science & Eng.

Charles University in Prague, MFF, Department of Software Engineering
Czech Society for Cybernetics and Informatics

Proceedings of the Dateso 2008 Workshop

Databases, Texts

Specifications, and Objects

2008
http://www.cs.vsb.cz/dateso/2008/
http://www.ceur-ws.org/Vol-330/

Sc.

Group

AMPHORA RESEARCH GROUP

A GR

Amphor

April 16 – 18, 2008
Desná – Černá Ř́ıčka

http://www.cs.vsb.cz/dateso/2008/
http://www.ceur-ws.org/Vol-330/

DATESO 2008
c© V. Snášel, K. Richta, J. Pokorný, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Technical editor:
Pavel Moravec, pavel.moravec@vsb.cz

Page count: 84
Impression: 100
Edition: 1st

First published: 2008

This proceedings was typeset by PDFLATEX.
Cover design by Pavel Moravec (pavel.moravec@vsb.cz) and Tomáš Skopal.
Printed and bound in Ostrava, Czech Republic by TiskServis Jǐŕı Pustina.

Published by VŠB – Technical University of Ostrava

Faculty of Electrical Engineering and Computer Science

Department of Computer Science

Preface

DATESO 2008, the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming,
was held on April 16 – 18, 2008 in Desná – Černá Ř́ıčka. This was the 8th an-
nual workshop organized by VŠB-Technical University Ostrava, Department of
Computer Science, FEL ČVUT Praha, Department of Computer Science and
Engineering and MFF UK Praha, Department of Software Engineering. The
DATESO aims for strengthening the connection between this various areas of
informatics. The proceedings of DATESO 2008 are also available at DATESO
Web site http://www.cs.vsb.cz/dateso/2008/ and shortly after the workshop
will appear at http://www.ceur-ws.org/Vol-330/.

The Program Committee selected 6 papers from 8 submissions, based on
three independent reviews.

We wish to express our sincere thanks to all the authors who submit-
ted papers, the members of the Program Committee, who reviewed them
on the basis of originality, technical quality, and presentation. We are also
thankful to the Organizing Committee and Amphora Research Group (ARG,
http://www.cs.vsb.cz/arg/) for preparation of workshop and its proceedings.

March, 2008 V. Snášel, K. Richta, J. Pokorný (Eds.)

http://www.cs.vsb.cz/dateso/2008/
http://www.ceur-ws.org/Vol-330/
http://www.cs.vsb.cz/arg/

Steering Committee

Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Jaroslav Pokorný Charles University, Prague
Karel Richta Czech Technical University, Prague

Program Committee

Václav Snášel (chair) VŠB-Technical University of Ostrava, Ostrava
Jaroslav Pokorný Charles University, Prague
Karel Richta Czech Technical University, Prague
Vojtěch Svátek University of Economics, Prague
Peter Vojtáš Charles University, Prague
Tomáš Skopal Charles University, Prague
Dušan Húsek Inst. of Computer Science, Academy of Sciences, Prague
Michal Kráký VŠB-Technical University of Ostrava, Ostrava
Pavel Moravec VŠB-Technical University of Ostrava, Ostrava
Irena Mlýnková Charles University, Prague
Michal Valenta Czech Technical University, Prague

Organizing Committee

Pavel Moravec VŠB-Technical University of Ostrava
Jan Platoš VŠB-Technical University of Ostrava
Yveta Geletičová VŠB-Technical University of Ostrava

Table of Contents

Full Papers

Incox – A language for XML Integrity Constraints Description 1
Kateřina Opočenská, Michal Kopecký

Conceptual Model Based Normalization of XML Views 13
Martin Nečaský

Using taDOM Locking Protocol in a Functional XML Update Language . 25
Pavel Strnad and Pavel Loupal

Database Engineering from the Category Theory Viewpoint 37
David Toth

Tensor Decomposition for 3D Bars Problem . 49
Jan Platoš, Jana Koč́ıbová, Pavel Krömer, Pavel Moravec, Václav
Snášel

Developing Genetic Algorithms for Boolean Matrix Factorization 61
Václav Snášel, Jan Platoš, Pavel Krömer

Invited Lectures

Towards Cost-based Optimizations of Twig Content-based Queries 71
Michal Krátký and Radim Bača

Vector-Oriented Retrieval in XML Data Collections 74
Jaroslav Pokorný

Decathlon, Conflicting Objectives and User Preference Querying 76
Peter Vojtáš

Author Index . 80

Incox – A language for XML Integrity
Constraints Description

Kateřina Opočenská, Michal Kopecký

Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University, Prague
katerina.opocenska@matfyz.cz, michal.kopecky@mff.cuni.cz

Incox - A Language for XML Integrity Constraints
Description

Kateřina Opočenská, Michal Kopecký

Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University, Prague

katerina.opocenska@matfyz.cz, michal.kopecky@mff.cuni.cz

Abstract. Presently, there is no specialized language for complex integrity
constraints description in XML documents. In this paper we present a language
that combines first-order logic together with XPath language to achieve needed
expressive power. Standard quantifiers of first-order logic were extended
to allow us to specify (either by count or by percentage) how many elements
of the selected set must hold given constraint. The proposed language can be
used in conjunction with any XML schema language. The Incox validator
supports both plain-text and XML variants of constraint specification. While
the first one is easily understandable for humans, the latter meets requirements
of machine processing.

Keywords: integrity constraints, XML schema language, XML semantics,
Incox

1 Introduction

Validation of an XML [1] document can be divided into two main parts – to
validation of document structure (syntax validation) and to validation of element
content and their correlation (semantics validation).

In the present there are many languages and tools for XML validation. Unfortunately,
mostly all of them deal just with the syntax aspects and do not support complex
content validation. Usually, only data types of elements and basic referential integrity
are checked.

The structure of an XML document can be well described by DTD [1] or stronger
languages like XML Schema [2] or Relax NG [3]. The specification of elements and
data types of their attributes is also worked out well and so there is no need to do it
again or in other way. On the other hand, description of relations among elements
and/or attributes content is definitely worth of closer attention. Those relations can be
often more complicated than solely uniqueness constraint.
There exist no well-established (e.g. W3C) standards for definition and validation
of integrity constraints in XML documents. The only functionally similar (ISO)

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 1–12, ISBN 978-80-248-1746-0.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2008.

2 Kateřina Opočenská, Michal Kopecký

standard is represented by the Schematron [4] language. Despite its unique approach
and strength in comparison with above mentioned XML validation languages there
still exist categories of constraints that can not be formulated in it. Such constraints
typically describe some attachment among elements/attributes content that is not
expressible in XPath [5]. Nevertheless, validation of such constraints can be useful
in many information systems.

In this paper we present the Incox1 language that is primarily designed for complex
semantics constraints description in XML documents. We suppose that all processed
XML documents were already successfully validated by one of schema language
validators. In other words, we assume that processed documents are well-formed and
that their structure matches the desired schema.

From this reason we did not design the Incox language to substitute the functionality
of any of well-known schema languages. It represents just the next step in complex
XML document validation.

First, we show some motivation examples of simple constraints that are not possible
to easily validate by the classic schema languages. Next, we describe basic aspects
of the Incox language and demonstrate how it can be used for validation of such
constraints.
Persons concerned on the topic can find more examples and further details in [6]2.
Finally, we compare the strength and limits of Incox with two most similar languages
Schematron [4] and CliX [7].

2 Motivation

Let us have an XML document describing a book that contains some <chapter>
elements. Each chapter is identified by a unique value of its numeric attribute.
The chapters do not need to be sorted by numbers. We want to check if the book is
complete. It means that it contains each chapter from the first one to the chapter with
the highest number. More precisely: to the chapter we assume to be the last. Each
chapter must be of course present once and only once.

<book>
 <chapter no="3">...</chapter>
 <chapter no="4">...</chapter>
 <chapter no="6">...</chapter>
 <chapter no="1">...</chapter>
</book>

Common schema languages can define the uniqueness constraint (no more chapters
with the same number) but they are not able to test whether some chapter is missing

1 Integrity Constraints in XML
2 The referential implementation of the Incox validator written in C# can be obtained

from http://www.ms.mff.cuni.cz/~opock4am/bc.html (in Czech language)

Incox – A language for XML Integrity Constraints Description 3

or not. In the extreme we can imagine a little bit clumsy solution that combines
computing of the total count of all <chapter> elements together with detection
of the highest chapter number and the uniqueness testing. Anyway, if we generalize
this constraint to the requirement of the occurrence of all elements from a given list,
no schema language will be able to express it.

Another challenge brings to us a validation of documents in which we do not require
the constraint to be held by all specified elements but only by a particular part
of them. A simple example: we have an XML document containing a list of persons
and we want to check, if there is approximately the same count of men and women.
Particularly it means that neither men nor women make less than 45% or more than
55% of all persons registered within the document.

<people>
 <person sex="M">...</person>
 <person sex="F">...</person>
 <person sex="M">...</person>

...
</people>

This example can be further generalized to use of more specific ranges or absolute
numbers of elements. For example “Is there at least 10% of women listed
in the document, but not more than 150 women at all?” etc.

3 Simplified Incox language specification

The Incox language is based on first-order logic and uses quantifiers as its main
expressive means. One constraint corresponds to one logical formula in prenex form.
XPath 1.0 language is then used for navigation in the XML document and
for the selection of tested elements.

The Incox language was inspired by CliX, but unlike this language the plain-text
syntax of Incox reminds rather XQuery [8] or SQL. The intention is to let
the constraints copy sentences of natural language to be easily expressible and
writable for a human. In the cases when XML form of constraint specification is more
suitable it is possible to use it as well. Detailed description of XML format can be
found in [6].

The plain-text file with constraint definitions starts with the optional declaration
section followed by a sequence of constraint sections. Constraints are evaluated
independently one by one.

4 Kateřina Opočenská, Michal Kopecký

3.1 Declaration section

Four types of global declarations for constants, sets of constants, intervals and
namespaces can appear in the declaration section in any count and order. Such
declarations can be written in the following form:

CONST[:] constname = expr
ENUM[:] constname = (expr1, ... , exprN)
INTERVAL[:] constname = (start, end [, step])
NAMESPACE[:] px = "ns"

A number (either integer or real), string or Xpath [5] expression can be assigned
to the identifier of a constant in the CONST declaration. Incox built-in conversion
functions str(), int() and real() can appear in the expr statements – see section 3.2.4
for more details. If an XPath expression returns the node-set containing exactly one
node, the result can be passed as an argument to the conversion function. The
converted value is then assigned to the constant name. If we try to convert a node-set
that contains more nodes (or no node), a run-time error is raised.

Examples

CONST pi = 3.14
CONST maxChap =
int('//book/chapter[not(../chapter/@no > @no)][1]/@no')

By XPath we can extract the set of the highest chapter numbers and then select only
the first one to cover the case that there are more chapters with the same highest
number. We assume there is at least one chapter in the book, so the set is never
empty. Evaluated XPath expression is then converted by int() function and the result
number is stored in the constant with identifier maxChap.

ENUM and INTERVAL declarations determine the sets whose identifiers can be used
in constraints sections whenever a set is expected. If the XPath expression returns
a node-set then the relevant constant is typed as a set and its identifier can occur
in a constraint section at the place of set determination.

Examples

ENUM weekDays = ("mo","tu","we","th","fr","sa","su")
INTERVAL chapNums = (1, maxChap, 1)

The chapNums interval contains integers from 1 (inclusive) to the number that is
stored in (previously evaluated) maxChap constant. The step of the interval,
represented by the third argument, is of length 1. So the interval contains all
the integers between the two mentioned.

Incox – A language for XML Integrity Constraints Description 5

3.2 Constraint section

The constraint section begins with the keyword CONSTRAINT followed by the name
of the constraint in quotation marks. Except from the FORMULA some other optional
blocks can occur here. They usually specify how the constraint is evaluated and some
details for the output form. In this paper we present just the simplified version:

CONSTRAINT "Name of the constraint"
{
 FORMULA[:]

select1
…
selectN
(predicate)

}

The logical formula after FORMULA keyword comprises of selections in form
of FOR { ALL | AT LEAST | AT MOST } or EXISTS [!] quantifiers and the
predicate section wrapped in round brackets. These selections and the predicate clause
correspond to the logical formula in prenex form.

In selections we define names of (local) variables and determine their domains (sets
of allowed values). In the predicate we bind these variables together and declare
relations we want to be fulfilled by all (at least one, exactly one, given count, given
percentage etc.) elements of the specified set.

3.2.1 Elements selection

The clauses for elements selection copy the use of either existential or universal
quantifier in first-order logic. The last one is available also in the extended form.

The x variable acquires one–by-one individual values of elements in the specified set.
The quantifiers differ only in the rate of how many of the elements in the set must
satisfy the predicate to consider the constraint to be fulfilled.

FOR ALL x IN set All the elements in the set set must satisfy the predicate.

If the set is empty, the following predicate is always considered as satisfied; hence
the constraint is evaluated as true.

FOR AT LEAST m [%], AT MOST n [%] x IN set By this clause we can specify
more precisely how many elements in the set set must satisfy the predicate. It is not
necessary to set the both AT LEAST and AT MOST boundaries. The selection can
contain only one of them as well. The desired count can be expressed either by
the absolute number or by the percentage of the whole set cardinality. It is allowed
to combine absolute number and percentage within one selection.

6 Kateřina Opočenská, Michal Kopecký

EXISTS [!] x IN set At least one element or exactly one element (exclamation mark)
in the set set must satisfy the predicate.

If the resulting set is empty, the following predicate is never satisfied, hence
the constraint is evaluated as false.

3.2.2 Set Specification

For all types of selections a set of items can be defined either by an XPath expression
or by a constant set declared as ENUM or INTERVAL. If the set is defined by the
XPath expression, the expression must satisfy the following restrictions:

 The XPath expression returns set of elements not a value. For example it is not
possible to use XPath expression ‘count(//num)’, because a number, not set, would
be returned.

 Unless stated differently the root of the document is considered to be an implicit
context.

 Referenced variable var from previous selection can be used in the XPath
expression in form $var. If used, this variable must have already set its value (see
example 4.3).

 The expression contains at most one referenced variable for context specification.

Any XPath expression used in the place of function parameter in the predicate section
must fulfill all above mentioned restrictions except the first one. Such expressions can
use XPath functions (version 1.0) and can return also numbers, Boolean values and
strings.

3.2.3 Predicate

Each predicate is written in the form

 (boolval1 logop boolval2 logop ... logop boolvalN)

Allowed logical operators are either OR or AND respectively operator -> that
represents a logical implication. The result of the predicate evaluation is a Boolean
value. Individual operands can represent results of comparison of comparable
expressions or values computed by some function.

If there is no function applied on the selection variable then it is considered
to represent a node – a specified place in the document. If the selection variable
is used as a parameter of some conversion function proposed in Incox language as
str(), int() or real() – see section 3.2.4 – the validator tries to interpret the value
of given XML node as the appropriate type.

The string value of the node is defined as a concatenation (in order
of sequential reading) of all textual content of the node. For example the value
of the node <a><num>1</num><num>2</num> is ‘12’. If the resulting type

Incox – A language for XML Integrity Constraints Description 7

of the used function differs from string, the value is further converted to appropriate
type.

Because the variable contains at each time some element from given set, there can not
arise the problem originating from conversion of set to value. Errors can still arise
from unsuccessful conversion of string value to other type, i.e. number or Boolean.

3.2.4 Basic auxiliary functions

To allow adequate constraint validation, the Incox language introduces following
auxiliary functions. Their parameters and return data types are written in C syntax
to increase the comprehensibility. Data types are written in italics.

bool not (bool b) Function negates any condition that can be
evaluated as Boolean value.

string str (expr expr)

int int (expr expr)

float real (expr expr)

Listed functions convert given expression
to string, integer, respectively float value. The
expression can be either a constant name,
variable, string, number or XPath expression.

If the XPath returns set of values, this set must
have exactly one element. In this case the
result contains conversion of this element.
In other cases the run-time error is raised.

int length (string s) This function returns the length of given
string.

string tolower (string s) This function converts all upper case letters in
the string to lower case.

string toupper (string s) This function converts all lower case letters in
the string to upper case.

string trim (string s) It trims all white space characters from the
beginning and the end of given string.

string trimall (string s) It removes all white space characters from the
given string.

bool match (string s,
string regexp)

This function returns the information if the
given string s matches to given regular
expression.

8 Kateřina Opočenská, Michal Kopecký

4 Implementation of Examples

Having the formal apparatus, we can show the implementation of examples
mentioned at the beginning of the paper.

4.1 Chapters in the book

CONST maxChap =
int('/book/chapter[not(../chapter/@no > @no)][1]/@no')

INTERVAL chapNums = (1, maxChap, 1)

CONSTRAINT "Chapters in the book"
{
 FORMULA:

FOR ALL chap IN chapNums
 EXISTS ! rec IN '/book/chapter'

 (int('$rec/@no') = chap)
}

First, we store the highest number of the chapter found in the document in constant
maxChap. Then we declare an interval chapNums containing all numbers from 1
to this maximal chapter number.

In the formula inside constraint "Chapters in the book" we go through all possible
chapter numbers and check if there exists exactly one chapter '/book/chapter' whose
attribute no converted to integer is equal to required value chap in the XML
document.

Let suppose we will check the constraint against XML document shown in section 2.
The highest number of the chapter is equal to six, but chapters number two and five
are missing. The result of the referential implementation Icval (Integrity constraints
validator) [6] invoked with options -c (counts) –f (fuzzy truth) –v (verbose)
is displayed in the first column. If the option –x (XML) is added then the output
is provided in XML format as it is shown in the second column.

The output informs us that corresponding elements were not found for two chapter
numbers (two and five). I.e. the condition “For each (chapter) number from one to six
exists exactly one matching element” is fulfilled for 66.7% of chapter numbers only.

Incox – A language for XML Integrity Constraints Description 9

Plain-text output:

CONSTRAINT: "Chapters in the book"

OVERALL RESULT : FALSE
Conversion errors resolved as INVALID
True/All for quantifier FOR ALL : 4/6
Fuzzy truth: 0,667

XML output:

<icval>
 <constraints>
 <constraint>
 <name>Chapters in the book</name>
 <overall_result>0</overall_result>
 <additional_info>
 <first_quantifier>FOR ALL
 </first_quantifier>
 <true_count>4</true_count>
 <all_count>6</all_count>
 <fuzzy_truth>0,667</fuzzy_truth>
 </additional_info>
 </constraint>
 </constraints>
</icval>

4.2 Approximately same number of men and women

The condition that checks if 45% to 55 % of persons registered in the document are
men (women) can be written in form:

CONSTRAINT "Almost the same count"
{
 FORMULA:
 FOR AT LEAST 45%, AT MOST 55%
 x IN '/people/person/@sex'
 (str(x) = "M")
}

4.3 Referenced variable

The following example checks the document for fulfilling the condition "There is
exactly one employee having function ‘boss’ in each department".

CONSTRAINT "One boss in each department"
{
 FORMULA:
 FOR ALL dep IN '//department'
 EXISTS ! emp IN '$dep/emplyoee'
 (string('$emp/position') = "boss")
}

This example shows the usage of the current node value for evaluation of nested
conditions. In time of evaluation of expression '$dep/emplyoee' the value of variable
dep is already set to particular node <department>. The expression

10 Kateřina Opočenská, Michal Kopecký

$dep/emplyoee' then selects element(s) <employee> belonging to the sub-tree
specified by this node.

5 Comparison of Incox with Similar Languages

5.1 Schematron and Incox

In Schematron [4], the validation of each condition consists of three steps:

1. Selection of required set of nodes, specified by given XPath expression
(the context attribute of the rule element)

2. Verification of the truthfulness of others XPath expressions (test attributes
of the report/assert elements) in the context of selected node.

