
Czech Technical University in Prague, FEE, Dept. of Computer Science & Eng.
VŠB–TU Ostrava, FEECS, Department of Computer Science

Charles University in Prague, MFF, Department of Software Engineering
Czech Society for Cybernetics and Informatics

Proceedings of the Dateso 2009 Workshop

Databases, Texts

Specifications, and Objects

2009

http://www.cs.vsb.cz/dateso/2009/
http://www.ceur-ws.org/

April 15 – 17, 2009
Špindler̊uv Mlýn – Patejdlova bouda

http://www.cs.vsb.cz/dateso/2009/
http://www.ceur-ws.org/

DATESO 2009
c© K. Richta, J. Pokorný, V. Snášel, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Copyright c©2009 for the individual papers by the papers’ authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume requires
permission by the copyright owners.

Technical editor:
Pavel Strnad, strnap1@fel.cvut.cz

Page count: 178
Impression: 50
Edition: 1st

First published: 2009

This proceedings was typeset by PDFLATEX.
Cover design by Markéta Růžičková
Printed and bound in Prague, Czech Republic by Česká technika - nakladatelstv́ı
ČVUT.

Published by Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science and Engineering

Preface

DATESO 2009, the international workshop on current trends on Databases,
Information Retrieval, Algebraic Specification and Object Oriented Program-
ming, was held on April 15 – 17, 2009 in Špindler̊uv Mlýn – Patejdlova bouda.
This was the 9th annual workshop organized by Department of Computer
Science and Engineering FEL ČVUT Praha, and Department of Software
Engineering MFF UK Praha, and Department of Computer Science VŠB-
Technical University Ostrava, and working group on Informatics and Society
of Czech Society for Cybernetics and Informatics. The DATESO workshops
aim for strengthening connections between these various areas of Computer
science. The proceedings of DATESO 2009 are also available at DATESO Web
site http://www.cs.vsb.cz/dateso/2009/, and CEUR Workshop Proceeding
pages http://www.ceurws.org/ (ISSN 1613-0073).

The Program Committee selected 14 papers from 21 submissions, based on
two independent reviews.

We wish to express our sincere thanks to all the authors who submitted
papers, the members of the Program Committee, who reviewed them on the
basis of originality, technical quality, and presentation. We are also thankful
to the Organizing Committee for preparation of workshop and its proceedings.
Special thanks belong to Czech Society for Cybernetics and Informatics for its
support of publishing this issue.

March, 2009 K. Richta, J. Pokorný, V. Snášel (Eds.)

http://www.cs.vsb.cz/dateso/2009/
http://www.ceurws.org/

Steering Committee

Karel Richta Czech Technical University, Prague
Jaroslav Pokorný Charles University, Prague
Václav Snášel VŠB-Technical University of Ostrava, Ostrava

Program Committee

Karel Richta (chair) Charles University and Czech Technical University, Prague
Jaroslav Pokorný Charles University, Prague
Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Irena Mlýnková Charles University, Prague
Vojtěch Svátek University of Economics, Prague
Peter Vojtáš Charles University, Prague
Tomáš Skopal Charles University, Prague
Dušan Húsek Inst. of Computer Science, Academy of Sciences, Prague
Michal Krátký VŠB-Technical University of Ostrava, Ostrava
Pavel Moravec VŠB-Technical University of Ostrava, Ostrava
Pavel Loupal Czech Technical University, Prague
Jan Stoklasa Czech Technical University, Prague
Pavel Strnad Czech Technical University, Prague

Organizing Committee

Pavel Loupal (chair) Czech Technical University, Prague
Jan Stoklasa Czech Technical University, Prague
Pavel Strnad Czech Technical University, Prague

Table of Contents

Speeding Up Shortest Path Search in Public Transport Networks 1
Vladislav Mart́ınek, Michal Žemlička

From Web Pages to Web Communities . 13
Miloš Kudělka, Václav Snášel, Zdeněk Horák, Aboul Ella Hassanien

Compression of the Stream Array Data Structure . 23
Radim Bača, Martin Pawlas

Benchmarking Coding Algorithms for the R-tree Compression 32
Jiř́ı Walder, Michal Krátký, Radim Bača

Translation of Ontology Retrieval Problem into Relational Queries 44
Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

Various aspects of user preference learning and recommender systems 56
Alan Eckhardt

Using Top Trees For Easy Programming of Tree Algorithms 68
Michal Vajbar

Dimension Reduction Methods for Iris Recognition . 80
Pavel Moravec, Václav Snášel

Five-Level Multi-Application Schema Evolution . 90
Martin Nečaský, Irena Mlýnková

Tequila - a query language for the Semantic Web . 105
Jakub Galgonek

The BPM to UML activity diagram transformation using XSLT 119
Ondřej Macek, Karel Richta

XML-λ Type System and Data Model Revealed . 130
Pavel Loupal

Combination of TA- and MD-algorithm for Efficient Solving of Top-K
Problem according to User’s Preferences . 142
Matúš Ondreička, Jaroslav Pokorný

Efficiency Improvement of Narrow Range Query Processing in R-tree 154
Peter Chovanec, Michal Krátký

Author Index . 166

Speeding Up Shortest Path Search in Public
Transport Networks ?

Vladislav Mart́ınek and Michal Žemlička

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
VladaM@seznam.cz, Michal.Zemlicka@mff.cuni.cz

Speeding Up Shortest Path Search in Public
Transport Networks?

Vladislav Mart́ınek and Michal Žemlička

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
VladaM@seznam.cz, Michal.Zemlicka@mff.cuni.cz

Abstract. The searching for the shortest path in public transport net-
works can take more time than is acceptable for given situation. We have
therefore searched for methods that speed up the given calculation. The
approach, when the calculation is not performed on the original network
but on the simplified one, seems to be very promising. The path found
in the simplified network can be easily mapped to a corresponding path
in the original network. In the case of the Prague public transport the
simplified network has several times less nodes and the computation is
speeded up correspondingly.

Keywords: shortest path search in public transport networks, network simplification

1 Introduction

Searching for the optimal connection between two various places is a frequent
task solved in public transport networks. The path duration is an important
criterion of the searched connection. From the view of graph theory the problem
can be seen as a shortest path search. It is possible to keep in mind other criteria
derived from user preferences or restrictions when choosing the connection. Tra-
ditional approaches to the shortest path search (recent optimizations compared
in [1] expect searching in a static network). Most of these approaches are not
applicable on dynamic network without additional modifications1. The method
introduced in [2] is performing data reduction to simplify train network. Such
reduction is generally an NP-hard problem. Fortunately on real data the prob-
lem is usually solvable within acceptable time [3]. Our paper introduces similar
approach to the graph reduction aimed at the urban public transport and at the
practical use of this reduced data in mobile devices application.

? This paper was partially supported by the Program ”Information Society” under
project 1ET100300517 and by the Czech Science Foundation by the grant number
201/09/0983.

1 For example a bi-directional search would be difficult to introduce in public transport
networks, if we do not know the arrival time.

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 1–12, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

2 Vladislav Mart́ınek, Michal Žemlička

1.1 Basic Solution Approaches

Two basic approaches can be considered when solving the problem. The first
approach is to find the path between all vertices and then only return results on
query. The situation is complicated in mass transport networks by the fact, that
the edge value is determined according to the actual time. The precomputation of
the results would mean to find the shortest paths between all vertices for certain
time interval. This approach is suitable when the number of queries is relatively
high and there is sufficient memory and computation power for reaction to data
changes in appropriate time. The hardware requirements may be impossible to
satisfy for the large networks as described in [4].

The second approach is to find the shortest path directly according to the
given parameters. This approach is suitable, if the number of queries is relatively
low and if it is possible to find the answer in acceptable time. The advantage
against the previous case is that the variable value of the edges does not mean
serious complication in our case.

Algorithms used for direct computing of the shortest path derived from the
algorithm published by Dijkstra in [5]. Their complexity is typically superlinear
with respect to the number of vertices and edges. If we succeed in reducing the
size of input graph, the computation speed will be increased significantly.

1.2 Scheduled and Real Traffic

Timetables determine prescript departure times of individual connections which
may vary from actual times of departure. There typically occur two types of
irregularities. The first ones may occur relatively frequently and may be rela-
tively small. They may be caused by the current density of traffic, weather, road
conditions or other relatively predictable effects. One of the user’s preferences
could be a requirement for reliability of the connection.

The second irregularity type is caused by extraordinary events of a larger
impact. They cannot be predicted, and cause relatively large irregularities from
the timetables. Typically can cause temporary interference of the carrier into
the timetables. These temporary changes in the timetables would be difficult to
handle in the case of precomputed results.

To choose the connection so it meets all user preferences is the case of the
search algorithm. This paper is focused on the reduction of input data. For the
selection of a connection we will consider only one criterion – the path length
(duration).

2 Mass Transport Network Representation

Mass transport system can be seen as an oriented multigraph with valued edges.

Pseudoline is a representation of the certain line of the mass transport system
or a walk. Every line of the mass transport has its own timetable and route.
In order to separate various line directions, it is suitable to represent them
as separate pseudolines.

Speeding Up Shortest Path Search in Public Transport Networks 3

line A

line B

(s
1)

(s5)

(s
2)

(s
3)

 (2,A,→)

(s4)

(2,B,→)

(3,A,→)

(3,B,→)

(2
,A

,→
)

(1,B
,→

)

(3,A
,→

)

(4
,B

,→
)

(s1)

(2,A,→)
connection realized by

„line A“ in direction „→“

with travel time 2 minutes

stop „s1“...

...

Fig. 1. Graph example

Vertex represents the street refuge of the stop or a platform of the station.
Every stop can have several various refuges. In order to count time between
refuges in a walk, it is appropriate to represent them as separate vertices.

Edge represents direct connection between two stops, or more precisely refuges.
The connection is realized by one of the pseudolines, this information is
marked inside the edge structure. If several direct connections are available
between two vertices, then every single one of them is represented by the
separate edge.

Edge value is expected travel time of the pseudoline between the stops con-
nected by the edge. Travel time may vary according to the time of a day2.

Waiting time is expected time spent on waiting for the service arrival. This
value is added to the edge value in case of transfer between services. It is
determined on the basis of actual time and valid timetable of the given line.

There could be various exceptions in the timetables – for example the service
has a variable route or is avoiding some stops in certain moments. This situation
can be handled by creation of new pseudolines for each type of the exception.
The exceptions can be excluded from the original pseudoline and delegated into
the new pseudoline. Several new pseudolines can be created on the basis of one
line. New pseudoline will be marked in the same way as the original pseudoline
for the user.

When searching for the shortest path in mass transport network, it is neces-
sary to count the edge value and also the waiting time in the path length. The
waiting time is counted only in the case of transferring between the services or
getting in a service. In order to detect the transfers it is necessary to remember
the pseudoline, which has been used to get to the vertex. If a new edge is added
to the current path and this edge is realized by other pseudoline than the one

2 For example a “shorted” travel time – B and a normal travel time – A is set for
the trams in weekdays according to the departure time from the stop: 0:00-6:59 - B,
7:00-18:59 - A, 19:00-23:59 - B.

4 Vladislav Mart́ınek, Michal Žemlička

used to get to the last vertex in the current path, then the waiting time is to be
added to the value of new edge.

The value of the edge realized by the walk should be derived from walk time.
Value of the walk edge can markedly vary according to the user preferences.
Recognition of the resulting path Classical algorithms for searching for the
shortest path between two vertices in the graph terminates the search at the
moment the target is processed. In each vertex there is stored a pointer to the
predecessor, from which the vertex was reached. In the case of a multigraph this
information is insufficient to recognize the resulting path and it is necessary to
remember also the edge leading from the predecessor to the vertex.
Correctness The resulting path found in the reduced graphs must be equal
to the path found in the original graph for the equal search parameters. Intro-
ducing pseudolines does not change the results presented to the user. Each of
the pseudolines holds the identification of the real line, which is presented to
the user. The pseudoline is equal to the subset of services of the original line.
Transfers between pseudolines are equal to the transfers between original lines.
However, the transfers between pseudolines identified by the same line could
be redundant3. The redundant transfer can occur in the real situation as well,
without influence to the resulting path length.

3 Graph Reduction

To reduce the size of input data, we will try to reduce certain edges and vertices
in the input graph using appropriate adjustments. Reduction of edges is achieved
by a replacement of several original edges with a single new one. The new edge
will fully represent all of the original edges when searching for the shortest
path. The reduction of vertices occurs so that after reduction of edges some
isolated vertices remain in the graph, which are not reasonable to hold for the
shortest path search. When the shortest path is found in the reduced graph, it
is important to be able to reconstruct the appropriate path in the original graph
easily. If the mapping of the path to the original network is too complicated,
the advantage of searching in reduced graph could be eliminated. Moreover, the
edge values must be maintained, otherwise the condition of the shortest path
could be violated.

The following adjustments are intended to be used in the way described. The
separate usage of adjustments is possible, but with weaker effect. The result of
their use in an opposite order is unsure. The results compared with the previous
adjustment are listed in the table below each of them.

3.1 Edge Aggregation

The first adjustment is based on the following heuristics: To get from one stop
to the next one in the shortest possible time, it is necessary to get on the service,
3 An additional transfer may occur if the pseudoline represents the shortened route of

the certain line. This can be easily solved by postprocessing of the path found.

Speeding Up Shortest Path Search in Public Transport Networks 5

which will arrive there first. If several services take the same time to run between
those stops, the service with the shortest waiting time should be taken. To find
out how long to wait for each connection, we are forced to view timetables of all
these connections.

The above situation is in the graph indicated by the two vertices which
are connected by several edges with the same value. These edges differ only
by pseudoline. We will create a new pseudoline which is a combination of all
pseudolines of the edges mentioned above. These edges can be all replaced by
a single new edge. The new edge connects the same two vertices as the original
edges does and has the same value as the original edges, but it is labeled by a
new pseudoline:

Merge-line is a new pseudoline, which is created as a combination of several
original pseudolines. The merge-line has its own timetable, which is a com-
bination of the timetables of original pseudolines. The merge-line leaves the
stop every time, when one of the original pseudolines leaves the stop. In or-
der to map the path found in new graph to the original graph, it is necessary
to remember from which pseudolines the merge-line was created.

line A

(s
1)

(s5)

(s
2)

(s
3)

(2,A+B,→)
(s4)

(3,A+B,→)

(2
,A

,→
)

(1,B
,→

)

(3,A
,→

)

(4
,B

,→
)

line A+Bline B

(s1)

(2,A,→)
connection realized by

„line A“ in direction „→“

with travel time 2 minutes

stop „s1“...

...

Fig. 2. Aggregation of the edges with the same travel time

Mapping the Path to the Original Network The vertices of the new graph
directly correspond to the vertices of the original graph. The problem occurs in
the case of edges, where the information about the original pseudoline used to
travel between stops is lost due to creation of merge-line. To be able to determine
the edge in the original graph, it is necessary to remember the identity of the
original pseudoline that is used to travel through the aggregated edge4. When
searching the new graph, the transfer detection should be changed as followed:
4 There can be more such pseudolines; we will therefore remember a list of applicable

pseudolines.

6 Vladislav Mart́ınek, Michal Žemlička

Getting in While getting in a pseudoline, it is necessary to detect which of the
original pseudolines from the merge-line is just used. First, the departure
time of the next service is found – in the aggregated timetable. This is the
departure time of merge-line. Now the original pseudoline needs to be found.
At this point it is necessary to view the original timetables to determine
which original pseudolines are leaving at the found time5.

Transfer between aggregated pseudolines If the identification of the merge-
line on the arrival edge and on the leaving edge is equal, then this is not a
transfer. In this case, the waiting time is not counted in.

Real transfer If the identification of the merge-line on the arrival edge and on
the leaving edge are not equal, then this could be a transfer. This is not
a real transfer if the pseudoline of arrival edge is contained in the list of
original pseudolines of the merge-line on the leaving edge. In other case, this
is a real transfer and the waiting time must be counted in.

Correctness The vertices in the new graph are equal to the vertices in the
original one. Every aggregated edge represents the edge in the original graph with
equal value. The changed transfer mechanism above ensures, that the transfers
between merge-lines are equal to the transfers between original pseudolines. The
pseudolines in the original graph can be labeled by the identification of merge-
line into which it is aggregated. The path found in the reduced graph will be
created by merge-lines corresponding the labels on pseudolines, which creates
the path in the original graph.

of nodes # of edges memory usage search time

before 1096 8473 429 721B 4s
after 1096 2927 1 182 226B 1.70s

decrement 0% 65% -175% 58%

Table 1. Comparison of computation over original data on Prague Public Transport
Network and after simple network compaction

3.2 Path Aggregation

The latter adjustment builds on the results of the first one. Based on a direct
connection between the two stops longer stretch of several consecutive stops.
The condition is that only one certain line runs in this sequence of stops, and no
other line is connecting or leaving this sequence. Such a sequence of stops can
be aggregated into a sort of “pipelines”.

5 This situation is simpler then in the original graph. The departure time needs to
be found only once – in the aggregated timetable. Then this time is searched in the
original timetables for the match.

Speeding Up Shortest Path Search in Public Transport Networks 7

Pipeline is an aggregation of a number of services that ensures the same travel
time between all the stops in the sequence. In order to guarantee this prop-
erty, the order of services entering the pipeline must be the same like the
order of the services leaving the pipeline. For trams or trolley-buses this
property is guaranteed. The problem might occur on buses.

Node is a stop, where the passenger can take a relevant transfer to another
service. The transfer is considered to be relevant, if the service can get the
passenger to other stop that he was not before. The example of not relevant
transfer is a transfer to the same line, but opposite direction. This typically
gets the passenger to the stop where he was6. By excluding these loops the
resulting path will always get shorter.

Starting with a graph where the first adjustment has been already made
simplifies the initial situation. In the following, we assume the first adjustment
is made. The second adjustment may be done in two phases.

The first phase Pipeline is the edge of the new graph. Vertices, which are
outside the pipeline, will form the vertices of the new graph – nodes. Vertices,
which are intside the pipeline must hold the following two conditions:

1. The vertex may not have more than two different adjacent vertices7.
2. Edges that go into the vertex must also go outside. Corresponding input and

output edges must bear the same identification of merge-line.

The second phase The nodes are connected by edges representing the pipelines:
An edge representing a pipeline between two nodes corresponds to a sequence
of vertices in the original graph. This sequence must be of the same merge-line
and can not be interrupted by any other node what ensures that there will be no
transfer inside the sequence. This sequence is replaced by the new single graph
edge. The value of new edge is set to the sum of the values of edges in the original
sequence. Merge-line of the new edge is the merge-line of the original edges.

Connection of the path search There will be a reduction of vertices in the
new graph. This means that if the shortest path search starts in a vertex, which
is not a node in the new graph, it is necessary to find the path to the nearest
nodes. This path can be found in the original graph quite easily because of the
properties of vertices within pipeline which means that the path can lead up to a
maximum of two directions. After a very short search two peripheral nodes will
be encountered. Both peripheral nodes will be taken as starting points for search
in the new graph. For starting points the initial value of path length estimation
will be set to the length of the path from the original vertex to the nearest node
– to the starting point. Similarly, if the target is not node.

6 The opposite direction of the link can get the passenger to the stop, where he was
not yet; therefore the nodes should be chosen carefully.

7 The vertices available in the opposite direction of the oriented edge are also consid-
ered to be adjacent here.

8 Vladislav Mart́ınek, Michal Žemlička

line A

(s5)

(s
2)

(2+3,A+B,→)
(s4)

(2
,A

,→
)

(1,B
,→

)

(3,A
,→

)

(4
,B

,→
)

line A+Bline B

(s
1)

(s1)

(2,A,→)
connection realized by

„line A“ in direction „→“

with travel time 2 minutes

stop „s1“...

...

Fig. 3. Creation of pipeline between the nodes.

Mapping the path to the original network Since the latter adjustment is
based on the first one, we need the same procedure used for detection of transfers
as the first adjustment. The path found in this new graph is made up of nodes
and pipelines.

To overcome the reduction of vertices to nodes we can return back to the
vertices. To get detailed path in the 2nd level graph it is sufficient to search for
path between vertices corresponidng to the nodes being neighbours in the 3rd
level graph.

Finally, we need to add the initial segments into the resulting path which we
used to get from initial vertex to the initial nodes.

Correctness The sequences of vertices and edges in the graph after first reduc-
tion were replaced by the single edge. The value of this edge is equal to the sum
of values of the original edges. The mechanism of choice of the vertices inside
the pipeline ensures, that the transfer in the vertex inside the pipeline is not
relevant for searching the shortest path. Therefore the value of pipeline is equal
to the value of the part of any shortest path leading through the sequence of ver-
tices and edges creating the pipeline. The mechanism for detection of transfers
is equal to the mechanism in previous reduction step.

of nodes # of edges memory usage search time

before 1096 2927 1 182 226B 1.70 s
after 549 1987 1 225 810B 1.03 s

decrement 50% 32% -4% 39%

Table 2. Comparison of computation over modified data on Prague Public Transport
Network and after advanced network compaction

Speeding Up Shortest Path Search in Public Transport Networks 9

4 Prague Public Transport

As we have only data set the Prague public transport, the example is based on
part of this data. The time necessary for the graph search on a sample mobile
device (hardware details are mentioned below) is included in the tables in the
text. For benchmarking purposes the terminating condition was excluded from
the search algorithm. So the values in Tab. 2 are maximal – represent searching
entire graph.

Fig. 4. Sample cutout of Prague public transport (taken from [6])

Malovanka

2,D

Malovanka
2,A

connection realized by

„pseudoline A“ with

travel time 2 minutes

stop... ...

2,C

1,D

1,C

1,D

1,C

2,D

2,C

2,B

1,A

Pra
šn

ý

m
os

t
Voz

ov
na

Stře
šo

vi
ce

Voj
en

sk
á

ne
m

oc
ni

ce

Bat
er

ie

O
ře

ch
ov

ka

Sib
el

io
va

Pohořelec

2,E

2,F

2,E

2,F

Hládkov

1,H

1.G

1,H

1,G

2,H

2,GU
 K

aš
ta

nu

D
rin

op
ol

M
ar

já
nk

a

1,J

2,I

1,J

1,I

Brusnice

Fig. 5. Sample of Prague public transport after first adjustment.

In our sample case the number of vertices decreased more then two times
and number of edges almost seven times. The density of individual lines crossing

10 Vladislav Mart́ınek, Michal Žemlička

Malovanka

6,D

Malovanka
2,A

connection realized by

„pseudoline A“ with

travel time 2 minutes

stop... ...

6,C

2,B

1,A

Pra
šn

ý

m
os

t
Voz

ov
na

Stře
šo

vi
ce

Voj
en

sk
á

ne
m

oc
ni

ce

4,E

4,F

3,H

3,GU
 K

aš
ta

nu

2,J

3,I

Brusnice

Fig. 6. Sample cutout of Prague public transport after both adjustments.

and irregular placement of street refuges prevent from such significant reduction
in full-scale.

of nodes # of edges memory usage search time

original graph 1096 8473 429 721B 4s
first adjustment 1096 2927 1 182 226B 1.70s
second adjustment 549 1987 1 225 810B 1.03s

decrement 50% 77% -185% 74%

Table 3. Comparison of computation over original data on Prague Public Transport
Network and after simple network compaction

5 More Opportunities for Graph Reduction

The advantage of the adjustments referred to in this paper is that they do not
alter the substance of problem but they only reduce the size of input data. It
does not prevent the application of other techniques for reducing the search
complexity.

5.1 Highway Hierarchy

One of interesting processes, which could build on referred adjustments is “high-
way hierarchy”[7]. This method could be used in two ways. We could further
reduce the public transport network from the second adjustment to achieve a

Speeding Up Shortest Path Search in Public Transport Networks 11

further acceleration. To bring a noticeable improvement, we must be able to
find areas in the graph, with relatively dense traffic inside. These areas should
be connected together in a relatively small number of vertices. This approach
brings a problem, how to find areas compliant to the “highway hierarchy”. In the
case of urban public transport we consider finding of compliant areas to bring
the significant improvement very difficult. The other approach is to link urban
public transport and national or interstate transport networks together using
“highway hierarchy”.

6 Results

6.1 Memory Consumption

There are three levels of the graph – the original graph, graph after the first and
after both adjustments. For the search itself we need to hold the two highest
levels in memory. The initial segments are searched in the second level graph
when the initial or target vertex is not a node. Otherwise we start directly in
the third level. The path between nodes is searched in the third level graph. It is
not necessary to hold the original graph in main memory. The size of the graph
levels is decreasing. So the memory consumed by the graphs themselves would
not exceed the double of original value.

The data of the original timetables are needed for the changed transfer detec-
tion in the modified graph. The aggregated timetables are needed to determine
the waiting time. The resulting memory consumption depends on the represen-
tation of timetables. If the time tables are maintained only for the initial stop
of the pseudoline, the number of merged time tables will depend on the number
of pipeline. Each pipeline has its own merge-line and its own timetable.

In the current implementation all three levels of the graph are kept in the
main memory. This reflects to the referred memory consumption. Our aim in
future is to choose an appropriate representation of time tables and to minimize
the memory needed to store the additional structures.

6.2 The Hardware

Our reference hardware is HTC X7500 having Intel XScale 624MHz processor
and 128 megabytes RAM, 65 megabytes of free. Portable devices, on which the
current implementation is mostly targeted, used to be equipped by secondary
Flash-type memory. The writing to this kind of memory is usually several times
slower then the reading. The advantage of the mentioned adjustments is that
they do not require frequent writing into the secondary memory. Another specific
feature is that the access to various locations in the memory is not as complicated
as for example for hard drives. For this reason it is possible to hold the original
graph in the secondary memory without slowdown noticeable to the user.

12 Vladislav Mart́ınek, Michal Žemlička

7 Conclusions

The methods introduced here speed up searching for optimal path between two
given points in public transport network. They are intended to be used on mobile
hardware where the original computation took several seconds what is for many
users not acceptable. Currently the computation takes in the worst case only
one second what is acceptable for most users. We are currently considering other
options of improvement of the search algorithm.

basic first level second level

0

200

400

600

800

1000

1200

vertices

basic first level second level

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

edges

basic first level second level

0

200000

400000

600000

800000

1000000

1200000

1400000

memory

[B]

basic first level second level

0

1

2

3

4

5

search

time [s]

Fig. 7. Shift in the number of vertices, edges, memory consumption and computing
speed.

References

1. Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In Deme-
trescu, C., ed.: WEA. Volume 4525 of Lecture Notes in Computer Science, Springer
(2007) 23–36

2. Weihe, K.: Covering trains by stations or the power of data reduction. In Battiti,
R., Bertossi, A.A., eds.: Proceedings of “Algorithms and Experiments” (ALEX98).
(1998) 1–8

3. Liebers, A., Weihe, K.: Recognizing bundles in time table graphs - a structural
approach. In Näher, S., Wagner, D., eds.: Algorithm Engineering. Volume 1982 of
Lecture Notes in Computer Science., Springer (2000) 87–98

4. Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic all pairs shortest
path algorithms. ACM Transactions on Algorithms 2(4) (2006) 578–601

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

6. Dopravńı podnik hlavńıho města Prahy: (Užitečná dopravńı schémata) http://

www.dpp.cz/uzitecna-dopravni-schemata/.
7. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway Hierarchies Star. Tech-

nical report, ARRIVAL Project (2006) work presented at 9th DIMACS Challenge
on Shortest Paths.