3. Output of given text. If the condition is met then the element report is written out.
Else the output is defined by the assert element.

<pattern name="name">
 <rule context="context">

<report test="test">
Passed.

</report>
 </rule>
</pattern>

Each condition defined in Schematron says: all nodes selected by the XPath
expression fulfills the condition defined by the attribute test of the report/assert
element. Thus, the condition in Schematron has fixed structure and the expression
power of the language is based mainly on XPath.

Anyway, it is sufficient in most cases. XPath expressions can reference to the whole
document and so elements and attributes from different parts of the document can be
associated in the condition. It is possible to formulate lot of conditions even those that
seems to be quite complicated as for example validation of heaps, search trees
or consistency of insurance numbers (records can repeat inside the document, but
whenever two persons have the same insurance number, they have to have also
the same name).

Nevertheless, there exist complex constraints that are unfeasible or even impossible
to express in Schematron. Typically complex semantic constraints used in business
applications, where the Schematron’s author recommends using rather CliX [7] or
OASIS CAM [9].
Among indefinable constraints belong those in the form „Each element A has (at
least) one sub-element B such that all its sub-elements C satisfy the condition P“.
In this case the corresponding logical formula is too complex and it is not possible to
write it down in XPath. In contrary it is not problem to write such a constraint
in Incox.

Incox – A language for XML Integrity Constraints Description 11

CONSTRAINT "Constraint schema"
{
 FORMULA:
 FOR ALL a in '//a'
 EXISTS b in '$a/b'
 FOR ALL c IN '$b/c'

(constraint_p($c))
}

5.2 CliX and Incox

The Incox language describes conditions similarly to CliX [7] and so it has at least the
same expression power. In comparison with its competitor the Incox language offers
further extensions that increase its power and simplify its usage.

Constants. Above mentioned constraint that checks for missing chapters is not
expressible in CliX. The set of chapter numbers – set of integer numbers from one to
maxChap – can not be defined in this language. In contrary to Incox the CliX can
describe sets only by XPath expressions.

Constants can be used not only for higher effectiveness (we have not to select the
same data from the document repeatedly), but together with ENUM and INTERVAL
constructs also for validating conditions in form „For each of defined values exists
element / given number of elements that …”. It is useful mainly in situations where
the set is not defined somewhere in the XML document and/or the evaluation
of needed expression would be impractical.

Extended quantifiers. The usage of extended quantifiers FOR AT LEAST, AT
MOST allows us to validate data while tolerating some exceptions (a fraction
of elements can fail to satisfy the condition). Thanks to the definable boundaries
inside the quantifier we have the amount of abnormal elements under our control.

Built-in functions. Thanks to implemented built-in function for data type conversion
and manipulation with strings we can easily express lot of quite complex conditions.
For example, function match() compares given node value against given regular
expression. That can often replace necessity to define complex data types. Following
constraint tests if the value of all selected elements corresponds to a roman number.

CONSTRAINT "Roman numbers"
{
 FORMULA:
 FOR ALL r IN '//romnum'
 (match(trim(str(r)),
"^m*(d?c{0,3}|c[dm])(l?x{0,3}|x[lc])(v?i{0,3}|i[vx])$"

)
)
}

12 Kateřina Opočenská, Michal Kopecký

6 Conclusion

The Incox language represents simple yet powerful language for XML constraint
validation that outperforms their current competitors Schematron and CliX. Its
extended quantifiers can easily validate exact requirements as well as requirements
allowing certain level of incorrectness. This feature together with the possibility to
define constants, sets and intervals allows us to formulate and validate more complex
constraints than existing languages.

The Incox language recognizes the constraint definition in two forms. The textual one
is easily readable for human beings while the XML format is easily treatable by the
computers. The same approach was chosen in case of output. The Incox validator can
generate either plain text output or XML output that can be further processed by XML
enabled programs and scripts.

Hence we believe that this language represents the way towards the future of XML
content validation.

References

1. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau.
Extensible markup language (XML) 1.0 (third edition), W3C. February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/.

2. D. C. Fallside, P. Walmsley. XML Schema Part 0: Primer Second Edition, W3C. October
2004. http://www.w3.org/XML/Schema.

3. J. Clark, M. Murata. RELAX NG Specification, OASIS Committee Specification, December
2001. http://relaxng.org/spec-20011203.html.

4. International Organization for Standardization. Information Technology Document Schema
Definition Languages (DSDL) Part 3: Rule-based Validation Schematron, ISO/IEC 19757-3.
February 2005. http://www.schematron.com.

5. J. Clark, S. DeRose. XML Path Language (XPath) Version 1.0., W3C. November 1999.
http://www.w3.org/TR/xpath.

6. K. Opočenská. Integrity Constraints in XML (bachelor thesis). MFF UK, Prague, September
2007. http://www.ms.mff.cuni.cz/~opock4am/incox.pdf.

7. M. Marconi, C. Nentwich. CLiX Language Specification Version 1.0. January 2004.
http://www.clixml.org/clix/1.0/.

8. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Simeon. XQuery 1.0: An
XML Query Language, W3C. January 2007. http://www.w3.org/TR/xquery/.

9. D. Webber, J. B. Clark. OASIS Content Assembly Mechanism Specification Version 1.1.
February 2007. http://www.oasis-open.org/committees/cam/.

Conceptual Model Based Normalization of XML
Views?

Martin Nečaský

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

martin.necasky@mff.cuni.cz

Conceptual Model Based Normalization of XML
Views?

Martin Necasky

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University

martin.necasky@mff.cuni.cz, http://www.necasky.net

Abstract. As the popularity of XML as a format for data representation
grows the need for storing XML data in an effective way grows as well.
Recent research has provide us with effective solutions based on storing
XML data into relational databases and with new technologies based on
storing XML data in the native form. However, design of XML databases
has not been studied sufficiently yet. In this paper, we suppose a set of
XML schemes that describe XML representation of our data in several
types of XML documents. We show that we can not usually store the
data directly in this representation because it can contain redundancies.
To design an optimal database schema we therefore need to locate these
redundancies and eliminate them. We describe two types of redundancies
in XML data in this paper and show how to utilize a conceptual schema
of the XML schemes to locate such redundancies. We also show how to
normalize the XML schemes to eliminate these redundancies.

Keywords: conceptual modeling, XML schema, normalization

1 Introduction

XML has become a popular format for data representation. Mainly it is be-
cause it is a variable format that is easy-to-use for a broad range of developers.
Enterprises usually utilize several applications supporting different users for per-
forming different business processes. Even though these applications share the
same data (about customers, products, etc.), each of them requires the processed
data to be represented in different forms suitable for the purposes of the appli-
cation. XML proved itself as a suitable format for such various representations.
For example, a sales reporting application for product managers represents cus-
tomer’s data in another type of XML documents than a web service for receiving
and processing purchase orders from customers.

We need to store the data shared by the applications into a database and
provide each application with the data represented in the required type or types
? This research was supported by the National programme of research (Information

society project 1ET100300419) and by Grant Agency of Charles University (GAUK),
grant number 204-10/257190

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 13–24, ISBN 978-80-248-1746-0.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2008.

14 Martin Nečaský
2

of XML documents. We therefore comprehend these types of XML documents as
XML views on the data stored in the database. These XML views are described
by XML schemes. Given a set of such XML schemes the problem is how to
design an optimal schema of the shared database. Even though we can use a
native XML database to store the data in an XML representation, we can not
usually store it directly as represented by the XML views. It is because the
XML views can contain redundancies which means that the same data can be
duplicated. Such a duplication means not only inefficient storage space usage
but also problems when manipulating the data. We therefore need to identify
these redundancies and eliminate them. For example, we can have an XML
schema of an XML view for purchase orders where data about one product can
be repeated in different purchase orders. This is a redundancy that should be
eliminated. After the identification and elimination of all redundancies we get
a set of normalized XML schemes. The situation is demonstrated in Figure 1.
The idea is same as in the case of designing a relational database schema where
we eliminate redundancies by modifying our schemes to meet so called normal
forms such as 2NF, 3NF, or 4NF. This process is called normalization.

Fig. 1. Architecture

We can use the normalized XML schemes to design a schema of the database
where we store the data shared by the applications. If our database is a native
XML database (NXDB) we can directly use these normalized XML schemes as
a NXDB schema. If our database is an object-relational database (ORDB) or
a combination of ORDB and NXDB the normalized XML schemes are a good
starting point to design the internal database schema. For example, we can map
the normalized XML schemes into an ORDB schema. We can also combine both
approaches and map structured parts of normalized XML schemes into an ORDB
schema and use their unstructured parts or parts with a complex hierarchical
structure as a schema of a NXDB. This situation is demonstrated in Figure 1.

In these cases, the database provides us the data in the form of XML docu-
ments with the structure given by the normalized XML schemes. However, we
need to deliver the data to our applications in the form of the XML views. There-

Conceptual Model Based Normalization of XML Views 15
3

fore, we moreover need a set of XQuery queries that transform the data between
the normalized XML schemes representation and XML views. These queries can
be derived automatically during the normalization process.

In this paper, we study normalization of a set of XML schemes as demon-
strated in Figure 1. The other parts of the architecture displayed in the figure
are out of the scope of this paper. Methods for mapping between XML and
object-relational representations were studied for example in [5]. Derivation of
the XQuery queries to reconstruct XML views is the subject of our further re-
search. To normalize XML schemes we can apply the normal forms for relational
data. Even though these normal forms should be considered when normaliz-
ing XML schemes we do not discuss them in this paper. We are interested in
redundancies caused by hierarchical structure of XML schemes.

Related work. Several types of redundancies caused by hierarchical struc-
ture of XML schemes were also studied by other authors such as [1], [4]. Their
results are based on functional dependencies in XML documents. In [3], authors
show how to normalize XML schemes modeled in a richer model for XML data
called ORA-SS. ORA-SS model is more a conceptual model then a logical XML
model allowing to specify several integrity constraints for XML data. Authors
show how to normalize XML schemes modeled as ORA-SS schemes using car-
dinality constraints. The advantage of this approach is that it is easier for the
designer to specify cardinality constraints then discover functional dependencies
in the hierarchical structure of the XML schema.

These approaches lead to good results when normalizing one XML schema.
However, we need to normalize a set of XML schemes that can moreover rep-
resent the same data in different hierarchical structures. Discovering functional
dependencies in such a set of XML schemes can be hard for the designer because
he can be required to specify the same functional dependencies repeatedly for
different XML schemes representing the same concept. Moreover, a concept rep-
resented in more different XML schemes also leads to redundancies as we show
later in this paper. Such redundancies can not be identified and eliminated on the
base of functional dependencies. Similar problems occur when we model XML
schemes as ORA-SS schemes because each XML schema is modeled separately.

Contributions. In this paper we show how to normalize a set of XML
schemes modeled at the conceptual level using a conceptual model for XML data
called XSEM [6]. The advantage of this model is that the designer designs an
overall non-hierarchical conceptual schema of the domain and derives the XML
schemes of the required XML views from this overall conceptual schema. This al-
lows to identify concepts that are represented in different XML views. Moreover,
the designer is not required to specify functional dependencies or cardinality con-
straints repeatedly for different XML schemes. Instead, normalization is based
on cardinality constraints specified in the overall conceptual schema where each
cardinality constraint is specified only once.

Our approach can be applied in the systems where a large number of different
XML views occurs and one or more databases to store the data in an effective
way exits. In real systems, it is usually not required to fully normalize data

16 Martin Nečaský
4

[2]. Following this requirement, it is not necessary to apply our approach to
normalize the XML data fully to achieve better performance when reconstructing
the views. The design of the normalized database schema is strongly influenced
by the expected usage of data.

The paper is organized as follows. Section 1 is an introduction to the paper.
In Section 2 we describe the XSEM model briefly. In Section 3 we describe two
types of redundancies in XML data and we show how to eliminate them using
the information from a conceptual schema. We conclude in Section 4.

2 XSEM Model

XSEM divides the conceptual modeling process to two levels. At the first level,
we design an overall non-hierarchical conceptual schema of our domain using
a part of XSEM called XSEM-ER. At the second level, we design hierarchical
schemes as views on the XSEM-ER schema using a part of XSEM called XSEM-
H. Each XSEM-H view schema describes an XML schema at the conceptual
level. We briefly describe both parts of XSEM in this section. For a full and
formal description of XSEM see [6].

2.1 XSEM-ER

XSEM-ER builds on an extension of the classical E-R model called HERM [8].
It allows to model real-world objects and relationships between them with entity
types and relationship types and provides designers with extending constructs
for modeling special XML features like irregular structure, ordering, and mixed
content. In XSEM-ER, it is not important how the modeled data is organized in
hierarchical XML documents. We show an example XSEM-ER schema modeling
a small part of a business domain in Figure 2.

Fig. 2. XSEM-ER Schema for Business Company

The basic modeling constructs are strong and weak entity type, and rela-
tionship type. These constructs are known from the classical E-R model. Figure

Conceptual Model Based Normalization of XML Views 17
5

2 shows strong entity types such as Customer and relationship types such as
Produce with participants Product and Producer. It also shows weak entity
types such as Order with determinants Customer, Shop, and Product.

There are two types of extending constructs. Data node types are used for
modeling unstructured text parts of the data that can be mixed with structured
parts. They are similar to attributes of entity or relationship types. However,
they are not encapsulated directly in entity or relationship types but only as-
signed to them and grouped with another concepts in the schema. Data node
types are displayed as ellipses. Figure 2 shows a data node type description. It
models descriptions of products. We need to model that a description of a prod-
uct can be mixed with references to other products and to producers. Therefore,
we do not model description as an attribute of the entity type Product but as a
data node type.

Cluster types are used for grouping different entity, relationship, and data
node types. They are used to model irregular or mixed content at the conceptual
level. We display cluster types as circles with inner +. There are component and
connection cluster types. We use component cluster types for creating groups of
two or more entity types. Such a group can then be assigned as a participant to
a relationship type or determinant to a weak entity type. For example, there is a
component cluster type composed of Producer and Product. This cluster type
is assigned as a participant to a relationship type Ref . It models that references
from products to other products and also producers.

Connection cluster types are used for creating groups of two or more concepts
having the same entity type as a common participant or determinant. If there is a
data node type in this group it models structured data mixed with unstructured
data. For example, there is a connection cluster type composed of the data node
type description and the relationship type Ref . It models that a description of
a product is mixed with references to other products and producers.

An XSEM-ER schema does not specify how the data is organized in hierarchi-
cal XML documents. There is one or more possible hierarchical representations
of each component of the schema. For example, we can represent instances of
the weak entity type Order in the hierarchy where we have a list of orders and
for each order we have the respective customer who made the order, ordered
product, and shop where the order was made. We can also require another rep-
resentation described as follows. We want a list of shops. For each shop we want
a list of products ordered in the shop. For each such product we want a list of
orders of the product made in the shop. Finally, for each such order we want the
customer who made the order.

We need to describe such a hierarchical structure in a more formal way. For
this we propose so called hierarchical projections. As an example, we show the
following six hierarchical projections. The projections (H1), (H2), and (H3)
describe the former hierarchical representation of Order. The projections (H4),
(H5), and (H6) describe the other.

Order[Order → Customer] (H1) Order[Shop → Product] (H4)

Order[Order → Product] (H2) OrderShop[Product → Order] (H5)

Order[Order → Shop] (H3) OrderShop,Product[Order → Customer] (H6)

18 Martin Nečaský
6

Formally, a hierarchical projection h of an entity or relationship type T is
an expression TE1,...,Ek

[P → Q] where E1, . . . , Ek, P, Q are determinants or
participants, respectively, of T . It specifies a hierarchy where P (called parent)
is superior to Q (called child). The sequence E1, . . . , Ek is called context and
specifies the context in which the projection is considered. For example, (H6)
specifies a hierarchy where Order is superior to Customer in the context of Shop
and Product.

We also extend the notion of cardinality constraints for hierarchical projec-
tions. For the hierarchical projection h of T , we can specify a cardinality con-
straint for the parent or child, i.e. card(h, P) = (m,n) or card(h,Q) = (m,n),
respectively. It means that for instances of the components from the context of
h an instance of P (or Q, respectively) can appear in T with m up to n dif-
ferent instances of Q (or P , respectively). For example, a cardinality constraint
card(H6, Customer) = (0, ∗) specifies that for a given shop and product a cus-
tomer can make an arbitrary number of orders of the product in the shop. A
cardinality constraint card(H6, Customer) = (0, 1) specifies that for a given
shop and product a customer can make zero or one order of the product in the
shop but not more.

2.2 XSEM-H

An XSEM-H schema models one type of XML documents. It is a view on a part
of the XSEM-ER schema and specifies how the data described by this part of
the XSEM-ER schema is represented in the modeled type of XML documents.
It does not describe any further semantics of the data. We can derive several
XSEM-H view schemes from the same part of the XSEM-ER schema. Therefore,
they are not derived automatically but by the designer according to the required
structure of the XML documents. Figure 3 shows three XSEM-H view schemes.
For example, CatalogueV iew describes the structure of XML documents with
catalogue data.

An XSEM-H view schema is a set of trees with labeled oriented edges. Nodes
in the view schema represent entity types, relationship types, and data node
types. For clearness, we denote the nodes by UT,n where T is the type rep-
resented by the node and n is the counter for the nodes in the view schema
representing T . For example, OrderV iew contains a node UOrder representing
the weak entity type Order from the XSEM-ER schema. Edges in XSEM-H view
schemes represent hierarchical projections of the types represented by the nodes.
For example, the edge going from UOrder to UCustomer in OrderV iew represents
the hierarchical projection H1, i.e. Order[Order → Customer]. Nodes can have
assigned labels displayed above the nodes. These labels are names of elements
that are used to represent the nodes in the modeled type of XML documents. For
example, UOrder in OrderV iew has assigned a label order. It means that orders
are represented in the modeled type of XML documents by elements order.

There are also several types of auxiliary nodes in XSEM-H view schemes.
There are cluster nodes representing cluster types from the XSEM-ER schema.

Conceptual Model Based Normalization of XML Views 19
7

Fig. 3. XSEM-H view schemes for business company

They are displayed in the same way, i.e. as circles with an inner ’+’ symbol.
Further there are so called containers that represent XML elements that group
two or more different concepts but not have any equivalent at the conceptual level
in the XSEM-ER schema. A container is displayed as a narrow rectangle with
its name in the rectangle. For example, Figure 3 shows a container description
assigned to the node UProduct,1. For a more detailed description of modeling
constructs of XSEM-H, we refer to [6].

Each XSEM-H view schema models an XML schema at the conceptual level.
This XML schema can be derived from the XSEM-H view schema automatically
represented in a selected XML schema language. The derivation is straightfor-
ward. However, we do not discuss it in this paper because of the lack of the
space.

3 Normalization

A set of XSEM-H view schemes can lead to redundancies when we represent
our data in the respective types of XML documents. Normalization means to
transform this set of XSEM-H view schemes to another set of XSEM-H view
schemes that describe the same data but do not lead to redundancies. In this
section, we show two types of redundancies and how to normalize XSEM view
schemes that lead to such redundancies. Our goal is to modify the structure
of the XSEM-H view schemes as little as possible during the normalization.
We call the normalized XSEM-H view schemes XSEM-H repository schemes to
distinguish them from the original ones.
Local redundancies. The first type of redundancies is caused by hierarchical pro-
jections with the maximal cardinality of their child greater then 1. In such case,

20 Martin Nečaský
8

an instance of the child can be assigned to more different instances of the parent
and therefore repeated in the respective hierarchical structure. Assume for exam-
ple SalesV iew in Figure 3. There is an edge going from URegion,1 to UShop that
represents a hierarchical projection SInReg[Region → Shop]. The cardinality of
Shop in the projection is (1, 1). Therefore, an instance of Shop is assigned to one
and only one instance of Region and is therefore not repeated in the respective
hierarchical structure. On the other hand, the edge going from UShop to UProduct

represents a hierarchical projection Order[Shop → Product] and the cardinality
of Product in this projection is (0, ∗). It means that an instance of Product can
be repeated in zero or more instances of Shop.

On the base of this observation we define the first type of redundancies called
local redundancies.

Definition 1. Let U be a non-root node in an XSEM-H view schema. Let U
represent a type P . Let e be an edge going to U and representing a hierarchical
projection TT1,...,Tk−1 [Tk → P]. Let the maximal cardinality of P in the hierar-
chical projection be greater than 1. If U represents one or more attributes of T
or there is an edge going from U and representing a hierarchical projection with
an empty context then we say that U leads to local redundancies.

Assume that a node U , that represents a type P , leads to local redundancies.
To eliminate these redundancies we normalize U by dividing it to two parts.
The first part is called context-independent part of U and is composed of the at-
tributes represented by U and edges going from U and representing hierarchical
projections with an empty context. The second part is called context-dependent
part of U and is composed of the edges going from U and representing hierar-
chical projections with a non-empty context. If an instance p of P is repeated at
the location specified by U its content corresponding to the context-independent
part of U is repeated as well. The content of p corresponding to the context-
dependent part of U is different for each representation of p because it depends
on the context. The normalization of U means to move its context-independent
part to another node V that represents P as well but does not lead to local
redundancies. The instance p of P is repeated at the location specified by V
only once and its content corresponding to the context-independent part of U is
therefore repeated only once as well. If such a node V does not exist we create a
new XSEM-H repository schema and create V as its root node. The created node
does not lead local redundancies because it is a root node. We call V storage
node for P .

To reconstruct the original view we must be able to join U with its context-
independent part moved to the storage node V . Joins are usually performed
using keys and foreign keys. However, we did not show how to model keys in
XSEM-ER schemes in this paper. We discussed this problem in [7]. The proposed
keys can be used for modeling general XML keys that can be rather complex.
This type of general keys is not however suitable for our purposes in this paper.
Instead, we use a much simpler mechanism of artificial keys. We add an artificial
key attribute oid to V and foreign key oid to U referencing oid in V . When
reconstructing the original U , we join the normalized U with V using this pair.

Conceptual Model Based Normalization of XML Views 21
9

Fig. 4. XSEM-H repository schemes without nodes leading to local redundancies

Figure 3 shows nodes that lead to local redundancies in a bold line. Fig-
ure 4 shows the result of their elimination. For example, the node UProduct,1

in CatalogueV iew leads to local redundancies. It is because the edge going to
the node represents a hierarchical projection Classify[Category → Product]
and the maximal cardinality of Product in this projection is ∗. Normalization
of the node means to move its context-independent content to the storage node
for Product. However, all nodes in the XSEM-H view schemes that represent
Product lead to local redundancies and the storage node for Product must be cre-
ated. We therefore create a new XSEM-H repository schema ProductRepository
with a root node UProduct,1 representing Product. This node is a new stor-
age node for Product. We move to this node all the attributes represented by
UProduct,1 in CatalogueV iew and all the edges representing hierarchical projec-
tions without a context, including clusters of edges and containers that contain
these edges. Moreover, we add an artificial key attribute oid to UProduct,1 in
ProductRepository and foreign key attribute oid to UProduct,1 in Catalogue−
Repository. The result of the normalization is that we store Product instances
according to UProduct,1 in ProductRepository. At the location specified by
UProduct,1 in CatalogueRepository we do not repeat whole Product instances
but only their values of the artificial foreign key oid. To reconstruct the original
view we use this foreign key.

The other nodes representing Product in the XSEM-H view schemes lead
to local redundancies as well and are therefore normalized in the same way.
We move the context-independent contents of these nodes to the previously
created storage node UProduct,1 in ProductRepository. For the node UProduct

in OrderV iew we move all its attributes. For the node UProduct in SalesV iew

22 Martin Nečaský
10

we move all its attributes and the edge going to UProducer,2. The edge going to
UOrder is in the context-dependent part of UProduct and is therefore not moved.

Assume further UShop in OrderV iew that also leads to local redundancies.
To normalize it we do not need to create a storage node for Shop as in the
previous case with Product. There is the node UShop in SalesV iew that does
not lead to local redundancies and each Shop instance is represented at this
location. We can therefore use it as the storage node for Shop and we move here
the context-independent content of UShop in OrderV iew.
Structural redundancies. The second type of redundancies in XSEM-H view
schemes we discuss in this paper is caused by representing an entity or rela-
tionship type P at two or more different locations in XSEM-H view schemes.
In such a case an instance of P can be repeated at two different locations in
the respective XML representations. Assume for example the weak entity type
Order. It is represented in SalesV iew and CustomerV iew as well. After the
elimination of local redundancies we still have Order represented in two XSEM-
H repository schemes SalesRepository and CustomerRepository. It means that
we represent an instance of Order twice in the respective XML representations.
Once according to the former repository and once according to the other. We
call this type of redundancy structural redundancy.

Definition 2. We say that an entity or relationship type leads to a structural
redundancies if it is represented at two or more different locations in XSEM-H
view schemes.

Assume that an entity or relationship type P leads to structural redundan-
cies. To eliminate these redundancies we select one of its representations as
primary and the others as secondary. We will use the primary representation
for representing instances of P and the secondary representations will be re-
constructed by XQuery queries. The selection of the primary representation is
made by the designer. He can decide on the base of the usage of the represen-
tations. The most used representation should be selected as the primary one.
The reader could argue that some more explicit guidelines to select the primary
representation should be given. These guidelines could be based on statistics of
the usage of the original views combined with the price of the reconstruction of
the secondary representations. However, these guidelines overcome the scope of
this paper.

Figure 4 shows XSEM-H repository schemes where nodes leading to local
redundancies were normalized. However, there are several nodes that lead to
structural redundancies and we need to normalize them. Figure 5 shows the
resulting set of XSEM-H repository schemes after their normalization. Firstly,
the relationship type SInRegion is represented in ShopRepository twice. The
former representation is composed of the nodes URegion,1 and UShop and the edge
connecting them. The other representation is composed of UShop and URegion,2

and the edge connecting them. It means that SInRegion leads to structural
redundancies. In other words each SInRegion instance is represented in two
different locations. To eliminate this structural redundancies we must select one

Conceptual Model Based Normalization of XML Views 23
11

Fig. 5. XSEM-H repository schemes without nodes leading to local nor structural
redundancies

of the representation as primary. We select the former representation as primary
because it will be used more frequently then the other and its reconstruction
would be therefore more expensive. The other representation is secondary and
therefore not included in the resulting repository.

Another structural redundancy is the weak entity type Order. It is repre-
sented once in OrderRepository and once in SalesRepository. In both repos-
itories the representation is composed of nodes UOrder, UCustomer, UShop, and
UProduct. We select the representation in OrderRepository as primary. The other
representation is not included in the resulting repository. The removed secondary
representations of SInRegion and Order are not represented in the normalized
XSEM-H repository schemes and must be therefore reconstructed from them
by XQuery queries. These queries can be derived automatically. However, such
derivation is out of the scope of this paper.

4 Conclusion

In this paper we showed how to model a set of XML schemes at the conceptual
level using a conceptual model for XML data called XSEM. This model allows
to model data at two levels. At the first level, an overall conceptual schema of
the data is designed using a part of XSEM called XSEM-ER. At the second
level, a conceptual schema modeling a given XML schema is derived from the
XSEM-ER schema using a part of XSEM called XSEM-H. We further showed
how to normalize a given set of XML schemes modeled by XSEM-H schemes. We
described two types of redundancies caused by hierarchical structure of the XML

24 Martin Nečaský
12

schemes, namely local and structural redundancies and showed how to eliminate
these redundancies by normalization of the XSEM-H schemes. We also showed
that these normalized XML schemes can be used to design a database schema
suitable to store our data without redundancies.

References

1. Arenas, M., Libkin, L.: A Normal Form for XML Documents, in ACM Transactions
on Database Systems (TODS), 29 (2004), pp. 195-232.

2. Balmin, A., Papakonstantinou, Y.: Storing and Querying XML Data Using Denor-
malized Relational Databases, in The VLDB Journal, 14(1), pp. 30-49, 2005.

3. Dobbie, G., Xiaoying, W., Ling, T.W., Lee, M.L.: ORA-SS: An Object-Relationship-
Attribute Model for Semi-Structured Data. TR21/00, Department of Computer
Science, National University of Singapore. December 2000.

4. Lee, M. L., Ling, T. W., Low, W. L.: Designing Functional Dependencies for XML,
in Proceedings of the 8th Conference on Extending Database Technology (EDBT),
Prague, March 2002, pp. 124-141.

5. Mlynkova, I., Pokorny, J.: XML in the World of (Object-)Relational Database Sys-
tems. in Proceedings of the 13th International Conference on Information Systems
Development, Vilnius, Lithuania. Springer Science+Business Media, Inc., 2005. pp.
63-76,

6. Necasky, M.: XSEM - A Conceptual Model for XML. in Proceedings of the 4th Asia-
Pacific Conference on Conceptual Modelling (APCCM2007), Ballarat, Australia.
CRPIT 67. 2007. pp. 37-48.

7. Necasky, M., Pokorny, J. Extending E-R for Modelling XML Keys. in Proceedings
of the 2nd International Conference on Digital Information Management. IEEE
Computer Society. Lyon, France, 2007, pp. 236-241.

8. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.
Springer Verlag, Berlin, Germany. 2000.

Using taDOM Locking Protocol in a Functional
XML Update Language

Pavel Strnad and Pavel Loupal

Department of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo náměst́ı 13, 121 35 Praha 2, Czech Republic
strnap1@fel.cvut.cz, loupalp@fel.cvut.cz

Using taDOM Locking Protocol in a Functional

XML Update Language

Pavel Strnad and Pavel Loupal

Department of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo náměst́ı 13, 121 35 Praha 2
Czech Republic

strnap1@fel.cvut.cz, loupalp@fel.cvut.cz

Abstract. In this paper we deal with a particular type of database
systems – native XML database systems. For this category of systems
we discuss potential application of the taDOM locking protocol imple-
mented in a functional update language – XML-λ. By combination of
these theoretical approaches we obtain a solution for querying and up-
dating XML data that can be implemented in a native XML database
system with transaction support. We present an LL(1) translation gram-
mar for transformation of queries written in a functional language into
sequence of Document Object Model API calls.

1 Motivation

Currently, our research group works on development of a native XML database
system that uses XQuery and should also use the XML-λ query language. There-
fore we are interested in properties and interconnections between these two ar-
tifacts. XQuery represents de-facto industrial standard in querying and XML-λ
is a proposal of our group based on simply typed λ-calculus.

In this paper we submit a proposal for transformation of XML-λ statements
into a list of DOM operations with ensured transaction isolation through the
DOM-based locking protocol – taDOM. We plan to use this solution for extend-
ing our native XML database system in the future.

2 Introduction

The crucial property of modern database management systems (DBMS) [11] is
concurrent user access. In this work we discuss it in context of a specific type of
database systems – native XML database systems. Such systems are primarily
used for storing XML data in their original form instead of mapping its structures
into e.g. objects or relations.

We outline an existing locking protocol that was developed for XML data –
taDOM [14] – and use it for a particular functional query and update language –
XML-λ [19, 20]. It is a proposal of a functional framework for querying and

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 25–36, ISBN 978-80-248-1746-0.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2008.

26 Pavel Strnad and Pavel Loupal

manipulating XML data. It is established on type system theory and utilizes
simply typed λ-calculus as a base for specification of a query language. This
project is currently in phase of development and in future we plan to include
an XML-λ module into native XML database systems we currently work on –
CellStore [25] and ExDB [1].

The approach we present in this paper is as follows: we transform basic update
operations into standard DOM [24] operations that are supported by taDOM
and so we can introduce transactional behavior into the language. Formally, we
use an LL(1) translation grammar for converting XML-λ expressions to DOM
API method calls.

The main contribution of this paper lies in combining the taDOM locking pro-
tocol and XML-λ query/update language. We offer a proposal how to interface
referenced locking protocol and low-level update operations in given language
using DOM operations. This work continues in the topic that we have opened
in [17]. In this text we clarify more the update facility of the framework and
design a translation grammar that provides the solution for transformation of
XML-λ update statements into DOM operations.

The rest of the paper is structured as follows: Section 3 gives a short overview
about concurrency and related issues in database systems, Section 4 then outlines
the idea of the taDOM locking protocols family. Basic concept of XML-λ with
its key update features is briefly introduced in Section 5. The main part of
this work that describes our proposal for mapping of DOM operations to the
query language is presented in Section 6. In Section 7 we gather a list of certain
related papers available. Finally, we conclude with ideas for our future research
in Section 8.

3 Concurrency in Native XML DBMS

Common requirement for a database management system is the concurrency
control. There are four well-known properties for a transactional system known
as ACID [11]. Transaction is generally a unit of work in a database. ACID
properties are independent on a database (logical) model (i.e. it must be kept in
all transactional database systems).

Isolation of transactions in a database system is usually ensured by a locking
protocol. Direct application of a locking protocol used in relational databases
does not provide high concurrency [15, 22] (i.e. transactions are waiting longer
than it is necessary).

We show a huge difference between locking protocols for RDBMS and native
XML database system on a small example. Let us have two lock modes: Shared
mode and Exclusive mode. The granularity of exclusive lock in RDBMS is typ-
ically the row (or record) [6]. In a native XML database we have much more
possibilities whether to lock a node or a whole subtree. Hence, we have more
choices what to lock and for how long time. These protocols working on XML
data extend the basic locking protocol. The basic protocol provides only two
types of lock modes, but taDOM3+ has twenty lock modes. More lock modes

Using taDOM Locking Protocol in a Functional XML Update Language 27

imply more complexity in a protocol algorithm. Also to prove whether the pro-
tocol is correct is a harder problem.

We suppose only well-formed transactions and serializable plan of update
operations [6]. All protocols quoted in this paper satisfy these requirements. We
call locking protocols for native XML databases simply XML-locking protocols

in this paper. The most of these XML-locking protocols are based on the basic
relational locking protocols. Hence, XML-locking protocols inherit most of the
features, e.g. two-phase locking to ensure serializability.

To design a good locking protocol which minimizes the number of suspended
transactions is a challenge because it is much more complex than in RDBMS.
It requires new lock modes for individual elements and also for the axes in an
XML document [22]. The locking mechanism depends on the query language
used, concretely on the atomic operations of the query language and also on the
context of these operations.

4 Locking Protocols

Actual research in the area of locking protocols is concentrated rather to DOM
model and its methods of approaching individual parts of an XML document.
Probably the most advanced research in this topic is carried out at the University
of Kaiserslautern in Germany [16, 14, 15]. The researchers are working on XTC
(XML Transaction Coordinator) Project [3] – a system which implements several
different algorithms of transactional processing on XML data.

XTC project uses extended DOM model (it is called taDOM) as a basis for
transactional processing.

4.1 taDOM Family of Locking Protocols

The first version of the protocol was denominated as taDOM2. Its improved
version is then called taDOM2+. Both of these protocols work with DOM Level 2
operations (about 20 methods, see [23]). Next generation of taDOM locking
protocols are taDOM3 and taDOM3+. As expected, these protocols correspond
to DOM Level 3 model. The XTC project also provides detailed use cases for
these protocols (36 use cases) which completely describe locking scenarios for
each operation.

Each of taDOM locking protocols is specified by:

– Compatibility matrix
– Conversion matrix
– Use cases for DOM operations

The compatibility matrix is used when the transaction t1 is requesting for
lock l1 on a node n and there is a lock l2 of the transaction t2. The locking
algorithm finds the row l1 and column l2 in the compatibility matrix and makes
a decision whether to lock (+) or not (-). Table 1 describes Compatibility Matrix
for edge locks (ER - edge read, EU - edge update and EX - edge exclusive).

28 Pavel Strnad and Pavel Loupal

- ER EU EX

ER + + - -

EU + + - -

EX + - - -

Table 1. The Compatibility Matrix of the Edge Locks

getNode(nodeID) returns Node

Scenario 0-1 for taDOM3+ Lock Requests:

Node Lock PSE NSE FCE LCE

CN NR - - - -

Table 2. Lock Scenario for DOM Operation getNode(nodeID)

The conversion matrix is used when the transaction t1 is requesting for lock l1

on a node n and there is a lock l2 of the same transaction t1. Locking algorithm
finds the row l1 and column l2 in the conversion matrix and converts the lock
mode of the node. Hence, each transaction has at the most one lock on each
node.

Use cases describe semantics of the locking protocol with regard to DOM ope-
rations. Table 2 contains description of the DOM operation getNode(nodeID).
When getNode(nodeID) operation is called then the locking mechanism has
to put the lock of type NodeRead (NR) on the context node(CN). PSE, NSE,
FCE, LCE are abbreviations for previous sibling edge, next sibling edge, first
child edge, last child edge. The getNode(nodeID) operation does not put locks
on these virtual edges (-).

We consider only taDOM3+ in the next sections of this paper. This proto-
col is up-to-date nowadays, because it reflects today’s needs and was formally
checked1. The taDOM3+ locking protocol has also really low overhead (mini-
mizes access to the storage) [14].

taDOM3+ protocol provides level 2.99 of isolation [4, 15]. It means that phan-
tom reads2 are not covered. Therefore it is necessary to do a small extension to
these protocols by adding navigation edges to avoid existence of phantom reads.
We need to define an additional mechanism – edge locks. To apply edge locks the
authors had to extend the XML document model and added new edges between
nodes – virtual edges. The compatibility matrix of these locks is discussed in
more details in [15].

taDOM Model Structure The tree-like structure in taDOM is enriched by
two new node types: attributeRoot and string [14]. This representational en-

1 Valenta and Siirtola [21] made a formal proof of the protocol correctness. They
verified the taDOM locking protocol using model-checking.

2 Phantom read happens when new rows added by a transaction are visible from
another transaction

Using taDOM Locking Protocol in a Functional XML Update Language 29

hancement does not influence user operations and their semantics on the XML
document, but is solely exploited by the lock manager to achieve certain kinds of
optimization when an XML document is modified in a cooperative fashion [15].

– attributeRoot separates various attribute nodes from their element node. In-
stead of locking all attribute nodes separately they are locked all together
by placing the lock to attributeRoot – concurrency of attribute processing
is not allowed.

– A string node is attached to the respective text node and only contains the
value of this node. It does not allow to block a transaction which only navi-
gates across the node, although a concurrent transaction may have modified
the text (content) and may still hold an exclusive lock on it.

Lock Modes The taDOM3+ protocol provides a set of lock modes for the
nodes as well as for the edges. Edge locks are used to cover phantom reads in an
XML document in order to allow desired level of concurrency. The lock modes
together with their mutual relationships (expressed as compatibility matrices)
provide concurrency and also preserve the expected ACID properties (especially
the level of isolation).

5 Updating XML

There are various theoretical proposals, experimental implementations and de-
facto standards for XML update languages. As of the publication of the XML 1.0
standard [8] the efforts had been focused on querying such structured data.
Approaches for updating have gained more attention in past few years.