From Web Pages to Web Communities

Miloš Kudělka1, Václav Snášel1, Zdeněk Horák1, and Aboul Ella Hassanien2

1 VSB Technical University Ostrava, Czech Republic
milos.kudelka@inflex.cz, {vaclav.snasel, zdenek.horak.st4}@vsb.cz

2 Faculty of Computer and Information, Information Technology Department, Cairo
University, Egypt
abo@cba.edu.kw

From Web Pages to Web Communities

Miloš Kudělka1, Václav Snášel1, Zdeněk Horák1, and Aboul Ella Hassanien2

1 VSB Technical University Ostrava, Czech Republic
milos.kudelka@inflex.cz, {vaclav.snasel, zdenek.horak.st4}@vsb.cz

2 Faculty of Computer and Information, Information Technology Department, Cairo
University, Egypt
abo@cba.edu.kw

Abstract. In this paper we are looking for a relationship between the
intent of Web pages, their architecture and the communities who take
part in their usage and creation. From our point of view, the Web page
is entity carrying information about these communities and this paper
describes techniques, which can be used to extract mentioned informa-
tion as well as tools usable in analysis of these information. Information
about communities could be used in several ways thanks to our approach.
Finally we present an experiment which illustrates the benefits of our ap-
proach.

Keywords: Web community, Web site, Web pattern, genre

1 Introduction

Metaphor: A Web page is like a family house. Each of its parts has its sense,
determined by a purpose which it serves. Every part can be named so that
everybody imagines approximately the same thing under that name (living room,
bathroom, lobby, bedroom, kitchen, balcony). In order that the inhabitants may
orientate well in the house, certain rules are kept. From the point of view of these
rules, all houses are similar. That is why it is usually not a problem e.g. for first
time visitors to orientate in the house. We can describe the house quite precisely
thanks to names. If we add information about a more detailed location such as
sizes, colors, equipment and further details to the description, then the future
visitor can get an almost perfect notion of what he will see in the house when he
comes in for the first time. We can also approach the description of a building
other than a family house (school, supermarket, office etc.). Also in this case the
same applies for visitors and it is usually not a problem to orientate (of course
it does not always have to be the case, as well as bad Web pages there are also
bad buildings).

In the case of buildings, we can naturally define three groups of people, which
are somehow involved in the course of events. The first group are the people
defining the intent and the purpose (those who pay and later expect some profit),
the second one are those who construct the building (and are getting paid for it)

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 13–22, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

14 Miloš Kudělka, Václav Snášel, Zdeněk Horák, Aboul Ella Hassanien

and the third group are “users” of the building. These groups fade into another
and change as society and technology evolve.

As we describe in the subsequent text, the presented metaphor can - up to
certain point - serve as an inspiration to seize the Web pages content and also
the whole Web environment.

This text is organized as follows. In the second section we describe the Web
page from the view of groups of people sharing the Web page existence. The third
section describes tools and techniques required for our experiment. In particular
our own Pattrio method, which is designed to detect Design patterns within Web
pages, and FCA used for clustering. In the fourth section we describe experiment
dealing with Web site description. The last section contains paper recapitulation
and focuses on possible directions of further research.

2 From Web pages to Web communities

Every single Web page (or group of Web pages) can be perceived from three
different points of view. When considering the individual points of view we were
inspired by specialists on Web design ([29]) and on the communication of humans
with computers ([6]). These points of view represent the views of three different
groups of communities who take part in the formation of the Web page (fig. 1).

Fig. 1. Views of three different groups

(1) The first group are those whose intention is that the user finds what he
expects on the Web page. The intention which the Web page is supposed to
fulfill is consequently represented by this group. For the sake of clarity, we can
say that this group is often represented by Web site owners. (2) The second
group are developers responsible for the creation of the Web page. They are
therefore consequently responsible for fulfilling the goals of the two remaining
groups. (3) The third group are users who work with the Web page. This group
consequently represents how the Web page should appear outwardly to the user.
It is important that this performance satisfies a particular need of the user.

As an example we can mention blogs. The first community are the companies,
which offer an environment and technological background for blog authors and to

From Web Pages to Web Communities 15

Fig. 2. Social network around Web pages

some extent they also define the formal aspects of blogs. The second community
are the developers who implement the task given by the previous group. The
visible attribute of this group is that they – to a certain degree – share their
techniques and policies. The third group consists of blog authors (in the sense
of content creation). They influence the previous two groups retroactively. The
second example can be the product pages - the intention of the e-shop is to sell
items (concretely to have Web pages where you can find and buy the products),
the intention of the developers is to satisfy the e-shop owners as well as the Web
page visitors. The intention of the visitors is to buy products, so they expect
clearly stated and well-defined functionality. From this point of view, the web
pages are elements around which the social networks are formed (fig. 2). For
further details and references, please see [1] and [15] (which considers also the
aspect of network evolution).

Under the term Web community we usually think of a group of related Web
pages, sharing some common interests (see [28], [20], [21]). As a Web community
we may also consider Web site or groups of Web sites, on which people with
common interests interact. It is apparent, that all three aforementioned groups
participate in the Web page life cycle. The evolution of a page is directly or
indirectly controlled by these groups. As a consequence, we can understand the
Web page as a projection of interaction among these three groups. The analysis
of the page content may uncover significant information, which can be used to
assign the Web page to a Web community.

3 Tools and techniques

Our aim is to automatically discover such information about Web pages, that
comes out of intentions of particular groups. Using these information we can
find the relations between the communities and describe them (on the technical
level). The key element for Web page description is the name of the object,

16 Miloš Kudělka, Václav Snášel, Zdeněk Horák, Aboul Ella Hassanien

which represents the intention of the page. It can be “Home page”, “Blog” or
“Product Page”. In the detailed description we can distinguish, for example,
between “Discussion”, “Article” or “Technical Features”. We can also use more
general description, such as “Something to Read” or “Menu” (see [14]).

Fig. 3. Product page scheme (a), (b)

The first group of intentions represents so-called Genre (see [5]). The second
group is very close to Web Design Patterns [30]. Figure 3 contains schematically
depicted product Web page with hierarchy of solved tasks (each task represents
one particular intention). The ability to discover aforementioned elements (Gen-
res and Web design patterns) is required to obtain the Web page description
(and consequently also the intentions represented by mentioned communities).

Genre is a taxonomy that incorporates the style, form and content of a docu-
ment which is orthogonal to topic, with fuzzy classification to multiple genres [4].
In the same paper are described existing classifications. Regarding these classifi-
cations there are many approaches on genre identification methods. The goal of
paper [11] is to analyze home page genres (personal home page, corporate home
page or organization home page). In paper [7] authors have proposed a flexible
approach for Web page genre categorization. Flexibility means that the approach
assigns a document to all predefined genres with different weights. In [9] paper,
there is described a set of experiments to examine the effect of various attributes
of Web genre on the automatic identification of the genre of Web pages. Four
different genres are used in the data set (FAQ, News, E-Shopping and Personal
Home Pages).

3.1 Pattrio method

Design patterns describe proven experience of repeated problem solving in the
area of software solution design. While the design patterns have been proven in
real projects, their usage increases the solution quality and reduces the time of
their implementation. Good examples are also the so called Web design patterns,
which are patterns for design related to the Web. Even in this area, the patterns
are getting quite common (they are collected and published in the form of printed
or Internet catalogues, e.g. see [29], [30]).

From Web Pages to Web Communities 17

We have designed our own Pattrio method used for the detection of Web de-
sign pattern instance in web pages. In Pattrio method we work with 24 patterns
(mostly e-commerce and social domain). Pattrio method is based on analysis of
technical (architectural) and semantical attributes of solutions of the same tasks
in the environment of Web, for details see [13], [14].

Detection algorithm In the context of our approach, there are elements with
semantic contents (words or simple phrases and data types) and elements with
importance for the structure of the web page where the Web pattern instance can
be found (technical elements). The rules are the way that individual elements
take part in the Web pattern display. While defining these rules, we have been
inspired by the Gestalt principles (see [27]). We are using four rules based on
these principles. The first one (proximity) defines the acceptable measurable
distances of individual elements from each other. The second one (closure) defines
the way of creating of independent closed segments containing the elements. One
or more segments then create the Web pattern instance on the web page. The
third one (similarity) defines that the Web pattern includes more related similar
segments. The forth one (continuity) defines that the Web pattern contains more
various segments that together create the Web pattern instance. The relations
among Web patterns can be on various levels similar as classes in OOP (especially
simple association and aggregation).

The basic algorithm for detection of Web patterns then implements the pre-
processing of the code of the HTML page (only selected elements are preserved
e.g. block elements as table, div, lines, etc.), segmentation and evaluation of rules
and associations. The result for the page is the score of Web patterns that are
present on the page. The score then says what is the relevance of expecting the
Web pattern instance on the page for the user.

The accuracy of our method is about 80% (see [12]). Figure 4 shows the
accuracy of Pattrio method for tree selected products (Apple iPod Nano 1GB,
Canon EOS 20D, Star Wars Trilogy film) and for the Discussion pattern and the
Purchase possibility pattern. We used only the first 100 pages for each product.
We manually and using Pattrio method evaluated the pages using a three-degree
scale:

+ Page contains required pattern.
? Unable to evaluate results.
- Page do not contain required pattern.

Then we compared these evaluations. For example the first value 61% ex-
presses the method accuracy for the pages with Canon EOS 20D product where
there was a discussion.

3.2 Formal Concept Analysis

As one of the suitable tools for analyzing this kind of data we consider Formal
concept analysis. When preprocessing Web pages we often cannot clearly state

18 Miloš Kudělka, Václav Snášel, Zdeněk Horák, Aboul Ella Hassanien

Fig. 4. Accuracy of Pattrio method for detection of Discussion and Purchase Possibility
patterns - percentage of agreement between human and Pattrio method evaluation on
sets of Web pages returned for different search queries

the presence of an object in the page content. We are able to describe the amount
of its presence at some scale and this information can be captured using fuzzy
methods and analyzed using a fuzzy extension of Formal Concept Analysis ([3]).
But since we are dealing with a large volume of data ([8]) and a very imprecise
environment, we should consider several practical issues, which have to be solved
prior the first applications. Methods of matrix decomposition have succeeded in
reducing the dimensions of input data (see [26] for application connected with
Formal concept analysis and [18], [17] for overview).

Formal concept analysis (shortly FCA, introduced by Rudolf Wille in 1980)
is well known method for object-attribute data analysis. The input data for FCA
we call formal context C, which can be described as C = (G, M, I) – a triplet
consisting of a set of objects G and set of attributes M , with I as relation of G
and M . The elements of G are defined as objects and the elements of M as
attributes of the context.

For a set A ⊆ G of objects we define A
′
as the set of attributes common to the

objects in A. Correspondingly, for a set B ⊆M of attributes we define B
′
as the

set of objects which have all attributes in B. A formal concept of the context
(G, M, I) is a pair (A, B) with A ⊆ G, B ⊆M , A

′
= B and B

′
= A. B(G, M, I)

denotes the set of all concepts of context (G, M, I) and forms a complete lattice
(so called Gallois lattice). For more details, see [10].

4 Experiment

For the need of our experiment we have implemented a Web application with user
interface connected to the API of different search engines (google.com, msn.com,
yahoo.com and the Czech search engine jyxo.cz above all). Users from a group

From Web Pages to Web Communities 19

of students and teachers of high schools and our university were using this ap-
plication for more than one year to search for ordinary information. We have
not influenced the process of searching in any way. The purpose of this part of
experiment was to view the World Wide Web using the perspective of normal
users (as the search engines play key role in World Wide Web navigation). In the
end we have obtained dataset with more than 115,000 Web pages. After clean
up, 77,850 unique Czech pages remained. For every single Web page we have per-
formed the detection of sixteen objects. The page did not have to contain any
object, as well as it may have contained 16 objects (Price information, Purchase
possibility, Special offer, Hire sale, Second hand, Discussion and comments, Re-
view and opinion, Technical features, News, Enquire, Login, Something to read,
Link group, Price per item, Date per item, Unit per item). We have used such
preprocessed dataset for following experiment.

In the experiment we have tried to visualize the structure and relations
of Web sites (and as a result also Web communities) referring to one specific
topic. As an input we have used the list of domains created in the previous
experiment. Only Web sites with more than 20 pages in the dataset have been
taken into consideration. Each domain is accompanied by detected objects. This
list is transformed into a binary matrix and considered as a formal context. Using
methods of FCA we have computed a concept lattice which can be seen on fig-
ure 5. The resulting matrix has 516 rows (objects) and 16 columns (attributes),
computed concept lattice contains 378 concepts.

Fig. 5. Lattice calculated from whole dataset

20 Miloš Kudělka, Václav Snášel, Zdeněk Horák, Aboul Ella Hassanien

From the computed lattice we have selected a sub-lattice containing 18 Web
sites dealing with cell phones. Only 5 attributes have been selected and the vi-
sualization was created in a slightly different manner (see figure 6 and attached
legend). Each node of the graph corresponds to one formal concept. To increase
the visualization value, the attributes are represented by icons and the set of ob-
jects (Web sites) is depicted using small filled/empty squares in the lower part.
It can be easily seen that using created visualization we can think of dividing
the whole set of Web sites into two groups - the first one contains sites where
users are enabled to buy cell phones and the second one where the users are
allowed to have a discussion. The illustrated division is in the soft sense only —
one may think of concept nr. 8 as being part of the shopping group also. Web
sites presented in higher levels of lattice are considered in more specific context.
Deeper insight gives you more detailed information about Web site structures
and relations.

Fig. 6. Part of lattice

The concept lattice forms a graph, which can be interpreted as an expression
of relation between different Web sites. As a consequence, it describes the rela-
tion between different Web communities, because behind the shopping-related
domains we can see the group of users interested in buying cell phones and be-
hind the information–sharing pages we see the community of users interested
only in the technical aspects, features of cell phones and their discussing.

From Web Pages to Web Communities 21

5 Conclusions and future work

In this paper we have described three kinds of social groups which take part in
Web page creation and usage. We distinguish these groups using their relation to
the Web page - whether they define the intent of the page, whether they create
the page or whether they use the page. By using this analysis we can follow the
evolution of the communities and observe the expectancies, rules and behavior
they share. Obtained information can be surely used to improve the searching
process. From this point of view, Web 2.0 is only a result of the existence and
interaction of these social groups.

Our experiment shows that if we focus ourselves on Web sites and the Web
page content they provide, we can ask interesting questions. These questions may
bear upon the Web sites’ similarity and the similarity of social groups involved
with these pages. For us this shows the direction of further research in which we
will investigate answers to these questions in more detail.

References

1. L. Adamic, E. Adar: How to search a social network, Journal Social Networks,
vol. 27, pp. 187–203 (2005)

2. Ch. Alexander: A Pattern Language: Towns, Buildings, Construction, Oxford Uni-
versity Press, New York (1977)

3. R. Belohlavek, V. Vychodil: What is a fuzzy concept lattice, Proceedings of the
CLA, 3rd Int. Conference on Concept Lattices and Their Applications, pp. 34–45
(2005)

4. E. S. Boese: Stereotyping the web: Genre classification of Web documents, Col-
orado State University (2005)

5. E. S. Boese, A. E. Howe: Effects of web document evolution on genre classifica-
tion, Proceedings of the 14th ACM international conference on Information and
knowledge management, pp. 632–639 (2005)

6. J. O. Borchers: Interaction Design Patterns: Twelve Theses, Workshop, The
Hague, vol. 2 (2000)

7. J. Chaker, O. Habib: Genre Categorization of Web Pages, Proceedings of the
Seventh IEEE International Conference on Data Mining Workshops, pp. 455–464
(2007)

8. R. J. Cole, P. W. Eklund: Scalability in Formal Concept Analysis, Computational
Intelligence, vol. 15, pp. 11–27 (1999)

9. L.Dong, C. Watters, J. Duffy, M. Shepherd: An Examination of Genre Attributes
for Web Page Classification, Proceedings of the Proceedings of the 41st Annual
Hawaii International Conference on System Sciences, pp. 133–143 (2008)

10. B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations,
Springer-Verlag, New York (1997)

11. A. Kennedy, M. Shepherd: Automatic Identification of Home Pages on the Web,
Proceedings of the 38th Hawaii International Conference on System Sciences
(2005)

12. J. Kocibova, K. Klos, O. Lehecka, M. Kudelka, V. Snasel: Web Page Analysis:
Experiments Based on Discussion and Purchase Web Patterns, Web Intelligence
and Intelligent Agent Technology Workshops, pp. 221–225 (2007)

22 Miloš Kudělka, Václav Snášel, Zdeněk Horák, Aboul Ella Hassanien

13. M. Kudelka, V. Snasel, O. Lehecka, E. El-Qawasmeh: Semantic Analysis of Web
Pages Using Web Patterns, Proceedings of the 2006 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, pp. 329–333 (2006)

14. M. Kudelka, V. Snasel, O. Lehecka, E. El-Qawasmeh, J. Pokorny: Web Pages
Reordering and Clustering Based on Web Patterns, SOFSEM 2008, pp. 731–742
(2008)

15. R. Kumar, J. Novak, A. Tomkins: Structure and Evolution of Online Social Net-
works, Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 611–617 (2006)

16. D. Lee, O. R. Jeong, S. Lee: Opinion mining of customer feedback data on the
web, Proceedings of the 2nd international conference on Ubiquitous information
management and communication, pp. 230–235 (2008)

17. D. Lee, H. Seung.: Learning the parts of objects by non-negative matrix factor-
ization, Nature, vol. 401, pp. 788–791 (1999)

18. T. Letsche, M. W. Berry, S. T. Dumais.: Computational methods for intelligent
information access, Proceedings of the 1995 ACM/IEEE Supercomputing Confer-
ence (1995)

19. H. Y. Limanto, N. N. Giang, V. T. Trung, J. Zhang, Q. He, N. Q. Huy: An
information extraction engine for web discussion forums, International World Wide
Web Conference, pp. 978–979 (2005)

20. T. Murata: Discovery of User Communities from Web Audience Measurement
Data, Web Intelligence 2004, pp. 673–676 (2004)

21. T. Murata, K. Takeichi: Discovering and Visualizing Network Communities, Web
Intelligence/IAT Workshops 2007, pp. 217–220 (2007)

22. Z. Nie, J. R. Wen, W. Y. Ma: Object-level Vertical Search, Third Biennial Con-
ference on Innovative Data Systems Research, pp. 235–246 (2007)

23. Z. Pawlak: Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer
Academic Publishing (1991)

24. M. A. Rosso: User-based identification of Web genres. JASIST (JASIS) 59(7), pp.
1053–1072 (2008)

25. S. Schmidt, H. Stoyan: Web-based Extraction of Technical Features of Products,
Beiträge der 35. Jahrestagung der Gesellschaft für Informatik, pp. 256–261 (2005)

26. V. Snasel, M. Polovincak, H. M. Dahwa, Z. Horak: On concept lattices and im-
plication bases from reduced contexts, Supplementary Proceedings of the 16th
International Conference on Conceptual Structures, ICCS 2008, pp. 83–90 (2008)

27. J. Tidwell: Designing Interfaces: Patterns for Effective Interaction Design,
O’Reilly, pp. 0–596 (2005)

28. M. Toyoda, M. Kitsuregawa: Creating a Web community chart for navigating
related communities, Hypertext 2001, pp. 103–112 (2001)

29. D. K. Van Duyne, J. A. Landay, J. I. Hong: The Design of Sites: Patterns, Princi-
ples, and Processes for Crafting a Customer-Centered Web Experience, Addison-
Wesley Professional (2003)

30. M. Van Welie: Pattern Library for Interaction Design. www.welie.com, (last access
2008-08-07)

31. S. Zheng, R. Song, J. R. Wen: Template-independent news extraction based on
visual consistency, In Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, pp. 1507–1513 (2007)

Compression of the Stream Array Data
Structure ?

Radim Bača and Martin Pawlas

Department of Computer Science, Technical University of Ostrava
Czech Republic

{radim.baca,martin.pawlas}@vsb.cz

Compression of the Stream Array Data Structure ?

Radim Bača and Martin Pawlas

Department of Computer Science, Technical University of Ostrava
Czech Republic

{radim.baca,martin.pawlas}@vsb.cz

Abstract. In recent years, many approaches to XML twig pattern query (TPQ)
processing have been developed. Some algorithms are supported by a stream ab-
stract data type.
Stream is an abstract data type usually implemented using inverted list or special
purpose data structure. In this article, we focus on an efficient implementation
of a stream ADT. We utilize features of a stream ADT in order to implement
compressed stream array and compare it with regular stream array.

Key words: Stream ADT, XML

1 Introduction

In recent years, many approaches to XML twig pattern query (TPQ) processing have
been developed. Indexing techniques for a XML document structure have been stud-
ied extensively and works such as [11, 10, 8, 1, 3, 9, 4, 5] have outlined basic princi-
ples of streaming scheme approaches. Node of an XML tree is labeled by a labeling
scheme [11, 10] and stored in a stream array. Streaming methods usually use the XML
node tag as a key for one stream. Labels retrieved for each query node tag are then
merged by some type of XML join algorithm such as structural join [1] or holistic
join [3].

We can use also relational databases in order to store and query labeled XML tree,
however relational query processor join operation is not designed for this purpose. Due
to this fact, XML joins outperform significantly relational query processors [11].

XML joins are based on a stream abstract data type which usually implemented us-
ing inverted list or special purpose data structure. In this article, we focus on an efficient
implementation of a stream ADT. We utilize features of a stream ADT in order to imple-
ment compressed stream array and compare it with regular stream array. We utilize fast
fibonacci encoding and decoding algorithms in order to achieve maximal efficiency of
the result data structure. Moreover, our compressed stream array data structure allows
us to store variable length labels such as Dewey order without storage overhead.

In Section 2, we describe XML model. Section 3 introduce the stream abstract data
type and outline persistent stream array and its compression. In Section 4, we describe
different compression techniques applied on a block of a stream array. Section 5 de-
scribes some experimental results.

? Work is partially supported by Grants of GACR No. 201/09/0990.? Work is partially supported by Grants of GACR No. 201/09/0990.

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 23–31, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

24 Radim Bača, Martin Pawlas

2 XML model

An XML document can be modeled as a rooted, ordered, labeled tree, where every
node of the tree corresponds to an element or an attribute of the document and edges
connect elements, or elements and attributes, having a parent-child relationship. We call
such representation of an XML document an XML tree. We can see an example of the
XML tree in Figure 1. We use the term ’node’ to define a node of an XML tree which
represents an element or an attribute.

The labeling scheme associates every node in the XML tree with a label. These
labels allow to determine structural relationship between nodes. Figures 1(a) and 1(b)
show the XML tree labeled by containment labeling scheme [11] and dewey order [10],
respectively.

The containment labeling scheme creates labels according to the document order.
We can use simple counter, which is incremented every time we visit a start or end tag
of an element. The first and the second number of a node label represent a value of the
counter when the start tag and the end tag are visited, respectively. In the case of dewey
order every number in the label corresponds to one ancestor node.

books

book

author title

cscience

(1:20,1)

(2:9,2) (10:19,2)

(3:5,3) (6:8,3)
book

author title

(11:18,3)

(12:14,4) (15:17,4)
Anthony

Gatto

Ullman
Widom

Database
Systems

To be the
best

books

book

author title

cscience

(1)

(1,1) (1,2)

(1,1,1) (1,2,1)
book

author title

(1,2,1)

(1,2,1,1) (1,2,1,2)
Anthony

Gatto

Ullman
Widom

Database
Systems

To be the
best

(a) (b)

Fig. 1. (a) Containment labeling scheme (b) Dewey order labeling scheme

3 Stream ADT

Holistic approaches use an abstract data type (ADT) called a stream. A stream is an
ordered set of node labels with the same schema node label. There are many options
for creating schema node labels (also known as streaming schemes). A cursor pointing
to the first node label is assigned to each stream. We distinguish the following opera-
tions of a T stream: head(T) – returns the node label to the cursor’s position, eof(T) –
returns true iff the cursor is at the end of T , advance(T) – moves the cursor to the next

Compression of the Stream Array Data Structure 25

node label. Implementation of the stream ADT usually contains additional operations:
openStream(T) – open the stream T for reading, closeStream(T) - close the stream.

The Stream ADT is often implemented by an inverted list. In this article we de-
scribe simple data structure called stream array, which implement stream ADT. We test
different compression techniques in order to decrease number of disk accesses. It also
allows us to store variable length vectors efficiently.

3.1 Persistent stream array

Persistent stream array is a data structure, which uses common architecture, where data
are stored in blocks on secondary storage and main memory cache keeps blocks read
from the secondary storage. In Figure 2 we can see an overview of such architecture.
Cache uses the least recently used (LRU) schema for a selection of cache blocks [7].

Secondary
storage

Main memory cache

1

2

10

4

25 8

10 8

4 14 7

711

14

25 1 2

Stream
start

Stream
start

Stream
start

11

Logical structure of stream array

Fig. 2. Overview of a persistent architecture

Each block consists of an array of tuples (node labels) and from a pointer to the
next block in a stream. Pointers enable dynamic character of the data structure. We can
easily insert or remove tuples from the blocks without time-consuming shift of all items
in a data structure. Blocks do not have to be fully utilized, therefore we also keep the
number of tuples stored in each block.

Insert and delete operations We briefly describe the insert and delete operations of
the stream array in order to see how the data structure is created. In Algorithm 1 we
can observe how a label is inserted. B.next is a pointer to the next block in the stream.
We try to keep higher utilization of blocks by using similar split technique used by
B+tree [6], where we create three 66% full blocks of two full block if possible.

Delete operation is very similar to insert. We process merge of blocks in a case that
their utilization is bellow a threshold. However, this operation is out of scope of this
article.

3.2 Compressed stream array

There are two reasons for a stream array compression. The first advantage is that we
can decrease the size of the data file and therefore decrease number of disk accesses. Of

26 Radim Bača, Martin Pawlas

Algorithm 1: Insert lT label into the stream array

Find the block B where the lT label belongs;1
if B is full then2

if block B.next is full ∨ B.next does not exist then3
Create three blocks from B and B.next (if B.next exist);4
Find the right block and insert lT ;5

else6
Shift some items from B to the B.next;7
Insert lT into B;8

end9

else10
Insert lT into B;11

end12

course, there is an extra time spend on a compression and decompression of data. The
compression and decompression time should be lower or equal to time saved having
less disk accesses. As a result compression algorithm should be fast and should have
good compression ratio. We describe different compression algorithms in Section 4.

The second advantage is that we can store variable length tuples. Tuples in a regular
stream block are stored in a array with fixed items’ size. The items’ size has to be equal
to the longest label stored in the stream array and we waste quite a lot of space in this
way. Compressed stream block do not use array of items in the block but the byte array
where the tuples are encoded.

The stream array has a specific feature which enables efficient compression. We
never access items in one block randomly during the stream read. Random access to
a tuple in the block may occur only during the stream open operation, but the stream
open is not processed very often. Therefore, we can keep the block items encoded in
the byte array and remember only the actual cursor position in the byte array. The
cursor is created during the stream open and it also contains one tuple, where we store
encoded label of the current cursor position. Each label is encoded only once during the
advance(T) operation. The head(T) operation only returns the encoded tuple assigned
to cursor. Using this schema we keep data compressed even in the main memory and
have to have only one decompressed tuple assigned to each opened stream.

4 Block Compression

In following chapters we will describe compression algorithms implemented during our
tests and also we will show examples of these algorithms.

4.1 Variable length tuple

This compression is only based on fact that we can store variable length tuple. It is done
by saving dimension length with each tuple.

Compression of the Stream Array Data Structure 27

Example 41 Let us have these two tuples: 〈1, 2〉 and 〈1, 2, 3, 7〉. When using this com-
pression they will occupy 6×4 B + 2 B for dimension length for these two tuples. If we
use regular stream array without supporting variable tuple length we will have to align
first tuple, so it will look like 〈1, 2, 0, 0〉 and these two tuples will occupy 8×4 B.

4.2 Fibonacci coding

This kind of compression is based on Fibonacci coding of number. Because each di-
mension of tuple contain only non negative number we can use Fibonacci coding.

Example 42 Let us have a tuple 〈1, 2, 3, 7〉. After encoding the tuple will be stored as
a sequence of bits 11011001101011, which occupy 2 B instead of original 24 B (each
dimension is 4 B length).