Existing papers dealing with updating XML are mostly related to XQuery [7].
The need for introducing updates into XQuery is also considered as one of the
most important topics in the further development of the language [10]. As a
result, new specification of the XQuery Update Facility [9] was proposed.

In this paper we deal with our approach for querying and updating XML
data – XML-λ [19, 20]. It is a framework for manipulating XML based on a type
system and simply typed λ-calculus. It is a cornerstone of our long-term research
that was invented not only for definition of an update language for XML but
also for a broader exploitation, for example heterogeneous data integration or
description of denotational and operational semantics of various languages. In-
deed, in this paper we focus on using it as a query and update language for XML.

In following paragraphs we expect that reader is familiar with basic con-
cept of the XML-λ Framework. Nevertheless, we repeat its basic concept for
convenience.

5.1 Updates in General

Query execution has in general the following structure: (1) Declaration of vari-
ables, (2) Evaluation of variables and tree traversal and (3) Output construction.

30 Pavel Strnad and Pavel Loupal

For read-only systems and even parallel user access it is perfectly sufficient but
for systems with update support it is necessary to use a different approach.

Usually, for particular update operations (in the world of native XML database
systems) a structure called ”pending update list” is utilized. This structure con-
tains ordered list of fundamental modification operations to be carried out at
the end of each transaction. Hence, the execution of an update operation (insert,
delete, replace) then follows these two steps: (1) node locking and (2) appending
an appropriate update operation to the list.

At the end of each transaction the pending update list is processed and all
nodes locked by the transaction are unlocked at its end (both in case of commit
or abort). This approach is applied both in XQuery and XML-λ3. In following
sections we cover our solution based on XML-λ in detail.

5.2 XML-λ Framework Basics

XML-λ is a functional framework for manipulating XML. The original pro-
posal [19, 20] defines its formal base and shows its usage primarily as a query
language for XML but there is a consecutive work that introduces updates into
the language available in [17].

In XML-λ there are three important components related to its type system:
element types, element objects and elements. We can imagine these components
as the data dictionary in relational database systems. Note also Figure 1 for
relationships between basic terms of W3C standards and the XML-λ Framework.

Element types are derived from a particular DTD and in our scenario they
cannot be changed – we do not allow any schema changes but only data modi-
fications. For each element defined in the DTD there exists exactly one element
type in the set of all available element types (called TE).

Consequently, we denote E as a set of abstract elements. Set members are of
element types.

Element objects are basically functions of type either E → String or E →
(E× . . .×E). Application of these functions to an abstract element allows access
to element’s content. Elements are, informally, values of element objects, i.e. of
functions. For each t ∈ TE there exists a corresponding t-object.

For convenience, we add a ”nullary function” (also known as 0-ary function)
into our model. This function returns a set of all abstract elements of a given
element type from an XML document.

Finally, we can say that in XML-λ the instance of an XML document is
represented by a set E and set of respective t-objects.

Example. Let us consider an example DTD and a fragment of an XML in-
stance shown in Figure 2. For given schema we derive element types as fol-
lows: BIB : BOOK∗, BOOK : (TITLE, AUTHOR+, PRICE), AUTHOR :
(LAST, FIRST), LAST : String, FIRST : String, TITLE : String, PRICE :

3 Note that both XQuery and XML-λ are functional languages.

Using taDOM Locking Protocol in a Functional XML Update Language 31

Fig. 1. The Relationship Between W3C and XML-λ Models

String.

Then, we define functional types – designated as t-objects: BIB : E → 2E ,
BOOK : E → (E × 2E ×E), AUTHOR : E → (E ×E), TITLE : E → String,
LAST : E → String, FIRST : E → String, PRICE : E → String.

<!ELEMENT bib (book*)> | <bib>

<!ELEMENT book (title, author+, | <book>

price)> | <title>TCP/IP Illustrated</title>

<!ELEMENT author (last, first)> | <author>

<!ELEMENT title (#PCDATA)> | <last>Stevens</last>

<!ELEMENT last (#PCDATA)> | <first>W.</first>

<!ELEMENT first (#PCDATA)> | </author>

<!ELEMENT price (#PCDATA)> | <price>65.95</price>

| </book>

| ...

Fig. 2. Example DTD and Fragment of a Valid XML Instance

Having look at the Figure 2 we can see that there are 7 abstract elements
(members of E′ ⊂ E). Now, for instance, the price-object is defined exactly for
one abstract element (the one obtained from <price>65.95</price> element)
and for this abstract element it returns value ”65.95”.

Let us consider a query that returns all books with price higher than 100.
This query is written in XML-λ as:

xmldata("bib.xml")

lambda b (/book(b) and b/price > 100))

32 Pavel Strnad and Pavel Loupal

Here, we do not depict the query evaluation process in detail but it is de-
scribed sufficiently in [19, 20].

5.3 Fundamentals of Updates

By introspecting the basics of the framework outlined in Section 5.2 – especially
the idea of element objects we can see that by updating an XML document we
modify actual domains of element objects (i.e. partial functions defined on E)
and their ranges.

6 Locking Protocol Mappings

This section describes our solution for translation of XML-λ statements into
DOM API calls through a top-down parser directed by an attributed LL(1)
translation grammar.

For easier specification of transformation between XML-λ primitives and
DOM operations we define new operation �:

f+(v) = {f1(v), f2(v), f3(v), . . .}

f+(v) � g() =
∞⋃

u=1

{g(fu(v))}

This operation is defined on sets. We can say that the g() function is applied
on each element of a set.

6.1 A Pinch of Translation Theory

We solve the problem of mapping by translation from one language to another.
The straightforward approach is based on construction of an attributed trans-
lation grammar [5]. Then all queries written in XML-λ can be translated into a
sequence of DOM operations.

Here we refer shortly to definition related to translation grammars – note
that we use an attributed translation grammar, i.e. a context-free grammar aug-
mented with attributes, output symbols and semantic rules.

The attributed translation grammar is 4-tuple APG =< PG, A, V, F >,
where PG is a basic translation grammar PG =< N, Σ, D, R, S >. N is set of
non-terminal symbols, Σ is set of terminals, D is set of output symbols, R is a
set of grammar rules A => α, where A ∈ N , α ∈ (N ∪ Σ ∪ D)∗ and S is the
start symbol.

Remaining symbols are related to APG and have the following meaning

A is a finite set of attributes. It is divided into two disjoint sets for
synthesized (denoted S) and inherited (denoted I) attributes.

V is a mapping that assigns a set of attributes to each non-terminal symbol X ∈ N
F is a finite set of semantic rules

The example stated in the following section is based on this formalism.

Using taDOM Locking Protocol in a Functional XML Update Language 33

6.2 XML-λ to DOM Translation Grammar

We use the standard formal translation directed by an LL(1) parser where the
formal translation is described by translation grammar as follows:

N = {S, R0, R1, T }
Σ = {/, sL, var}
D = { s©, t©, c© }
R = { S → / R0|varR1,

R0 → sL s© T R1,
R1 → / c© sL T R1|ε,
T → t© }

Note that terminal symbols are output tokens from a lexical analyzer.
We proposed necessary attributes for translation A = {name, string}, where
I(T) = {name}, I(t©) = {name}, S(sL) = {string}. Attributes are used for
storing tag names in the process of translation.

Syntax and semantics of the translation grammar is described in Table 3.

Syntax Semantics

S → / R0|varR1

R0 → sL s© T R1 T.name := sL.string

R1 → / c© sL T R1|ε T.name := sL.string

T → t© t©.name := T.name

Table 3. Syntax and Semantics Table

After translation the output symbols are rewritten in following way:

s© → doc � getDocumentElement() � getChildNodes()+

t© → � getTagName(t©.name)
c© → � getChildNodes()

Following example shows how we can transform XML-λ queries to DOM
operations. These operations implicitly use taDOM3+ locking protocol synchro-
nization primitives.

6.3 XML-λ Query Evaluation Example

Let us have a look at an example of a delete operation in the XML-λ language.
Following statement deletes all books specified by given title:

34 Pavel Strnad and Pavel Loupal

xmldata("bib.xml")

delete(lambda b (/book(b) and

b/title = "TCP/IP Unleashed"))

We translate the inner expression of the statement

(/book(b) and b/title = "TCP/IP Unleashed")

The translation is based on a top-down method using expansion operation ⇒.
Expansion rule depends on the top terminal of the processed input string. Then
we can use a standard LL(1) parser. Translation then starts as follows:

S ⇒ / R0

R0⇒ / sL s© T R1

T
⇒ / sL s© t© R1

R1⇒ / sL s© t©

By this derivation we have translated the first part of the expression – /book(b).
Then, we continue with the second part:

S ⇒ var R1

R1⇒ var/ c© sLTR1

T
⇒ var/ c© sL t© R1

R1⇒ var/ c© sL t©

We get the translated string by omitting input symbols. We suppose that
the semantic rules were applied during translation. In the input symbol var we
saved the first part of the translation. The second part is concatenated with the
first part through the variable b. The output of the translation is the following
sequence of output symbols: s© t© c© t©.

We can rewrite these output symbols to taDOM operations and then we get:

doc � getDocumentElement() � getChildNodes()+ � getTagName(t©.name)
� getChildNodes() � getTagName(t©.name)

The main part of the update statement is the path expression. Now we have
to select nodes which satisfy condition – title = ”TCP/IP Unleashed”. The
string comparison operation is not a DOM operation, so for purpose of this paper
is omitted here.

The translation grammar described above can be directly used to ensure
isolation of transactions in the XML-λ language.

7 Related Work

First, considering query and update languages, there are many papers and pro-
posals. The most important specifications in the context of this work are the
XML Query Language 1.0 Specification [7] and a Working Draft of the XQuery
Update Facility [9]. They form de-facto standard in the world of XML.

Another branch of papers is focused on a specific database system and de-
scribes usually a complete solution seen from a wider perspective. It is quite
a common practice that database groups at technical universities and similar
institutes develop their own database systems. In the area of XML we can men-
tion eXist [2] or Natix [12]. Finally, we should also mention CellStore [25] – a

Using taDOM Locking Protocol in a Functional XML Update Language 35

database system being developed at our department. Authors of these systems
usually describe in detail the transformation of XQuery statements into their
algebras.

Issues related to transactions and systems that support transactional behav-
ior are covered as description of transaction protocols [6, 13, 14] or transactional
benchmarking [18].

8 Conclusions and Future Work

We have shown an approach for introducing fundamental transactional opera-
tions into a functional query and update language for XML. Through the use
of the taDOM protocol and the XML-λ Framework we have obtained a the-
oretical solution for native XML database systems that allows querying and
updating XML data in a safe manner. We accomplish this by introducing an
LL(1) attributed translation grammar for transformation of XML-λ statements
into sequence of DOM API calls. This forms a solid base for our ongoing re-
search – studying of mutual semantic transformations of queries written in one
query language into another, e.g. conversion of XQuery queries into XML-λ and
vice-versa.

Considering the fact that we have presented here only first sketch of the
solution there is still a lot of clarification and experimental work ahead. In the
near future we plan to design and implement a prototype of the XML-λ query
engine into the CellStore database system. After that there are many open topics
related to correctness and benchmarking of the prototype.

9 Acknowledgments

We would like to thank to Jǐŕı Velebil for his valuable hints related to mathe-
matical expressions we use in this paper to formulate formalisms in a (hopefully)
clear way.

This work has been supported by the Ministry of Education, Youth, and
Sports under Research Program MSM 6840770014.

References

1. ExDB Project Homepage. http://swing.felk.cvut.cz/~loupalp.
2. eXist Project Homepage. http://www.exist-db.org.
3. XTC Project. http://wwwdvs.informatik.uni-kl.de/agdbis/projects/xtc.
4. A. Adya, B. Liskov, and P. O’Neil. Generalized isolation level definitions. ICDE,

00:67, 2000.

5. A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and Compiling.

II. Compiling, volume II. Prentice-Hall, Upper Saddle River, NJ 07458, USA, 1973.
6. P. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan

Kaufmann Publishers, 1st edition, 1997.

36 Pavel Strnad and Pavel Loupal

7. S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language, January 2007.
http://www.w3.org/TR/xquery/.

8. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible markup language (XML) 1.0 (third edition), February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/.

9. D. Chamberlin, D. Florescu, and J. Robie. XQuery update facility.
http://www.w3.org/TR/2006/WD-xqupdate-20060711/.

10. D. D. Chamberlin. XQuery: Where do we go from here? In XIME-P, 2006.
11. C. J. Date. An Introduction to Database Systems, 6th Edition. Addison-Wesley,

1995.
12. T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, and

T. Westmann. Anatomy of a native xml base management system. VLDB Journal,
11(4):292–314, 2002.

13. J. Gray and A. Reuter. Transaction Processing : Concepts and Techniques. Morgan
Kaufmann Publishers, 1st edition, 1993.

14. M. P. Haustein and T. Härder. A synchronization concept for the DOM API. In
H. Höpfner, G. Saake, and E. Schallehn, editors, Grundlagen von Datenbanken,
pages 80–84. Fakultät für Informatik, Universität Magdeburg, 2003.

15. M. P. Haustein and T. Härder. An efficient infrastructure for native transactional
XML processing. Data Knowl. Eng., 61(3):500–523, 2007.

16. M. P. Haustein, T. Härder, C. Mathis, and M. W. 0002. Deweyids - the key to
fine-grained management of xml documents. In C. A. Heuser, editor, SBBD, pages
85–99. UFU, 2005.

17. P. Loupal. Updating typed XML documents using a functional data model. In
J. Pokorný, V. Snášel, and K. Richta, editors, DATESO, volume 235 of CEUR

Workshop Proceedings. CEUR-WS.org, 2007.
18. M. Nicola, I. Kogan, and B. Schiefer. An xml transaction processing benchmark.

In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international conference

on Management of data, pages 937–948, New York, NY, USA, 2007. ACM Press.
19. J. Pokorný. XML functionally. In B. C. Desai, Y. Kioki, and M. Toyama, editors,

Proceedings of IDEAS2000, pages 266–274. IEEE Comp. Society, 2000.
20. J. Pokorný. XML-λ: an extendible framework for manipulating XML data. In

Proceedings of BIS 2002, pages 160–168, Poznan, 2002.
21. A. Siirtola and M. Valenta. Verifying parameterized taDOM+ lock managers.

SOFSEM 2008, pages 460–472, 2008.
22. P. Strnad and M. Valenta. Object-oriented Implementation of Transaction Man-

ager in CellStore Project. Objekty 2006, Praha, pages 273–283, 2006.
23. The W3C Consortium. W3C homepage. http://www.w3.org.
24. The W3C Consortium. Document Object Model (DOM), 2005.

http://www.w3.org/DOM/.
25. J. Vraný. Cellstore - the vision of pure object database. In V. Snásel, K. Richta,

and J. Pokorný, editors, DATESO, volume 176 of CEUR Workshop Proceedings.
CEUR-WS.org, 2006.

Database Engineering from the Category Theory
Viewpoint

David Toth

Department of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo náměst́ı 13, 121 35 Praha 2, Czech Republic
tothd1@fel.cvut.cz

Database Engineering from the Category Theory
Viewpoint

David Toth

Dept. of Computer Science, FEE CTU Prague,
Karlovo nám. 13, 121 35
Praha, Czech Republic
tothd1@fel.cvut.cz

Abstract. This paper gives an overview of XML formal models, sum-
marizes database engineering practices, problems and their evolution. We
focus on categorical aspects of XML formal models. Many formal mod-
els such as XML Data Model, XQuery Data Model or Algebra for XML
can be described in terms of category theory. This kind of description
allows to consider generic properties of these formalisms, e.g. expressive
power, optimization, reduction or translation between them, among oth-
ers. These properties are rather crucial to comparison of different XML
formal models and to consequent decision which formal system should
be used to solve a concrete problem. This work aim is to be the basis
for further research in the area of XML formal models where category
theory is applied.

1 Introduction

In this paper we will focus on some peculiarities from today’s database world.
Now, in spring 2008, we have many database technologies, many technical frame-
works, many solutions for different and similar problems. What we do not have
is a global point of view of databases (DB); theoretical approach stating the-
orems about database models and languages. This paper summarizes database
technologies from higher perspective and introduces some of the terms from
mathematical category theory (CT). These two aspects, databases and category
theory, are put together in order to give new look at the database technologies, to
give new way of data model and languages description; and to find new language
in which we could ask and answer more generic questions, e.g. about expressive
power of (query) languages of particular data models.

This paper deals with databases. More precisely we should say it treats prob-
lems which appear when we would like to know which database technology should
be used in software project. There are generaly more requirements leading one to
use DB, e.g. to make the data persistent, to assure concurrency, etc. More about
database technology in general can be found in Date’s Introduction to Database
Systems [13]. There are many factors influencing the decision. In fact in praxis
it is more subjective (personal or team) decision.

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 37–48, ISBN 978-80-248-1746-0.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2008.

38 David Toth
2 Toth, D.

From the software engineering point of view there are at least these kinds
of factors; (1) Human factors, as e.g.: knowledge about particular DB product,
concrete DB technology experience; individual or team, subjectivelly favourite
/ preferred DB technology; (2) Technical aspects: vendor influence, e.g. offered
support, problem solving time, programming languages support, performance,
accessibility, clustering, and many others. (3) Problem definition: teoretical as-
pects of problem, data itself, its nature (data character), i.e. (a) structuralization
(no inner structure e.g. streams, files respectively, weak structure e.g. newspa-
per articles, strong structure any well structured forms, e.g. tax return form),
(b) data contain metadata (typical for XML documents), data separated from
metadata respectively (typical for tables—relations). (4) Possibly other aspects.

Some of these factors are summarized in SWEBOK [39]. In software engi-
neering paper we would like to address especially the first two categories. In
SIGSOFT [36] and especially in SEN [34] can be found more on these topics.
But this text is intended to be considered as more database-oriented. Therefore
we will focus more on the problem’s aspects as the third factor mentioned above.
Nevertheless all topics covered here are closely related to software engineering
and even to database engineering which we deal with later. Next we will take a
closer look at particular database technologies emphasizing the problem’s aspect.

1.1 Relational Database Technology

Historically the first database approach which solved the inconsistencies, redun-
dancy, concurrency and other problems was the relational model. C. J. Date in
his Introduction [13] deals with the relational approach to represent data (i.e.
relational data modeling and storing among other aspects). Other very deep in-
sight into relational data model can be found in E. F. Codd’s Relational model
for database management [10]. One can imagine the main idea as data grasped
via a relation in mathematical notion, i.e. all data can be viewed as relations, in
other words sets with internal structure of its elements. Relations are intercon-
nected together using values of particular set of elements which is usually called
foregin key usage.

Can any data be represented using relational approach, i.e. can any data
be stored as relations, tables respectively? We must consider the fact that the
data could possibly change its structure, and even that we do not know the
structure before we have the data physically. Can the changing data structure
be modeled using relational approach? What other questions play a significant
role when we consider expressive power of e.g. relational algebra, etc.? These
and related questions will be considered in future works which will contain CT
oriented features. In this paper data model description and related topics will
be treated. Further we focus on object technologies.

1.2 Object Database Technology

Object and object-oriented databases arose out of the impedance mismatch be-
tween relational and object data models. The essence of this problem lies in a

Database Engineering from the Category Theory Viewpoint 39
Database Engineering from the Category Theory Viewpoint 3

different kind of data representation, i.e. once as relations or n-aries and once
as objects. The problem inhere in data translation. In other words data must
be mapped between classes of objects and relations of n-aries. More about the
object relational mapping can be found in Fussel’s Foundations of Object Re-
lational Mapping (ORM) [20]. Another paper about ORM can be found in [1];
implementation issues are covered in persistence framework Hibernate [24].