The problem for this compression technique might be when tuple contains large num-
bers and then compression of the tuple will take more time, because the number is
encoded bit-by-bit. Due to this fact we used the the fast Fibonacci decompression algo-
rithm, which is described in more details in [2]. This decompression algorithm is faster
because it is working with whole bytes.

4.3 Compression based on reference item

Tuples in a stream array are sorted and we can use this feature to compress a tuple with
knowledge of his ancestor.

Common prefix compression Common prefix compression is based on idea of Run
Length Encoding (RLE). Usually ancestor of actual compressing tuple is very similar
and therefore we do not have to store every dimension.

Example 43 Let us have these tuples: 〈1, 2, 3, 7, 9, 7〉, 〈1, 2, 3, 7, 5, 6, 7〉,
〈1, 2, 3, 7, 7, 0, 0, 7〉. First tuple in the block cannot be compressed, because there is no
ancestor. Second tuple have to store only 3 dimensions and third one have to store last
4 dimensions. The result after compression looks like: 0−〈1, 2, 3, 7, 9, 7〉, 4−〈5, 6, 7〉,
4− 〈7, 0, 0, 7〉, where the first number says how many dimensions are common. In this
example we saved 28 B (original size is 23×4 B, compressed size is (13+3)×4 B).

Fibonacci coding with reference item The Fibonacci code is designed for a small
numbers. However, numbers in the case of containment labeling scheme grows rapidly.
In this case, the Fibonacci code becomes inefficient and compression does not work ap-
propriately. In order to keep the numbers small we subtract each tuple with its previous
tuple.

Example 44 Let us have these two tuples: 〈1000, 200, 300, 7〉 and 〈1005, 220, 100, 7〉.
From this example we see that we can subtract first 2 dimensions. After subtraction
we will have 〈1000, 200, 300, 7〉 and 〈5, 20, 100, 7〉, which are encoded faster and also
occupy less space.

28 Radim Bača, Martin Pawlas

5 Experimental results

In our experiments2, we used XMARK 1 data collection and we generated labels for
two different labeling schemes: containment labeling scheme with fixed size of labels
and dewey order labeling scheme with variable dimension length. We tested scalability
of the compression schemes on different collection sizes. We provide test for XMARK
collections containing approximately 200k, 400k, 600k, 800k and 1000k labels. Each
collection contains 512 streams.

The stream array and all compression algorithms were implemented in C++. We
created one persistent stream array for each collection of labels. We provide set of tests,
where we simulate real work with the stream array and measure the influence of the
compression. For each test we randomly selected 100 streams and read them until the
end. Test is processed with a cold cache. During tests we measured file size, query time
and Disk Access Cost (DAC). Query time include time interval needed for opening
of each randomly selected stream and his reading until the end. DAC is equal to the
number of disk accesses during the query processing.

5.1 Fixed dimension length

In Figure 3(a) we can see that file size is same for the block without compression and for
the block which support storing variable tuple dimensionality. There is small difference,
but it is only because of supporting variable length of dimension. As we can see in
Figure 3(a) the regular Fibonacci compression can save us about 25 %. Due to the fact,
that the labels values are very close, we can achieve significantly better results in the
case of Fibonacci compression using reference tuple. This kind of compression can save
about 50 % compared to the regular stream array. Common prefix compression saved
us only about 10 %.

Even thought that the compression ratio is good, the query time for compressed
stream array is a little bit worse than for regular stream array as you can see in Figure
3(b). Disk access cost that we save using the compression is not sufficient in this case
and it is less than the time spend on decompression.

5.2 Variable dimension length

If collection data contains tuples with variable dimension length we can save from 55 %
(only by using block which support variable dimension length) up to 85 % (for Fi-
bonacci compression with reference item) of file size when comparing to regular stream
array.

The query time of the compressed stream array is always smaller for every imple-
mented compression technique than query time of regular stream array as you can see
in Figure 4(b). The Fibonacci compression has the best result for this data collection,
with or without reference tuple. The results are comparable because the labels’ numbers
do not grow so quickly in the case of dewey order labeling scheme.

2 The experiments were executed on an Intelr Celeron rD 356 - 3.33 Ghz, 512 kB L2 cache;
3 GB 533 MHz DDR2 SDRAM; Windows Vista.

1 http://monetdb.cwi.nl/xml/

Compression of the Stream Array Data Structure 29

X200k X400k X600k X800k X1000k

F
ile

 s
iz

e
[k

B
]

0
10

00
0

20
00

0
30

00
0

40
00

0
Fixed length tuple
Variable length tuple
Fibonacci coding
Fibonacci coding with reference item
Common prefix compression

X200k X400k X600k X800k X1000k

Q
ue

ry
 ti

m
e

[m
s]

0
10

20
30

40
50

60

Fixed length tuple
Variable length tuple
Fibonacci coding
Fibonacci coding with reference item
Common prefix compression

(a) (b)

X200k X400k X600k X800k X1000k

D
A

C
 [k

B
]

0
10

00
20

00
30

00
40

00
50

00

Fixed length tuple
Variable length tuple
Fibonacci coding
Fibonacci coding with reference item
Common prefix compression

(c)

Fig. 3. Results (a) Compress ratio (b) Query time (c) DAC for fixed dimension length tuples

6 Conclusion

In this article we evaluate the persistent stream array compression. The persistent stream
array is designed to implement the stream ADT which support an XML indexing ap-
proaches. We tested two most common types of labeling schemes of XML trees: con-
tainment labeling scheme and dewey order labeling scheme. We performed series of
experiments with different compression techniques. The compression of Containment
labeling scheme is feasible only if we want to decrease the size of data file. The data
decompression time is always higher than the time saved on a DAC, therefore, the query
processing using a compressed stream array is less efficient than the regular stream ar-
ray. On the other hand, compressed stream array storing the dewey order labels perform
significantly better than the regular stream array. The best query time is achieved with
the compression technique utilizing the fast fibonacci coding.

References

1. S. Al-Khalifa, H. V. Jagadish, and N. Koudas. Structural Joins: A Primitive for Efficient
XML Query Pattern Matching. In Proceedings of ICDE 2002. IEEE CS, 2002.

30 Radim Bača, Martin Pawlas

X200k X400k X600k X800k X1000k

F
ile

 s
iz

e
[k

B
]

0
20

00
0

60
00

0
10

00
00

Fixed length tuple
Variable length tuple
Fibonacci coding
Fibonacci coding with reference item
Common prefix compression

X200k X400k X600k X800k X1000k

Q
ue

ry
 ti

m
e

[m
s]

0
10

20
30

40
50

60
70

Fixed length tuple
Variable length tuple
Fibonacci coding
Fibonacci coding with reference item
Common prefix compression

(a) (b)

X200k X400k X600k X800k X1000k

D
A

C
 [k

B
]

0
20

00
60

00
10

00
0

14
00

0

Fixed length tuple
Variable length tuple
Fibonacci coding
Fibonacci coding with reference item
Common prefix compression

(c)

Fig. 4. Results (a) Compress ratio (b) Query time (c) DAC for variable dimension length tuples

2. R. Baca, V. Snasel, J. Platos, M. Kratky, and E. El-Qawasmeh. The Fast Fibonacci Decom-
pression Algorithm. Arxiv preprint arXiv:0712.0811, 2007.

3. N. Bruno, D. Srivastava, and N. Koudas. Holistic Twig Joins: Optimal XML Pattern Match-
ing. In Proceedings of ACM SIGMOD 2002, pages 310–321. ACM Press, 2002.

4. S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and K. S. Candan. Twig2Stack:
Bottom-up Processing of Generalized-tree-pattern Queries Over XML documents. In Pro-
ceedings of VLDB 2006, pages 283–294, 2006.

5. Z. Chen, G. Korn, F. Koudas, N. Shanmugasundaram, and J. Srivastava. Index Structures for
Matching XML Twigs Using Relational Query Processors. In Proceedings of ICDE 2005,
pages 1273–1273. IEEE CS, 2005.

6. D. Comer. Ubiquitous b-tree. In ACM Computing Surveys, pages 121–137. ACM Press,
June, 1979.

7. H. Garcia-Molina, J. Ullman, and J. Widom. Database systems: the complete book. Prentice
Hall, 2002.

8. T. Grust, M. van Keulen, and J. Teubner. Staircase Join: Teach a Relational DBMS to Watch
Its (Axis) Steps. In Proceedings of VLDB 2003, pages 524–535, 2003.

9. H. Jiang, H. Lu, W. Wang, and B. Ooi. XR-Tree: Indexing XML Data for Efficient. In
Proceedings of ICDE, 2003, India. IEEE, 2003.

Compression of the Stream Array Data Structure 31

10. I. Tatarinov and at al. Storing and Querying Ordered XML Using a Relational Database
System. In Proceedings of ACM SIGMOD 2002, pages 204–215, New York, USA, 2002.

11. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On Supporting Containment
Queries in Relational Database Management Systems. In Proceedings of ACM SIGMOD
2001, pages 425–436, 2001.

Benchmarking Coding Algorithms for the R-tree
Compression?

Jǐŕı Walder, Michal Krátký, and Radim Bača

Department of Computer Science
Technical University of Ostrava, Czech Republic
{jiri.walder,radim.baca,michal.kratky}@vsb.cz

Benchmarking Coding Algorithms for the R-tree
Compression?

Jǐŕı Walder, Michal Krátký, and Radim Bača

Department of Computer Science
Technical University of Ostrava, Czech Republic
{jiri.walder,radim.baca,michal.kratky}@vsb.cz

Abstract. Multi-dimensional data structures have been widely applied
in many data management fields. Spatial data indexing is their natu-
ral application, however there are many applications in different domain
fields. When a compression of these data structures is considered, we
follow two objectives. The first objective is a smaller index file, the sec-
ond one is a reduction of the query processing time. In this paper, we
apply a compression scheme to fit these objectives. This compression
scheme handles compressed nodes in a secondary storage. If a page must
be retrieved then this page is decompressed into the tree cache. Since
this compression scheme is transparent from the tree operations point of
view, we can apply various compression algorithms to pages of a tree.
Obviously, there are compression algorithms suitable for various data
collections, therefore, this issue is very important. In our paper, we com-
pare the performance of Golomb, Elias-delta and Elias-gamma coding
with the previously introduced Fast Fibonacci algorithm.

Keywords: multi-dimensional data structures, R-tree, compression scheme,
Golomb, Elias-delta, and Elias-gamma coding, Fast Fibonacci algorithm

1 Introduction

Multidimensional data structures [21] have been widely applied in many data
management fields. Spatial data indexing is their natural application, however
there are many applications in different domain fields. In the case of spatial
data, structures often store two- and three-dimensional objects. In the case of
multimedia data, spaces with dimensionality up to 100,000 appear.

Many multidimensional data structures have been developed in the past, e.g.
the quadtree family [21], LSD-tree [11], R-tree [10], R+-tree [23], R∗-tree [4], and
Hilbert R-tree [13]. In the case of R-tree, tuples are clustered in a tree’s page
using MBBs (Minimal Bounding Boxes). If we consider a multidimensional tuple
collection, redundancy appears. Consequently, a compression may be used for
the nodes efficient storage and retrieval.
? Work is partially supported by Grant of GACR No. 201/09/0990.
? Work is partially supported by Grant of GACR No. 201/09/0990.

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 32–43, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

Benchmarking Coding Algorithms for the R-tree Compression 33

Although some works applying a compression inside a DBMS have been
developed, a real-time compression of multidimensional data structures is not
often a research interest. Obviously, a smaller index file means lower DAC (Disk
Access Cost) when a query is processed [19]. Consequently, lower DAC may mean
the lower processing time.

There are a lot of works applying a compression inside a DBMS. In [24],
authors depict RLE for compression of sorted columns to have few distinct val-
ues. In [7], authors propose the SBC-tree (String B-tree for Compressed se-
quences) for indexing and searching RLE-compressed sequences of arbitrary
length. Work [1] demonstrates that the fast dictionary-based methods can be
applied to order-preserving compression. In [5], authors introduce the IQ-tree,
an index compression technique for high-dimensional data spaces. They present
a page scheduling strategy for nearest neighbor algorithms that, based in a cost
model, can avoid many random seeks. Work [6] introduces a tree-based structure
called PCR-tree to manage principle components. In [26], authors introduce the
xS-tree that uses lossy compression of bounding regions. Original works written
about compressions of multidimensional data structures describe the compres-
sion of quad-tree [8, 22]. Work [8] suggested an algorithm to save at least 66%
of the computer storage required by regular quadtrees. The first work [9], which
concerns compressing R-tree pages, uses the relative representation of MBB to
increase the fanout of the R-tree page. A bulk-loading algorithm, which is a
variation of STR [16], and a lossy compression based on the coordinate quanti-
zation are presented there. Other works in this field are focused on improving
the effectiveness of the main memory indexes. Those cache-conscious indexes
suppose that they can store most of the index in the main memory. Such a work
is CR-tree [14], which uses a type of MBB representation similar to [9]. Let the
irrelevant page be the page whose MBB does not intersect a query box. These
works apply the lossy compression, therefore an improved compression ratio is
achieved when a filtration of irrelevant pages must be processed during a query
processing.

In this paper, we utilize a compression scheme for R-tree introduced in [2].
Pages of a tree are stored in a secondary storage and decompressed in a tree’s
cache. We achieved a lower DAC and the pages are not always decompressed
when an operation is required. In this paper, we compare the Fast Fibonacci
coding [3, 2] with three other coding algorithms: Golomb, Elias-Gamma, and
Elias-Delta codings [20, 17].

In Section 2, we briefly describe the R-tree and its variants. In Section 3,
the above depicted compression scheme is presented. In Section 4, we describe
various coding techniques: Fast Fibonacci, Golomb, Elias-gamma, and Elias-
delta. Experimental results are shown in Section 5. Finally, we conclude with a
summary of results and discussion about future work.

34 Jǐŕı Walder, Michal Krátký, Radim Bača

2 R-tree

R-trees [10] support point and range queries, and some forms of spatial joins.
Another interesting query, supported to some extent by R-trees, is the k nearest
neighbors (k-NN query. R-tree can be thought of as an extension of B-trees in a
multi-dimensional space. It corresponds to a hierarchy of nested n-dimensional
MBBs (see [10] for detail). R-tree performance is usually measured with respect
to the retrieval cost (in terms of DAC) of queries.

Variants of R-trees differ in the way they perform the split algorithm. The
well-known R-tree variants include R∗-trees and R+-trees. In [18], we can find a
more detailed description as well as depiction of other R-tree variants.

It is not usually efficient to insert a large amount of data into an R-tree
using the standard insert operation [10, 4]. The split algorithm is rather an ex-
pensive operation, therefore, the insertion of many items may take quite a long
time. Moreover, this algorithm is executed many times during the insertion. The
query performance is greatly influenced by utilization of the R-tree. A common
utilization rate of an R-tree created with a standard insert algorithm is around
55%. On the other hand, the utilization rate of the R-tree created with the
bulk-loading method, rises up to 95% [4].

Several bulk-loading methods [12, 15, 16] have been developed. All bulk-loading
methods first order input items. Method [16] utilizes one-dimensional space-
filling curve criterion for such ordering. This method is very simple and allows
to order input items very fast. The result R-tree preserves suitable features for
the most common data.

3 A Compression Scheme for Tree-like Data Structures

In this section, we describe a basic compression scheme which can be utilized
for most paged tree data structures [2]. Pages are stored in a secondary storage
and retrieved when the tree requires a page. This basic strategy is widely used
by many indexing data structures such as B-trees, R-trees, and many others.
They utilize cache for fast access to pages as well, since the access to the sec-
ondary storage can be more than 20 times slower compared to access to the main
memory. We try to decrease the amount of DAC to a secondary storage while
significantly decreasing the size of a tree file in the secondary storage.

In Figure 1, we can observe the basic idea of compression scheme used in this
paper. If a tree data structure wants to retrieve a page, the compressed page is
transfered from the secondary storage to the tree’s cache and it is decompressed
there. An important issue of our compression scheme is that the pages are only
compressed in the secondary storage.

When the compression scheme is taken into consideration, the tree insert al-
gorithm only needs to be slightly modified. Query algorithms are not affected at
all because page decompression is processed only between cache and secondary
storage and the tree can utilize decompressed pages for searching without know-
ing that they have been previously compressed.

Benchmarking Coding Algorithms for the R-tree Compression 35

Compreseed
pageNode

Data structure
Data structure's

cache
in main memory Secondary

storage

Fig. 1. Transfer of compressed pages between the secondary storage and tree’s cache.

The goal of R-tree and its variants is to cluster the most similar tuples into
a single page. The term ‘similar tuples’ means that the tuples are close to each
other in a multi-dimensional space according to L2 metric. This feature can be
utilized to compress R-tree pages by a fitting compression algorithm. An impor-
tant issue of this scheme is that we can apply various compression algorithms to
a single R-tree. In Section 4, we show an algorithm for the R-tree compression,
other compression algorithms can be found in [27].

Using this compression scheme we reduce the R-tree index size as well as
DAC during a query processing. We require a decompression algorithm to be as
fast as possible, otherwise the decompression time would not exceed the time
saved for a lower DAC.

4 Compression Algorithm

Since tuples of a tree’s page are closely located to one another in a multidimen-
sional space, we can suppose that coordinates of these tuples are ’similar’. This
means that the coordinates in each dimension are the same or their differences
are rather of small values. Consequently, this feature provides increased potential
for a compression.

We implemented different bit-length number coding techniques: Golomb,
Elias-gamma and Elias-delta. These coding algorithms are compared with the
previously published Fast Fibonacci coding [3, 2]. We utilize these coding tech-
niques in a compression algorithm based on coding of differences between similar
tuple coordinates.

4.1 Golomb, Elias-gamma and Elias-delta and Fast Fibonacci
Coding

Small values are possible to code with various coding techniques. We have im-
plemented three simple techniques for the coding of values. These techniques are
as follows: Golomb, Elias-gamma, and Elias-delta [20, 17]. The algorithms used
for coding are shown in Algorithms 1, 2, and 3. All codes for numbers 1-12 are
depicted in Table 1.

36 Jǐŕı Walder, Michal Krátký, Radim Bača

In Algorithms 1, 2, and 3 the compressed values are read bit by bit. Retrieving
the bit from the compressed memory is a time consuming operation. In [3], Fast
Fibonacci decompression was introduced. This algorithm processed data without
retrieving every single bit from a compressed memory. The proposed Fibonacci
decompression method is based on a precomputed mapping table. This table
enables converting of compressed memory segments directly into decompressed
values.

Table 1. Numbers for various coding techniques

Number Golomb Elias Fibonacci
M=4 M=8 M=16 gamma delta

1 000 0000 00000 1 1 11
2 001 0001 00001 010 0100 011
3 010 0010 00010 011 0101 0011
4 011 0011 00011 00100 01100 1011
5 1000 0100 00100 00101 01101 00011
6 1001 0101 00101 00110 01110 10011
7 1010 0110 00110 00111 01111 01011
8 1011 0111 00111 0001000 00100000 000011
9 11000 10000 01000 0001001 00100001 100011
10 11001 10001 01001 0001010 00100010 010011
11 11010 10010 01010 0001011 00100011 001011
12 11011 10011 01011 0001100 00100100 101011

4.2 Difference-based Compressions

Difference-based compression algorithm for the R-tree was introduced in [2],
however difference-based compression algorithms are well known [27, 20]. This
algorithm is shown in Algorithm 4. This algorithm simply computes XOR dif-
ferences between coordinates of the first tuple and values of other tuples. After
that we add all difference numbers into the mCodingBuffer buffer, all numbers
are coded by the Encode function. In this paper, we compare Fast Fibonacci,
Golomb, Elias-Gamma, and Elias-Delta for coding of numbers. In Figure 2, we
can see some encoded values for these coding techniques. Differences for the page
P are output in the page PXOR. The difference numbers in the page PXOR are
then coded by the Encode function.

5 Experimental Results

In our test1, we have used the compression scheme depicted in Section 3 and
coding algorithms described in Section 4. In this section, we compare the query
1 The experiments were executed on a PC with 1.8 Ghz AMD Opteron 865, 2 MB L2

cache; 2 GB of DDR333; Windows 2008 Server.

Benchmarking Coding Algorithms for the R-tree Compression 37

input : Golomb code bit stream and Golomb code parameter parameterM
output: Decoded number n

Bits ←Log(parameterM)/ Log(2);1

TreshNumber ←Pow(2,Bits +1)–parameterM ;2

PowerTwo ←Floor(Bits)==Bits;3

qpart ← 0;4

rpart ← 0;5

bit ←stream.GetNextBit();6

while bit do7

qpart ++;8

bit ←stream.GetNextBit();9

end10

if PowerTwo then11

for x← 0 to Bits do12

bit ←stream.GetNextBit();13

rpart ←rpart <<1|bit ;14

end15

else16

for x← 0 to Bits do17

bit ←stream.GetNextBit();18

rpart ←rpart <<1|bit ;19

end20

if rpart >=TreshNumber then21

bit ←stream.GetNextBit();22

rpart ←rpart <<1|bit ;23

rpart ←rpart-TreshNumber ;24

end25

end26

n ← qpart ∗parameterM +rpart ;27

Algorithm 1: Golomb decoding algorithm

P =




4 0 6624 6625 1526
42 0 6624 6725 1535
9 0 6624 6626 6631

11 0 6624 6632 6633
29 0 6624 6650 6675


 PXOR =




4 0 6624 6625 1526
46 0 0 932 9
13 0 0 3 7185
15 0 0 9 7199
25 0 0 27 8165




Fig. 2. The example of the page (P) and computed page difference (PXOR)

performance of a compressed as well as uncompressed data structures. We test
both real and synthetic data sets. In all experiments, we turn off the OS’s disk
read cache to prevent the OS from file caching and the cache of data structures
was 1,000 inner and leaf nodes. The page size of all data structures is 2,048B.
To compare the performance of the compressed and uncompressed R-tree we
observe the following features:

38 Jǐŕı Walder, Michal Krátký, Radim Bača

input : Elias-gamma code bit stream
output: Decoded number n

Bits ←1;1

n ←0;2

bit ←stream.GetNextBit();3

while not bit do4

Bits ++;5

bit ←stream.GetNextBit();6

end7

repeat8

Bits −−;9

n ←n |bit <<Bits ;10

if Bits >0 then11

bit ←stream.GetNextBit();12

end13

until Bits ==0 ;14

Algorithm 2: Elias-gamma decoding algorithm

– the query processing time and DAC, see Section 5.1
– R-tree index size, see Section 5.2
– an influence of various space dimensionalities, see Section 5.3
– an influence of various query selectivities, see Section 5.4

We perform experiments on synthetic as well as real data sets. In the case of
synthetic data sets, we generate collections of 500,000 points for dimensionalities:
2, 4, and 6 in an integer domain of the 〈0, 2 × 106〉 range with the uniform
distribution of values. In the case of real data sets, we test TIGER 2D spatial
data collections of 500,000 (TIG05) and 2 million (TIG20) points [25]. These
data collections only include unique tuples. In this way, the compression scheme
performance is not influenced by identical tuples. We process series of query
experiments where one experiment consists of 50 randomly generated queries.
Consequently, each presented result is the summary result of all these queries.
Query boxes covering 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% of the data space were
randomly generated. In other words, the query selectivity is changed in this way.

5.1 Processing Query Time and DAC

In Tables 2 and 3, query processing performance is presented for both real and
random data collections. In this experiment, selectivity is 0.2%. In the case of
random data, the best query time was achieved by the Fast Fibonacci algorithm.
In the case of other coding algorithms, the query time is little worse than in the
case of the uncompressed R-tree. The Elias-delta decoding algorithm is 30%
slower than Fast Fibonacci. The Golomb and Elias-gamma algorithms are 60%
slower than Fast Fibonacci. In the case of real collections, Elias-delta coding
outperforms the Fast Fibonacci coding. In the case of TIG05, Elias-delta saves

Benchmarking Coding Algorithms for the R-tree Compression 39

input : Elias-delta code bit stream
output: Decoded number n

Bits ← 1;1

n ← 0;2

x ← 0;3

bit ←stream.GetNextBit();4

while not bit do5

Bits ++;6

bit ←stream.GetNextBit();7

end8

Bits −−;9

x ←x |1 <<Bits ;10

while Bits > 0 do11

Bits −−;12

bit ←stream.GetNextBit();13

x ←x |bit <<Bits ;14

end15

x −−;16

n ←n |1 <<x ;17

while x > 0 do18

x −−;19

bit ←stream.GetNextBit();20

n ←n |bit <<x ;21

end22

Algorithm 3: Elias-delta decoding algorithm

6% of the query processing time in a comparison to the Fast Fibonacci algorithm
and 19% of the query processing time in a comparison to the uncompressed R-
tree.

In Table 4, we propose the query processing time in more detail for both
Elias-delta and Fast Fibonacci. These results are related to the TIG20 collec-
tion. Obviously, time spent on reading of pages in the secondary storage is
lower in the case of Elias-delta, however the decompression time is lower for
the Fast Fibonacci algorithm. Overall query processing time is better for Fast
Fibonacci. Elias-delta reads values in the bit-by-bit way, on the other hand Fast
Fibonacci works with bytes. In the future, we can focus on a development of
similar byte-based reading for other coding algorithms, especially for the Elias-
delta algorithm. Elias-delta achieves the lowest DAC for both real and random
data collections.

5.2 Index Sizes

An important issue of the compression is a reduction of the R-tree index size. In
Figure 3(f), we can see the index sizes for the real collection. The best compres-
sion ratio was achieved by the Elias-delta encoding. In this case, we save more
than 60% of the index size.

40 Jǐŕı Walder, Michal Krátký, Radim Bača

Input : stream, an instance of cStream
output: Compressed R-tree node

mCodingBuffer.Clear ();1

stream.Write (mCount);2

for i← 0 to mDimension do3

value ← mTuples [i].GetInt (0);4

stream.Write (value);5

for j ← 1 to mCount do6

int tmpValue ← mTuples [j].GetInt (i);7

int diff ← value XOR tmpValue ;8

mCodingBuffer.Add (diff);9

end10

Encode (mCodingBuffer);11

stream.Write (mCodingBuffer);12

end13

Algorithm 4: Difference-based compression of an R-tree leaf page

Normal Golomb Golomb Golomb Elias Elias Fast
M=4 M=8 M=16 gamma delta Fibonacci

Processing Time [s] 60.9 87.3 87.2 89.9 86.6 68.9 52.1
DAC All Nodes [MB] 21,131 8,477 8,634 8,797 7,806 7,176 7,175
DAC Leaf Nodes [MB] 10,691 4,333 4,413 4,491 3,988 3,674 3,673

Table 2. Results for the random data collection, 500K tuples, dimension: 6

Normal Golomb Golomb Golomb Elias Elias Fast
M=4 M=8 M=16 gamma delta Fibonacci

Processing Time [s] 3.9 3.96 3.77 4.1 3.95 3.17 3.41
DAC All Nodes [MB] 4,497 2,148 2,073 2,039 2,391 1,831 1,899
DAC Leaf Nodes [MB] 2,185 1,016 979 959 1,137 854 893

Table 3. Results for the bulk-loaded real data collection, 500K tuples, dimension: 2

Time [s] Regular R-tree Elias-delta Fast Fibonacci
Read 13.47 5.86 6.17
Decompression - 10 5.87
Overall 22.99 21.55 18.94

DAC [MB] 103,251 38,338 40,805

Table 4. Analysis of the query processing time

5.3 Influence of the Space Dimension

We compare DAC for randomly generated data collections with dimensionalities
2, 4, and 6 (see Figure 3e). We save more than 60% of DAC in the case of Elias-
delta and dimension 2. The compression ratio weakens with increasing space
dimension. The space is bigger with increasing dimension, tuples are further
from one another, therefore, less redundancy appears in tuples. The dimension
modification has no impact on the performance of various coding techniques.

Benchmarking Coding Algorithms for the R-tree Compression 41

DAC for Random data

0
2000
4000
6000
8000

10000
12000
14000

N
or

m
al

G
ol

om
b

M
=4

G
ol

om
b

M
=8

G
ol

om
b

M
=1

6
E

lia
s-

ga
m

m
a

E
lia

s-
de

lta

Fi
bo

na
cc

i

DAC
0.1
0.2
0.3
0.4
0.5

(a)

DAC for Real Data

0
50000

100000
150000
200000
250000
300000
350000

N
or

m
al

G
ol

om
b

M
=4

G
ol

om
b

M
=8

G
ol

om
b

M
=1

6

E
lia

s-
ga

m
m

a

E
lia

s-
de

lta

Fi
bo

na
cc

i

DAC

0.1
0.2
0.3
0.4
0.5

(b)

Query time RANDOM data

0
20
40
60
80

100
120
140
160

N
or

m
al

G
ol

om
b

M
=4

G
ol

om
b

M
=8

G
ol

om
b

M
=1

6

E
lia

s-
ga

m
m

a

E
lia

s-
de

lta

Fi
bo

na
cc

i

Time
[%]

(c)

Query time REAL data

0
20
40
60
80

100
120

N
or

m
al

G
ol

om
b

M
=4

G
ol

om
b

M
=8

G
ol

om
b

M
=1

6

E
lia

s-
ga

m
m

a

E
lia

s-
de

lta

Fi
bo

na
cc

i

Time
[%]

(d)

Influence of Dimension Change

0

20

40

60

80

100

120

N
or

m
al

G
ol

om
b

M
=4

G
ol

om
b

M
=8

G
ol

om
b

M
=1

6

E
lia

s-
ga

m
m

a

E
lia

s-
de

lta

Fi
bo

na
cc

i

DAC
[%] 2

4
6

(e)

Real Data Index Size

0

20

40

60

80

100

120

N
or

m
al

G
ol

om
b

M
=4

G
ol

om
b

M
=8

G
ol

om
b

M
=1

6

E
lia

s-
ga

m
m

a

E
lia

s-
de

lta

Fi
bo

na
cc

i
Index
size
[%]

(f)

Fig. 3. DAC for various selectivities and bulk-loaded (a) random and (b) real data
collections
Query processing time for bulk-loaded (c) random and (d) real data collections
(e) Selectivity influence comparison (f) Index size comparison

5.4 Influence of the Query Selectivity

In this experiment, we choose the following selectivities: 0.1%, 0.2%, 0.3%, 0.4%,
and 0.5%. DAC and query processing times are put forward in Figures 3(a)-(d).
The results are presented for both random and real data collections. Obviously,
Elias-delta outperform other coding algorithms. The other codings produce ap-

42 Jǐŕı Walder, Michal Krátký, Radim Bača

proximately the same DAC. The selectivity modification has no impact on the
performance of various coding techniques.

6 Conclusion

In this paper, we test a lossless compression scheme for the R∗-tree data struc-
ture. We compare the following coding techniques: Golomb, Elias-Gamma, and
Elias-Delta, with the previously published Fast Fibonacci coding. All coding al-
gorithms improve DAC compare to the regular R-tree. In the case of real data
collections, Elias-delta and Fast Fibonacci techniques achieve the best results.
The Elias-delta algorithm saves 5% DAC of Fast Fibonacci. All other algorithms
are less efficient that the Fast Fibonacci algorithm. When real data sets are con-
cerned, the compression methods save at least 60% of the index size required by
a regular R-tree.

The best compression ratio was achieved by the Elias-delta codding. On the
other hand, decompression time for Fast Fibonacci is lower than in the case of
Elias-delta. Elias-delta reads values in the bit-by-bit way, however Fast Fibonacci
works with bytes. In our future work, we want to focus on a development of
similar byte-based reading for other coding algorithms, especially for the Elias-
delta algorithm.

References

1. G. Antoshenkov. Dictionary-based Order-preserving String Compression. VLDB
Journal – The International Journal on Very Large Data Bases, 6(1):26–39, 1997.

2. R. Bača, M. Krátký, and V. Snášel. A compression scheme for multi-dimensional
data structures. Submitted to Information Systems, 2009.

3. R. Bača, V. Snášel, J. Platoš, M. Krátký, and E. El-Qawasmeh.
The fast fibonacci decompression algorithm. In arXiv:0712.0811v2,
http://arxiv.org/abs/0712.0811, 2007.

4. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient
and robust access method for points and rectangles. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD 1990), pages 322–
331. ACM Press, 1990.

5. S. Berchtold, C. Böhm, H.-P. Kriegel, J. Sander, and H. Jagadish. Indepen-
dent Quantization: An Index Compression Technique for High-Dimensional Data
Spaces. In Proceedings of the 16th International Conference on Data Engineering
(ICDE 2000), pages 577 – 588. IEEE Computer Society, 2000.

6. J. Cui, S. Zhou, and S. Zhao. PCR-Tree: A Compression-Based Index Structure
for Similarity Searching in High-Dimensional Image Databases. In Proceedings of
the Fourth International conference on Fuzzy Systems and Knowledge Discovery
(FSKD 2007), pages 395–400. IEEE Computer Society, 2007.

7. M. Eltabakh, W.-K. Hon, R. Shah, W. G. Aref, and J. Vitter. The SBC-Tree: An
Index for Run-Length Compressed Sequences. In Proceedings of the 11th Interna-
tional Conference on Extending Database Technology (EDBT 2008). ACM Press,
2008.

Benchmarking Coding Algorithms for the R-tree Compression 43

8. I. Gargantini. An Effective Way to Represent Quadtrees. Communications of the
ACM, 25:905–910, 1982.

9. J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing Relations and Indexes.
In Proceedings of IEEE Conference on Data Engineering (ICDE 1998), pages 370–
379, Los Alamitos, USA, 1998. IEEE Computer Society.

10. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of ACM International Conference on Management of Data (SIGMOD
1984), pages 47–57. ACM Press, June 1984.

11. A. Henrich, H. W. Six, and P. Widmayer. The lsd tree: spatial access to multidimen-
sional and non-point objects. In VLDB ’89: Proceedings of the 15th international
conference on Very large data bases, pages 45–53, San Francisco, CA, USA, 1989.
Morgan Kaufmann Publishers Inc.

12. I. Kamel and C. Faloutsos. On packing R-trees. In Proceedings of the Second Inter-
national Conference on Information and Knowledge Management (CIKM 1993),
pages 490–499. ACM Press, 1993.

13. I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using fractals. In In
Proceedings of VLDB 1984, pages 500–509, 1994.

14. K. Kim, S. K. Cha, and K. Kwon. Optimizing Multidimensional Index Trees
for Main Memory Access. In Proceedings of ACM International Conference on
Management of Data (SIGMOD 2001), pages 139–150, New York, USA, 2001.
ACM Press.

15. L.Arge, K.H.Hinrichs, J.Vahrenhold, and J.S.Vitter. Efficient Bulk Operations on
Dynamic R-Trees. Algorithmica, pages 104–128, 2004.

16. S. Leutenegger, M. Lopez, and J. Edgington. STR: A Simple and Efficient Al-
gorithm for R-Tree Packing. In Proceedings of 13th International Conference on
Data Engineering (ICDE 1997), pages 497–506. IEEE CS Press, 1997.

17. D. J. C. Mackay. Information Theory, Inference & Learning Algorithms. Cambridge
University Press, June 2002.

18. Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis. R-
Trees: Theory and Applications. Springer, 2005.

19. Y. Manolopoulos, Y. Theodoridis, and V. J. Tsotras. Advanced Database Indexing.
Kluwer Academic Publisher, 2001.

20. D. Salomon. Data Compression The Complete Reference. Third Edition, Springer–
Verlag, New York, 2004.

21. H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, 2006.

22. H. Samet. Data Structures for Quadtree Approximation and Compression. Com-
munications of the ACM archive, 28(9):973–993, September 1985.

23. T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic index for
multidimensional objects. In In Proceedings of VLDB 1987, pages 507–518, 1987.

24. M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, and S. Madden. C-store: A Column Oriented DBMS. In Proceedings of the
International Conference on Very Large Data Bases, VLDB 2005.

25. U.S. Department of Commerce, U.S. Census Bureau, Geography Division.
TIGER/Line Files, 2006 Second Edition, Alabama, Autauga County, 2006,
http://www.census.gov/geo/www/tiger/.

26. C. Wang and X. S. Wang. Indexing Very High-dimensional Sparse and Quasi-
sparse Vectors for Similarity Searches. VLDB Journal – The International Journal
on Very Large Data Bases, 9(4):344–361, 2001.

27. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes, Compressing and
Indexing Documents and Images, 2nd edition. Morgan Kaufmann, 1999.

Translation of Ontology Retrieval Problem
into Relational Queries

Jaroslav Pokorný1, Jana Pribolová2, and Peter Vojtáš1

1 Department of Software Engineering,
Charles University, Prague, Czech Republic
{Pokorny, Vojtas}@ksi.mff.cuni.cz

2 Institute of Computer Science,
Faculty of Science, University of P. J. Šafárik,

{Jana.Pribolova}@upjs.sk

Translation of Ontology Retrieval Problem
into Relational Queries

Jaroslav Pokorný1, Jana Pribolová2, and Peter Vojtáš1

1 Department of Software Engineering,
Charles University, Prague, Czech Republic
{Pokorny, Vojtas}@ksi.mff.cuni.cz

2 Institute of Computer Science,
Faculty of Science, University of P. J. Šafárik,

{Jana.Pribolova}@upjs.sk

Abstract. Ontology as a knowledge base can provide different reasoning
tasks, e.g. to check consistency of the ontology or to check whether a
resource is instance of a concept or not. In this paper we want to focus
on retrieval problem. There already exist systems resolving this problem,
but they are not effective within large datasets. Our idea is to transform
ontology into a relational database. We present particular algorithms of
this transformation both on the scheme level and SQL level with special
handling of functional roles and definitions. This enables to query such
database by usual tools of SQL, i.e. to solve the retrieval problem.

Keywords: ontology, translation, relational database, SQL

1 Introduction

OWL enables the creation of ontologies and provides extensive semantics for
Web data. This language is heavily influenced by description logics (DL, see
[1]). Research on DL reasoners consists of the solving reasoner problems such
as satisfiability, consistency or retrieving instances of the concept. Relational
database is an excellent system for storing and querying data, but their infer-
encing capabilities are limited just to querying. In this paper we describe the
method to extend relational database to store ontology.

In present some research groups are interesting in topic of ontology storing
and maintenance. Some of them are trying to limit expressive power of language
to speed up reasoner tasks. But some of them are trying to fuse two or more
kind of systems.

One of the prominent directions in this area is blending ontologies and logic
databases [5, 3]. They create so called description logic programs which are de-
scription logic expressions and logic programs mixed together.

Another direction of the research area is combining ontologies and rela-
tional databases. First experiments focus on XML document translation into
corresponding relational tables [9]. Inspired by the XML storing in relational

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 44–55, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

Translation of Ontology Retrieval Problem into Relational Queries 45

databases there are some research projects concerned with ontology storing in
the relational databases. One of the first projects is published in [4]. However,
many others occurred, e.g., the system HAWK [10] and its ancestor the system
DLDB [7], as well as the projects described in [2, 6].

In Section 2 we write about a knowledge base represented through DL and
relational data model. Further, in subsection 2.1 we deal with potential and
valid domains as well as with ranges. The valid domains are important input
parameters of the algorithm to construct relational scheme which we present in
Section 2.2. Subsection 2.3 explains creating the relational database. Section 3
concentrates on ontology implementation in an SQL environment. This enables
to query such database by usual tools of SQL, i.e. to solve the retrieval problem.
In fact, it means creating tables and views (Subsection 3.1) in the SQL language.
Then we explain how to insert data in the tables (Subsection 3.2). Section 4
concludes the paper.

2 Knowledge Base in Relational Data Model

Basics of DL, ontologies and all used symbols are described in [8], here we refer
to unexplained notions. Our language consists of names for atomic concepts
A,B ∈ NC, names for roles R ∈ NR. Roles are either functional (NFR) or
non-functional (NNR). Concept constructions we usually denote by C,D and
we understand them as nonterminal symbols.

The main idea of the knowledge base representation with relational data
model is shown in Figure 1. For every concept or role we create unary or binary
relation, respectively, except for functional roles. For every functional role we
create only one attribute in a relation or one attribute in more than one relation
depending on so called valid domains (see Section 2.1). The ABox assertions are
translated by inserting some tuples into relations. TBox assertions of the type
⊑ are translated into integrity constrains and equalities into special relations
called T view

C . In practice, such a relation is represented by view in SQL.

Fig. 1. Translation mapping the ontology elements to database structures.

46 Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

Note that ontology as a relational database offers the users some kind of
inferencing. The main feature is to retrieve all instances of the concept. Moreover
such a database supports query construction. In DL, an equivalent of the query
is a concept defined as equality. However, in practice ontology-based systems are
applied for more complicated queries than concepts can be. The W3C standard
for such a set of queries is the query language called SPARQL [13]. A lot of such
queries are supported by our system.

Section 2.2 presents the solution to find out all instances of the concept, not
only instances that are explicitly known, i.e. those expressed by C(a).

2.1 Domains and Ranges of Roles

In DL the knowledge base comprises TBox and ABox. We understand both of
them, ABox A about and TBox T , as sets of assertions (about individuals or con-
cepts, respectively). Each set of assertions can be divided into two categories.
One, denoted by subscript E , includes extensional assertions, the second one
comprehends as set of additionally deduced assertions and it is denoted by sub-
script D. The set TE consists of acyclic definitions A := C and axioms C ≡ D and
C ⊑ D. The set TD is derived with respect to (symmetric, transitive) properties
of the assertions ≡ and ⊑. For all TBox sets the following holds:

– T = TE ∪ TD,

– TE ∩ TD = ∅.

ABox AE consists of statements of the form B(a) and R(a, b). Let us also
mention that A = AE ∪ ATD. The set ATD depends on the TBox T , because we
derive assertions on basis of AE and TBox assertions. If it is evident which T
inducted ATD, we omit superscript T .

Example 1. Let us have a knowledge base O with concepts shown in Figure 2.
The concept Student is defined as follows:

Student := Person ⊓ ∃takesCourse.Course

The set of assertions T includes previous definition of concept Student and also
subsumption assertions shown in Figure 2 with solid line. Also there are some
roles in O, i.e. NFR = {hasName, hasAddress} and NNR = {takesCourse}.

Note that the name of the concept GraduateCourse is abridged to GCourse.
The deduced assertions are shown in Figure 2 with dotted arrows.

Also ABox consists of the extensional assertions:
AE = { Person(S2), GCourse(C2), hasName(P1, Nameb),

Student(S1), takesCourse(S1, C1), hasName(C1, Namec),
Publication(P1), takesCourse(S2, C1), hasName(C2, Named),
Article(P1), hasName(S1, Namea) hasAddress(S1, Addressa),
Course(C1), }

Translation of Ontology Retrieval Problem into Relational Queries 47

Fig. 2. IS-A hierarchy of the knowledge base O.

and also of the deduced ones:

ATD = {Person(S1), Course(C2), Student(S2)}

As we can see the assertion Publication(P1) belongs to the set of extensional
assertions. Though it can be deduced also, because the assertion Article ⊑
Publication is in the TBox T and Article(P1) is an extensional assertion.

In DL there are two kinds of the equality meanings. The equality whose
left-hand side is atomic concept means the definition. In this paper we denote
definition equality as the symbol := instead of ≡ to distinguish definition equal-
ities from the rest. We assume, there are no cycles in definitions.

In OWL language there is a chance to define domain and range of a role but
it is not a necessary condition. Emphasize that our approach tries to reduce the
number of join operations within the query construction. The main idea is to
encode each functional property as an attribute of the relation, that represents
domain of the role, not as standalone relation. In case without defined domain
(range) of the functional roles we need to find concepts of instances that are
related to another through the role. Sometimes domain or range are defined as
union of concepts. This case is similar to the previous one. Therefore we define
so called potential and valid domains as follows.

Definition 1. A concept B ∈ NC is said to be a potential domain for role
R ∈ NR with respect to the set assertions A if there is R(a, b) ∈ A such that
B(a) ∈ A. The set of potential domains for role R with respect to A is denoted
PDA

R .

Example 2. Let us illustrate the Definition 1 on Example 1. The role hasName
has the following potential domains with respect to AE :

PDAE
hasName = {Publication,Article, Course,GCourse, Student}

The role hasAddress has the following potential domain with respect to AE :

PDAE
hasAddress = {Student}

48 Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

In OOP (Object-Oriented Programming) if the ancestor class has defined a
function, the descendant class can use it. We map the concept into meaning of
OOP class and functional role into OOP function. That means that we do not
need translate the same functional role for ancestor concept and for descendant
concept separately. Therefore let us define valid domains – concepts for which
we consider the functional role to translate into relational scheme.

Definition 2. A valid domain for role R ∈ NFR with respect to A is a potential
domain A ∈ PDA

R with property that does not exists B, B ∈ PDA
R so that

A ⊑ B ∈ T and A ≡ B 6∈ T , as well as B ⊑ A 6∈ T . The set of valid domains
for role R is denoted as VDA,T

R . If we are interested in valid domains with respect
to whole TBox assertions, e.g. T , we can omit the superscript T .

Note that if ABox is changed it is necessary to revise the potential and valid
domains again. This process prevents ontology deformation of the original mod-
eling intent.
Example 3. With assistance of the previous examples we can present the valid
domains of the role hasName with respect to AE :

VDAE
hasName = {Publication,Course, Student}.

The concept GCourse does not belong to the set VDAE
R because there exists

Course ∈ VDAE
R so that GCourse ⊑ Course and neither Course ⊑ GCourse

nor Course ≡ GCourse is in T .
It is useful to define ”inverse” function that can find for any concept A all

roles for which the concept is valid domain.

Definition 3. The role R ∈ NFR is said to be a role defined on the concept
B with respect to the set of assertions A if B ∈ VDA,T

R . We denote the set of
all roles defined on the concept B as isInVDA,T

B . Similarly as in Definition 2
if we use all assertions of T , we can omit the superscript and denote the set of
all roles defined on the concept B as isInVDA

B .

Example 4. In the running example of this paper an interesting point is to com-
pute isInVDAE

Student:

isInVDAE
Student = {hasName, hasAddress}

Our solution requires valid domains to encode functional properties. To keep
some integrity constraints it is useful to define also range of the roles.
Definition 4. A potential range for role R ∈ NR (with respect to A) is concept
B for which there exists R(a, b) ∈ A and B(b) ∈ A. We denote the set of potential
ranges of role R as PRR.

Example 5. We compute potential ranges for all roles as follows:

PRA
hasName = {String},

PRA
takesCourse = {Course}.

Computation of valid ranges is unnecessary because we use ranges only to
keep integrity.

Translation of Ontology Retrieval Problem into Relational Queries 49

2.2 Construction of a Relational Scheme

The first part of ontology translation into relational database consists of creating
a relational scheme.

Algorithm 1 Let O be a knowledge base with TBox T and ABox A. T ,
A, concept’s names, and role’s name are translated into relational database
D = (R, I). Here R denotes a relational database scheme consisting of basic
relational schemes and view definitions using relational algebra expressions (RA
expressions). Second, I denotes a set of integrity constraints. The translation is
done by induction as described below.

First part of translation depends only on the language, the second part de-
pends also on ABox and the last depends on the TBox too.

Note that names of attributes are motivated by RDF (subject, predicate,
object) and resource terminology.

The construction is based on the following steps:

First translation steps are based solely on the description logic language
1. For all A ∈ NC we add to R new relation TA with scheme TA(resource).
2. For all R ∈ NNR we add to R a relation scheme TR(subject, object).

Following translation steps depend on the ABox (and deduced valid domains)

3. For all A ∈ NC for which isInVDAE
A = {R1, R2, . . . , Rn} ⊆ NFR, n ≥ 1

we modify TA(resource) ∈ R to relation Tmod
A ∈ R with scheme

Tmod
A (resource,R1.object, . . . , Rn.object)

If R ∈ NFR and VDAE
R = ∅, then we add to R a new relational scheme

TR(subject, object).

The following translations depend on the TBox. First we deal with defi-
nitions:

4. For all A ∈ NC such that there is a concept construction C with A := C ∈ T
we add to R a new relation T view

A with scheme T view
A (resource) and view

definitions so that (SD and SE are defined in step 5):
– If C := D ⊓ E then

T view
A = TA ∪ (SD ∩ SE)

– If C := ∃R.D and R ∈ NNR or VDAE
R = ∅ then

T view
A = TA ∪ (TR(subject, object)

[TR.object = SD.resource]
SD(resource))[TR.subject].

– If C = ∃R.D and R ∈ NFR and VDAE
R 6= ∅, n > 0 then

T view
A = TA ∪ (Srec

R (subject, object)
[Srec

R .object = SD.resource]
SD(resource))[Srec

R .subject]

50 Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

where Srec
R is the RA expression for reconstruction of the role R from

appropriate columns of Tmod
B tables

Srec
R (subject, object) =

⋃

B∈VD
AE
R

(
Tmod

B [resource,R.object]
)

Here we assume that this is a lossless encoding of all ABox information
about R.

5. For a non-atomic concept construction C such that there is in T no definition
with right hand side C and C is a sub construction of a concept definition in
T , then we create a new RA expression SC with the only attribute resource
so that:
– If C = D ⊓ E then

SC = (SD ∩ SE)
– If C = ∃R.D and R ∈ NNR or VDAE

R = ∅ then
SC = (TR(subject, object)[TR.object = SD.resource]SD(resource))

[TR.subject]
– If C = ∃R.D and R ∈ NFR and VDAE

R 6= ∅ then
SC = (Srec

R (subject, object)[Srec
R .object = SD.resource]SD(resource))

[Srec
R .subject]

6. To transform axioms in T , we add the following integrity constraint to I:
– if C ≡ D ∈ T and C,D are non atomic concept constructions then

SC = SD ∈ I,
– if C ⊑ D ∈ T then SC ⊆ SD ∈ I.

The following interesting observations result from the previous algorithm.

1. For all R ∈ NNR and for all R ∈ NFR for which VDAE
R = ∅:

– TR[subject] ⊆ ⋃
B∈PD

AE
R

TB ,

– TR[object] ⊆ ⋃
B∈PRR

TB .

2. For all B ∈ NC for which isInVDAE
B 6= ∅ and for all R ∈ isInVDAE

B :

Tmod
B [R.object] ⊆

⋃

A∈PRR

TA.

These assertions check ”integrity” of the translation of role assertions. In more
detail, the mentioned assertions take care to preserve the subject in area of role
domains and the object in area of the role ranges.

The previous algorithm is illustrated on the following example.

Example 6. According to previous examples and applying Algorithm 1 we re-
ceive the following database scheme:

Tmod
Publication (resource, hasName.object), TArticle (resource),

Tmod
Course (resource, hasName.object), TGCourse (resource),

Tmod
Student (resource, hasName.object), TPerson (resource),

TtakesCourse (subject, object).

Translation of Ontology Retrieval Problem into Relational Queries 51

and
I = {TArticle[resource] ⊆ TPublication[resource],

TGCourse[resource] ⊆ TCourse[resource],
TStudent[resource] ⊆ TPerson[resource]}.

Also relation defined as follows belongs to the database scheme:
T view

Student = TStudent[resource] ∪ TPerson∩(
TtakesCourse[TtakesCourse.object = TCourse.resource])

[TtakesCourse.subject]
and the following assertions hold for given D:

– TtakesCourse[subject] ⊆ TPerson ∪ TStudent

– TtakesCourse[object] ⊆ TCourse

Note that, the attributes of the relations representing non-functional roles
called subject and object have the same domain. Also note that all instances of
a concept B ∈ NC, so that B := D, are stored in T view

B .

2.3 Construction of a Relational Database

In previous section we have created a relational scheme. Now we present the
algorithm to insert the data in the database relations.

Algorithm 2 Suppose that T , NC and NR are translated into database D.
ABox A is transferred into D by induction as follows:

1. If B(a) ∈ A and also B ∈ NC, then 〈a〉 ∈ TB .
2. If R(a, b) ∈ A and R ∈ NNR, then 〈a, b〉 ∈ TR.
3. If R(a, b) ∈ A and R ∈ NFR, then one of the following items:

(a) if VDAE
R = ∅ then

〈a, b〉 ∈ TR,

(b) if there exists A ∈ VDAE
R so that A(a) ∈ A, then

〈a, b〉 ∈ Tmod
A [TA.resource,R.object],

(c) if there exists A ∈ PDR \VDAE
R so that A(a) ∈ A, then there exists a

maximal sequence A = B1, B2, . . . , Bn ∈ NC so that Bn ∈ VDAE
R and

Bi ⊑ Bi+1 ∈ TD for i = 1, . . . , n− 1 Then

〈a, b〉 ∈ Tmod
Bn

[B.resource,R.object].

Note that the last step of algorithm the information A(a) is not lost and moreover
information Bn(a) is a consequence of TBox axioms.

It is important to remember that the valid domains are built with respect
to the set of extensional assertions AE (Algorithm 2, Steps 3b and 3c). On the
other hand, we consider all assertions from ABox A to insert them in the proper
tables (Step 1).

Example 7. After applying Algorithm 2 we obtain:
Tmod

Publication = {〈P1, Nameb〉}, TPerson = {〈S1〉, 〈S2〉},
Tmod

Course = {〈C1, Namec〉, 〈C2, Named〉}, TArticle = {〈P1〉},
Tmod

Student = {〈S1, Namea〉}, T view
Student = {〈S2〉}.

52 Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

3 Ontology Implementation in an SQL Environment

We designed and implemented translation of a description logic knowledge base
into an SQL environment, which works in accordance with Algorithms 1, 2. In
fact, we create the database scheme which consists of CREATE TABLE and CREATE
VIEW statements of the SQL language.

3.1 Create Statements

First we create tables representing concepts as it is stated in Step 1 of Algorithm
1. A special case is the top concept. For technical reasons, we assign a numerical
identifier to every URI which represents the associated instance.

for all A ∈ NC do:
if (A = ⊤) then

CREATE TABLE T⊤
(resource INT NOT NULL PRIMARY KEY,
uri VARCHAR NOT NULL);

else
CREATE TABLE TA (resource INT NOT NULL PRIMARY KEY);

Next step is the Step 2 of Algorithm 1. Therefore we create tables for non-
functional roles in this way:

for all R ∈ NNR do:
CREATE TABLE TR (
subject INT NOT NULL,
object INT NOT NULL,
PRIMARY KEY(subject, objects));

After that we deal with functional properties – Step 3 of the Algorithm 1:

for all R ∈ NFR do:
for all A ∈ VDAE

R do: ALTER TABLE TA ADD COLUMN R object INT;

Let us mention that in DL we do not distinguish different kinds of roles.
However, in OWL there are two kinds of roles. Practically a role represents a
relationship type (in OWL so called object property) or an attribute type (in
OWL data type property). In case of relationship roles there is relationship
between two instances represented by URIs. On the other hand, attribute roles
represents relationship between instance represented by URI and literal value.
It may appear that the problem can became if in the column representing the
object functional role there is a literal value, or URI in the case of the data type
role. But practically the role can be either object type or data type, not both
types simultaneously. So it could not happen the mentioned collision.