To object and object-oriented databases and to object database manage-
ment systems is dedicated the web site [32]. At this place many object and
object-oriented technologies, especially database technologies, of course, and
open source as well, can be found.

1.3 XML Databases

The XML Databases were born actually very shortly after the XML, the new
language for semistructred data description, a W3C’s standard respectively [17],
emerged in 1998. More about XML evolution can be found at [46]. It did not
took a long time and new term Native XML Database, often just NXD, came
abroad [37]. We will use the term, as e.g. R. P. Bourret in [7] does. Why NXD
appeared and what to expect from them is described in [23] or [6]. R. P. Bourret
[8] also maintain fresh list of NXD products and even more wide XML products
in general.

The main motivation for NXD usage resides in the impedance problem again,
as in case of ODB as well. The typical situation where NXD are used is web
portals and web applications communicating through web services. The web
services standards are based on XML and related standards. Therefore it is
evident that the need for XML document transformation should be avoided to
speed up the performance of applications of this type. We have treated this yet
earlier in [42].

The principle of NXD consists in XML data model as intrinsic data model
of the database engine. R.P. Bourret is more specific about what XML-Enabled
and what XML-native suppose to mean, e.g. in [7].

The paper is structured as follows. Section 2 deals with relationship of software
engineering and database engineering. Section 2.2 refers problems relevant to
appropriate database technology selection in the introduction above bearing in
mind. Section 3 summarizes issues related to essences of particular data mod-
els. In section 4 there are mostly XML related standards and technical part of
XML databases dealt with and section 5 treats formalisms developped for the
purpose of XML Data model description. Section 6 introduce basic terms from
category theory (CT) and gives formal background for cited formalisms. Section
7 summarizes exhibited XML formalism. Last section 8 reveals our future plans.

2 Software Engineering and Database Engineering

Terminological note on database engineering. Normally the term database
engineering is used to describe an area of processes, methods and techniques,

40 David Toth
4 Toth, D.

formalisms and languages useful for database designing, and in general, use-
ful for database application development. There are several conferences around
database engineering topics. Clear definition of what is database engineering does
not exist. What we mean under database engineering is specialization of soft-
ware engineering practices for purposes of database application, i.e. application
strongly related to data which makes persistent and which further operates with.
Practically we mean specialization of all techniques where arbitrary database ar-
tifact, most typically it is database schema, is created, changed (most common
case), or removed.

From waterfall to iterative development. Software engineering in past was
understood as sequential processes equivalent to phases which must be performed
in a serial way. The phases typically are: feasibility study, business analysis, re-
quirements analysis, architecture analysis and design, logical design, GUI design,
DB design, physical design, coding, testing, refactoring, installing, deploying,
measuring, among others. The same can be said, as an analogy of course, about
database engineering, i.e. database design, database tuning and administration
among others. But in today’s world when agile methodologies in sofware engi-
neering become successfull and more and more widespread, it also seems to be
inevitable to use agile or generally speaking iterative approaches in database
community. It is a paintful step for every single database expert long time ex-
perienced sequential approach when starting use agile principles.

MDA—Model Driven Architecture. The MDA approach [30] seems to be
contradictory in the context of agile methodologies. But not necessarilly. Itera-
tive approaches allow to build software systems more focused on one particular
problem, emphasizing one aim in time (during iteration). The basic imagination
could be as very little waterfalls chaining every iteration stressing analysis or
design or programming depending on current phase. We can figure out here the
semantics of the word phase depends strictly on chosen methodology.

2.1 Database Engineering and Evolutionary Approach

From the point of view of the database engineering there is need to elaborate
database design. Typically conceptual model is considered as a part of database
modeling and as a part of a database design phase. In fact we would like to stress
here that there is no need to create domain model as UML [31] class diagram
during business analysis and also E-R diagram as a part of database modeling
independently. It is possible to create or even generate E-R diagram or UML class
diagram in Data Modeling Profile from domain model. It is typically expressed
as UML class diagram which is done during business analysis. Actually some
CASE tools offer this functionality in these days, e.g. the Enterprise Architect
[15].

Database modeling, a part of database design, can be viewed as a transfor-
mation from domain model. And this does not mean that all the modeling must

Database Engineering from the Category Theory Viewpoint 41
Database Engineering from the Category Theory Viewpoint 5

be finished before normalization or tuning starts. The core of the evolutionary
approach lies in doing the whole step by step in very small parts which have to
be integrated. Continuous refinement is necessary. One of the biggest argument
against iterative database development is the need for neverending reworking
and refining of non-stabilized artifacts—which is possibly a great number.

As a resume here we would like to pinpoint the possibility to look at database
evolution concurrently with regular software evolution. And therefore to see
database engineering as a specialization of software engineering. The princi-
ples of MDA—model transformations are essentially the same in software and
database engineering. This kind of abstraction should help us thinking in soft-
ware engineering and database engineering in very similar way. Furthermore
CT can help us when dealing with models, their properties and qualities, and
transformations.

2.2 The Database Technology Selection

Which particular DB technology should we choose to use? What should lead us
— help us? The discussion below involves these questions.

Relational Databases (RDB). From the historical perspective there is a
big argument which says to use RDBs. It is deep insight into relational tech-
nology, strong mathematical background in form of data relational model and
relational algebra. Many people made refinements of this technology for a long
time. Shortly, RDBs are greatly elaborated in comparison to other (and younger)
technologies.

Object Databases (ODB). In [32] we could find at least these important
reasons why to select ODB instead of RDB or XDB: embedded DBMS appli-
cation, complex data relationships, deep object structures, changing data struc-
tures, development team is using agile techniques, massive use of object oriented
programming language, there are many objects including collections, data is
accessed by navigation rather than query.

One of the most popular ODBMS in open source community is db4objects
[14]. Another example could be the NeoDatis ODB [29] or GemStone/S [21].

XML Databases (XDB). With XDB, and NXD respectively, fine-grained
reuse of content is possible; NXD allows sophisticated hypertext applications
with mixture of stuctural and fulltext query. The most typically cited NXD
benefits are flexibility and reuse.

We have treated of this issue in greater detail in [41]. Three distinct metrics,
ρ, τ , and ξ, were proposed for different kinds of database technologies.

42 David Toth
6 Toth, D.

3 Essentials of Data Models

Does exist essential difference between different data models? In words of CT
we could say: belong all categories of all data models into the same category
(of categories)? We will focus a bit more on this in section 6 — The Category
Theory Standpoint.

Now imagine not to use CT. The question if there exists any problem which
cannot be solved using arbitrary technology would have to be proven hardly. We
would have to prove that every single case of data expressed in one data model
could also be expressed in every other data model.

Theoretically any data can be expressed in arbitrary format, i.e. (1) tables,
nested tables respectively, (2) the web of objects or (3) hierarchy of elements if
we found mappings between all data instances.

Mapping from XDB to RDB can be viewed so that any XML document can
be stored (represented) in RDB in generic tables (ELEMENTS, ATTRIBUTES,
DOCUMENTS, etc.). That objects can be stored as record in tables which can
be seen e.g. in Object Relational Mapping (ORM) Pattern. The other way can be
imaginated as direct overwriting of RDB data using wrapping method for column
content and nesting in case of foreign keys (FK). FK can also be represented as
ID and IDREF attributes in XML documents.

Mapping from XML documents to objects can be grasped in a way that XML
data model will be grasped as a tree, object model would be accessed as a graph.
A tree is also a kind of a graph. This idea is demonstrated e.g. in previous work
[42], and it is implemented in java programming language in JAXB—Java API
for XML Binding [38]. These mappings are typically based on DTDs or XML
Schema or even RelaxNG. R. P. Bourret wrote general paper on XML document
mapping between relational and object models [5].

The same could be obtained if we find all the mappings between one and
another DB structure — technology (RDB, ODB, XDB). But a more convenient
way would be to find out the way of general description and prove that these
mappings have to exist or that it is impossible these mappings would exist. And
not only convenient, we should consider all data models; even those which do not
exist yet. It seems that different technologies fit for different kind of problems
but they are essentially the same after all. Are they? Can we prove this using
category theory? We would like to focus our future research on these questions.

And there are other interesting questions leading us to finding one framework
only, CT, e.g. is it possible to store and effectively retrieve data with unknown
and/or changing data structure in RDB, ODB and XDB?

4 XML Databases

XML standard [17] first released in 1998 and last updated in 2006 has initiated
the great interest in XML Databases and NXDs.

R. P. Bourret summarizes and yet reconciles not only basic problems and
principles of native XML databases in [7]. In his article R. P. Bourret says: “...

Database Engineering from the Category Theory Viewpoint 43
Database Engineering from the Category Theory Viewpoint 7

the problem is practical, not teoretical ...” about the problem of arbitrary data
expressed in any data model. He also states “... in RDB there is an impractical
number of joins ...” in [6].

Another resource concluding the benefits of NXD usage [23] tries to list not
only the advantages but also the possible problems.

We will very shortly summarize here XML database technologies and in the
next section we will cover formal models for technological standards and data
models treated here. Three typical NXD representants are as follows: (1) One
of the most common NXD’s is eXist [16]. (2) Another very popular NXD from
Apache is called Xindice [45]. Oracle Berkeley XML DB is described at [33].

XML formal models and languages from the point of view of XML standard
are at least as follows. We could say the following list is an extension of XML
Data Models according to R. P. Bourret [7]. The majority of all treated models
are tree-based formal models and algebras.

– DOM — Document Object Model [40].
– SAX — Simple API for XML [28].
– Infoset [11].
– XPath [9].
– XQuery [18].
– XML-λ: functional approach to XML description [27].
– Most likely there are many other standard-based formalisms.

Next section reveals the formal background of stated standards and needed
relationships.

5 XML Databases Formal Models

A Formal Data Model and Algebra for XML [3] is the name of the article sug-
gesting a tree-based model as a formal data model for XML and as an algebra
for XML, an algebra based on such trees, i.e. essentially same structure as DOM
and the related.

XML Data Model as it is defined in XPath or XQuery is basically grasped
as a forrest of trees of nodes representing elements and attributes and texts
and other XML features mentioned in previous section. Many of the XML Data
Model facets are explained in XML infoset [11].

As an XML data model could be grasped DOM. Basically the formalism is
build on same terms as in case of XPath or XQuery. So from the CT point of
view it would be grasped as one formalism.

Sengupta and Mohan summarized in [35] the formalisms used to describe
data in XML format. They found these formalisms:

– Tree-based formalisms (XAlgebra, DOM and others).
– SAL — Semi-structured Algebra [4].
– The ENF — Element Normal Form concept: it is proved that attributes can

be avoided in cases of general description because every XML document with
attributes can be (without any information loss) transformed onto the XML
document variant without attributes and vice versa.

44 David Toth
8 Toth, D.

– HNR — Heterogeneous Nested Relations — also arise from NF2 (Non-first
normal form).

– HNRC — HNR Calculus — analogously to relational calculus.
– HNRA — HNR Algebra — analogously to relational algebra.
– DSQL — Document SQL — as an analogy to SQL.

For all of these we would like to find the proper meta-formal way of de-
scription in terms of CT; and finally find out the properties valid among these
categories.

XML Algebra based on monads is another interesting formalism [19]. But
this approach, this XML Algebra, lacks references and dereferences. The algebra
specified in [3] count on it and offer a way of how to solve this problem.

P. Wadler proposed several formal models. Especially formal semantics for
XSL [43], and semantics for XPath [44].

Future challenges would be to describe formalisms used for metamodels—
conceptual models and visualisations e.g. via UML.

Having in mind the extent of all this we will focus on just few factors from
the previous list in CT. We introduce CT in the next section.

6 The Category Theory Standpoint

This section deals with an introduction to CT and categorical description of
XML formal models defined above. Let us take a look at the word category
itself.

6.1 Three semantics of the word Category

Categories originally arose in mathematics out of the need of a formalism to de-
scribe the transformation from one type of mathematical structure to another.
Category represents a kind of mathematics. Barr and Wells [2] state then cate-
gory as a mathematical workspace.

A category is also a mathematical structure. It is then a generalization of
both ordered sets and monoids. Barr and Wells call it in this case category as a
mathematical structure.

Category as a theory is the third recognized point of view. Category can
be seen as a structure that formalizes a mathematican’s description of a type
of structure. Traditional way to do this in mathematics, in mathematical logic
respectively, is to use formal languages with rules, terms, axioms and equations.

We now define the term category more precisely. We will use the notation
and mathematical formalism used in [2] for the rest of this section.

6.2 Definition of a Category

Definition 1. A category C consists of objects (denoted by A,B, C, ...) and
morphisms between them (denoted by f : A → B, g : B → C, ...). These data

Database Engineering from the Category Theory Viewpoint 45
Database Engineering from the Category Theory Viewpoint 9

are subject to obvious axioms expressing composition, its associativity, and
existence of identity morphisms (units w.r.t. composition).

A paradigm category is the category Set of all sets and mappings. See [2] for
more details.

6.3 Definition of CCC, Connections to λ-Calculus

We define now the concept of a cartesian closed category (CCC). It is proved
in [26] that CCC’s are essentially the same thing as simply typed λ-calculus.
Altough the following definition is rather a technical, one may bear in mind that
the category Set forms a paradigm example of a CCC.

Definition 2. A category C is called a cartesian closed category (CCC) if it
satisfies the following:

(1) There is a terminal object 1.
(2) Each pair of objects A and B of C has a product A×B with projections

p1 : A×B → A and p2 : A×B → B.

(3) For every pair of objects A and B, there is an object [A → B] and an arrow
eval : [A → B]× A → B with the property that for any arrow f : C × A → B,
there is a unique arrow λf : C → [A → B] such that the composite

λf ×A

C ×A −−−−−→ [A → B] ×
eval

A −→ B

is f .
Note that we call an object 1 of a category C terminal iff there is exactly one

arrow A → 1 for each object A of C.
λ-calculus is one of the formal description of what is usually called an XML

data model. In [27], there is XML-λ approach to view XML. The typical point
of view of XML is a tree. But this approach emphasizes the notion of a function.
And there is a hypothesis that as functions or as trees we describe the same,
and that both kinds of description are of the same power. We will try to prove
this in future work. This proof will rely on what is stated above.

Related works involving Object Databases description using CT are [22] and
[25]. Altough it is not about the XML data model the principles of formal de-
scription are very similar.

Because of the λ-calculus is one of the formal description or precise point of
view of XML data model and because of what Lambek and Scott proved in their
work [26], the XML data model can be described as CCC. We would like to find
out if also other categories as descriptions of other formal models are also CCC.
The main idea is to determine if all the models are also essentially the same in
the sense of Lambek and Scott; which should be done in next work.

46 David Toth
10 Toth, D.

6.4 Proposed Descriptions based on Category Theory

The very first description we considered was the XML-λ approach. This approach
is an instance of the λ-calculus theory which, grasped as a category, is CCC [26].

Let G be a graph. As a graph we mean special case of oriented graph with
loops on nodes. The category CGraph of such graphs is defined as follows: Col-
lection of objects consists of all possible graphs G; Collection of arrows consists
of all graph homomorphisms φG. Identity arrows are isomorphisms of objects.
It is needed to be verified, that this mathematical structure is a category, but it
is obvious; we let this to the kind reader. Furthermore this category is CCC, as
is proved e.g. in [2]. This model, category CGraph, is actually a useful model for
object databases [25] when other aspects than object visibility are ignored. Ob-
jects in this category can be grasped as objects from object programming. But
as a model for XML databases it cannot be used because of the loops. When the
arrow is interpreted as a relation of nesting, element in XML document cannot
be nested into itself.

Let CTree be the category of trees (derived from the category above). Let
objects be trees and arrows tree homomorphisms. Again that it is a category is
needed to be verified as above. This category is not CCC. Because there would
needed to exist the terminal object with loop node. But such an object cannot
be interpreted as any XML document.

Let CHFS be the category of hereditary finite sets. All these sets can be
undrestood as ε-trees. This approach seems to be very promising and is currently
under development.

There are many other approaches which will be in detail covered in subse-
quent works.

7 Conclusions

We have shown that the database technology selection is in praxis mostly sub-
jective problem. There are few practical reasons which would lead us to develop
theoretical framework for data modeling.

We have stressed the natural evolution in software engineering from waterfall
to iterative database evolution approaches which still become more common.

We have discussed XML formal models and their properties.
The conclusions from CT applications are rather poor. But we tried to sum-

marize the database problems, existing solutions and we tried to offer another,
originial, approach.

Furthermore this work open the doors for further more specific research, using
very strong mathematical background. Next section reveals our future plans.

8 Future Works

Subsequent work will be focused on the question of essentiality of the RDB, ODB
and XDB models, their computational equivalence, expressive power of relative
languages and similar aspects.

Database Engineering from the Category Theory Viewpoint 47
Database Engineering from the Category Theory Viewpoint 11

In the near future we will try to categorify every formal model for XML data
which would be found.

In far future there is a huge space for using CT formalism to describe itself,
i.e. use the notion of categories of categories. And according to Lambek and
Scott [26] it seems to be possible use only one notation, one language and one
formalism, we mean CT of course, for all (types of) data models. We would like
to try to find out such a way of description of data models.

Next, in the future, not only XML databases and NXD will be described
using CT. But we would like to try to give formal basis for all data models. Good
example could be relational algebra and Crole’s way of categorical description
which should be further elaborated [12]; using categorical semantics. And there
are many other similar examples as an inspiration for future research activities.

References

1. S. W. Ambler. Mapping Objects to Relational Databases: O/R Mapping In Detail.
2006. http://www.agiledata.org/essays/mappingObjects.html.

2. M. Barr and C. Wells. Category Theory for Computing Science. International
Series in Computer Science. Prentice-Hall, 1990. Second edition, 1995.

3. D. Beech, A. Malhotra, and M. Rys. A formal data model and algebra for XML,
1999.

4. C. Beeri and Y. Tzaban. SAL: An algebra for semistructured data and XML. In
WebDB (Informal Proceedings), pages 37–42, 1999.

5. R. P. Bourret. Mapping DTDs to databases, 2001.
http://www.xml.com/lpt/a/2001/05/09/dtdtodbs.html.

6. R. P. Bourret. Going native: Making the case for XML databases, 2005.
http://www.xml.com/pub/a/2005/03/30/native.html.

7. R. P. Bourret. XML and databases, 2005.
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

8. R. P. Bourret. XML database products, 2007.
http://www.rpbourret.com/xml/XMLDatabaseProds.htm.

9. D. Chamberlin, A. Berglund, and e. a. Scott Boag. XML Path Language (XPath)
2.0, September 2005. http://www.w3.org/TR/xpath20/.

10. E. F. Codd. The relational model for database management: version 2. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

11. J. Cowan and R. Tobin. XML information set (second edition), April 2004.
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

12. R. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cambridge
University Press, 1993.

13. C. J. Date. An Introduction to Database Systems. Addison-Wesley Publishing Co.,
Inc., 2003. 8th ed.

14. db4objects — Open Source ODBMS. http://www.db4o.com.
15. Sparx’s Systems Enterprise Architect UML CASE Tool.

http://www.sparxsystems.com.
16. eXist — Open Source Native XML Database, Home Page.

http://exist.sourceforge.net.
17. Extensible Markup Language (XML) 1.0 (Fourth Edition), 2006.

http://www.w3.org/XML.

48 David Toth
12 Toth, D.

18. M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and
XPath 2.0 Data Model, September 2005.
http://www.w3.org/TR/xpath-datamodel/.

19. M. Fernandez, J. Simeon, and P. Wadler. A semi-monad for semi-structured data.
Lecture Notes in Computer Science, 1973, 2001.