For all atomic concepts that are equivalent to other concept, we also cre-
ate view in the database as it is defined in Algorithm 1 in Step 4. Note, that
in [8] we have proved that to any concept defined via other atomic and non-
atomic concepts we can construct an SQL view whose definition contains only
INTERSECTION operations, SELECTs and TABLE R expressions. Each SELECT uses

Translation of Ontology Retrieval Problem into Relational Queries 53

only join conditions. To achieve this it is necessary to normalize concept defini-
tion on the relational algebra level. We omit details of this procedure here. After
this comment Step 4 looks like:
for all A ∈ NC: C ≡ D do:
String[] elements = getExpressionsOf(A)
if (elements.length > 1) then
for i=2 to elements.length do:

elements[1] += " INTERSECT " + elements[i]
CREATE VIEW ViewA AS elements[1];

where the function getExpressionsOf is defined as follows:
String[] getExpressionsOf(Concept A){
String[] result;
for all Di : A :=

d
i≥1

Di do

if (Di ∈ NC) then
result[i] = "SELECT resource FROM TDi

;"
else if (Di = ∃R.E and E ∈ NC) then

result[i] = "SELECT TR.subject FROM returnRole(R)
JOIN TE ON TR.object = TE.resource;"

else if (Di = ∃R.E) then
result[i] = "SELECT TR.subject

FROM " + returnRole(R) + " AS TR

JOIN " + getExpressionsOf(E) + " AS TE

ON TR.object = TE.resource;"
return result;

}
and the function returnRole is:
String returnRole(Role R){
String result;
if (R ∈ NNR) then result = "TR"
else
int i = 0;
for all A ∈ VDAE

R do:
i++;
if (i = 1) then result = "SELECT resource,R object FROM TA"
else
result =+ "UNION SELECT resource,R object FROM TA"

return result;
}

At the end of the Algorithm 1 we have do one more thing – to add some
integrity constraints generated in Step 6.
for all t: t = A ⊑ B do:
ALTER TABLE TA ADD FOREIGN KEY (resource) REFERENCES TB;

The equality of two tables implementing ≡ leads to cyclic referential integrity
in relational database schema. Therefore, we omit it from further consideration.

54 Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

3.2 Insert the Data

Let us to suppose that the database scheme in SQL is created. Now we will deal
with data – instances as it is described in Algorithm 2. We will show how to
insert them into created tables.
for all A ∈ NC \ {⊤} do:
for all A(a) ∈ A do:
if (a ∈ T⊤) then

id = (SELECT resource FROM T⊤ WHERE uri = ’a’)
else

INSERT INTO T⊤(resource, uri) VALUES (generateId(a),’a’);
INSERT INTO TA(resource) VALUES (generateId(a));

This code fragment implements Step 1. It uses the function int generateId(
String URI) which generates a numerical identifier to use it within condition
in join operation instead of string identifier.

Step 2 of the Algorithm 2 is implemented in this way:
for all R ∈ NNR do:
for all R(a, b) ∈ A do:
INSERT INTO TR VALUES (getId(a),getId(b));

Finally, Step 3 of the Algorithm is interpreted as follows:
for all R ∈ NFR do:
for all R(a, b) ∈ A do:
if(VDAE

R = ∅ then
INSERTINTO TR VALUES (getId(a), getId(b))

else
if(∃A ∈ VDAE

R and A(a) ∈ A) then
UPDATE TA SET R object = getId(b) WHERE resource = getId(a)

else
find B ∈ VDAE

R : A ⊑ B
UPDATE TB SET R object = getId(b) WHERE resource = getId(a)

The function int getId(String URI) returns the numerical identifier assigned
to a given URI.

4 Conclusion

The paper describes an approach to mapping ontology into relational database.
The process of mapping is autonomous that means that there is no need of human
interaction. We present algorithms of translation ontology into relational scheme
and relational data model. In this paper we focused on implementations of the
mentioned algorithms – transformation of algorithm’s steps in SQL statements.

We work with so called EL description logic which contains top, intersect
and full existential quantification constructor. We would like to extend the logic
with additional concept constructors inspired by relational database operators.

The important area of our research relates to valid domains. We want to do
a research about valid domains and the assumption that valid domains preserve
ISA-hierarchy.

Translation of Ontology Retrieval Problem into Relational Queries 55

Acknowledgment

This paper was supported by Slovak project VEGA 1/0131/09, Slovak project
VVGS/UPJ Š/45/09-10, Czech project GAČR 201/09/0990 and Czech project
IS 1ET100300517.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Theory, implementation, and application. Cambridge
University Press, 2003 United Kingdom.

2. J. Dokulil, J. Tykal, J. Yaghob and F. Zavoral. Semantic Web Repository and
Interfaces. International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies. In Proc. of UBICOMM 2007, IEEE Computer Society,
2007, pp. 223–228.

3. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set
Programming with Description Logics for the Semantic Web. Artificial Intelligence
Vol. 172, Issues 12–13, 2008, pp. 1495–1539.

4. A. Gali, C. X. Chen, K. T. Claypool, and R. Uceda-Sosa. From Ontology to Rela-
tional Databases. Springer Verlag, LNCS 3289, 2004, pp. 278–289.

5. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs:
Combining Logic Programs with Description Logic. In Proc. of WW2003, Hungary,
2003, pp. 48–57.

6. N. Kottmann and T. Studer: Improving semantic query answering. DEXA 2007,
LNSC 4653, Springer, 2007, pp. 671 – 679.

7. Z. Pan and J. Heflin: DLDB: Extending relational databases to support semantic
web queries. In Workshop on Practical and Scaleable Semantic Web Systems, ISWC
2003, 2003, pp. 109–113.

8. J. Pokorný, J. Pribolová, and P. Vojtáš. Ontology Engineering Relationally. Tech-
nical Report 2009-2, Dep. of Software Engineering, Faculty of Mathematics and
Physics, Charles University, 2009, 20 p.

9. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.
Relational databases for querying xml documents: Limitations and opportunities.
In Proceedings of 25 VLDB Conference, 1999, pp. 302–314.

10. HAWK. http://swat.cse.lehigh.edu/projects/index.html#hawk
11. MySQL. http://www.mysql.com/.
12. Sesame. http://www.openrdf.org/.
13. SPARQL. http://www.w3.org/TR/rdf-sparql-query/.
14. SWAT Projects - the Lehigh University Benchmark (LUBM). http://swat.cse.

lehigh.edu/projects/lubm/.

Various aspects of user preference learning and
recommender systems?

Alan Eckhardt

Department of Software Engineering, Charles University,
Institute of Computer Science, Czech Academy of Science,

Prague, Czech Republic
eckhardt@ksi.mff.cuni.cz

Various aspects of user preference learning and
recommender systems?

Alan Eckhardt

Department of Software Engineering, Charles University,
Institute of Computer Science, Czech Academy of Science,

Prague, Czech Republic
eckhardt@ksi.mff.cuni.cz

Abstract. In this paper, we describe area of recommender systems, with focus
on user preference learning problem. We describe such system and identify some
interesting problems. We will compare how well different approaches cope with
some of the problems. This paper may serve as an introduction to the area of user
preference learning with a hint on some interesting problems that have not been
solved yet.

Keywords: user preference learning, data mining, recommender systems

1 Introduction

User preference learning is an important part of any recommender system. We will
work with a scenario of user searching for some object (we will refer to user as “she”
for not having to distinguish between he and she). Recommendation may help user to
find what she is looking for more quickly and efficiently, because she has not to crawl
through hundreds of products but sees the recommended products on only one or two
pages. Of course, these recommended products may not be an exhaustive list, but they
are a hint for user.

In Section 2 some important related work is studied, providing also an introduction
to the problematic of user modeling. Then, in Section 3, we describe how user pref-
erences are modeled in our approach. In Section 4 is described a typical scenario of
recommendation cycle for user. We also describe how our user model is constructed
and ways for estimating usefulness of a user model. In Section 5 are listed some in-
teresting problems associated with learning of user preferences. Finally, in Section 6
are conclusive remarks and more importantly areas for future work in this field are
proposed.

1.1 Example

In the whole paper, we will refer to a set of “objects”. These objects are supposed to be
of interest for user, probably she wants to buy one. In our traditional example, user is
? This paper was supported by Czech projects MSM 0021620838 and 1ET 100300517.
? This paper was supported by Czech projects MSM 0021620838 and 1ET 100300517.

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 56–67, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

Various aspects of user preference learning and recommender systems 57

buying a notebook. She has some preferences of notebooks, e.g. the maximal price she
is willing to pay, the preferred manufacturer or the size of the display.

This example is suitable for our approach because notebooks have well defined
attributes that describes the product completely. More about this is in Section 4.1.

1.2 Notation

We will work with a set of objects X . Set X can be also viewed as a set of identifiers of
objects (id), which will be often referred to as o. Every object has attributes A1, ..., AN

with domains DA1 , ..., DAN
. If we want to specify the value of an attribute Ai for

an object oj , we will use notation Ai(oj). We will use Xi(a) when denoting a set of
objects for which attribute Ai has the value a. When the attribute will be clear from
context (which will be most of the times), we will use only X(a).

2 Related work

User preference modeling was very nicely described in [4] and also in a more general
view in [10]. In Figure 1 (which was taken from [4]) are various components of prefer-
ence modeling. Model is how user preferences are understood – for our purposes Total
order of outcomes (or objects) will be most suitable. That means we can create a list of
all objects ordered according to user preferences. Language is a way for user to express
her preferences. It may be a rating of an object, as V (o) in Figure 1, or a query to the
system etc. Language is explored in Section 4.1.

The most interesting part for us is Interpretation, where the information from user is
somehow transformed into Model, e.g. the total order of outcomes. However, because of
intuition, we will slightly change the notation – we will refer to the method for creating
the total order as “user model” or “user preference model”. Interpretation may be also
viewed as learning phase, where a user preference model is constructed.

In the following two sections, two alternative ways of user modeling are described
along with their possible interpretations. First, qualitative models are based on compar-
ing two objects between them, and second, quantitative models are based on evaluation
of a single object with a scoring function.

2.1 Qualitative approaches

Preference relations are the most used and studied qualitative approach. There is a huge
amount of related work in the field of preference relations. Preference relations rep-
resent preferences as a relation between two objects, it is usually assumed that this
relation creates some pre-order on X . There are typically three relations, P are strict
preferences, I represents indistinguishability of objects or equality of preference and
R is union of P and I meaning that it represents non-strict preferences. For example
P (o1, o2) means that o1 is strictly preferred to o2, I(o1, o2) on the other hand means
that o1 and o2 have the same preference and finally R(o1, o2) means that o1 is preferred
or equal to o2.

58 Alan Eckhardt

Fig. 1. Preference model components.

Preference relations in database systems and their integration into SQL by prefer-
ence queries was studied by Chomicki in [8], [9]. Also Kießling contributed to this field
with [25].

A different approach was suggested by Kießling in [19], [24]. This approach is
based on the idea of preference relations but it uses relations over attribute values rather
than relations over whole objects. This is more like our approach based on fuzzy logic.
However Kießling does not use scoring functions but uses special predicates POS, NEG
etc. to represent relation between two attribute values. An example from [24] is from
the area of cars: POS(transmission, automatic) and NEG(make, Ferrari) meaning that
automatic transmission is preferred to any other type and any maker is preferred to
Ferrari.

As for learning of preference relations, a great contribution is from Fürnkranz and
Hüllermeier [17], [20].

2.2 Quantitative approaches

The other approach, also adopted by us, is quantitative. It sorts objects by a score de-
fined by a scoring function. This approach is arguably less expressive than the qual-
itative one – it can not express e.g. a cycle in preferences. There are also some very
interesting works in this area.

Content based models Content based models uses attributes of object for construction
of scoring function. For example Fagin in [16] proposed a way of combining numerous
fuzzy inputs. Another classical work is from Agrawal [6].

Collaborative filtering Besides content based models, such as the one presented in
Section 3, there is another widely used user model that is based on the preferences of

Various aspects of user preference learning and recommender systems 59

other users. Collaborative filtering was proposed in early 90’s in [18] and further devel-
oped. One of the well-known systems using collaborative filtering is GroupLens [27].

Collaborative filtering is based on the idea of similarity of users. When we want to
know how user u1 will like object o1, one way is to look how other people liked o1.
Amazon.com succeeds in describing this approach in one sentence “Customers Who
Bought This Item Also Bought...”.

The better way is to restrict only to those users that are similar to u1. The similarity
may be computed in various way, the most common is the similarity of ratings of objects
other than o1. Other possibility is to compute the similarity of user profiles – e.g. find
managers, from 25 to 30, divorced, with interest in psychology and computer science.
There is a hidden assumption that similarity in profile imply similarity in preferences,
which may not be always true.

3 User model based on fuzzy logic

In this section, we describe user model we are using. This model is based on a scoring
function that assigns every object a score that represents the rating of that object. User
rating of an object is a fuzzy subset of X , i.e. a function R(o) : X → [0, 1], where 0
means least preferred and 1 means most preferred. Our scoring function is divided into
two steps.

Local preferences In the first step, which we call local preferences, every attribute
value of object o is normalized using a fuzzy set fi : DAi

→ [0, 1]. The meaning is that
1 represents most preferred value and 0 stands for the least preferred value. These fuzzy
sets are also called objectives or preferences over attributes. With this transformation,

the original space of objects’ attributes
N∏

i=1

DAi
is transformed into [0, 1]N . Moreover,

we know that the object with transformed attribute values equal to [1, ..., 1] is the most
preferred object. It probably does not exist in the real world, though. On the other side,
the object with values [0, ..., 0] is the least preferred, which is more probable to be found
in reality.

Global preferences In the second step, called global preferences, the normalized at-
tributes are aggregated into the overall score of the object using an aggregation function
@ : [0, 1]N → [0, 1]. Aggregation function is also often called utility function.

Aggregation function may take different forms; one of the most common is weight-
ed average, as in the following formula:

@(o) = (2 ∗ fPrice(o) + 1 ∗ fDisplay(o) + 3 ∗ fHDD(o) + 1 ∗ fRAM (o))/7,
where fA are fuzzy sets for normalization of attribute A.
Another totally different approach was proposed in [15]. It uses the training dataset

as partitioning of normalized space [0, 1]N . For example, if we have an object with
normalized values [0.4, 0.2, 0.5] with rating 3, every other object with better attribute
values (e.g. [0.5, 0.4, 0.7]) is supposed to have rating at least 3. In this way, we can find
the highest lower bound on any object with unknown rating. In [15] was also proposed

60 Alan Eckhardt

a method for interpolation of ratings between the objects with known ratings and even
using the ideal (non-existent) virtual object with normalized values [1, ..., 1] with rat-
ing 6.

In other words, we can say that the pareto front is constructed in the first step. Pareto
front is a set of objects that are not dominated by any other object. We say that object
o1 dominates object o2 iff ∀i = 1, ..., N : fi(o1) > fi(o2), i.e. o1 is better in every
attribute than o2. In the second step, we choose the best object from the pareto front.

4 A recommender system

A recommender system tries to help user to find the object she is looking for. It is
necessary for user to transfer some information about her preferences to the system. It is
convenient for user to describe her preferences in an intuitive and simple way. The more
complex user interface is, the more structured information the system gets but much less
users will use it (according to [26], as little as 9 out of 260 people provided a feedback
to their system). This fact also penalizes preference relations – user is supposed to
compare two objects, but the number of couples is quadratic to the number of objects.

There is an example how a recommender system may work in Figure 2. System
presents user with a set of objects S0. User rates some of these objects and this infor-
mation is sent back to the system as feedback U0. User model is constructed from user’s
ratings and a personalized set S1 is sent to user. Again, user rates some objects (U1) and
system updates its user model and sends S2 and this cycle may go on until user is sat-
isfied or bored. In Section 4.1 various possible types of feedback from user are studied.
In Section 4.3 and 4.2 the construction and update of user model is described.

S0

Recommender
system

User

U0

U1

Construction of
user model

Update of
user model

...

User decision
making

User decision
making

S1

S2

Fig. 2. A use of a recommender system in steps.

Various aspects of user preference learning and recommender systems 61

The process of recommendation is in Figure 3. User does some actions with the
system, which are processed by various components of the system. You can see that
some inputs may be processed by multiple components. There are three examples in the
figure – analysis of user behaviour, collaborative filtering, analysis of ratings and direct
query. Each of these components then creates user model which is used for prediction of
preference of all objects. Some models, like collaborative filtering, use the information
about other users or other additional information. All these models are then combined
together to provide most precise recommendation for user. Furthermore, when the sys-
tem identifies some of the situation discussed in 5, it can favour the model that behaves
best in this situation or the other way round. Collaborative filtering is not good when
there is a small number of users, so if that is the case, it can be disfavoured.

Recommended system User
Ratings

Behaviour
Queries

Restrictions of
attributes

Database with
other users
preferences

Analysis of
behaviour

Analysis of
ratings

Combination of
different methods

Recommendation of

objects

Direct
query

Collaborative
filtering

Fig. 3. Structure of a recommender system.

4.1 Input from user

From the information user provides to the system, her user model is built. User model
should be capable to determine which objects user will like or to what degree an object
will be preferred. The construction of user model is of most interest for us. We are
working with user ratings. These ratings user associates to a small number of objects.
This is key aspect of user model construction – it can not be expected that user will rate
hundreds of objects. When doing experiments, we often limit the size of training set to
40 objects.

Other approaches may expect different forms of information from user other than
ratings. For example for preference relations, comparisons between two objects is the

62 Alan Eckhardt

expected input. The full-text query issued by user may be also viewed as a source of
information about what user wants – document retrieval uses queries as its only infor-
mation from user.

Datasets There exists publicly available datasets of user ratings such as Netflix [3]. In
these datasets exist users with even thousands of ratings. Unfortunately, most of these
datasets have a very small number of attributes.

– Books [5] - have author, title, year of publication and publisher. It contains 433 670
ratings with non-zero rating from 77 805 users.

– Jokes [23] - have no attributes, except the text of the joke itself. It contains 4.1
million of ratings by 73 421 users.

– Films [2], [3] - have many attributes (from IMDB [1]) but they are complicated.
One film can have many actors, many producers, many directors etc. The normal
attributes such as length of a film are not determined easily, because they differ
across countries, editions or releases. Movielens contains 10 million ratings from
71 567 users. Netflix contains over 100 million ratings.

All this is data from users who were using a system for a long time, several years in
most cases.

Behaviour analysis User behaviour interpretation was studied in [21] and [22]. Be-
cause user tends not to give very much information about herself, the interpretation of
her behaviour may provide a useful information that supports the explicit actions she
had done (such as ratings of objects). There are many events that can be monitored, such
as the time spent on a web page with details of an object, clicking on a page, scrolling
down a document, filtering the content of the page, issuing a query etc. These actions
are then interpreted as if they were motivated by her preferences, e.g. the longer user
stays on a page, the more preferred is the object on that page. When user browses the
shop by categories or restricts values of some attribute, it is a clear statement what she
likes. For example when user narrows her search to notebooks with display size 14”,
we can deduce that 14” is the best size of display. This information helps when creat-
ing local preferences (in Section 4.2). The order in which such restrictions are applied
may represent importance of attributes. Typical counter-example against interpretation
of behaviour is when user is going for a coffee, leaving the browser open on that page,
or a user searching for an object for a friend (see also Section 5 for this issue).

In following sections, we outline some methods for creating local and global pref-
erences, which are contributions we made to this area in the past.

4.2 Learning local preferences

The acquisition of local preferences differs for different types of attributes. For nominal
attributes, we use a method based on representative value that is computed from user
ratings [11, 13].

For numerical attributes, the problem is more complicated – there is usually only
one object with value a. A typical example is price – there is often only one notebook

Various aspects of user preference learning and recommender systems 63

with price e.g. 941$. We can stick with traditional methods such as linear regression,
where the input is formed from the ratings of objects and their prices. However linear
regression may be affected by the distribution of data, but we want a function that
corresponds to real values across the whole domain, not only there where are most
values. Because of this, we proposed a way of using representants for numerical domain
in [11].

Lately, we identified another problem with numerical domains. It may happen that
a value of another attribute, often nominal, affects the normalization of a numerical
attribute. For example, when flying with British Airways, you may prefer lower price,
because the comfort is fine in economy class, but with Aeroflot, you may prefer higher
price because the overall comfort is worse. This phenomenon is related to ceteris paribus
preferences [28] and CP-nets [7].

4.3 Learning global preferences

Method called “Statistical” was described in [11] and in [12]. It is based on the evalua-
tion of distribution of ratings across attribute domain DA and from this distribution it is
possible to derive weight that A plays in the decision process of user. Then the weighted
average with these weights is used as aggregation function.

When constructing scoring function called “Instances” that uses the objects from
training set as lower bounds (from [15]), there is little to do. It does not need any fur-
ther transformation or analysis. This is unfortunately balanced by a more complicated
computation during evaluation of new objects.

4.4 How to measure usefulness of a recommender system

In this section we identify several ways of measuring usefulness of a recommender
system. As in data-mining, we adopt the idea of training (Tr) and testing sets (Ts). User
model is constructed from objects in training set and then its performance is measured
on testing set. In the following, the real preference of an object o will be denoted as
R(o) and preference user model estimates as R̂(o).

RMSE RMSE stands for root mean squared error. It is widely used as error measure in

data-mining community. It is computed as
√∑

o∈Ts (R̂(o)−R(o))2/|Ts|.
When considering user preferences, we introduced a modified RMSE, weighted

RMSE. It associates more weight to the preferred objects than to the non-preferred.

The formula is
√∑

o∈Ts R(o) ∗ (R̂(o)−R(o))2/
∑

o∈Ts R(o). The less is RMSE, the
better the system performs.

Tau coefficient Tau coefficient is known in economy. It is used to measure the simi-
larity of the ordered lists of objects. It is assumed that both lists contain the same set of
objects. For our purpose, we compare the ordering of objects by real user preferences
R(o) with the ordering user model would make R̂(o).

64 Alan Eckhardt

Tau coefficient is based on concordant and discordant pairs. A pair (o1, o2), (p1, p2)
is concordant, if sgn(R(o1) − R(o2)) = sgn(R̂(p1) − R̂(p2)), where sgn is signum
function. Then the coefficient is computed as τ = nc−nd

1
2 n(n−1)

where nc is number of
concordant pairs, nd is the number of discordant pairs and n is the number of objects in
lists. The higher Tau coefficient is, the better for the system.

We can apply weighting scheme to Tau coefficient, too. Objects with higher real
preferences will matter more than objects with low preference, when comparing the
two orderings.

ROC curves ROC curve is a method for capturing the performance of a system under
different conditions. In terms of classification of positive and negative examples, it tells
how the recall (the ratio between the number of correctly classified positive objects and
the total number of positive objects) of the system increases if we relax the ratio of
correctly classified negative objects and the number of all negative objects.

The problem here is that we do not have a simple positive-negative scenario. Ratings
have typically the domain {1,2,3,4,5}. The possible solution is to consider several cuts
in this domain and measure at each of these cuts. We can take as positive objects with
rating 5 and the rest as negative. Then, objects with ratings 5 and 4 will be considered
positive and the rest as negative etc. In this way, we will get 5 different ROC curves.

Amount of information required from user Another important characteristic of a
recommender system is amount of information that is required from user. Possible ap-
proaches are described in Section 4.1. Often, the higher precision of a system is out-
weighed by a larger investment from user. But the intuition says that few users will
be willing to perform complicated tasks, no matter the increase of helpfulness of the
system. The less information the system needs from user, the better for user.

Improvement in user ease of work with the system The main task of recommender
systems is to help the user. All the above mentioned measures are good because they
can be computed analytically, but they cannot capture the real improvement for user.
This improvement can be only given by the real user working with the various recom-
mender systems and comparing them between them. There are some problems with this
comparison

– Every man perceives the ease of work differently. There should be a large number
of people testing the systems to be compared to evaluate overall suitability.

– The system has to be implemented including the user interface. Different methods
work with different inputs from the user and they have to be able to monitor these
inputs.

– People testing the system has to have a motivation to work with the system. If they
are not, they would not be critical or they would apply some criteria irrelevant in
the real usage of the system. This is most difficult to achieve.

Various aspects of user preference learning and recommender systems 65

5 Interesting problems of recommender systems

In this section, some interesting problems are described. All these problems relate to
user preference learning and can be viewed as the main contribution of this paper, be-
sides the introductory part.

Cold start When a system is based on user ratings, it has serious troubles in the begin-
ning of its existence. This problem is most pronounced for collaborative filtering-based
system, because they need a lot of rating from a lot of users for making correct predic-
tions. For content based recommendation, this is not much of a problem because the
accuracy of recommendation does not depend on the number of users of the system.
The following issue however affect both approaches.

New user When a new user starts using the system, it is hard to recommend something
because the system has little information about her. This issue may be overcome with a
default user profile, but this solution is not personalized enough.

There is a possibility to learn something quickly about a new user – it is by choosing
a good set S0 in Figure 2. When there are very different objects in S0, we can learn
immediately what user certainly does not like and what area is of her interest. When S0

is constructed randomly, there is a higher possibility that there would not be any object
the area of user’s interest. Suitable S0 may be found for example using clustering.

Identifying context for user When a user works with the system, it is assumed that
she searches for some object she wants. But there are other possible motives such as
scanning the area or finding some object for a friend. This context of work deeply
influences user behaviour and may severely damage existing user model.

Small rating scale Typical rating is expressed on the scale {1,2,3,4,5}. When having
thousands of objects, this scale is far too small for capturing the ordering among the best
objects. We proposed a method Phases for overcoming this obstacle in [14], but it is not
a complete analyze and there are many more aspects of this problem. Phases are suited
for a single session, for long-term usage there should be another way of differentiating
among the objects with rating 5.

This problem could be of course solved by enlarging the scale of ratings to e.g.
{1,...,100} but its benefit is questionable. Will user really feel the difference between
ratings 64 and 65? Will user be able to apply it consistently?

Negative preferences In our model, 0 means the lowest preference. When a manufac-
turer ASUS has the preference 0, it penalizes the notebook, but in the overall score it
may be outweighed by other attributes which are more preferred by user. Negative pref-
erences are typically more stronger than this – a notebook made by ASUS is strongly
disregarded. The strength may be expressed by the weight of the attribute, but it is no
solution, because for other manufacturers, this attribute may not have such a big weight.
Our task is to model a better way of penalizing objects with a highly non preferred value
and the way of expressing such strong negative preference.

66 Alan Eckhardt

Time dimension Main problem with acquisition of user preferences is the small size of
training data. When user is using the system for a longer period, the training data may
get bigger. But here comes a new problem – user preferences are typically unstable.
What user preferred a month ago may not be good today. But the high rating user
provided a month ago is the same high rating provided today.

There is a need to find a method for penalization of older ratings or promotion of
newer ones. The system needs to guess whether to apply the penalization at all – maybe
the preferences stay the same when buying a house, but they may change quickly for a
movie.

6 Conclusion

We have described a recommender system and identified several interesting issues and
problems that occur during user model construction. The main contribution is the sug-
gestion of several possible ways how to measure helpfulness of a recommender system.
The experimental evaluation is often lacking in more theoretical focused papers. Also
the list of some problems or typical situations in recommender systems may be inspiring
for searching of their solutions. We hope that this analysis would be helpful to anyone
new in recommender systems and user modeling field.

6.1 Issues for future work

All problems in Section 5 are worth studying, but we would like to address the two last
problems in near future – that of Negative preferences and Time dimension.

References

1. The internet movie database. http://www.imdb.com/.
2. Movielens dataset. http://www.grouplens.org/node/73.
3. Netflix dataset. http://www.netflixprize.com.
4. Preference handling an introductory tutorial. http://www.cs.bgu.ac.il/ brafman/tutorial.pdf.
5. Improving Recommendation Lists Through Topic Diversification, 2005.
6. R. Agrawal and E. L. Wimmers. A framework for expressing and combining preferences.

SIGMOD Rec., 29(2):297–306, 2000.
7. C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Cp-nets: A tool for representing

and reasoning with conditional ceteris paribus preference statements. Journal of Artificial
Intelligence Research, 21:2004, 2004.

8. J. Chomicki. Preference queries. CoRR, cs.DB/0207093, 2002.
9. J. Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst.,

28(4):427–466, 2003.
10. J. Doyle. Prospects for preferences. Computational Intelligence, 20:111–136(26), May 2004.
11. A. Eckhardt. Inductive models of user preferences for semantic web. In J. Pokorný, V. Snášel,

and K. Richta, editors, DATESO 2007, volume 235 of CEUR Workshop Proceedings, pages
108–119. Matfyz Press, Praha, 2007.

Various aspects of user preference learning and recommender systems 67

12. A. Eckhardt, T. Horváth, D. Maruščák, R. Novotný, and P. Vojtáš. Uncertainty issues in
automating process connecting web and user. In P. C. G. da Costa, editor, URSW ’07 Un-
certainty Reasoning for the Semantic Web - Volume 3, pages 97–108. The 6th International
Semantic Web Conference, 2007.

13. A. Eckhardt, T. Horváth, and P. Vojtáš. Learning different user profile annotated rules for
fuzzy preference top-k querying. In H. Prade and V. Subrahmanian, editors, International
Conference on Scalable Uncertainty Management, volume 4772 of Lecture Notes In Com-
puter Science, pages 116–130, Washington DC, USA, 2007. Springer Berlin / Heidelberg.

14. A. Eckhardt, T. Horváth, and P. Vojtáš. PHASES: A user profile learning approach for web
search. In T. Lin, L. Haas, R. Motwani, A. Broder, and H. Ho, editors, 2007 IEEE/WIC/ACM
International Conference on Web Intelligence - WI 2007, pages 780–783. IEEE, 2007.

15. A. Eckhardt and P. Vojtáš. Considering data-mining techniques in user preference learning.
In 2008 International Workshop on Web Information Retrieval Support Systems, 2008.

16. R. Fagin. Combining fuzzy information from multiple systems. pages 216–226, 1996.
17. J. Fürnkranz and E. Hüllermeier. Pairwise preference learning and ranking. In In Proc.

ECML-03, Cavtat-Dubrovnik, pages 145–156. Springer-Verlag, 2003.
18. D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an

information tapestry. Commun. ACM, 35(12):61–70, 1992.
19. S. Holland, M. Ester, and W. Kiessling. Preference mining: A novel approach on mining user

preferences for personalized applications. In Knowledge Discovery in Databases: PKDD
2003, pages 204–216. Springer Berlin / Heidelberg, 2003.

20. E. Hüllermeier and J. Fürnkranz. Learning preference models from data: On the problem of
label ranking and its variants. In G. D. Riccia, D. Dubois, R. Kruse, and H. Lenz, editors,
Preferences and Similarities, pages 283–304. Springer-Verlag, 2008.

21. T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 133–142, New York, NY, USA, 2002. ACM Press.

22. T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting click-
through data as implicit feedback. In SIGIR ’05: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval, pages 154–
161, New York, NY, USA, 2005. ACM.

23. G. K. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval,
4:133–151(19), July 2001.

24. W. Kiessling. Foundations of preferences in database systems. In VLDB ’02: Proceedings of
the 28th international conference on Very Large Data Bases, pages 311–322. VLDB Endow-
ment, 2002.

25. W. Kiessling and G. Köstler. Preference sql: design, implementation, experiences. In VLDB
’02: Proceedings of the 28th international conference on Very Large Data Bases, pages 990–
1001. VLDB Endowment, 2002.

26. S. E. Middleton, N. Shadbolt, and D. D. Roure. Capturing interest through inference and
visualization: Ontological user profiling in recommender systems. In K-CAP2003, 2003.

27. A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A. Konstan, and J. Riedl.
Getting to know you: learning new user preferences in recommender systems. In IUI ’02:
Proceedings of the 7th international conference on Intelligent user interfaces, pages 127–134,
New York, NY, USA, 2002. ACM.

28. G. H. Wright. The logic of preference reconsidered. In Theory and Decision, volume 3,
pages 140–169, 1972.

Using Top Trees For Easy Programming of Tree
Algorithms

Michal Vajbar

Department of Software Engineering, Faculty of Mathematics And Physics, Charles
University in Prague, Malostranské nám. 25, 118 00, Praha 1, Czech Republic

michal.vajbar@mff.cuni.cz

Using Top Trees For Easy Programming of Tree
Algorithms

Michal Vajbar

Department of Software Engineering, Faculty of Mathematics And Physics,
Charles University in Prague,

Malostranské nám. 25, 118 00, Praha 1, Czech Republic
michal.vajbar@mff.cuni.cz

Abstract. Top trees are a dynamic self-adjusting data structure that
can be used by any tree algorithm. Actually, an arbitrary number of dif-
ferent tree algorithms can use a single structure. In our previous work, we
have implemented top trees, but the usage still requires a detail knowl-
edge of the structure which is quite complex. In this paper, we intro-
duce Top Tree Friendly Language (TFL) and Top Tree Query Language
(TQL). The TFL is a special programming language which combines
declarative and procedural approaches that results in simpler and faster
algorithm designing. The query language TQL provides an easy top trees
administration. The implementation of top trees, the programming lan-
guage TFL and the query language TQL together form a complex solu-
tion for using top trees.

Keywords: data structure, top trees, programming language, query language

1 Introduction

There exist many algorithms that work over tree graphs. Any of them can use
different data structures to represent the same tree. If we need to run several of
these algorithms over one forest together each one could use its own representa-
tion of the forest. Moreover, if the forest dynamically changes over the time by
edge insertions and deletions all these changes have to be reflected into the data
structures of all algorithms. This is not efficient. Thus several data structures
have been proposed to solve this problem. Any of them is good at some prop-
erties, but each has a weak point. It appears that top trees provide the most
acceptable trade-off. In this paper, we present a complex solution that allows easy
using of top trees. The solution is built on our implementation of the structure [7]
and it brings Top Tree Friendly Language (TFL) and Top Tree Query Language
(TQL). The TFL is a special programming language which combines declarative
and procedural approaches that results in simpler and faster algorithm designing.
The query language TQL provides easy top trees administration.

The paper is organized as follows. In Section 2 we introduce top trees. Used
implementation of top trees is shortly presented in Section 3. Section 4 introduces
the TFL programming language and shows how to use it. In Section 5 we present
the query language TQL. Final remarks are made in Section 6.

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 68–79, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

Using Top Trees For Easy Programming of Tree Algorithms 69

2 Top Trees

Top trees are a dynamic self-adjusting data structure that was proposed by
Alstrup et al. [1]. A top tree R is an ordinary binary tree with a root. It is used to
represent a tree graph T with defined information that some tree algorithm works
with. The structure R consists of clusters. The edges of the T form basic clusters
and two clusters connected through a common vertex create other cluster. So the
R records a way of clusters connecting into one root cluster that represents whole
T . Each cluster holds information of appropriate part of the T . A manner how
the information is computed during joining and splitting of clusters characterizes
used algorithm. That is a simplified idea. In the rest of this section, the structure
is described more precisely.

2.1 Formal Definition and Properties

The structure is defined over a pair consisting of a tree T and a set ∂T of at most
two vertices from T that are called external boundary vertices. Let (T, ∂T) is the
pair, then any subtree C of T has a set ∂(T,∂T)C of at most two boundary vertices
from C. Each of them is either from ∂C or incident to an edge from T \C. The
subtree in undirected graph means any connected subgraph. The subtree C is
called a cluster of (T, ∂T) if it has at least one edge and at most two boundary
vertices. Then T is also cluster and ∂(T,∂T)T = ∂T . If A is a subtree of C then
∂(C,∂(T,∂T)C)A = ∂(T,∂T)A. This means that A is a cluster of (C, ∂(T,∂T)C) if and
only if A is a cluster of (T, ∂T). We will use ∂ as a shortcut for ∂(T,∂T) and also
for all subtrees of T .

Definition: A top tree R over (T, ∂T) is a binary tree such that:

1. The nodes of R are the clusters of (T, ∂T).
2. The leaves of R are the edges of T .
3. Two clusters are called neighbours if they intersect in a single vertex. Their

union is a parent cluster (Fig. 1).
4. The root of R is T itself.

Top tree R represents whole T . If T consists of a single vertex then it has an
empty top tree. The edges of T are basic building blocks of the clusters and the
vertices represent endpoints of the clusters. That is why the cluster is consisted of
at least one edge. The neighbouring clusters are edge-disjunct with one common
vertex (Fig. 1).

Let C is a cluster. A vertex v is an internal vertex of C when v ∈ C and
v /∈ ∂C. If C has two boundary vertices a and b then C is called a path cluster
and the path a . . . b is called the cluster path of C. If C has one boundary vertex
a then C is called a point cluster.

Top tree nodes contain pointers to their sons and parents. Each node rep-
resents a cluster and there is a set of at most two boundary vertices associated
with the cluster. The leaf nodes represent the edges. The non-leaf node holds
information how it is joined from its sons (Fig. 1). According to this information
it is possible to construct any cluster.

70 Michal Vajbar

(a)

(b)

(c)

(d) (e)

Fig. 1. The cases of joining two neighbouring clusters into the parent cluster (assumed
from [1]). The • are the boundary vertices of the parent cluster. The ◦ are the boundary
vertices of children clusters that did not become the boundary vertices of the parent.
The dashed line presents the cluster path of the parent cluster. Moreover, there exist
symmetric variants for (b) and (c).

2.2 Supported Operations

When we work with a forest (a set of trees) then each tree of the forest is
represented by one top tree. Given vertices v and w, the whole forest is controlled
by following operations:

link(v, w) – If v and w occur in different trees then a new edge (v, w) is created.
cut(v, w) – If the graph contains the edge (v, w) then the edge is removed.
expose(v, w) – If v and w occur in the same tree then the top tree is rebuilt so

that v and w become the external boundaries and the path v . . . w becomes
the root path (Fig. 1a, 1b). It is possible to call expose with one vertex to
create the root cluster with only one external boundary (Fig. 1c, 1d).

select(R) – A special operation for nonlocal algorithms. The R is a top tree.
This operation is described in the Section 2.4.

A number of clusters can be changed by the operations above. These changes
are executed by local operations:

create() = e – Creates a top tree with only one cluster e consisted of one edge.
join(A, B) = C – A and B are the neighbouring root clusters of top trees RA

and RB . This operation creates a new cluster C = A∪B which represents a
root cluster of the top tree RC consisted of RA and RB .

split(C) = (A, B) – The C is the root cluster of a top tree RC . The split removes
C and divides the top tree RC into top trees RA and RB . The clusters A
and B are created from the C as the root clusters of the new top trees.

destroy() – This operation removes the cluster represented by one edge.

The operations link, cut and expose invoke a sequence of the local operations.
Each local operation always changes just one cluster. The root cluster may rep-
resent only a part of the tree T during the rebuilding, but in the end it represents
whole T again.

Using Top Trees For Easy Programming of Tree Algorithms 71

2.3 Usage of Top Trees

Algorithms working over top trees associate information that they need with
clusters or vertices. The local operations describe how to deal with the informa-
tion during the changes. Then to describe the algorithm it is enough to define
the manner of the local operations.

To keep the structure in a consistent state it is possible to change information
only in the root cluster or in the external boundary vertex. So the top tree must
be rebuilt by the expose operation when we want to change information saved in
the cluster specified by a path v . . . w or by a vertex v. Then the path becomes
the root path and specified vertices become external boundary vertices. The
structure does not allow to change any information outside of the root cluster.

2.4 Types of Algorithms

Tree algorithms can be classified as local or nonlocal. The local algorithms deal
with local properties of the tree. The local property is defined in the following
way: if the property holds for an edge or a vertex in the whole tree T then
it holds for the same edge or the vertex in any subtree of T . An example can
be the searching for the heaviest edge or the finding out the distance between
two vertices. The local properties can be computed easily in bottom-up manner
in the top tree. The nonlocal algorithms are different. They deal with nonlocal
properties: this kind of property can be held by one edge (or a vertex) in the
whole tree and by another one in any subtree. For example the searching for the
center or the median of the tree. Evidently, the using of top trees for nonlocal
algorithms is more difficult than for local algorithms.

Top trees have to support a fourth operation called select to enable nonlocal
algorithms running. This operation is very complex so only basic idea is showed
here. The detailed description can be found in [6]. The select gets a top tree R and
it picks one of the children clusters of the root cluster. It is important to realize
that the R represents the whole tree T . The operation works recursively and it
is similar to the binary searching. One child of the root cluster is selected and
this child becomes the root for next iteration. The top tree is rebuilt to prepare
the new root after the selection (details in [6]). So the new root still represents
the whole tree T . The finding finishes when a basic cluster that represents one
edge is found. This cluster is the intersection of all selected clusters.

3 Used Implementation

We have developed an implementation of top trees in our previous work [7].
Our implementation results from Tarjan and Werneck’s work [5, 8]. It combines
tree decomposition used in Sleator and Tarjan’s ST-trees [4] with compression
and raking used in Frederickson’s topology trees [2]. These principles ensure the
representation of a tree graph T and bring the great idea of clustering. For more
details see [7].

72 Michal Vajbar

In our implementation, all four operations are supported in O(log n) amor-
tized time where n is a number of vertices. This time analysis is proved in [5]
for link, cut and expose. For select it is proved in [7].

The data structure and both languages TFL and TQL were developed in
Java language. Source codes with examples and documentation are available on
author’s homepage1.

4 Top Tree Friendly Language (TFL)

In our previous work [7], we have implemented top trees, but the usage still
requires a detail knowledge of the structure which is quite complex. So we have
decided to develop a declarative programming language that makes the structure
available to users with only a basic knowledge.

The declarativity saves users from technical details of the implementation
and it allows to focus on the designing of a tree algorithm. So hence it came the
name of the language - Top Tree Friendly Language (for short TFL).

We did not try to develop the almighty programming language. The aim was
a language that simplifies the designing of algorithms. The TFL allows to write
a simple and short source code quickly and then easily verify its functionality
with the TQL (Sec. 5).

4.1 Basics of TFL

The source code of the language consists of several blocks that form two sections.
In the first section, there is declared a name of the algorithm and information
stored in vertices and clusters. A description of the designed algorithm occurs in
the second section of the script. A line or block comment can be used anywhere.

In the declarative section, it is necessary to keep the order of three obligatory
blocks - firstly the algorithm name in the algorithm block, then the declaration
of the vertex in the vertex block and finally the declaration of the cluster in the
cluster block. An example can be seen in Fig. 2.

The declaration of the vertex and the cluster contains a specification of vari-
ables to store information. The variables are described by a data type. All sup-
ported types are depicted in the section 4.3. In the cluster block, there it is
possible to use a special array. The array holds information of the specified data
type for two keys - the boundary vertices of the relevant cluster. The cluster is
the only block where the arrays can be declared. This construction resulted from
the need of some algorithms that require to hold different information for both
boundary vertices in each cluster.

In the second section, there is described a behaviour of the algorithm. Two
levels of the blocks are used here whereas the only one level occurs in the declar-
ative section. The root blocks form the first level. They are var, create, destroy,
join, split and selectQuestion. These blocks are not obligatory, but their occur-
rence has to correspond to the mentioned order. They describe the algorithm
1 http://siret.ms.mff.cuni.cz/vajbar

Using Top Trees For Easy Programming of Tree Algorithms 73

/* The declaration of the algorithm name and saved information: */

algorithm { algorithmName } // 1. the name of the algorithm

vertex { // 2. the declaration of vertex information

type1 variable1, variable2;

type2 variable3; }

cluster { // 3. the declaration of cluster information

type3 variable4;

array(type2) variable5, variable6; }

/* The description of the algorithm: */

...

Fig. 2. The structure of the TFL source code.

during the local operations as their names imply. In the root blocks, there can
be used only the blocks of the second level called auxiliary blocks. The var and
the selectQuestion are exceptions without the local blocks.

The auxiliary blocks contain the procedural tools of the TQL language that
are depicted in the section 4.4. They can be read as the sequences of the com-
mands that are executed if some condition holds (e.g. the cluster represents a
path). The blocks are explained in more detail in the following subsection.

4.2 Algorithm Description

The conception of the blocks corresponds to the train of thought during the
algorithm designing. Thanks to blocks the process of the designing is divided into
the smaller problems which can be solved more simply. That brings a declarative
way of the programming, so an user takes care of the designing only. There is
no need to take care of the technique how the result is achieved. Moreover, only
basic procedural tools are needed to describe the work of the algorithm in the
blocks.

The root block var. The var is a special kind of the root block. There are
declared global variables that can be used in any other root block. The syntax of
the declaration is the same as in the vertex block. Arrays are not allowed there.

The root blocks create and destroy. These blocks describe the algorithm
during the local operations of the corresponding names. It is necessary to dis-
tinguish if the cluster represents a path or if it is a point cluster. So there are
two auxiliary blocks:

path – the current base cluster is a path cluster
point – the current base cluster is a point cluster

A content of the block is executed if the condition above holds. These auxiliary
blocks can occur in any order but each at most once.

74 Michal Vajbar

The root blocks join and split. The blocks describe the algorithm during
the appropriate local operations. There have to be considered the types of the
parent and both children clusters. According to these types the behaviour of the
algorithm can be described by following auxiliary blocks:

path child – current descendant of the parent cluster is a path cluster
point child – current descendant of the parent cluster is a point cluster
path parent – parent cluster is a path cluster
point parent – parent cluster is a point cluster
path and path – clusters represent the variant Fig.1a
path and point – clusters represent the variant Fig.1b
point and path – clusters represent a symmetry to the variant Fig.1b
point and point – clusters represent the variant Fig.1e
lpoint over rpoint – clusters represent the variant Fig.1c
rpoint over lpoint – clusters rep. a symmetry to the variant Fig.1c
lpoint and rpoint – clusters represent the variant Fig.1d

A content of the block is executed if the condition above holds. These auxiliary
blocks form three groups: * child, * parent and the variants from the figure 1.
In the join block, the groups have to occur in the mentioned order. In the split,
the order of * child and * parent is switched. Within the scope of the groups
the blocks can occur in any order.

The mentioned orders correspond to a succession that should be observed
during the algorithm designing. When two neighbours are connected by the join
then typically the data from them are prepared at first (* child) and then the
data of the parent cluster are computed (* parent). If the algorithm needs more
information about the clusters then the blocks from third group can be used. The
procedure is analogical for the split. Firstly the data from the parent cluster are
prepared (* parent) and then the data for the children are computed (* child).
Eventually, the blocks from the third group can be used of course.

The root block selectQuestion. The last of the root blocks describes the
way how the decision during one step of the select operation proceeds. The
selectQuestion can be seen as the fifth local operation. Its content is slightly
different from the other root blocks. There are no auxiliary blocks and the syntax
follows:

selectQuestion {

/* any code */

if (condition) {

/* any code */

select a;

}

else {

/* any code */

select b;

}

}

Using Top Trees For Easy Programming of Tree Algorithms 75

The command select (a|b); specifies the cluster that is selected. The a (b)
denotes the left (right) child. The usage of the cluster names can be found in
Section 4.5.

4.3 Supported Data Types

The language supports four data types - integer, real, string and boolean. It
should be sufficient for the most of tree algorithms. The string represents the
sequences of characters. The values must be surrounded by the quotation marks.
The boolean type was included to allow working with logical values true and
false.

The integral numbers are represented by the integer data type and the real
numbers by the real. The language does not enable a casting between these
two data types. The both numeral types support positive and negative infinity -
IpINF and ImINF for the integer and RpINF and RmINF for the real. This differen-
tiation between the types of the infinities results from the using of the auxiliary
variables. It is described in the Section 4.5. The work with the infinities abides
by the standard IEEE 754 [3].

The variables declarated in the vertices and the clusters are initialized by the
default values according to the data types. A null string "" is the default for the
string and the false for the boolean. The integer is initialized by integral zero
0 and the real by decimal zero 0.0.

4.4 Constructions of Programming Language

By the procedural tools we try to cover usual needs of the algorithm designing.
We have implemented a lot of tree algorithms over the top trees and it has
revealed that there are only two essential commands. The first is the assignment
of a value into a variable and the second is if-else construction. It seems to be very
little, but it is not. There is no need to support more complicated constructions
like for -loops or while-loops and the need of switch-block can be substituted by
the if-else very easily.

The syntax of the if-else is the same as in other programming languages.
The construction can contain any number of elseif parts and the else part is not
necessary:

if (condition1) {

/* any code */

} elseif (condition2) {

/* any code */

} else {

/* any code */

}

The language TFL supports basic arithmetic operations +, -, *, /. The divi-
sion is integral for the integer. Numbers can be compared by ==, !=, <, >, <= and
>=. The integer and the real type cannot be combined anywhere. There is an

76 Michal Vajbar

operator & for string concatenation. The language also offers the logical AND &&
and the OR ||. The priorities of the operators are ordinary and the order can
be specified by parentheses (,). The summary of operators with their priorities:

Priority Operator type Operator
1 unary minus -
2 multiplication, division * /
3 enumeration, subtraction, concatenation + - &
4 comparison == != < > <= >=
5 logical operators && ||
6 assignments = += -= *= /= &=

4.5 Using of Variables

There are two kinds of variables in the TFL. The first kind includes the variables
declared in the vertex and the cluster block. The second kind are auxiliary vari-
ables. The names have to match the regular expression [a-zA-Z][a-zA-Z0-9]*.
To make accessing to clusters and vertices easier the labels were set up:

c current cluster
a left child of the current cluster
b right child of the current cluster

child mark for a and b in * child blocks
left left boundary vertex
right right boundary vertex

common common vertex of the children
border the only boundary vertex of the point cluster

The usage of the names employs dot notation similarly to the object-oriented
programming languages:

variable global (declared in var) or auxiliary variable
cluster.variable auxiliary variable or declared in cluster

cluster.array[vertex] value attached to vertex in cluster array
cluster.vertex.variable auxiliary or declared variable of the vertex

vertex.variable abbreviation for c.vertex.variable

Auxiliary variables. In the root block (excepting the var), the auxiliary vari-
ables can be used. They do not need to be declared. The TFL learns the type
from the first value that is assigned to the variable. Therefore each auxiliary vari-
able must be initialized by some value. This is the reason for using one type of
the infinity for the integer and another one for the real. The creation of auxiliary
arrays is not allowed.

4.6 Example of Usage

The usage of the language is very easy as can be seen from the following example
- the finding out the length of a path. The path is specified by two vertices and

Using Top Trees For Easy Programming of Tree Algorithms 77

the technique was described by Alstrup et al. [1]. Each cluster holds its length.
The algorithm needs to implement only the join. If a point cluster is created
then its length is zero. The length of a path cluster is computed as the sum of
the children lengths. The produced source code is very short and simple:

/****** The length of the path ******/

/*** Declaration of stored information ***/

algorithm {lengthOfWay} // name of the algorithm

vertex { integer name; } // we store name of the vertex in vertices

cluster { integer length; } // we store length of the cluster in clusters

/*** Description of the algorithm ***/

join {

path_child { // if a or b is the path, then we remember its length

child.l = child.length;

} point_child { // if a or b is the point, then its length is zero

child.l = 0;

} path_parent { // path cluster length is the sum of its children

c.length = a.l + b.l;

} point_parent { // point cluster length is zero

c.length = 0;

}

}

5 Top Tree Query Language (TQL)

The TQL is a simple query language that was developed to control top trees.
The language allows the adding of the vertices, joining and splitting of the edges
or working with information stored in the top trees. There are supported the
same data types as in the TFL.

To enable an easy manipulation with nodes of the forest one statement stored
in the nodes must be unique. The user can choose that unique identifier which
is preferred. This identifier cannot be the boolean, because it can determine only
two values.

5.1 Adding of Nodes

When a new node is created then some values are saved into the statements
declared in the vertex block of the TFL. To make it simpler there is a node
command:

node (param1, param2, ...) (param3=value1, param4=value2, ...);

node;

So there can be declared the order of some parameters and default values
of another parameters. The order of declarative and definition part is arbitrary
and it is not necessary to use both of them. The default values have to match

78 Michal Vajbar

the data types and the unique identifier cannot be used. It is possible to call this
command at any time. When the node is called without the parameters then it
displays the current order and the default values settings.

A new node is created in the following manner:

unique_name (value1, value2, ...) (param1=value3, param2=value4, ...);

The enumeration part must agree with the declaration of the node. In the assign-
ment part, the default values can be overwritten and other parameters defined.
The parts can occur in any order. Any part can be omitted, but at least one has
to be applied.

5.2 Joining and Splitting of Edges

Analogous to the nodes there is a command to specify the order of parameters
and the settings of default values for edges that were declared in the cluster
block of TFL:

edge (param1, ...) (param2=val1, param3[L]=val2, param3[R]=val3, ...);

edge;

The usage is the same as for the node, but moreover there can be used an array.
To access the entries of the array there are marks L and R for the left and the
right boundary vertex.

The command for the edge joining enables to specify the position of the new
edge with regard to the position of other edges:

u {a} -- v {b} (value1, value2, ...) (param1=value3, ...);

When edges are organized in circular order around u and v, then the new edge
(u, v) is the right successor of the (u, a) and the (v, b). This position specification
can be omitted. For the enumeration and the assignment parts there are the same
rules as for the nodes creation. A node can be created during the joining - all
its parameters have to be set by default values and no position specification can
be used.

The removing of the edges is very easy:

u ## v;

5.3 Reading Information and Another Commands

Sometimes it is important to read the information stored in the vertex v or in
the cluster with boundary vertices u, v:

info(v);

info(u,v);

In the TQL language, there is a lot of embedded functions that were prepared
for the most frequently used operations (e.g. value changing, . . .). In addition,
the language enables to program custom functions as a plug-in in the Java lan-
guage. The details can be seen in our previous work [6].

Using Top Trees For Easy Programming of Tree Algorithms 79

6 Final Remarks

We have developed a complex solution that allows using top trees for easy pro-
gramming of tree algorithms. The solution is built on our implementation of top
trees [7] and it is formed by Top Tree Friendly Language (TFL) and Top Tree
Query Language (TQL).

The TFL is a declarative programming language that makes the structure
available to users with only a basic knowledge of top trees. The declarativity
saves users from technical details of the implementation and it allows to focus
on the designing of tree algorithms. The TQL is a simple query language that was
developed to control top trees. The language allows the adding of the vertices,
joining and splitting of the edges or working with information stored in the top
trees. In addition, the language TQL can be extended by custom functions.

Both languages form an useful tool that enables to write a simple and short
source code quickly and then easily verify its functionality. So the tool makes
the algorithm designing easier and more comfortable.

6.1 Related Work

To the best of our knowledge, there exists no similar tool to compare with. Top
trees are relatively young data structure. Excepting the work of Alstrup et al.
[1] and Tarjan and Werneck’s works [5, 8], we did not find any other information
about top trees.

References

1. S. Alstrup, J. Holm, K. D. Lichtenberg, and M. Thorup. Maintaining information
in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264, 2005.

2. G. N. Frederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM Journal of Computing, 14(4):781–798, 1985.

3. IEEE-Task-P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arith-
metic. IEEE, New York, aug 12 1985. A preliminary draft was published in the
January 1980 issue of IEEE Computer, together with several companion articles.
Available from the IEEE Service Center, Piscataway, NJ, USA.

4. D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983.

5. R. E. Tarjan and R. F. Werneck. Self-adjusting top trees. In SODA ’05: Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 813–
822, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

6. M. Vajbar. Modelling dynamic trees. Master’s thesis, Department of Software
Engineering, Charles University in Prague, 2008.

7. M. Vajbar and K. Toman. Implementation of self-adjusting top trees. Technical
Report No 2008/3, Charles University, Prague, Czech Republic, 2008.

8. R. F. Werneck. Design and analysis of data structures for dynamic trees. PhD
thesis, Princeton University, Princeton, NJ, USA, 2006. Adviser-Robert E. Tarjan.

Dimension Reduction Methods for Iris
Recognition

Pavel Moravec and Václav Snášel

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

{pavel.moravec, vaclav.snasel}@vsb.cz

Dimension Reduction Methods for Iris Recognition

Pavel Moravec and Václav Snášel

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
{pavel.moravec, vaclav.snasel}@vsb.cz

Abstract. In this paper, we compare performance of several dimension reduction
techniques, namely LSI, FastMap, and SDD in Iris recognition. We compare the
quality of these methods from both the visual impact, and quality of generated
"eigenirises".