20. L. M. Fussel. Foundations of Object Relational Mapping. http://www.chimu.com.
21. GemStone/S ODB. http://www.gemstone.com/products/smalltalk.
22. J. Güttner. Object Databases and the Semantic Web. PhD thesis, 2004.
23. E. R. Harold. Managing XML data: Native XML databases, 2005.

http://www.ibm.com/developerworks/xml/library/x-mxd4.html.
24. Hibernate — Java and .NET persistence framework. http://www.hibernate.org.
25. P. Kolenč́ık. Categorical Framework for Object-Oriented Database Model. PhD

thesis, 1998.
26. J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic. Cam-

bridge University Press, March 1988.
27. P. Loupal. Querying XML with lambda calculi. In Ph.D. Workshop, VLDB2006,

2006.
28. D. Megginson. SAX – Simple API for XML, 2005. http://www.saxproject.org/.
29. NeoDatis ODB.

http://wiki.neodatis.org.
30. Object Management Group (OMG). MDA — Model Driven Architecture, 2007.

http://www.omg.org/mda.
31. Object Management Group (OMG). UML — Unified Modeling Language, 2007.

http://www.uml.org.
32. ODBMS — Object And Object Oriented Database Management Systems.

http://www.odbms.org.
33. Oracle Berkeley XML DB, home page.

http://www.oracle.com/database/berkeley-db/xml/index.html.
34. SEN — Sigsoft Software Engineering Notes.

http://www.sigsoft.org/SEN/surfing.html.
35. A. Sengupta and S. Mohan. Formal and conceptual models for xml structures -

the past, present, and future, 2003.
36. SIGSOFT — ACM’s Special Interest Group, dedicated to Software Engineering.

http://www.sigsoft.org.
37. S. Staken. Introduction to Native XML Databases. 2001.

http://www.xml.com/pub/a/2001/10/31/nativexmldb.html.
38. Sun Microsystems, Inc. Java architecture for XML binding (JAXB), 2003.

http://java.sun.com/webservices/jaxb/.
39. SWEBOK — Software Engineering Body Of Knowledge. http://www.swebok.org.
40. The W3C Consortium. Document Object Model (DOM), 2005.

http://www.w3.org/DOM/.
41. D. Toth and P. Loupal. Metrics analysis for relevant database technology selection.

In Objekty, 2007.
42. D. Toth and M. Valenta. Using Object And Object-Oriented Technologies for

XML-native Database Systems. In J. Pokorný, V. Snášel, and K. Richta, editors,
DATESO, CEUR Workshop Proceedings. CEUR-WS.org, 2006.

43. P. Wadler. A formal model of pattern matching in XSL. Technical report, 1999.
44. P. Wadler. Two semantics for xpath, 1999.
45. Apache Xindice, Home Page. http://xml.apache.org/xindice/.
46. XML Main Page. http://www.w3.org/XML.

Tensor Decomposition for 3D Bars Problem

Jan Platoš, Jana Koč́ıbová, Pavel Krömer, Pavel Moravec, Václav Snášel

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic {jan.platos,

jana.kocibova.st1, pavel.kromer.fei, pavel.moravec, vaclav.snasel}@vsb.cz

Tensor Decomposition for 3D Bars Problem

Jan Platoš, Jana Kočı́bová, Pavel Krömer, Pavel Moravec, Václav Snášel

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

Abstract. In this paper, we compare performance of several dimension reduction
techniques, namely SVD, NMF and SDD.The qualitative comparison is evaluated
on a collection of bars. We compare the quality of these methods from on the base
of the visual impact. We also compare dimension reduction techniques SVD and
HO-SVD on tensors - 3D bars.

1 Introduction

In order to perform object recognition (no mater which one) it is necessary to learn rep-
resentations of the underlying characteristic components. Such components correspond
to object-parts, or features. These components can occur in different configurations to
form many distinct images. Identifying the underlying components which are combined
to form images is thus essential for learning the perceptual representations necessary for
performing object recognition.

The application area of feature extraction on binary datasets addresses many prob-
lem areas, such as association rule mining, itemsets used for market basket analysis,
discovery of regulation patterns in DNA microarray experiments, etc. For simplicity
sake we used the well-known bars problem (see e.g. [2]), where we try to isolate sepa-
rate horizontal and vertical bars from images containing their combinations.

In this paper we will concentrate on the last category – other feature extraction
methods which use known dimension reduction techniques and clustering for automatic
feature extraction.

In this paper we will use the bars collection as a benchmark collection. The bars
problem (and its variations) is a benchmark task for the learning of independent image
features (Föildiák [2]; Spratling [6];). In the standard version of the bars problem, as
defined by Föildiák [2], training data consists of 8 by 8 pixel images in which each
of the 16 possible (one-pixel wide) horizontal and vertical bars can be present with a
probability of 1

8 . Typical examples of training images are shown in Figure 1.
One of the well-known methods of feature extraction is the singular value decom-

position (SVD) which was already successfully used for automatic feature extraction.
We extended the bars problem to 3 dimensions, using planes instead of lines. The

input cube contains several planes, which may or may not be parallel to x, y and z axes.
The straightforward approach to image indexing is to transform the 2D images into

a single vector. This is often done by concatenating all the rows of an image into a
single image vector [7] (although a more sophisticated method can be used). We will
use similar approach for 3D bars and classic SVD, combining two dimensions into one,

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 49–60, ISBN 978-80-248-1746-0.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2008.

50 Jan Platoš, Jana Koč́ıbová, Pavel Krömer, Pavel Moravec, Václav Snášel

so that we can compare the original and reconstructed matrices based on the visual
impact and Frobenius norm.

The rest of this paper is organized as follows. The second section explains dimen-
sion reduction methods, which were used for classic 2D bars problem. The third section
mentions CubeSVD, which was originaly used for the 3D bars problem. Then in the
fourth section we describe experimental results and finally in the section five we made
some conclusions.

2 Dimension Reduction

We used four promising methods of dimension reduction for our comparison – Singular
Value Decomposition (SVD), Semi-Discrete Decomposition (SDD) and Non-negative
Matrix Factorization (NMF). All of them are briefly described bellow.

2.1 Singular Value Decomposition

SVD [1] is an algebraic extension of classical vector model. It is similar to the PCA
method, which was originally used for the generation of eigenfaces in image retrieval.
Informally, SVD discovers significant properties and represents the images as linear
combinations of the base vectors. Moreover, the base vectors are ordered according
to their significance for the reconstructed image, which allows us to consider only the
first k base vectors as important (the remaining ones are interpreted as ”noise” and
discarded). Furthermore, SVD is often referred to as more successful in recall when
compared to querying whole image vectors [1].

Formally, we decompose the matrix of images A by singular value decomposition
(SVD), calculating singular values and singular vectors of A.

We have matrix A, which is an n × m rank-r matrix (where m ≥ n without loss
of generality) and values σ1, . . . , σr are calculated from eigenvalues of matrix AAT

as σi =
√

λi. Based on them, we can calculate column-orthonormal matrices U =
(u1, . . . , un) and V = (v1, . . . , vn), where UT U = In a V T V = Im, and a diagonal
matrix Σ = diag(σ1, . . . , σn), where σi > 0 for i ≤ r, σi ≥ σi+1 and σr+1 = · · · =
σn = 0.
The decomposition

A = UΣV T (1)

is called singular decomposition of matrix A and the numbers σ1, . . . , σr are singular
values of the matrix A. Columns of U (or V) are called left (or right) singular vectors
of matrix A.

Now we have a decomposition of the original matrix of images A. We get r nonzero
singular numbers, where r is the rank of the original matrix A. Because the singular
values usually fall quickly, we can take only k greatest singular values with the cor-
responding singular vector coordinates and create a k-reduced singular decomposition
of A.

Let us have k (0 < k < r) and singular value decomposition of A

A = UΣV T ≈ Ak = (UkU0)

(
Σk 0
0 Σ0

) (
V T

k

V T
0

)
(2)

Tensor Decomposition for 3D Bars Problem 51

We call Ak = UkΣkV T
k a k-reduced singular value decomposition (rank-k SVD).

Instead of the Ak matrix, a matrix of image vectors in reduced space Dk = ΣkV T
k is

used in SVD as the representation of image collection. The image vectors (columns in
Dk) are now represented as points in k-dimensional space (the feature-space). represent
the matrices Uk, Σk, V T

k .

2.2 Semi-discrete Decomposition

The SDD is one of other LSI methods, proposed recently for text retrieval in [3]. As
mentioned earlier, the rank-k SVD method (called truncated SVD by authors of semi-
discrete decomposition) produces dense matrices U and V , so the resulting required
storage may be even larger than the one needed by the original term-by-document ma-
trix A.

To improve the required storage size and query time, the semi-discrete decomposi-
tion was defined as

A ≈ Ak = XkDkY T
k , (3)

where each coordinate of the matrices Xk and Yk is constrained to have entries from the
set ϕ = {−1, 0, 1}, and the matrix Dk is a diagonal matrix with positive coordinates.

The SDD does not reproduce A exactly, even if k = n, but it uses very little storage
with respect to the observed accuracy of the approximation. A rank-k SDD (although
from mathematical standpoint it is a sum on rank-1 matrices) requires the storage of
k(m + n) values from the set {−1, 0, 1} and k scalars. The scalars need to be only
single precision because the algorithm is self-correcting. The SDD approximation is
formed iteratively.

The optimal choice of the triplets (xi, di, yi) for given k can be determined using
greedy algorithm, based on the residual Rk = A−Ak−1 (where A0 is a zero matrix).

2.3 Non-negative Matrix Factorization

The NMF [5] method calculates an approximation of the matrix A as a product of two
matrices, W and H . The matrices are usually pre-filled with random values (or H is
initialized to zero and W is randomly generated). During the calculation the values in
W and H stay positive. The approximation of matrix A, matrix Ak, can be calculated
as Ak = WH .

The original NMF method tries to minimize the Frobenius norm of the difference
between A and A′

k using min
W,H

||V −WH||2F as the criterion in the minimization prob-

lem.
Recently, a new method was proposed in [6], where the constrained least squares

problem min
Hj

{||Vj − WHj ||2 − λ||Hj ||22} is the criterion in the minimization

problem. This approach is yields better results for sparse matrices.
Unlike in SVD, the base vectors are not ordered from the most general one and we

have to calculate the decomposition for each value of k separately.

52 Jan Platoš, Jana Koč́ıbová, Pavel Krömer, Pavel Moravec, Václav Snášel

Fig. 1. Some more complex 2D bars

3 3D Theory

A tensor is a higher order generalization of a vector. Vector is a first order tensor and
a matrix is a second order tensor. The order of a tensor A ∈ RI1×I2×···×IN is N.
Elements of A is denoted as ai1...in...iN

where 1 ≤ in ≤ IN . Two basic operations
are for calculation of CubeSVD: the unfolding of a tensor A

(
A(n)

)
and the mode-n

product of a tensor A and matrix M
(
A×(n) M

)
.

The operation unfolding unfolds the tensor A into matrix A(n) along order N. Each
column of tensorA(n) is composed of ai1...in...iN

where in varies and the order indices
are fixed. The operations unfolding are illustrated in Figure 2 for third order tensor. See
[4] for details on operation unfolding of a tensor A.

The n-mode product of a tensor A ∈ RI1×I2×···×IN by a matrix M ∈ RJn×In is
an I1 × I2 × · · · × In−1 × Jn × In+1 × · · · × IN -tensor of which the entries are given
by

(A×n M)i1···in−1jnin+1···iN
=

∑
in

ai1···in−1inin+1···iN
mjnin

See [4] for details on operation mode-n product of a tensor A and matrix M.
Matrix SVD can be rewritten as A = Σ ×1 V (1) ×2 V (2) in terms of n-mode

products. CubeSVD is a generalization of SVD and was described in [4]. Tensor A can
be written as the n-mode product [4]

A = S ×1 V1 ×2 V2 ×3 · · · ×N VN

as illustrated in Figure 3 for N = 3.
S is called core tensor. S is in general a full tensor, instead of being pseudodiagonal

(this would mean that nonzero elements could only occur when the indices i1 = i2 =
· · · = iN). S has the property of all-orthogonality [4]. V\ contains the orthonormal
vectors. They called n-mode singular vectors. The Frobenius-norms ‖Sin=i‖ are n-
mode singular values of A. Their order is

‖Sin=1‖ ≥ ‖Sin=2‖ ≥ · · · ≥ ‖Sin=In‖ ≥ 0

4 Experimental Results - 2D Bars

For testing of above mentioned methods, we used generic collection of 1600 32 × 32
black-and-white images containing different combinations of horizontal and vertical
lines (bars). The probabilities of bars to occur in images were the same and equal to

Tensor Decomposition for 3D Bars Problem 53

Fig. 2. Unfolding of third order of a tensor A

Fig. 3. Order-3 Singular Value Decomposition A

10/64, i.e. images contain 10 bars in average. An example of several images from
generated collection is shown in Figure 4.

Many of tested methods were able to generate a set of base images or factors, which
should ideally record all possible bar positions. However, not all methods were truly
successful in this.

With SVD, we obtain classic singular vectors, the most general being among the
first. The first few are shown in Figure 5. We can se, that the bars are not separated and
different shades of gray appear.

54 Jan Platoš, Jana Koč́ıbová, Pavel Krömer, Pavel Moravec, Václav Snášel

Fig. 4. Some generated images from bars collection

Fig. 5. First 64 base images – SVD method

The NMF methods yield different results. The original NMF method, based on the
adjustment of random matrices W and H provides hardly-recognizable images even for

Tensor Decomposition for 3D Bars Problem 55

Fig. 6. First 64 factors – original NMF method

Fig. 7. First 64 factors for GD-CLS NMF method (0.01)

k = 100 and 1000 iterations (we used 100 iterations for other experiments). Moreover,
these base images still contain significant salt and pepper noise and have a bad contrast.

56 Jan Platoš, Jana Koč́ıbová, Pavel Krömer, Pavel Moravec, Václav Snášel

Fig. 8. First 64 base vectors – SDD method

The factors are shown in Figure 6. We must also note, that the NMF decomposition will
yield slightly different results each time it is run, because the matrix(es) are pre-filled
with random values.

The SDD method differs slightly from previous methods, since each factor contains
only values {−1, 0, 1}. Gray in the factors shown in Figure 8 represents 0; −1 and 1
are represented with black and white respectively.

The base vectors in Figure 8 can be divided into three categories:

1. Base vectors containing only one bar.
2. Base vectors containing one horizontal and one vertical bar.
3. Other base vectors, containing several bars and in some cases even noise.

5 Experimental result - 3D Bars

For testing of CubeSVD method, we use several collections of 8× 8× 8 3-dimensional
cubes. We create 2 types of test collections. The first type contains 2 collections with
15 cubes each which were used for local feature extraction (each cube was decomposed
separately). The first collection contains cubes which are crossed by 2 perpendicular
planes (Figure 9a). The second collection contains cubes crossed by 3 planes - 2 perpen-
dicular and 1 skewed (Figure 9b). The resulting number of singular values was between
1 and 8 (full CubeSVD).

The second type contains 4 collections with 1000 cubes each which were used for
collection-based feature extraction. The first collection contains cubes with one skewed

Tensor Decomposition for 3D Bars Problem 57

Fig. 9. Collections for local features extraction. (a) is example from first collection, (b) is example
from second collection

plane, second collection contains cubes with 2 skewed planes and so on. Example cubes
for each collection is depicted in Figure 10.

As a measure for comparing similarity between original and reduced cubes we used
the Frobenius norm (without calculating the square root)

F 2(O,R) =
∑

i

∑
j

∑
k

(O[i, j, k]−R[i, j, k])2

5.1 Local feature extraction

In the first experiment we applied CubeSVD and SVD algorithm on the first two collec-
tions for extracting local features. Results for the first collection with 2 perpendicular
planes are depicted in Figure 11 for 6 singular values and are depicted on Figure 12 for
2 singular values. Values of Frobenius norm are shown in tables 1 and 2.

It can be seen CubeSVD extracts all of the original bars in Figure 11, while the
SVD with the same rank ignored one of the bars, while reconstructing the other two
more sharply. This is even more visible in Figure 12, where all bars in CubeSVD are
slightly recorded, but classic SVD reconstructs one of the bars perfectly, adding noise
to other areas. We see, that this behavior leads to lower Frobenius norm in Tables 1 and
2 for th classic SVD, which satisfies the condition that the value for SVD should be
minimal for given rank k.

6 Conclusion

Since the CubeSVD method provided only one singular value for planes parallel to the
axes, which was to be expected, the experiments were done on planes both perpendicu-
lar and skewed.

58 Jan Platoš, Jana Koč́ıbová, Pavel Krömer, Pavel Moravec, Václav Snášel

Fig. 10. Collections for collection-based features extraction

It seems, that the original SVD performed better than CubeSVD, based on the
Frobenius norm, but the visual inspection of reduced tensors shows the reason – whilst
the horizontal bars were reconstructed nearly perfectly, the vertical ones deteriorated
more quickly. On the other hand, the CubeSVD tried to minimize the overall error.

We are currently studying the collection-based feature extraction of 3D bars, where
the number of singular values ranges from 1 to 512 for 8× 8× 8 cubes, compared to 8
singular values for high-order SVD. The classic SVD results for 1 to 8 singular values
mentioned in previous section are not satisfactory.

We are currently extending our CubeSVD implementation to support tensors of 4
and mode dimensions and preparing to test the High-order SDD and NMF methods
against their 2D counterparts.

Tensor Decomposition for 3D Bars Problem 59

Fig. 11. Results for first collection and 6 singular values

Fig. 12. Results for first collection and 2 singular values

References

1. M. Berry, S. Dumais, and T. Letsche. Computational Methods for Intelligent Information
Access. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference, San Diego,
California, USA, 1995.

2. P. Földiák. Forming sparse representations by local anti-Hebbian learning. Biological cyber-
netics, 64:22, pages 165–170, 1990.

3. T. G. Kolda and D. P. O’Leary. Computation and uses of the semidiscrete matrix decomposi-
tion. In ACM Transactions on Information Processing, 2000.

4. L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilinear singular value decomposition.
SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

5. F. Shahnaz, M. Berry, P. Pauca, and R. Plemmons. Document clustering using nonnegative
matrix factorization. Journal on Information Processing and Management, 42:373–386, 2006.

60 Jan Platoš, Jana Koč́ıbová, Pavel Krömer, Pavel Moravec, Václav Snášel

Table 1. Cumulative Frobenius norm for first collection

Method CubeSVD SVD
K=1 1484.31 735
K=2 1356.21 630
K=3 1304.02 525
K=4 1169.81 420
K=5 976.62 315
K=6 708.54 210
K=7 379.29 105
K=8 0 0

Table 2. Cumulative Frobenius norm for second collection

Method CubeSVD SVD
K=1 1768.84 1045.91
K=2 1587.14 854.01
K=3 1489.88 677.87
K=4 1340.44 514.32
K=5 1091.12 364.01
K=6 813.81 228.41
K=7 438.31 102.49
K=8 0 0

6. M. W. Spratling. Learning Image Components for Object Recognition. Journal of Machine
Learning Research, 7:793–815, 2006.

7. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience,
3(1):71–86, 1991.