Keywords: SVD, FastMap, information retrieval, SDD, iris recognition

1 Introduction

Methods of human identification using biometric features like fingerprint, hand geom-
etry, face, voice and iris are widely studied.

A human eye iris has its unique structure given by pigmentation spots, furrows and
other tiny features which are stable throughout life. It is possible to scan an iris without
physical contact in spite of wearing contact lenses or eyeglasses. The iris is hard to forge
which makes the iris a suitable object for the identification of people. Iris recognition
seems to be more reliable than other biometric techniques like face recognition[3]. Iris
biometrics systems for both private and public use have been designed and deployed
commercially by NCR, Oki, IriScan, BT, US Sandia Labs, and others.

In this paper, we use the Petland’s approach to image retrieval: image vectors of
complete images of the size width × height of the image [13] build the feature vectors.

To fight the high dimension of image vector, we can extract several features which
represent the image and concatenate them into a feature vector. The feature extraction
methods can use different aspects of images as the features, typically the color features
(histograms), shape features (moments, contours, templates), texture features and oth-
ers (e.g. eigenvectors). Such methods are either using a heuristics based on the known
properties of the image collection, or are fully automatic and may use the original image
vectors as an input.

In this paper we will concentrate on the last category – other feature extraction
methods which use known dimension reduction techniques and clustering for automatic
feature extraction.

Singular value decomposition (SVD) was already successfully used for automatic
feature extraction. In case of face collection (such as our test data), the base vectors
can be interpreted as images, describing some common characteristics of several faces.
These base vectors are often called eigenfaces. For a detailed description of eigenfaces,
see [13].

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 80–89, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

Dimension Reduction Methods for Iris Recognition 81

However SVD is not suitable for huge collections and is computationally expensive,
so other methods of dimension reduction were proposed. We test two of them – Semi-
Discrete decomposition.

Recently, Toeplitz matrix minimal Eigenvalues are also playing a role towards im-
age description and feature extraction [10]. This approach presents a method for the
reduction of image feature points as it deals with the geometric relation between the
points rather than their geometric position [11]. This can reduce the characteristic or
feature points number from n to at least n

10 decreasing the computation level and hence
the task time.

The rest of this paper is organized as follows. The second section explains used
dimension reduction methods. In the third section, we briefly describe qualitative mea-
sures used for evaluation of our tests. In the next section, we supply results of tests
for several methods on ORL face collection. In conclusions we give ideas for future
research.

2 Dimension Reduction Methods

We used three methods of dimension reduction for our comparison – Singular Value De-
composition, Semi-Discrete Decomposition and FastMap, which are briefly described
bellow.

2.1 Singular Value Decomposition

SVD [2] is an algebraic extension of classical vector model. It is similar to the Principal
components analysis (PCA) method, which was originally used for the generation of
eigenfaces. Informally, SVD discovers significant properties and represents the images
as linear combinations of the base vectors. Moreover, the base vectors are ordered ac-
cording to their significance for the reconstructed image, which allows us to consider
only the first k base vectors as important (the remaining ones are interpreted as “noise”
and discarded). Furthermore, SVD is often referred to as more successful in recall when
compared to querying whole image vectors [2].

Formally, we decompose the matrix of images A by singular value decomposition
(SVD), calculating singular values and singular vectors of A.

We have matrix A, which is an n × m rank-r matrix and values σ1, . . . , σr are
calculated from eigenvalues (λi) of matrix AAT as σi =

√
λi. Based on them, we

can calculate column-orthonormal matrices U = (u1, . . . , ur) and V = (v1, . . . , vr),
where UT U = In a V T V = Im, and a diagonal matrix Σ = diag(σ1, . . . , σr), where
σi > 0, σi ≥ σi+1.

The decomposition
A = UΣV T

is called singular decomposition of matrix A and the numbers σ1, . . . , σr are singular
values of the matrix A. Columns of U (or V) are called left (or right) singular vectors
of matrix A.

Now we have a decomposition of the original matrix of images A. We get r nonzero
singular numbers, where r is the rank of the original matrix A. Because the singular

82 Pavel Moravec, Václav Snášel

values usually fall quickly, we can take only k greatest singular values with the corre-
sponding singular vector coordinates and create a k-reduced singular decomposition of
A.

Let us have k (0 < k < r) and singular value decomposition of A

A = UΣV T ≈ Ak = (UkU0)
(

Σk 0
0 Σ0

) (
V T

k

V T
0

)

We call Ak = UkΣkV T
k a k-reduced singular value decomposition (rank-k SVD).

Instead of the Ak matrix, a matrix of image vectors in reduced space Dk = ΣkV T
k

is used in SVD as the representation of image collection. The image vectors (columns
in Dk) are now represented as points in k-dimensional space (the feature-space). For
an illustration of rank-k SVD see Figure 1.

Fig. 1. rank-k SVD

Rank-k SVD is the best rank-k approximation of the original matrix A. This means
that any other decomposition will increase the approximation error, calculated as a sum
of squares (Frobenius norm) of error matrix B = A−Ak. However, it does not implicate
that we could not obtain better precision and recall values with a different approxima-
tion.

To execute a query Q in the reduced space, we create a reduced query vector qk =
UT

k q (another approach is to use a matrix D′
k = V T

k instead of Dk, and q′k = Σ−1
k UT

k q).
Instead of A against q, the matrix Dk against qk (or q′k) is evaluated.

Once computed, SVD reflects only the decomposition of original matrix of images.
If several hundreds of images have to be added to existing decomposition (folding-in),
the decomposition may become inaccurate. Because the recalculation of SVD is expen-
sive, so it is impossible to recalculate SVD every time images are inserted. The SVD-
Updating [2] is a partial solution, but since the error slightly increases with inserted
images. If the updates happen frequently, the recalculation of SVD may be needed soon
or later.

2.2 SDD Method

Semidiscrete decomposition (SDD) is one of other LSI methods, proposed recently for
text retrieval in [8]. As mentioned earlier, the rank-k SVD method (called truncated
SVD by authors of semidiscrete decomposition) produces dense matrices U and V , so

Dimension Reduction Methods for Iris Recognition 83

Xk Dk Yk

T

Values {-1,0,1} Values {-1,0,1}Nonnegative
real values

Fig. 2. "rank-k" SDD

the resulting required storage may be even larger than the one needed by the original
term-by-document matrix A.

To improve the required storage size and query time, the semidiscrete decomposi-
tion was defined as

A ≈ Ak = XkDkY T
k ,

where each coordinate of Xk and Yk is constrained to have entries from the set ϕ =
{−1, 0, 1}, and the matrix Dk is a diagonal matrix with positive coordinates.

The SDD does not reproduce A exactly, even if k = n, but it uses very little storage
with respect to the observed accuracy of the approximation. A rank-k SDD (although
from mathematical standpoint it is a sum on rank-1 matrices) requires the storage of
k(m + n) values from the set {−1, 0, 1} and k scalars. The scalars need to be only
single precision because the algorithm is self-correcting. The SDD approximation is
formed iteratively.

The optimal choice of the triplets (xi, di, yi) for given k can be determined using
greedy algorithm, based on the residual Rk = A−Ak−1 (where A0 is a zero matrix).

2.3 FastMap

FastMap [6] is a pivot-based technique of dimension reduction, suitable for Euclidean
spaces.

In first step, it chooses two points (feature vectors) from the matrix A, which should
be most distant for calculated reduced dimension. Because it would be expensive to
calculate distances between all points, it uses following heuristics (all chosen points are
image vectors from matrix A):

1. A random point c0 is chosen.
2. The point bi having maximal distance δ(ci, bi) from ci is chosen, and based on it

we select the point ai with maximal distance δ(bi, ai)
3. We iteratively repeat step 2 with ci+1 = ai (authors suggest 5 iterations).
4. Points a = ai and b = bi in the last iteration are pivots for the next reduction step.

In second step (having the two pivots a, b), we use the cosine law to calculate po-
sition of each point on line joining a and b. The coordinate xi of point pi is calculated
as

xi =
δ2(ai, pi) + δ2(ai, bi)− δ2(bi, pi)

2δ(ai, bi)

84 Pavel Moravec, Václav Snášel

and the distance function for next reduction step is modified to

δ′2(p′i, p
′
j) = δ2(pi, pj)− (xi − xj)2

The pivots in original and reduced space are recorded and when we need to process a
query, it is projected using the second step of projection algorithm only. Once projected,
we can again use the original distance function in reduced space.

3 Qualitative Measures of Retrieval Methods

Since we need an universal evaluation of any retrieval method, we use some measures to
determine quality of such method. In case of Information Retrieval we usually use two
such measures - precision and recall. Both are calculated from the number of objects
relevant to the query Rel – determined by some other method, e.g. by manual annotation
of given collection and the number of retrieved objects Ret. Based on these numbers
we define precision (P) as a fraction of retrieved relevant objects in all retrieved objects
and recall (R) as a fraction of retrieved relevant objects in all relevant objects. Formally:

P =
|Rel ∩Ret|

|Ret| and R =
|Rel ∩Ret|

|Rel|

So we can say that recall and precision denote, respectively, completeness of re-
trieval and purity of retrieval. Unfortunately, it was observed that with the increase of
recall, the precision usually decreases [12]. This means that when it is necessary to re-
trieve more relevant objects, a higher percentage of irrelevant objects will be probably
obtained, too.

For the overall comparison of precision and recall across different methods on a
given collection, we usually use the technique of rank lists [1], where we first sort the
distances from smallest to greatest and then go down through the list and calculate
maximal precision for recall closest to each of the 11 standard recall levels (0.0, 0.1,
0.2, . . . , 0.9, 1.0). If we are unable to calculate precision on i-th recall level, we take the
maximal precision for the recalls between i − 1-th and i + 1-th level. From all levels,
we calculate mean average, which is a single-value characteristics of overall precision-
recall ratio.

4 Experimental Results

For testing of the different methods, we used iris collection consisting of 384 irises. The
iris were scanned by TOPCON optical device connected to the CCD Sony camera. The
acquired digitized image is RGB of size 576 × 768 pixels. Only the red (R) component
of the RGB image has been used in our experiments because it appears to be more
reliable than recognition based on green or blue components or converting the irises
to grayscale first. It is in accord with [4], where near-infrared wavelengths are used
anyway.

Dimension Reduction Methods for Iris Recognition 85

Fig. 3. Several irises from the collection

We have excluded one of the three irises for each eye for further querying (so that
the query iris would not be included in the collection and skew the query results), which
led to a collection of 256 irises of 64 people.

An example of several irises from the collection is shown in Figure 3, the first 12
query vectors are shown in Figure 8. We did not isolate the central part and eyelids to
provide comparable results with[9].

4.1 Generated “Eigenirises” and Reconstructed Images

Many of tested methods were able to generate a set of base images, which could be
considered to be “eigenirises” as is the case of PCA, SVD and several other methods.
We are going to provide examples of both factors (base vectors) – “eigenirises” and
reconstructed images which can be obtained from regenerated Ak. We calculated results
for all methods in several dimensions, for the demonstration images we will use k = 64.
We do not provide these images for FastMap, where it is not possible (we could have
provided the images used as pivots in each step of FastMap process).

With SVD, we obtain factors with different generality, the most general being among
the first. The first few are shown in figure 4. The eigenirises with higher index bring
more details to reconstructed images.

The reconstructed images for rank-64 SVD method are somewhat blurred, but gen-
erally still recognizable, which can bee observed in figure 5.

The SDD method differs slightly from previous methods, since each factor contains
only values {−1, 0, 1}. Gray in the factors shown in figure 6 represents 0; −1 and 1 are
represented with black and white respectively.

The images in figure 7 are reconstructed least exactly from all methods (although
consistently), but this is to be expected due to the three-valued encoding of base vectors.
One may note a general loss of fine details, which is unfortunate, since it means that the
query process would be highly affected and the retrieval results poor.

86 Pavel Moravec, Václav Snášel

Fig. 4. First 64 eigenirises (out of possible 256) for SVD method

Fig. 5. Reconstructed images for SVD method

Fig. 6. First 18 base vectors (out of 100) for SDD method

Dimension Reduction Methods for Iris Recognition 87

Fig. 7. Reconstructed images for SDD method

4.2 Query Evaluation

Fig. 8. Several irises used for querying

First, we calculated the mean average precision (MAP) for all relevant images in
rank lists. The relative MAPs (against original matrix A – 100%) are shown in Table 1.

One would suspect, that querying in original dimension would provide better results
that any of the dimension reduction methods. In Table 2 we show the number of queries,
where the first returned iris was of the same person (out of 128).

5 Conclusion

In this paper, we have compared several dimension reduction methods on real-live im-
age data (using L2 metrics). Whilst the SVD is known to provide quality results, it is
computationally expensive and in case we only need to beat the “curse of dimensional-
ity” by reducing the dimension, FastMap may suffice.

There are some other newly-proposed methods, which may be interesting for fu-
ture testing, e.g. the SparseMap [7]. Additionally, faster pivot selection technique for
FastMap may be considered. We may also benefit from the use of Toeplitz matrices and
their minimal eigenvalues relation.

88 Pavel Moravec, Václav Snášel

Table 1. Mean average precision of iris comparison (VSM: 49%)

Reduction method
k FastMap SVD SDD
4 25% 14% 3%
8 33% 31% 3%

16 39% 44% 4%
32 42% 46% 4%
64 45% 48% 5%
128 47% 49% 5%

Table 2. Number of queries, where the person was successfully identified (VSM: 83)

Reduction method
k FastMap SVD SDD
4 32 37 2
8 47 56 3

16 54 75 3
32 60 81 5
64 64 82 4
128 96 84 5

What we currently need is a better iris segmentation, i.e. removing the central piece
(in our case in light reflection), eyelids, and identifying the exact iris position, such as
methods described in [5].

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, New
York, 1999.

2. M. Berry, S. Dumais, and T. Letsche. Computational Methods for Intelligent Information
Access. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference, San Diego,
California, USA, 1995.

3. J. Daugman. Statistical richness of visual phase information: Update on recognizing persons
by iris patterns. International Journal of Computer Vision, 45(1):25–38, 2001.

4. J. Daugman. The importance of being random: statistical principles of iris recognition. Pat-
tern Recognition, 36(2):279–291, 2003.

5. J. Daugman. New methods in iris recognition. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 37(5):1167–1175, 2007.

6. C. Faloutsos and K. Lin. FastMap: A Fast Algorithm for Indexing, Data-Mining and Visu-
alization of Traditional and Multimedia Datasets. ACM SIGMOD Record, 24(2):163–174,
1995.

7. G. R. Hjaltason and H. Samet. Properties of embedding methods for similarity searching in
metric spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):530–
549, 2003.

8. T. G. Kolda and D. P. O’Leary. Computation and uses of the semidiscrete matrix decompo-
sition. In ACM Transactions on Information Processing, 2000.

Dimension Reduction Methods for Iris Recognition 89

9. P. Praks, L. Machala, and V. Snášel. Iris Recognition Using the SVD-Free Latent Semantic
Indexing. In MDM/KDD2004 – Fifth International Workshop on Multimedia Data Mining
"Mining Integrated Media and Complex Data" in conjunction with KDD’2004 - The 10th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Section
2. Multimedia Data Mining: Techniques and Applications, pages 67–71, Seattle, WA, USA,
2004.

10. K. Saeed. Image Analysis for Object Recognition. Bialystok Technical University Press,
Bialystok, Poland, 2004.

11. K. Saeed and M. K. Nammous. A speech-and-speaker identification system: Feature ex-
traction, description, and classification of speech-signal image. IEEE Trans. on Industrial
Electronics, 54(2):887–897, 2007.

12. G. Salton and G. McGill. Introduction to Modern Information Retrieval. McGraw-ill, New
York, USA, 1983.

13. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience,
3(1):71–86, 1991.

Five-Level Multi-Application Schema Evolution?

Martin Nečaský, Irena Mlýnková

Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering

Malostranské nám. 25, 118 00 Prague 1, Czech Republic
{necasky,mlynkova}@ksi.mff.cuni.cz

Five-Level Multi-Application Schema Evolution?

Martin Nečaský, Irena Mlýnková

Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering

Malostranské nám. 25, 118 00 Prague 1, Czech Republic
{necasky,mlynkova}@ksi.mff.cuni.cz

Abstract. Schema evolution has recently gained much interest in both
research and practice. However, most of the existing works deal with
separate aspects of the problem such as evolution of XML schemas or
evolution of conceptual schemas. In addition, all of them view the prob-
lem only from the perspective of a single application.
In this paper we show that schema evolution has several different levels
at which it can be performed and that are highly related. Secondly, we
show that schema evolution is not the problem of a single application,
but multiple applications having the same problem domain can influence
each other as well. In particular we deal with five levels – extensional,
operational, logical, platform-specific and platform-independent. We de-
scribe the particular levels, how they can be modified and the respective
propagation of the modifications to other levels and applications. We
also show which of the situations have already been discussed and solved
in the existing works as well as which of them still remain open.

1 Introduction

Since XML [6] has become a de-facto standard for data representation and ma-
nipulation, there exists a huge amount of applications having their data repre-
sented in XML. Naturally, each of the applications can work only with correct
data. We distinguish two levels of such correctness – well formedness and valid-
ity. An XML document is well-formed if it meets the well-formedness constraints
stated in XML specification [6] such as, e.g., that the tags ensure the correct tree
structure. An XML document is valid if it is associated with a legal XML schema
(i.e. a schema that conforms to the specification of the selected language, such
as, e.g., DTD [6], XML Schema [18, 3], etc.), and complies with the constraints
expressed in it.

On the other hand, since most of the XML applications are usually dynamic,
sooner or later the structure of the data needs to be changed. At the same time,
we still need to be able to work with the old as well as new data without any
loss. In relation to this topic, we usually speak about so-called schema evolution,
i.e. a situation that a schema of the data is updated and we need to apply
? This work was supported in part by the Czech Science Foundation (GAČR), grants

number 201/09/P364 and 201/09/0990.? This work was supported in part by the Czech Science Foundation (GAČR), grants
number 201/09/P364 and 201/09/0990.

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 90–104, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

Five-Level Multi-Application Schema Evolution 91

these updates on its existing instances to revalidate them. In case of XML data,
having a set of XML schema transformations, we can transform an XML schema
Sx to an XML schema Sy. A natural requirement for such transformation is
consistency, i.e. transforming a legal schema Sx to a legal XML schema Sy. The
problem of XML schema evolution deals with applying a set of respective XML
data transformations on XML documents valid against Sx so that they become
valid against Sy.

Currently there exist several works dealing with this topic. However, most of
the existing works deal with separate aspects of the problem such as evolution
of XML schemas or evolution of conceptual schemas. In addition, all of them
view the problem only from the perspective of a single application. Hence, in
this paper we study the problem from a more general perspective. We show that
schema evolution has several different levels at which it can be performed and
that are highly related. Secondly, we show that schema evolution is not the prob-
lem of a single application, but multiple applications having the same problem
domain can influence each other as well. In particular we deal with five levels
– extensional, operational, logical, platform-specific and platform-independent.
We describe the particular levels, how they can be modified and the respective
propagation of the modifications to other levels and applications. We also show
which of the situations have already been discussed and solved in the existing
works as well as which of them still remain open.

The paper is structured as follows: Section 2 introduces the given problem
using a motivating example. Section 3 overviews existing related works. Sec-
tion 4 describes the proposed evolution model in detail and Section 5 provides
an overview of respective schema transformations. Section 6 overviews some real
examples. And, finally, Section 7 provides conclusions and outlines possible fu-
ture work.

2 Motivation

To depict the issue we are focusing on, we first provide a real-world example.
We consider a company that produces products and sells them to customers. An
information system of the company is composed of various applications utilized
by different users for different purposes. Each application applies different XML
formats that represent different user views on the data. On the other hand,
since the applications work with the same data, e.g. customers, products, etc.,
the XML formats represent the same problem domain. If a change in one XML
format results into a change in our interpretation of the domain, it can require
to make corresponding changes in other XML formats as well. We demonstrate
some examples in the rest of this section.

We consider two particular XML formats each described by an XML schema
expressed in the XML Schema language. A first XML schema PurchaseRe-
quest.xsd describes an XML format used by customers to send purchase re-
quests to the company. A second XML schema SalesReport.xsd describes a

92 Martin Nečaský, Irena Mlýnková

format representing reports on sales of products in regions. The XML schemas
are depicted in Figure 1.

Fig. 1. XML schemas for purchase requests and sales reports

In our interpretation of the domain, there are customers each having a
registration number and name. Both XML schemas somehow represent cus-
tomers. While PurchaseRequest.xsd represents only their registration numbers,
SalesReport.xsd represents registration numbers as well as names.

We need customers to specify their names in purchase requests. Since Pur-
chaseRequest.xsd does not consider names we have to modify it. We decide to
add XML element name to root XML element purchase-request. This transfor-
mation does not change our interpretation of the domain since we have already
considered names of customers. It does not therefore influence SalesReport.xsd.

Further, sales managers want to structure names of customers in sales re-
ports to first and family names. SalesReport.xsd has only XML element name
in XML element customer. Therefore, we replace name with first-name and
family-name. This transformation however changes our interpretation of the
problem domain since we have considered a name as one unstructured value.
This can therefore influence other XML schemas as well. In a concrete, we need
to structure XML element name in PurchaseRequest.xsd in a similar way.

As the examples demonstrate, a transformation of an XML schema can influ-
ence other XML schemas in the system as well. This is because we need to keep
the XML schemas consistent with our interpretation of the problem domain.
However, managing the consistency at the XML schema level is an error–prone
and time–consuming task since it must be handled manually. Therefore, a more
sophisticated method for XML schema evolution would be useful in practice.

Five-Level Multi-Application Schema Evolution 93

3 Related Work

We can divide current approaches to XML schema evolution into three groups
depending on the level where transformations can be specified by the designer.
These groups are depicted in Figure 2 in columns (a), (b) and (c) respectively.

Fig. 2. Current XML Evolution Approaches

Approaches in the first group consider transformations at so-called logical,
i.e. XML schema level. They differ mainly in the selected XML schema language,
i.e. DTD [16, 2, 9] or XML Schema [17, 12]. In general, the transformations can
be variously classified. For instance, paper [17] proposes three classes: Migratory
transformations deal with movements of elements/attributes to other parts of
the schema or transformation of elements to attributes and vice versa. Structural
transformations involve adding/removal of elements/attributes. Finally, seden-
tary transformations involve renaming of elements/attributes and modifications
of simple data types. In all the proposed systems the transformations are then
automatically propagated to the respective XML documents, i.e. to so-called ex-
tensional level, to ensure that the XML documents are valid against the evolved
XML schema. There also exists an opposite approach that enables to evolve
XML documents and propagate the transformations to their XML schema [5].

Approaches in the second and third group are similar to the first one but
they do not consider transformations specified at the logical level but its ab-
straction. In particular, approaches in the second group consider a visualization
of the XML schema [11], whereas approaches in the third group consider a UML
class diagram that models the XML schema [10]. From our point of view, we
comprehend both the cases as so-called platform-specific model, since it directly
models the components of the XML schema but not the data abstracted from its
representation in XML. Transformations made at platform-specific level are then
propagated to corresponding transformations in the XML schema and from here
to XML documents. The main advantage is that it is easier for the designer to
specify transformations at the abstraction level than at the XML schema level
because (s)he can concentrate more on the transformation itself rather than
technical XML schema details.

94 Martin Nečaský, Irena Mlýnková

Another open problem related to schema evolution is adaptation the respec-
tive operations, in particular XML queries. We speak about so-called operational
level (see Figure 2 by column (d)). Unfortunately, there seems to exist only a
single paper [14] dealing with this topic. The authors provide several use cases
when the queries need to be corrected with regard to the modification of the
data and, finally, state several recommendations how to write queries that do
not need to be adapted for evolving schema.

In general, the problem of current approaches is that they do not consider
several important issues. Firstly, they consider evolution of a single XML format.
However, as we demonstrated in Section 2, there are usually multiple XML
formats providing different views of the domain. Hence, a transformation of an
XML format can influence other XML formats as well. Secondly, queries over
XML documents are ignored. Since queries depend on the structure of the XML
documents, transformation of an XML schema can influence them and they
should therefore be considered as a part of the evolution system as well.

4 Five Level Schema Evolution

In this paper, we introduce a new approach to XML evolution. While the current
approaches consider evolution on two, resp. three levels as depicted in Figure 2,
we consider five levels. The introduced levels are depicted in Figure 3.

Fig. 3. Five level XML evolution architecture

The extensional level contains for each XML format a set of XML documents
conforming to this format. The logical level contains an XML schema that de-
scribes structure of the XML format. The operational level contains queries
related to the XML format. If we consider only these levels, it is hard to deter-
mine whether a transformation of an XML format influences other XML formats
since it must be determined manually. The problem is that we have no layer that
interrelates the XML formats. Therefore, we add two other levels, i.e. platform–
specific and platform–independent level, that provide such interrelation.

Five-Level Multi-Application Schema Evolution 95

We adopted the terms platform–independent and platform–specific from the
Model–Driven Architecture (MDA) terminology which considers modeling data
at different levels of abstraction. Even though MDA considers more levels, we
adopt only the two mentioned ones. The platform–independent level contains
a conceptual diagram of the problem domain. It provides a description of the
problem domain abstracted from the logical level. The platform–specific level
interrelates the platform–independent and logical level. It provides a mapping of
each XML diagram to the conceptual diagram. This mapping enables automatic
transformation propagation since a transformation of an XML schema can be
propagated to the conceptual diagram and from here to other XML schemas.

Figure 3 depicts in bold rectangles that a transformation can occur at any
level L except the operational level. From L, the transformation is firstly propa-
gated to the upper levels. This propagation is therefore called upward propagation
and is depicted in Figure 3 by solid arrows. After the upward propagation, the
transformation is propagated back to the lower levels as depicted in Figure 3 by
dashed arrows. This propagation is therefore called downward propagation.

The upward propagation means that a transformation specified at L implies
a corresponding transformation at the upper level L− 1. This propagation does
not occur in every case. There are transformations whose impact depends on a
designer. There are also transformations that have no impact at all. The upward
propagation can end up at any level from where the downward propagation
continues. If the upward propagation ends up at the platform–specific or lower
level, the downward propagation continues only in the scope of the corresponding
XML format. If the propagation ends up at the platform–independent level, our
interpretation of the problem domain has changed and a downward propagation
to other XML formats can be therefore required.

We describe possible transformations and their propagation in detail in Sec-
tion 5. Before this, we describe the separate levels in the rest of this section.

Platform–Independent Level The platform–independent level contains a
conceptual diagram of the problem domain. It describes the domain indepen-
dently of the considered XML formats. To design such a diagram we use a con-
ceptual modeling language which is called Platform–Independent Model (PIM)
in the MDA terminology. The diagram is then called PIM diagram. As PIM, we
consider the well-known UML class model. We consider only basic modeling con-
structs, i.e. classes for modeling concepts and binary associations for modeling
relationships between the concepts.

Example 1. Figure 4 shows a sample PIM diagram modeling the domain of the
company introduced in Section 2. We designed the diagram in a tool called
XCase [1] that we have developed for conceptual modeling of XML schemas.
For example, there is a class Customer modeling customers. It has attributes
registration, name, email and phone modeling relevant customer characteristics.
A sample association is the one connecting Customer and Purchase. It models
that customers make purchases.

96 Martin Nečaský, Irena Mlýnková

Fig. 4. Company PIM diagram

Platform–Specific Level The platform–specific level contains for each XML
format a diagram that models the XML format in terms of the PIM diagram. In
other words, it serves as a mapping between the corresponding XML schema and
the PIM diagram. For this, we use a modeling language which is called Platform–
Specific Model (PSM) in the MDA terminology. The resulting diagram is called
PSM diagram. As PSM, we consider the UML class model extended with some
constructs covering XML–specific features. In this paper, we introduce only some
of the constructs. For their full description, we refer to [15].