Developing Genetic Algorithms for Boolean
Matrix Factorization

Václav Snášel, Jan Platoš, Pavel Krömer

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

{vaclav.snasel, jan.platos, pavel.kromer.fei}@vsb.cz

Developing Genetic Algorithms for Boolean

Matrix Factorization

Václav Snášel, Jan Platoš, and Pavel Krömer

Department of Computer Science, FEI, VSB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

{vaclav.snasel, jan.platos, pavel.kromer.fei}@vsb.cz

Abstract. Matrix factorization or factor analysis is an important task
helpful in the analysis of high dimensional real world data. There are sev-
eral well known methods and algorithms for factorization of real data but
many application areas including information retrieval, pattern recogni-
tion and data mining require processing of binary rather than real data.
Unfortunately, the methods used for real matrix factorization fail in the
latter case. In this paper we introduce background and initial version of
Genetic Algorithm for binary matrix factorization.

Keywords: binary matrix factorization, genetic algorithms

1 Introduction

Many applications in computer and system science involve analysis of large scale
and often high dimensional data. When dealing with such extensive information
collections, it is usually very computationally expensive to perform some oper-
ations on the raw form of the data. Therefore, suitable methods approximating
the data in lower dimensions or with lower rank are needed. In the following,
we focus on the factorization of two-dimensional binary data (matrices, second
order tensors).

The paper is structured as follows: first, a brief introduction to matrix factor-
ization is given. In the following section, the basics of Evolutionary and Genetic
Algorithms are presented. The rest of the paper brings description of Genetic
Binary Matrix Factorization and summarizes performed computer experiments
and conclusions drawn from them.

2 Matrix Factorization

Matrix factorization (or matrix decomposition) is an important task in data
analysis and processing. A matrix factorization is the right-side matrix product
in

A ≈ F1 · F2 · . . . · Fk (1)

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 61–70, ISBN 978-80-248-1746-0.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2008.

62 Václav Snášel, Jan Platoš, Pavel Krömer

for the matrix A. The number of factor matrices depends usually on the require-
ments of given application area. Most often, k = 2 or k = 3. There are several
matrix decomposition methods reducing data dimensions and simultaneously
revealing structures hidden in the data. Such methods include Singular Value
Decomposition (SVD) and Non-negative Matrix Factorization (NMF), which is
our subject of interest in this research.

2.1 Non-negative matrix factorization

Non-negative matrix factorization (NMF) [1, 7] is recently very popular unsuper-
vised learning algorithm for efficient factorization of real matrices implementing
the non-negativity constraint. NMF approximates real m× n matrix A as a
product of two non-negative matrices W and H of the dimensions m × r and
r × n respectively. Moreover, it applies that r << m and r << n.

A ≈ W · H (2)

There are several algorithms for NMF computation based on iterative minimiza-
tion of given cost function [7]. The original NMF algorithm involved minimiza-
tion of the Frobenius norm [10] defined by formulae (3).

‖A − WH‖
2

F =
∑

ij

|Aij − (WH)ij |
2

(3)

Other investigated cost measures include square of the Euclidean distance be-
tween V and its approximation (4) or Kullback-Leibler divergence D (5). For
every cost function, there are update rules (multiplicative or additive) applied
iteratively in order to reduce the distance between original matrix V and its
model [7, 10].

‖A − WH‖
2

=
∑

ij

(Aij − (WH)ij) (4)

D(A ‖ WH) =
∑

ij

(Aij log
Aij

Bij

− Aij + Bij) (5)

Promising recent NMF algorithms are based on Gradient Descent Methods
(GDM) or, extending the GDM, on Alternating Least Square computation [1,
10]. NMF was reported to give good results in extracting features or concepts
from processed data. Unfortunately, the common NMF algorithms excelling in
NMF computation for real valued matrices are unsuitable for efficient factoriza-
tion of binary matrices.

2.2 Boolean matrix factorization

Boolean matrix factorization (BMF) or Boolean factor analysis is the factoriza-
tion of data sets in binary (1, 0) alphabet based on Boolean algebra. Boolean

Developing Genetic Algorithms for Boolean Matrix Factorization 63

factor analysis is extremely important in computer applications since the natural
data representation for computerized processing is binary. Binary factorization
finds its application in data mining, information retrieval, pattern recognition,
image processing or data compression [5].

The BMF can be defined in a similar manner as NMF [11, 12, 14]. Consider
binary1 matrix A of the dimension m × n as a Boolean product of two binary
matrices W and H of the dimensions m × r and r × n respectively. Let r be a
subject to r << m and r << n. Then, BMF is searching for best W and Hthat
approximate A:

A ≈ W ⊗ H (6)

where ⊗ stands for Boolean matrix multiplication.
The appeal of BMF lies in the fact that computerized data are binary in its

essence and BMF is intensively investigated.
Keprt [5, 6] introduced BMF algorithms based on formal concepts and blind

search. Meeds [8] et al. presented BMF model for factorization of dyadic data,
however, Meeds’ decomposition features one non-binary (integer) factor.

3 Evolutionary Algorithms

Evolutionary algorithms (EA) are family of iterative stochastic search and op-
timization methods based on mimicking successful optimization strategies ob-
served in nature [2–4, 9]. The essence of EAs lies in the emulation of Darwinian
evolution utilizing the concepts of Mendelian inheritance for the use in computer
science and applications [2]. Together with fuzzy sets, neural networks and frac-
tals, evolutionary algorithms are among the fundamental members of the class
of soft computing methods.

EA operate with population (also known as pool) of artificial individuals
(referred often as items or chromosomes) encoding possible problem solutions.
Encoded individuals are evaluated using objective function which assigns a fit-
ness value to each individual. Fitness value represents the quality (ranking) of
each individual as solution of given problem. Competing individuals search the
problem domain towards optimal solution [4].

For the purpose of EAs, a proper encoding representing solutions of given
problem as encoded chromosomes suitable for evolutionary search process, is
necessary. Finding proper encoding is non-trivial problem dependent task af-
fecting the performance and results of evolutionary search while solving given
problem. The solutions might be encoded into binary strings, real vectors or
more complex, often tree-like, hierarchical structures, depending on the needs of
particular application.

The iterative phase of evolutionary search process starts with an initial popu-
lation of individuals that can be generated randomly or seeded with potentially
good solutions. Artificial evolution consists of iterative application of genetic

1 Matrix A is binary iff ∀ij : [a]ij = 0 ∨ [a]ij = 1

64 Václav Snášel, Jan Platoš, Pavel Krömer

operators (selection, crossover, mutation), introducing to the algorithm evolu-
tionary principles such as inheritance, survival of the fittest and random per-
turbations. Current population of problem solutions is modified with the aim to
form new and hopefully better population to be used in next generation. Iter-
ative evolution of problem solutions ends after satisfying specified termination
criteria and especially the criterion of finding optimal solution. After terminat-
ing the search process, evolution winner is decoded and presented as the most
optimal solution found.

EAs are successful general adaptable concept with good results in many ar-
eas. The class of evolutionary techniques consists of more particular algorithms
having numerous variants, forged and tuned for specific problem domains. The
family of evolutionary algorithms consists of genetic algorithms, genetic pro-
gramming, evolutionary strategies and evolutionary programming.

3.1 Genetic algorithms

Genetic algorithms (GA) introduced by John Holland and extended by David
Goldberg are wide applied and highly successful EA variant. Basic workflow of
originally proposed standard generational GA is:

I. Define objective function
II. Encode initial population of possible solutions as fixed length binary strings

and evaluate chromosomes in initial population using objective function
III. Create new population (evolutionary search for better solutions):

a. Select suitable chromosomes for reproduction (parents)
b. Apply crossover operator on parents with respect to crossover probability

to produce new chromosomes (offspring)
c. Apply mutation operator on offspring chromosomes with respect to mu-

tation probability. Add newly constituted chromosomes to new popula-
tion

d. Until the size of new population is smaller than size of current population
go back to a.

e. Replace current population by new population
IV. Evaluate current population using objective function
V. Check termination criteria; if not satisfied go back to III.

There are variants of standard generational GA. The differences are mostly
in particular selection, crossover, mutation and replacement strategy [4].

4 Genetic Binary Matrix Factorization

In this paper, we to propose a Genetic Algorithm for Binary Matrix Factorization
(Genetic BMF - GBMF). For that, we first analzye the factors that are to be
found by the algorithm and define an algorithm suggesting initial values of the
factors.

Developing Genetic Algorithms for Boolean Matrix Factorization 65

4.1 Binary factors

The factors W and H found by NMF algorithm by Lee and Seung can be straight-
forwardly interpreted. Columns of W are basis vectors of column space of A and
columns of H are weights associated with the base vectors. In order to find out
interpretation of the matrix factorization task for GA which might be different,
consider a graph-like representation of a matrix:

A =

1 1 0
0 1 0
1 1 0

 ≡ G ≈ WH =

1 0
0 1
0 0

(

1 1 0
0 1 0

)

≡ G′ (7)

Then, the factorization can be seen as a task of finding tripartite graph G′

that will exclusively preserve the arcs between the pairs of ‘edge’ vertices from
G in the form of a two step long paths through a ‘middle layer’. Intuitively, the
number of vertices in middle layer corresponds to r in NMF. The graphs G and
G′ from 7 can be depicted as follows:

When adopting this notion of Boolean matrix factorization, the interpreta-
tion of factors W and H slightly differs from the interpretation of NMF factors.
The rows of H are base vectors of row space of A and rows of W are associated
weights.

4.2 Constructive algorithm for suggesting base vectors of boolean
matrix row space (CAS)

In order to provide the genetic algorithm with better than random initial popu-
lation, a constructive algorithm for suggesting base vectors of matrix row space
is defined:

I. Compute the cardinality (number of 1 elements) of the rows of A; divide
rows of A to classes AC per cardinality. Let W and H be ’empty’. Let k = 0.

II. Randomly pick up row AC
i from the row class with lowest cardinality. Let

j = 0.
III. For base row hj in H :

a. Check whether hj is covered2 by AC
i . If not, attach AC

i to H as hk, and
set W [i, k] = 1. Increase k and go back to II. In case hj is covered by
AC

i , go to II.
b. Let W [i, j] = 1. Let AC

i = AC
i - wj .

c. If AC
i is not zero vector, go back to II.

The rows of the matrix A can be then constructed using linear combinations
of the rows of H .
2 i.e. hj − AC

i = o where o = (0, 0, . . . , 0) is zero vector.

66 Václav Snášel, Jan Platoš, Pavel Krömer

4.3 Genetic algorithm for binary matrix factorization

We propose a genetic algorithm for BMF. It will exploit the initial factors
constructed using the algorithm introduced in previous section. The objective
function will be Hamming distance between reconstructed and original matrix.
Crossover will aim to modify weights factor (matrix W) and mutation will pri-
marily aim to alter basis vectors (matrix H). The algorithm can be summarized
as follows:

I. Create initial population of N (WH) chromosomes and evaluate
II. Evolve population

a. Select suitable chromosomes for reproduction (parents)
b. Apply crossover on matrix W of selected parents.
c. With very small probability, mutate W

d. Mutate H

e. Migrate offspring chromosomes to population
III. Evaluate current population using objective function
IV. Check termination criteria; if not satisfied go back to II.

The evaluation of chromosomes in population is implemented as comparison of
original matrix V to the product of W and H . The fitness function is based on
Euclidean distance between V and WH :

f =
1

√

∑

i

∑

j(V [i, j] − WH [i, j])2
(8)

The termination criteria were based on specified threshold defining minimum
acceptance of evolved solution and maximum number of generations processed.
The maximu number of generations was se to 1000 and the minimum acceptance
0.3.

In this way, the algorithm explores different combinations of base vectors (via
crossover) and simultaneously adjust the base vector suggestions. Evolutionary
principles will be applied and the factor interpretation maintained.

5 Experimental Algorithm Evaluation

This section provides summary on computer experiments conducted in order to
verify proposed algorithms.

5.1 Evaluation of CAS algorithm

In 4.2 was defined a constructiove algorithm to suggest base vectors for initial
matrix factors. We have compared the average error obtained after using random
initial factors and initial factors suggested by CAS for several random square
matrices. For every matrix dimension n, we have computed the average error
(i.e. Hamming distance) between original matrix and its reconstruction. The

Developing Genetic Algorithms for Boolean Matrix Factorization 67

Table 1. Comparing average error of random initial factors and CAS suggested initial
factors .

N Random CAS

32 513, 82 216
64 2047, 49 915
128 8195, 1 3809
256 32775, 3 15492
512 131070 63268

Fig. 1. The comparison of Random initial error and CAS initial error.

dimension was reduced to n
2

and the experiment was repeated 100 times for
each n.

Obviously, the error produced by random initial factors is aproximately twice
as big as the error obtained when using CAS initial factors.

5.2 Evaluation of GBMF algorithm

GBMF was implemented and run for some testing binary matrices. Black and
white images were chosen as representation of input and output binary matrices
for the ease of visual interpretatin of the results.

In all cases, GBMF was run with the following parameters: a population of
50 prospective factors, probability of crossover 0.9 and probability of mutation
0.2. GBMF was executed for 5000 generations.

The algorithm was first tested on a set of bar images. Testing bar images
contained white background and black bars – vertical or horizontal lines gener-

68 Václav Snášel, Jan Platoš, Pavel Krömer

ated with certain probability (0.2 for horizontal bar and 0.3 for vertical bar).
The dimension of testing images was 15 × 25 pixels.

Initially, a small collection of 6 bar images (shown in figure 5.2) was processed
by the algorithm to reduce its dimension to 3.

Fig. 2. Input bar images.

Fig. 3. Reconstructed bar images.

Fig. 4. Obtained base images.

Next, the progam was used to process in the same way a collection of 25 face
images taken from the facial expression collection. The images were transformed
from grayscale original to black and white (so they could be interpreted as binary
matrices). The dimension of testing images was 19 × 19 pixels.

In both cases delivered the algorithm a set of images (i.e. matrices) which
clearly share some elements with the original input. Albeit some base images were
obtained, they did not contain distinguished features as for instance when using
NMF for non-binary matrices. Moreover, the black and white images used for
algorithm evaluation are not typical real world binary matrices. Also both binary
and real-valued pseudorandom matrices do not contain features significant for
matrices describing real world phenomena (i.e. in economics, physics etc.).

6 Conclusions and Future Work

In this paper, we have introduced initial version of a genetic algorithm for binary
matrix factorization. In order to define Genetic Algorithm oriented approach to

Developing Genetic Algorithms for Boolean Matrix Factorization 69

Fig. 5. Input face images.

Fig. 6. Reconstructed face images.

Fig. 7. Obtained base faces.

BMF, an interpretation of binary factors was presented. Next, an algorithm for
lossless BMF was used to create initial binary factors. Genetic BMF was defined,
implemented and applied on first sample problems. In the future, we will focus on
tuning the GBMF mplementation and evaluation of the algorithm on real world
binary matrices. Some matrix properties such as sparsity might be exploited for
algorithm modification.

70 Václav Snášel, Jan Platoš, Pavel Krömer

References

1. Michael W. Berry, Murray Browne, Amy N. Langville, Paul V. Pauca, and
Robert J. Plemmons. Algorithms and applications for approximate nonnegative
matrix factorization.

2. Ulrich Bodenhofer. Genetic Algorithms: Theory and Applications. Lecture notes,
Fuzzy Logic Laboratorium Linz-Hagenberg, Winter 2003/2004.

3. Mehrdad Dianati, Insop Song, and Mark Treiber. An introduction to genetic algo-
rithms and evolution strategies. Technical report, University of Waterloo, Ontario,
N2L 3G1, Canada, July 2002.

4. Gareth Jones. Genetic and evolutionary algorithms. In Paul von Rague, editor,
Encyclopedia of Computational Chemistry. John Wiley and Sons, 1998.

5. Ales Keprt. Using blind search and formal concepts for binary factor analysis. In
Václav Snásel, Jaroslav Pokorný, and Karel Richta, editors, DATESO, volume 98
of CEUR Workshop Proceedings, pages 128–140. CEUR-WS.org, 2004.

6. Ales Keprt and Václav Snásel. Binary factor analysis with help of formal concepts.
In Václav Snásel and Radim Belohlávek, editors, CLA, volume 110 of CEUR Work-

shop Proceedings. CEUR-WS.org, 2004.
7. Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix fac-

torization. In NIPS, pages 556–562, 2000.
8. Edward Meeds, Zoubin Ghahramani, Radford M. Neal, and Sam T. Roweis. Mod-

eling dyadic data with binary latent factors. In B. Schölkopf, J. Platt, and T. Hoff-
man, editors, Advances in Neural Information Processing Systems 19, pages 977–
984. MIT Press, Cambridge, MA, 2007.

9. Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, 1996.

10. Farial Shahnaz, Michael W. Berry, V. Paul Pauca, and Robert J. Plemmons. Doc-
ument clustering using nonnegative matrix factorization. Inf. Process. Manage.,
42(2):373–386, 2006.

11. Moravec, P., Snášel, V., Frolov, A. A., Húsek, D., Řezanková, H., Polyakov, P.: Im-
age Analysis by Methods of Dimension Reduction. IEEE CISIM 2007: Elk, Poland,
Pages 272–277

12. Snášel, V., Húsek, D., Frolov, A. A., Řezanková, H., Moravec, P., Polyakov P.: Bars
Problem Solving - New Neural Network Method and Comparison. MICAI 2007:
LNCS 4827 Springer 2007, Pages 671–682

13. Spellman, P.T., Sherlock, G., Zhang, M.Q., Anders, V.I.K., Eisen, M.B., Brown, P.,
Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes
of the yeast saccharomyces cerevisiae by microarray hybridization. In: Molecular
Biology of the Cell 9. (1998) Pages 3273–3297

14. Zhang, Z., Tao Li, T., Ding, C., Zhang, Xiang-Sun: Binary Matrix Factorization
with Applications. In Proceedings of 2007 IEEE International Conference on Data
Mining (ICDM 2007),

Towards Cost-based Optimizations of Twig
Content-based Queries

Michal Krátký and Radim Bača

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

michal.kratky@vsb.cz

Towards Cost-based Optimizations of Twig
Content-based Queries

Michal Krátký, Radim Bača

Department of Computer Science, Technical University of Ostrava
Czech Republic

{michal.kratky,radim.baca}@vsb.cz

Extended Abstract

In recent years, many approaches to indexing XML data have appeared. These
approaches attempt to process XML queries efficiently and sufficient query plans
are built for this purpose. Some effort has been expended in the optimization of
XML query processing [20].

There are not many works that take cost-based query optimizations into
account. In work [20], we find some cost-based considerations, however, they
work only with one type of structural join and one type of underlying index.
There are works depicted two types of query processing as well [10, 17]. The first
type applies an element-based index, the second type applies a navigation in a
persistent DOM-like structure. In our work, we propose usage of two path-based
indices that provide significant potential for a query optimization based on a
cost-based join selection.

We can identify some classes of approaches for efficient processing of XML
queries. The first class includes approaches based on shredding [18] (storing an
XML document in many relations, where each element name has its own rela-
tion). These approaches work well only on specific documents with a defined
XML schema. The second class of approaches [15, 21, 1] provides an element-
based decomposition of an XML document. These methods usually work with a
labeling scheme and they differ mainly in various join algorithms.

We identify two main types of join algorithms. The first join type works with
sorted node sets merged by a type of holistic join [3, 4]. This kind of structural
join is optimal when a small number of nodes is rejected during the structural
join. In this case, nodes are retrieved in a very efficient way with a small number
of I/O. In our article, this kind of join operation is called a merge join. Another
type of join algorithm is based on context nodes [9], where each location step is
processed using context nodes from the previous step. We say that this approach
utilizes a previously processed location step and uses the nodes for an efficient
search of nodes in the next step. If there is a large number of rejected nodes in
the join operation, this kind of join is efficient. In our article, this kind of join
operation is called a progressive join.

There are approaches that decompose XML documents according to the node
path, as opposed to the node name. Handling the paths during a query processing

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 71–73, ISBN 978-80-248-1746-0.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2008.

72 Michal Krátký and Radim Bača

provides some advantages. If the a/b/c//e/f/g simple-path query is considered,
then the query is evaluated by five structural joins. The evaluation may be very
inefficient compared to path-based approaches [16, 19, 6, 14, 13, 11] and summa-
rizing approaches [8, 7], even when an additional optimization of structural joins
is used [4, 3, 12]. The path-based approaches perform these queries by finding
matched labelled paths – a relatively simple task – and then finding relevant
nodes with a single index search [16]. Since there is a significantly lower number
of labelled paths than nodes in an XML document, the search can be performed
very quickly. Supposing there is a set of matched labelled paths, we finish the
simple-path query process by finding nodes corresponding to those labelled paths
in an inverted list. In work [5], we find a comparison of different decomposition
approaches and a labelled-path approach (Prefix-Path streaming in this case)
has good experimental results.

In the case of path-based approaches, we can observe the same issue as in
the case of element-based approaches. When we join two path results, we can
perform it with two different types of joins. One join is based on an inverted
index and the second one utilizes the previous query path result.

Chen et al. in [6] compares two path-based approaches to processing twig
queries. Whereas the first index, ROOTPATHS index, is able to process twig
queries only with the merge join, the second index, DATAPATHS index, is able
to process a query path by utilizing previous query path results. Consequently,
DATAPATHS index applies a progressive join algorithm. These indices can out-
perform each other depending on the query. However, there is no general pro-
posal that can help to decide that the index should be used to achieve the best
query evaluation performance. In works [13, 14], we have introduced an index to
provide these join operations.

In work [2], we introduce a simple, cost-based, optimization technique for a
join selection during a query evaluation. This technique joins the advantages of
a simple path query processing based on inverted lists and usage of previous
results for a twig query processing. We show that the knowledge of the result
size can help to choose a good query evaluation strategy. We utilize advantages
of existing, state-of-the-art, path-based approaches, such as [16, 19, 6], to achieve
an optimal query performance.

References

1. S. Al-Khalifa, H. V. Jagadish, and N. Koudas. Structural Joins: A Primitive for
Efficient XML Query Pattern Matching. In Proceedings of International Conference
on Data Engineering, ICDE 2002. IEEE Computer Society, 2002.

2. R. Bača and M. Krátký. A Cost-based Join Selection for XML Twig Content-
based Queries. In Proceedings of the Third International Workshop on Database
Technologies for Handling XML Information on the Web, DataX 2008, EDBT,
Nantes, France. Accepted, to appear in ACM DL, 2008.

3. N. Bruno, D. Srivastava, and N. Koudas. Holistic Twig Joins: Optimal XML
Pattern Matching. In Proceedings of the ACM International Conference on Man-
agement of Data, SIGMOD 2002, pages 310–321. ACM Press, 2002.

Towards Cost-based Optimizations of Twig Content-based Queries 73

4. S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and K. S. Candan.
Twig2Stack: Bottom-up Processing of Generalized-tree-pattern Queries Over XML
documents. In Proceedings of International Conference on Very Large Databases,
VLDB 2006, pages 283–294. VLDB Endowment, 2006.

5. T. Chen, J. Lu, and T. Ling. On Boosting Holism in XML Twig Pattern Match-
ing Using Structural Indexing Techniques. Proceedings of the ACM International
Conference on Management of Data, SIGMOD 2005, pages 455–466, 2005.

6. Z. Chen, G. Korn, F. Koudas, N. Shanmugasundaram, and J. Srivastava. Index
Structures for Matching XML Twigs Using Relational Query Processors. In Pro-
ceedings of ICDE 2005, pages 1273–1273. IEEE Computer Society, 2005.

7. C.-W. Chung, J.-K. Min, and K. Shim. APEX: an Adaptive Path Index for XML
Data. In Proceedings of the ACM International Conference on Management of
Data, SIGMOD 2002, pages 121–132, New York, NY, USA, 2002. ACM Press.

8. B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A Fast
Index for Semistructured Data. In Proceedings of the 27th International Conference
on Very Large Databases, VLDB 2001, pages 341–350, 2001.

9. T. Grust, M. van Keulen, and J. Teubner. Staircase Join: Teach a Relational DBMS
to Watch Its (Axis) Steps. In Proceedings of the 29th, International Conference on
Very Large Databases, VLDB 2003, pages 524–535. VLDB Endowment, 2003.

10. A. Halverson and et al. Mixed Mode XML Query Processing. In Proceedings of
VLDB 2003, pages 225–236. VLDB Endowment, 2003.

11. W. H. Hanyu Li, Mong Li Lee. A Path-Based Labeling Scheme for Efficient Struc-
tural Join. In Proceedings of XSym 2005, pages 34 – 48. Springer–Verlag, 2005.

12. H. Jiang, W. Wang, H. Lu, and J. Yu. Holistic twig joins on indexed XML docu-
ments. Proceedings of VLDB 2003, pages 273–284, 2003.

13. M. Krátký, R. Bača, and V. Snášel. Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In Proceedings of DEXA 2007,
volume LNCS 4653/2007. Springer–Verlag, 2007.

14. M. Krátký, J. Pokorný, and V. Snášel. Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In Current Trends in Database
Technology, EDBT 2004, volume LNCS 3268/2004. Springer–Verlag, 2004.

15. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expres-
sions. In Proceedings of VLDB 2001, 2001.

16. T. S. M. Yoshikawa, T.Amagasa and S. Uemura. XRel: a Path-based Approach
to Storage and Retrieval of XML Documents Using Relational Databases. ACM
Trans. Inter. Tech., 1(1):110–141, 2001.

17. N. May, M. Brantner, A. Böhm, C.-C. Kanne, and G. Moerkotte. Index vs. Nav-
igation in XPath Evaluation. In Proceedings of Database and XML Technologies,
XSym 2006, volume LNCS 4156/2006, pages 16–30. Springer–Verlag, 2006.

18. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. DeWitt, and J. Naughton.
Relational Databases for Querying XML Documents: Limitations and Opportuni-
ties. In Proceedings of the 25th International Conference on Very Large Databases,
VLDB 1999. Edinburgh, Scotland, UK, pages 302–314. Morgan Kaufmann, 1999.

19. S. S.Prakas and S.Madria. SUCXENT: An Efficient Path-Based Approach to
Store and Query XML Documents. In Proceedings of DEXA 2004, volume LNCS
3180/2004, pages 285–295. Springer-Verlag, 2004.

20. Y. Wu, J. M. Patel, and H. Jagadish. Structural Join Order Selection for XML
Query Optimization. In Proceedings of ICDE 2003. IEEE CS, 2003.

21. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On Supporting
Containment Queries in Relational Database Management Systems. In Proceedings
of ACM SIGMOD 2001, pages 425–436, New York, USA, 2001. ACM Press.

Vector-Oriented Retrieval in XML Data
Collections

Jaroslav Pokorný

Faculty of Mathematics and Physics, Charles University,
Malostranské náměst́ı 25, Prague, Czech Republic

pokorny@ksi.mff.cuni.cz

Vector-Oriented Retrieval in XML Data Collections

Jaroslav Pokorný

Charles University, Faculty of Mathematics and Physics, Malostranske nam. 25,
118 00 Praha 1, Czech Republic
pokorny@ksi.mff.cuni.cz

Many modern applications produce and process XML data, which is queried in its
both structural and textual component. This is especially useful if we consider a cas-
ual user who looks for information in web-based database systems or intranets con-
taining XML data, like online shops, airline reservations, digital libraries catalogues
or any other, and does not expect an exact answer. Many websites are built from
document-centric XML documents [3]. A remarkable characteristic of such XML
data collections is that they are mostly heterogeneous, i.e. they contain domain-
focused data, possibly valid w.r.t. various DTDs or XML schemes. XML documents
can come from various sources. These collections can be managed as XML databases
[5] as well as collections, providing an approximate way for users to search their
contents. To ensure such functionality, it is required to approach these collections
with both database and information retrieval (IR) methods.

Current XML query languages like XPath and XQuery are applicable rather for
data-centric than for document-centric XML data. Moreover, XML schemes are often
necessary for their use. In other words, the languages are not longer appropriate for
searching in such environments because they can not cope with the diversity of data.
Hence, a research of integration of database querying and IR in context of XML is
undoubtedly interesting and promising trend. Despite of the fact that a variety of
systems that support such methods have been proposed, conventional IR techniques
[2], e.g. vector space model, can be employed only restrictedly. The reason for it is
that two types of queries should be dealt with: content-only (CO) queries, i.e. the
traditional ones in IR, and content-and-structure (CAS) queries.

A number of techniques to extend the vector space model have been designed, e.g.
[6], [7], [8], [9], [11], and [12]. A usual critique of the mentioned approaches is that
they not sufficiently reflect the structure of XML documents. A more advanced, two-
phase evaluation schema is proposed in [1]. First, a modified vector space model is
employed to obtain similarity scores for the textual nodes of XML trees. Then, the
scores are propagated upward in the XML-trees with a possible modification and
possibly new scores of other nodes are generated.

In [13] we described a matrix model based on an extension of the vector space
model for XML data. A document D in a collection of XML documents C is repre-
sented by a matrix D, whose each row vector wt associated with a term t contains the
weights of t for each path occurring in C. A query Q considered also as an XML tree
is expressed as a matrix Q. The matrix model proposes to evaluate the degree of simi-
larity of D with regard to the Q as the correlation between the matrices D and Q.

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 74–78, ISBN 978-80-248-1746-0.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2008.

Vector-Oriented Retrieval in XML Data Collections 75

Experiments have shown that it is not possible to rely only on this score. Instead we
adjust the matrix D by an additional data structure, so called a path transform matrix,
which reflects relationships among paths. The same is done for the matrix Q. Then,
the resulted transformed matrices TD and TQ are used for query processing. First
experiments have been done with the well-known collection of Shakespeare’s plays
[4] and synthetic data generated by a widely used database benchmark XBench.

In next development of the matrix model we found its critical points and proposed
its new version based on the approach [7]. In experimental implementation (called
MAMEX in [14]) we used INEX collection [10] as input data. We have compared
vector model and renewed matrix model and explored cases in which precision of
results are comparable and cases where the latter model wins. The experiments con-
firmed that the matrix model is mostly not worse than vector model and is signifi-
cantly better in the cases of queries with more terms. This can be of an importantance
for Web querying where a page is a query unit and a collection of pages is relatively
stable.

References

1. Anh, V.N., Moffat, A.: Compression and an IR Approach to XML Retrieval. In: Proc. of
the First Workshop of INEX, Dagstuhl, Germany, December 2002, pp. 99-104.

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. NY: ACM Press, 1999.
3. Barbosa, D., Mignet, L., Veltri, P.: Studying the XML Web: Gathering Statistics from an

XML Sample. World Wide Web 8(4): 413-438, Springer Business + Media; 2005.
4. Bosak, J.: Shakespeare 2.00. Los Altos, California, http://www.ibiblio.org/bosak/, 1999.
5. Bourret, R.: XML and Databases,

http://www.rpbourret.com/xml/XMLAndDatabases.htm.
6. Bremer, J.-M., Gertz, M.: XQuery/IR: Integrating XML Document and Data Retrieval In:

Proc. of the 5th Int. Workshop on the Web and Databases (WebDB), June 2002, pp. 1-6.
7. Carmel, D., Efraty, N., Landau, G.M., Maarek, Y., Mass, Y.: An Extension of the Vector

Space Model for Querying XML Documents via XML Fragments. In: Proc. of XML and
Information Retrieval (Workshop) Tampere, 2002, pp. 14-25.

8. Crouch, C.J., Apte, S., Bapat, H.: Using the Extended Vector Model for XML Retrieval.
In: Proc. of the 1st INEX 2002 Workshop, Dagstuhl, December 2002, pp. 95-98.

9. Fuhr, N., Großjohann, K.: XIRQL: A Query Language for Information Retrieval. In: Proc.
of ACM-SIGIR, New Orleans, 2001, pp. 172-180.

10. Gövert, N., Kazai, G.: Overview of the INitiative for the Evaluation of XML retrieval
(INEX) 2002. In: Proc. of the first Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX), Dagstuhl, 2002, pp. 1-17.

11. Grabs, T., Schek, H.: Generating vector spaces on-the-fly for flexible XML retrieval. In:
Proc. of XML and Information Retrieval (Workshop), Tampere, ACM Press, 2002, pp. 4-
13.

12. Kakade, V., Raghavan, P.: Encoding XML in vector spaces. In: Proc. of the 27th Euro-
pean Conf. in Information Retrieval (EPIC). LNCS 3408. Springer, NY, 2005, pp. 96-111.

13. Pokorný, J., Rejlek, V.: A Matrix Model for XML Data. Chap. in: Databases and Informa-
tion Systems, Volume 118 Frontiers in Artificial Intelligence and Applications, Eds. J.
Barzdins and A. Caplinskas, IOS Press, 2005, pp. 53-64.

14. Vávra, J.: Matrix model in context of XML IR methods. Master Thesis, Faculty of
Mathematics and Physics, Charles University, Praha, Czech Republic, 2005. (in Czech)

Decathlon, Conflicting Objectives and User
Preference Querying

Peter Vojtáš

Faculty of Mathematics and Physics, Charles University,
Malostranské náměst́ı 25, Prague, Czech Republic

Peter.Vojtas@mff.cuni.cz

Extended Abstract

First motivation of our approach is Decathlon as an athletic discipline and its
development in the last century (http://www.decathlon.ee). During this pe-
riod, motivated by a desire of a fair competition, a development in scoring tables
occurred. Today we can say it is stabilized. It shows single disciplines ordered
(and scored) in direction of better (harder) achievement. Comparison with sin-
gle discipline world records shows that current decathlon world record holder
(Roman Sebrle, CZ) was able to achieve about 65-92% of physical measurement
and about 59-88% of point achievements of single discipline world records. Of
course the point of decathlon is that all disciplines should be done by a single
athlete in two consecutive days. Total achievement in decathlon is evaluated by
the sum of point in single disciplines.

Another motivation comes from the paper IHAB F. ILYAS, GEORGE
BESKALES and MOHAMED A. SOLIMAN. A Survey of Top-k Query Process-
ing Techniques in Relational Database Systems, To appear in ACM Computing
Surveys. A person looking for a house evaluates market offers by an aggregation
of house price and tuition price in a school near to location. Nevertheless the
price for house and tuition price cannot be simply added, the aggregation is, as
in following SQL query

SELECT h.id, s.id
FROM House h; School s
WHERE h.location=s.location
ORDER BY h.price + 10 * s.tuition
LIMIT 5

Last motivation comes from multicriterial decision (Source [RTC] R.T.Clemen.
Making hard decisions. Brooks/Cole Publ. Comp. 1996). Here, several exam-
ples are used, especially for conflicting objectives (like price and durability of
a car). The solution is, that single objectives are represented by a objective
function Ui(xi) and aggregation (either linear or nonlinear) is here called util-
ity function, gives a ordering of products (decisions) by total score equal to
U(x1, . . . , xm) = k1U1(x1) + · · ·+ kmUm(xm).

c© V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 76–78, ISBN 978-80-248-1746-0.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2008.

http://www.decathlon.ee

Decathlon, Conflicting Objectives and User Preference Querying 77

Main goal of this talk is to point to similarities in all of these applications:
IAAF – ”combined events”, Decision analysis and rank aware Querying.

Similarities can be characterized as follows: Incomparable disciplines (at-
tributes) are mapped to points, score, . . . - hence comparable values. Best, top
k – preserves ordering if better in all axes (disciplines, attributes). There is some
monotone aggregation, combination (e.g. (weighted) sum)

In what follows a class of aggregation functions is discussed - Sum and/or
average, Weighted average, . . . general. Common characteristics are: Monotone
in attribute score, ideal point given by application, user dependent, implicit
learning (in athletics took about 100 years), user similarity - collaborative. Our
contribution reflects explicit learning, adaptation during the query cycles. A pos-
sibility was discussed: to fix aggregation and tune attribute scoring or attribute
score fixed - tuning aggregation.

We have presented a unifying approach: (local) attribute preference rep-
resented by a scoring (fuzzy) function f : DA → [0, 1], Combination @ :
[0, 1]n → [0, 1], (global) score score(o) = @(f1(o.A1), . . . , fm(o.Am)) We have
a model-theoretic semantics based on – fuzzy logic, fixpoint semantics – fuzzy
Data(/Pro)log Proof-theoretic semantics – best, top-k, heuristics.

We discussed also a form of data (in one table, several tables, locally or
distributed, on the Web, frequently changing versus rather stable data, in re-
lational, XML, HTML, text, . . .). Further issues are preprocessing, indexes,
Query optimization, Top-k versus table scan (experiments) Fagin instance opti-
mal TA/NRA algorithm.

Different models were considered for User (One, many, different, . . . User
profile, Group decision, Changing intention during querying, Query formulation
– clicking conjunctive query or sample evaluation).

We have a procedure how to learn users ”Decathlon principle aggregation
(combination). One for learning score(o) = @(f1(o.A1), . . . , fm(o.Am)) either
with Fixed @, tuning fi (like IAAF @=+), or fixed fi, learning @ - fuzzy ILP.
Learning both -local preferences (user can have different order of preference, e.g.
close-far) global preferences. For this new inductive task – ordinal classification
we can either compare orderings or generalize precision, recall.

Special focus in different objectives for different user, e.g. (as a variation of
above example)

SELECT h.id, s.id
FROM House h; School s
WHERE h.location=s.location
ORDER BY MAX h.price + 10 * s.tuition
LIMIT 5

SELECT h.id, s.id
FROM House h; School s
WHERE h.location=s.location
ORDER BY MIN h.price + 10 * s.tuition
LIMIT 5

78 Peter Vojtáš

SELECT h.id, s.id
FROM House h; School s
WHERE h.location=s.location
ORDER BY h.price + 60 * s.tuition
LIMIT 5

SELECT h.id, s.id
FROM House h; School s
WHERE h.location=s.location
ORDER BY @(f(h.price), g(s.tuition))
LIMIT 5

We have concluded with open problems and future work. Unified framework
does not cover nominal data, multidimensional data, hierarchical data, . . .

Author Index

Bača, Radim, 71

Koč́ıbová, Jana, 49
Kopecký Michal, 1
Krátký, Michal, 71
Krömer, Pavel, 49, 61

Loupal, Pavel, 25

Moravec, Pavel, 49

Nečaský, Martin, 13

Opočenská Kateřina, 1

Platoš, Jan, 49, 61
Pokorný, Jaroslav, 74

Snášel, Václav, 49, 61
Strnad, Pavel, 25

Vojtáš, Peter, 76

	Full Papers
	Incox - A language for XML Integrity Constraints Description
	Kateřina Opočenská, Michal Kopecký

	Conceptual Model Based Normalization of XML Views
	Martin Nečaský

	Using taDOM Locking Protocol in a Functional XML Update Language
	Pavel Strnad and Pavel Loupal

	Database Engineering from the Category Theory Viewpoint
	David Toth

	Tensor Decomposition for 3D Bars Problem
	Jan Platoš, Jana Kočíbová, Pavel Krömer, Pavel Moravec, Václav Snášel

	Developing Genetic Algorithms for Boolean Matrix Factorization
	Václav Snášel, Jan Platoš, Pavel Krömer

	Invited Lectures
	Towards Cost-based Optimizations of Twig Content-based Queries
	Michal Krátký and Radim Bača

	Vector-Oriented Retrieval in XML Data Collections
	Jaroslav Pokorný

	Decathlon, Conflicting Objectives and User Preference Querying
	Peter Vojtáš