A PSM diagram contains classes from the PIM diagram and organizes them
into the hierarchical structure of the modeled XML format by associations. There
is a formal background that maps associations in PSM diagrams to associations
in a PIM diagram. However, we omit it in this paper. A label displayed above
a class is called element label and specifies a name of an XML element that
represents instances of the class in the XML format. Attributes of a class model
XML attributes. They can be separated to so called attribute container displayed
by a box beneath the class. In that case they model XML elements. We can also
model variants in the content of a PSM class by so called content choice. It is
displayed by a circle with an inner | and models that only one of its components
can be instanciated for each its instance.

Example 2. Figure 5 shows two sample PSM diagrams modeling the XML for-
mats for purchase requests and sales reports from Section 2. Both model the

Five-Level Multi-Application Schema Evolution 97

respective XML format in terms of the PIM diagram depicted in Figure 4. The
PSM diagrams were designed in the XCase tool [1].

To explain the PSM constructs, consider the diagram on the left. It mod-
els that purchases are represented in the corresponding XML format as roots
since Purchase is a root class. Because the root PSM class Purchase has an
element label purchase-request, a purchase is represented as an XML element
purchase-request. The associations going from Purchase model that a pur-
chase has a customer, delivery information and list of items as children whose
representation is modeled by the children of Purchase. The diagram utilizes an
attribute container to specify that attributes amount and price of Item model
XML elements. It also utilizes a content choice to specify that each purchase
contains a messenger or van, that delivers the purchase, but not both.

The PSM diagram provides a mapping of PurchaseRequest.xsd to the PIM
diagram. Each PSM class maps a complex type in the XML schema to a corre-
sponding PIM class. The same is for associations and attributes.

Fig. 5. Purchase and Sales Report PSM diagrams

Logical Level The logical level contains for each considered XML format its
XML schema. An XML schema describes a syntactical structure, i.e. what XML
elements and attributes can be used in respective XML documents. Even there
are various languages for expressing XML schemas, we consider the XML Schema
language [18, 3] in this paper. Self-descriptive examples of XSDs are depicted in
Figure 1 in Section 2 .

XML Schema provides several constructs. We consider only the basic ones
in this paper. Namely, simple data types (simpleType), complex data types
(complexType), elements (element) and attributes (attribute). Since we are
restricted in space, we do not describe the constructions in a more detail and
refer to [18] for their explanation.

98 Martin Nečaský, Irena Mlýnková

Extensional Level The extensional level contains for each considered XML
format a set of XML documents. XML documents are composed of XML el-
ements that can contain text values and/or nested XML elements. An XML
element can also have XML attributes. Figure 6 shows two self-descriptive XML
documents valid against the XML schemas depicted in Figure 1.

Fig. 6. Sample XML documents conforming to XML formats for purchase requests and
sales reports

Operational Level The operational level contains for each XML format queries
that are evaluated on the XML documents of that format. There are several XML
query languages such as, e.g. XSLT [7] or XQuery [4]. They all apply XPath [8]
as a common factor to navigate in the structure of XML documents. Therefore,
XPath expressions must be considered during evolution since a change in the
structure of an XML format can have an impact on them. We do not describe
XPath in detail here since we are restricted in space. A sample XPath expression
is a path /sales-report//customer/name that targets names of customers in
XML documents with sales reports.

5 Transformations and their Propagation

Having the above described levels, we can now specify the set of transformations
a user may make at each of them. Similarly to the existing works [12] we can
distinguish atomic transformations and high-level transformations (i.e. sequences
of atomic transformations) as well as sedentary, structural and migratory ones.
However, since this classification is too general, we further adopt general types
of transformations similar to [14]:

– Structural:
• Adding – adds a new item
• Removal – removes a new item

– Sedentary:
• Extension – adds a new item that does not change structure
• Renaming – renames an item
• Renumbering – changes the cardinality of an item

Five-Level Multi-Application Schema Evolution 99

• Retyping – changes the data type of an item
• Resetting – changes the value of an item
• Mapping – maps an item to an item from another level
• Unmapping – removes a mapping between levels

– Migratory:
• Moving – moves an item
• Reordering – changes the order of a set of items
• Transformation – transforms an item to an item of a different type

Note that not all types of the transformations exist at all five levels we are
dealing with. For instance, retyping does not occur at the platform–indepdendent
level, since we restrict ourselves only to classes, attributes and associations.

As we have described, propagation of transformations can be either upwards
or downwards. Hence, the transformations at particular levels need to be propa-
gated to all neighboring levels. With our general view of the data, we do not need
to propagate the modifications to all the other levels if not necessary. In general
the propagation needs to be done if the XML data become invalid. However, in all
the other cases it remains user’s decision if the respective propagations should be
done. In the following text we describe only the necessary propagations, however
also user-required propagations are discussed in important cases. For simplicity,
we will deal only with atomic operations and thus omit all migratory ones that
are high-level. For the same reason we omit trivial transformations, such as, e.g.,
renaming. (The full description can be found in [13].)

5.1 Platform–Independent Level

As we can see in Table 1, most of the operations at the platform–independent
level are of the type of adding or removal that can be applied on all PIM items.
Furthermore we can apply renumbering on the cardinalities. The operations
can be propagated only to the platform–specific level within the downwards
propagation.

Class Operations PSM Propagation

Adding add class, attribute or association

Removal remove class, attribute or association delete mapping

Renumbering change class cardinality
Table 1. PIM transformations and their propagation

Adding a new PIM item does not need to automatically trigger propagation
to the platform–specific level. However, if such propagation is required, a user
must state the required mapping to the respective PSM items since there usually
exist multiple options. On the other hand, deleting of a PIM item invokes deleting
of the respective mapping. However, a user may require also optional deleting of
the respective item as well. Similarly, changing cardinality may invoke changing
cardinality of the respective PSM item depending on user’s requirements.

100 Martin Nečaský, Irena Mlýnková

5.2 Platform–Specific Level

As stated in Table 2 at the platform–specific level there are several seden-
tary transformations, in particular changing cardinalities or data types and
adding/deleting mapping to a PIM item. The rest of the transformations are
structural since they create or delete respective PSM items.

Class Operations Logical Propagation PIM Propagation

Mapping map a PSM item to a
PIM item

create a PIM item (O)

Unmapping delete mapping

Adding add class, attribute,
association, content
choice or content
container

add simple type, com-
plex type, element, at-
tribute, choice operator
or sequence operator

Removal remove class, attribute,
association, content
choice or content
container

remove simple type,
complex type, element,
attribute, choice opera-
tor or sequence opera-
tor

Renumbering change class cardinality change element cardi-
nality

Retyping change data type change simple type

Table 2. PSM transformations and their propagation

Except for the mapping transformations, all the others need to be propagated
to the logical level. (Note that for the sake of simplicity we do not deal with
XML schema specific aspects such as possibilities of creating a global or local
element or equivalent content model. The detailed description of propagation
of operations with particular schema items can be found in [13].) On the other
hand, except for mapping a PSM item to a PIM item which requires creating of
the respective PIM item if it does not exist yet, no other transformations need to
be propagated from the platform–specific to platform–independent level if not
otherwise specified by a user.

5.3 Logical Level

Table 3 provides an overview of logical-level transformations. Similarly to the
previous case, for the sake of simplicity we omit all the possible specifications
of an equivalent XML schema construct. To ensure consistency of the trans-
formations we also state the following invariant that needs to hold during the
whole evolution process: A globally defined item can be deleted only if all the
respective references have already been deleted.

Five-Level Multi-Application Schema Evolution 101

As we can see, most of the transformations belong to structural class since
they add or delete XML schema items; the only sedentary transformations are
changing a simple type or a cardinality and adding simple and complex types.

Class Operations Extensional Propa-
gation

PSM Propagation

Adding add element (+ simple
or complex type),
attribute (+ simple
type), choice operator
or sequence operator

add element or at-
tribute (O)

add a class, attribute,
association, content
choice or content
container (O)

Extension add simple type or
complex type

Removal remove simple type,
complex type, element,
attribute, choice opera-
tor or sequence opera-
tor

remove element or at-
tribute (O)

delete class, attribute
or content choice (O)

Renumbering change element cardi-
nality

add or remove element
(O)

change class cardinality

Retyping change simple type change data value (O) change data type

Table 3. Logical transformations and their propagation

As for the propagation to extensional level, all the transformations need to be
propagated only in case the validity of XML documents is violated, i.e. all the
propagations are optional (O). For instance, adding an XML schema element
may cause adding an XML element only in case the XML schema element is
compulsory. On the other hand, in case of logical-to-PSM propagation, we always
need to propagate changes in data types and cardinalities. However, if we add
or remove an XML schema item, the respective propagation depends on its type
and can cause adding/removing of respective item(s) or nothing. For instance,
if we create a complex type, the operation has no influence at platform–specific
level, however if we create an element with a complex type, we need to create
the respective PSM class. And, finally, note that creating a simple or complex
type that is not associated with respective element or attribute has no influence
in both directions of propagation.

5.4 Extensional Level

As we can see in Table 4 transformations over XML documents involve struc-
tural transformations of adding/removing an element/attribute and a sedentary
transformation of changing a data value.

Depending on the XML schema, propagation of all the transformations is
optional an depends on violation of validity. In addition, some of the transfor-
mations have several options how they can be propagated. For instance, creating

102 Martin Nečaský, Irena Mlýnková

Class Operations Logical Propagation

Adding add element or attribute create element or attribute,
change cardinality (O)

Removal remove element or attribute remove element or attribute,
change cardinality (O)

Value Change change data value of element or
attribute

change simple data type (O)

Table 4. Extensional transformations and their propagation

an element may cause creating an element in the XML schema, changing cardi-
nality or even nothing.

5.5 Operational Level

Last but not least, let us briefly discuss the operational level. In particular,
considering only the XML data, we may restrict the transformation set to XML
queries. The question is how can be this level influenced by the other levels and,
conversely, whether the operational level influences other ones.

The answer for the latter question is much easier since we can hardly assume
that if a user modifies a query, such modification should anyhow influence the
data. However, any of the changes at the logical level can influence the oper-
ational level, since the queries may become irrelevant with regard to the data.
As discussed in [14], such situation occurs in case the queries do not follow the
rules the authors provide. For instance, if a query involves a simple XPath [8]
path and any of the elements on the path is deleted, also the path needs to be
respectively updated.

6 Propagation Examples

In this section we demonstrate transformation propagation on the transforma-
tions introduced in Section 2.

The first transformation was an addition of new child XML element name
to purchase-request in the XML format for purchase requests. We initiate
the transformation at the extensional level by modifying an XML document.
Since we have added a new element to an XML document, the transformation
must be propagated to the logical level and the corresponding XML schema (de-
picted in Figure 1 on the left) must be extended with the corresponding element
declaration. It must be further propagated to the corresponding PSM diagram
(depicted in Figure 5 on the left) where we add a new attribute name to the
class Customer. Finally, the transformation is propagated to the PIM diagram.
Since customer names are already modeled by attribute name of Customer we
map the name PSM attribute to the exisitng name PIM attribute and no trans-
formation is needed. Therefore, our interpretation of the domain has not been
changed by the initial requirement and no downward propagation is required.

Five-Level Multi-Application Schema Evolution 103

The second transformation was a replacement of XML element name with
new elements first-name and family-name in the XML format for sales re-
ports. We initiate this transformation in SalesReport.xsd, i.e. at the logical
level. Again, the transformation is propagated upwardly first. In the correspond-
ing PSM diagram (depicted in Figure 5 on the right), it means to replace the
attribute name of Customer with new attributes first-name and family-name.
Since these attributes have no equivalents in the PIM diagram, our interpreta-
tion of the domain has changed and the PIM diagram must be correspondinly
transformed as well, i.e. the attribute name of Customer must be replaced with
new attributes first-name and family-name. A downward propagation must fol-
low. It means to propagate the transformation to the XML documents with sales
reports and, moreover, to the other XML formats, i.e. to the XML format for
purchase requests. Since there can be queries for each XML format querying
names of customers, they can be influenced as well.

7 Conclusion

The aim of this paper was to show that the problem of XML schema evolution
has been highly marginalized so far. In particular, all the existing works only
deal with subparts of the problem. Firstly, we have showed that the schema
evolution problem must be viewed from the perspective of multiple applications
and we have defined five levels of XML schema evolution that cover all the
existing works. Secondly, we have discussed how the respective transformations
at particular levels influence the neighboring ones. And, finally, we have described
use cases related to the problem that cannot occur unless we consider all the
evolution levels.

Currently, we are dealing with a throughout implementation of the proposed
system. For this purpose we want to extend system XCase [1] which enables to
design conceptual diagrams and map them to respective XML schemas.

Apparently, there exist several open issues: Similarly to the existing works
we need to make the adaptation at all levels (and especially the newly proposed
ones) efficient and, consequently, we need to be able to find the least expensive
sequence of transformations. Secondly, there remains the question of performing
the adaptations. Instead of using a brute-force, we want to output a set of XSLT
scripts that can be applied on the respective XML data. Naturally, this approach
requires the existence of an XML representation of the non-XML levels. For the
sake of full generality, we intend to involve all the relevant XSD constructs as
well as other high-level transformations that we have omitted for simplicity. And,
last but not least, we want to extend the approach with concurrency control.
Having such a robust system, it is quite natural that there are multiple users to
work with it, i.e. multi-user access and transactions need to be incorporated.

References

1. XCase – A Tool for XML Data Modeling. 2008. http://kocour.ms.mff.cuni.cz/

~necasky/xcase/.

104 Martin Nečaský, Irena Mlýnková

2. L. Al-Jadir and F. El-Moukaddem. Once Upon a Time a DTD Evolved into An-
other DTD... In Object-Oriented Information Systems, pages 3–17, Berlin, Heidel-
berg, 2003. Springer.

3. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes (Second Edition).
W3C, October 2004. http://www.w3.org/TR/xmlschema-2/.

4. S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML Query Language. W3C, January 2007. http://www.w3.

org/TR/xquery/.
5. B. Bouchou, D. Duarte, M. Halfeld Ferrari Alves, D. Laurent, and M. A. Musicante.

Schema Evolution for XML: A Consistency-Preserving Approach. In Mathematical
Foundations of Computer Science, pages 876–888, Prague, Czech Republic, 2004.
Springer-Verlag.

6. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Fourth Edition). W3C, September 2006. http:

//www.w3.org/TR/REC-xml/.
7. J. Clark. XSL Transformations (XSLT) Version 1.0. W3C, November 1999. http:

//www.w3.org/TR/xslt.
8. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, Novem-

ber 1999. http://www.w3.org/TR/xpath.
9. S. V. Coox. Axiomatization of the evolution of xml database schema. Program.

Comput. Softw., 29(3):140–146, 2003.
10. E. Dominguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving XML Schemas

and Documents Using UML Class Diagrams. In DEXA ’05: Proceedings of the
16th International Conference on Database and Expert Systems Applications, pages
343–352, Berlin, Heidelberg, 2005. Springer.

11. M. Klettke. Conceptual XML Schema Evolution - the CoDEX Approach for Design
and Redesign. In BTW Workshops, pages 53–63. Verlagshaus Mainz, Aachen, 2007.

12. M. Mesiti, R. Celle, M. A. Sorrenti, and G. Guerrini. X-Evolution: A System for
XML Schema Evolution and Document Adaptation. In EDBT ’06: Proceedings of
the 10th International Conference on Extending Database Technology, pages 1143–
1146, Berlin, Heidelberg, 2006. Springer.

13. I. Mlynkova and M. Necasky. Five-Level Multi-Application Schema Evolution.
Technical Report 2008/7, Department of Software Enginneedring, Charles Univer-
sity, Prague, Czech Republic, 2008.

14. M. M. Moro, S. Malaika, and L. Lim. Preserving XML Queries During Schema
Evolution. In WWW ’07: Proceedings of the 16th international conference on
World Wide Web, pages 1341–1342, New York, NY, USA, 2007. ACM.

15. M. Necasky. Conceptual Modeling for XML. PhD thesis, Charles University, 2008.
http://kocour.ms.mff.cuni.cz/~necasky/dw/thesis.pdf.

16. H. Su, D. K. Kramer, and E. A. Rundensteiner. XEM: XML Evolution Man-
agement. Technical Report WPI-CS-TR-02-09, Computer Science Department,
Worcester Polytechnnic Institute, Worcester, Massachusetts, 2002.

17. M. Tan and A. Goh. Keeping Pace with Evolving XML-Based Specifications. In
EDBT ’04 Workshops, pages 280–288, Berlin, Heidelberg, 2005. Springer.

18. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures (Second Edition). W3C, October 2004. http://www.w3.org/TR/

xmlschema-1/.

Tequila - a query language for the Semantic Web

Jakub Galgonek

Department of software engineering, Faculty of Mathematics and Physics,
Charles University in Prague,

Malostranské nám. 25, 118 00, Prague 1, Czech Republic
galgonek@ksi.mff.cuni.cz

Tequila - a query language for the Semantic Web

Jakub Galgonek

Department of software engineering, Faculty of Mathematics and Physics,
Charles University in Prague,

Malostranské nám. 25, 118 00, Prague 1, Czech Republic
galgonek@ksi.mff.cuni.cz

Abstract. In order to realize the idea of the Semantic Web, many tools
and technologies need to be developed, including a query language. One
of the most important technologies that creates a base for the Semantic
Web is the RDF (Resource Description Framework). There are many
query languages for the RDF, but almost all of them are very weak and
they can not be used for a general purpose. In this paper, we intro-
duce the Tequila query language, developed for the recently introduced
Trisolda infrastructure for the Semantic Web. In particular, we describe
the syntax and semantics of the Tequila language and we show usage
of this language and its power on several examples. The examples show
how to convert a RDF Collection into a RDF Bag or how to evaluate
an aggregation function (e.g., maximum of values) without the need of
a built-in support. Unlike almost all other query languages, Tequila is
powerful enough to express both of the tasks.

Keywords: Semantic Web, RDF, query language, Trisolda

1 Introduction

The Semantic Web is an idea of storing data together with their meaning. In
order to its realisation, many tools and technologies need to be developed. It
includes a language for storing data, vocabularies for describing an ontology and
others. In order to have the ability to query on specific data, it also includes a
query language as one of the important parts.

The Resource Description Framework (RDF) [3] is widely used as a language
for storing data and it creates a base of the Semantic Web. The simple RDFS
vocabulary or the more complicate OWL vocabulary are used for describing
an ontology. There are also many query languages for RDF [6][8], such as the
SPARQL language [4] or the SeRQL [2] language. However, almost all of them
are very weak and they are not well applicable for a general purpose.

1.1 Troubles of the current query languages

Troubles of the current query languages for RDF can be divided into practical
troubles and philosophical troubles. Most of them are related to each other.

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 105–118, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

106 Jakub Galgonek

The practical troubles include the poor ability to resolve a general task.
The languages are either too specialised or they have just weak constructs. For
example, many of the query languages are not able to select a RDF Collection
from a data source, although the structure of a RDF Collection is directly defined
in the RDF specification. Generally, the current query languages have troubles
with a selection of a recursively defined structure.

Yes, some languages introduce powerful constructs such as regular paths (the
ARQ language [1]) or deductive rules (the TRIPLE languages [9]). Although
these constructs give very good power for selecting data, they are still too weak
for creating data. The ability to create data is useful not only for storing new
data to a data source but also for composing queries, where a result of one query
is used as an input source for other query.

The weak ability to create data also includes the bad support for blank nodes.
For example, the SPARQL language cannot refer to the same blank node from
different construct patterns, so it is impossible to connect more sub-solutions
to one blank node. On the other hand, the SeRQL language introduces global
identification of blank nodes, although it roughly breaks the RDF blank node
semantics.

The philosophical troubles include that the current languages are not closed.
So a solution of a query cannot be used as an input for other query. In addition,
they do not use RDF to represent solutions of their queries. It is not a good
property of the current RDF query languages.

1.2 A new query language

Due to these troubles, we have decided to design a new query language [7].
Several requirements have been taken on the proposed query language. It must
be applicable for a general purpose. It must be closed, so it must use the RDF
data model for solutions of its query. The language must also be strong as for
selecting data so as for creating data.

Patterns have been used as a base of the language. They are widely used in
other languages and they are very intuitive for a user. It is possible to say that
everything in the new language is a pattern. Not only selecting data but whole
evaluation is controlled by the patterns. However, many languages use patterns
and they are weak, so there is the need to do the patterns stronger. The new
language uses a simple way to do this. It makes it possible to name a pattern
and to use it later by its name. So it is possible to make a recursive pattern.
For example, a selection of a RDF Collection is simple. A pattern selects one
element of the RDF Collection and then it uses itself on the rest of the RDF
Collection recursively.

The troubles with blank nodes are resolved by introduction of local identifica-
tion for a blank node, which make it possible to refer to a blank node. However,
it still keeps the fact that a concrete name of a blank node is not significant and
that it is not global.

The new language has been implemented for the semantic web infrastructure
Trisolda [5] and it has got the name Tequila, which comes from Trisolda Query

Tequila - a query language for the Semantic Web 107

Language. The next section describes the language in detail. Section 4 presents
some examples of usage of the language.

2 The Tequila language

The main feature of the Tequila language is its ability to name a pattern (Section
2.3), which makes it possible to express a recursive pattern. Other powerful
features include query composition (Section 2.5), usage of multiple data sources
(Section 2.6), a good support for blank nodes (Section 2.10), and the ability to
construct new triplets (Section 2.4).

2.1 Base of the language

The Tequila language is based on the SPARQL language, thus it is a pattern-
based query language. It fully adopts the syntax and semantics of URIs (includ-
ing qnames), literals, blank nodes, variables and comments. It also adopts the
syntax and semantics of definitions of qname prefixes, which can be used in the
prologue of a query.

The syntax of Tequila patterns is also similar to the syntax of SPARQL
patterns, but its semantics is totally different. The main difference is that a
solution of a Tequila query (or generally a pattern) is not a solution mapping,
but a RDF graph is. Variable bindings, which are called a solution mapping in
the SPARQL language, have effect only during evaluation of a pattern.

A pattern can have more than one solution. A solution can evoke some vari-
able bindings. If a variable is bound to some value, then the next use of this
variable is equivalent to use this value, so the binding influences solutions of
other patterns. Due to this fact, it is reasonable speak about a solution (or so-
lutions) of a pattern with respect to the actual variable bindings. A binding of
a variable is active, until the solution that evokes this binding is refused.

In the next text, the word “solution” always means “a solution with respect
to the actual variable bindings”, but sometimes it is used the full form due to
emphasis.

2.2 Base patterns

This subsection introduces base patterns, which are more or less adopted from
the SPARQL language. Tequila language specific patterns are introduced in the
next sections.

Query patterns. A Tequila query, which is fully called a query pattern, consists
of the keyword get followed by a compound subpattern. A solution of a query
pattern is the union of all solutions of its compound subpattern. In the case of a
main query, a solution of the query may be represented as a sequence of solutions
of the subpattern.

108 Jakub Galgonek

Compound patterns. A compound pattern consists of a sequence of subpat-
terns enclosed in braces. It is possible use any type of a pattern as its subpattern.
The semantics of the evaluation of a compound pattern is a little bit compli-
cated, but it is very important for the Tequila language. However, we hope that
this semantics will be familiar for people who know the semantics of the Prolog
language.

For the evaluation of a compound pattern, its subpatterns are subsequently
evaluated. If some subpattern (with respect to the actual variable bindings)
has no other solution, the evaluation goes back on the previous subpattern, it
refuses the solution of this subpattern and it searches for the next solution of
this subpattern. If it also has no other solution, the evaluation goes back again.
If a solution is found, the evaluation continues in search for solutions of the
next subpatterns. The evaluation of the next subpatterns starts from scratch, so
solutions that have been found previously have no effect on the next solutions.

If a solution of the last subpattern is found, then a solution of the compound
pattern is found and it is equal to the union of solutions of the subpatterns.
In order to search for the next solution of the compound pattern (i.e., after a
refusal of the previous solution of the compound pattern), the solution of the last
subpattern is refused and it is searched for the next one. If the first subpattern
has no other solution, then also the compound pattern has no other solution.

Triplet patterns. A triplet pattern is a basic construct for selecting data from a
data source. The base form of a triplet pattern is similar to a triplet pattern from
the SPARQL language. A solution of a triplet pattern is one triplet from a data
source that matches the pattern with respect to the actual variable bindings.
The next solutions return other triplets that match the pattern from the data
source. When a solution (i.e. a triplet) is found, the unbounded variables of a
triplet pattern are bound to values according to the values from the found triplet.
Note that a blank node term do not have a variable character as in the SPARQL
language, it is just identification of a blank node. See section 2.10.

Filter patterns. A filter pattern is the only direct way how to test values
of variables. A filter pattern consists of the keyword filter followed by an
expression and enclosed by the point. If a value of a filter expression is true
(with respect to the actual variable bindings), then the filter pattern has just
one solution, namely an empty RDF graph. If its value is false, then the filter
pattern has no solution.

The semantics of a filter pattern might looks strange. However, in combi-
nation with the semantics of a compound pattern, it has a very good point. If
a value of the expression is false, then the filter pattern has no solution and
thus the evaluation of the compound pattern goes back, so that a bad solution is
filtered. If a value of the expression is true, then a solution of the filter pattern
is just an empty graph and thus the evaluation of the compound pattern goes
through.

Tequila - a query language for the Semantic Web 109

1 get
2 {
3 ?author ex:name "Milan Rufus".
4 optional ?author ?ex:born ?place.
5 get { ?book ex:author ?author. }
6 }

Listing 1.1. A simple example for a library system

Union patterns. A union pattern is useful for describing variants. It consists
from two subpatterns connected by the keyword union. A solution of a union
pattern is initially searched in the first subpattern. After what the first subpat-
tern has no other solution, then the solution of the union pattern is searched in
the second subpattern.

Optional patterns. An optional pattern consists of the keyword optional
followed by a subpattern. If the subpattern has any solution, then the evaluation
of an optional pattern is equivalent to the evaluation of its subpattern. If the
subpattern has no solution, then a solution of the optional pattern is an empty
RDF graph. Hence, an optional pattern has always at least one solution.

Example. Listing 1.1 shows an example of a simple query, which finds infor-
mation about Milan Rufus. It finds a triplet with the object “Milan Rufus” and
it binds his URI to the variable ?author. Then it selects his birth place, if this
information is included in a data source. Finally, it selects all his books.

2.3 Data selection

As mentioned above, the ability to select data is improved by the introduction
of the named patterns.

Named patterns. A named pattern is identified by a URI. The URI is used
only for identification and it need not meet any special conditions. A definition
of a named pattern must precede a main query. It consists of a named pattern
URI followed by a list of formal parameters (i.e. list of variables) enclosed in
parentheses. A compound pattern that represents the body of the named pattern
follows.

A use of a named pattern (i.e. the named pattern itself) consists of the
keyword use followed by the URI of the named pattern and a list of actual
parameters enclosed in parentheses. The evaluation of a named pattern is equiv-
alent to the evaluation of the named pattern body that has been specified in the
definition of the named pattern. However, there are some differences. Variables
that are used in the named pattern body are local for the evaluation of the
named pattern. Therefore, before the evaluation of the named pattern starts, a
copy of its body is made and the variables of its formal parameters are unified

110 Jakub Galgonek

with the corresponding actual parameters. So if an actual parameter is a value,
then a corresponding formal parameter variable is bound to this value. If an
actual parameter is a variable, then a corresponding formal parameter variable
is considered to be the same as the actual parameter variable.

A named pattern can also use a variable instead of a URI. If this variable is
bound to a URI value, then evaluation of the named pattern is equivalent to the
case in which it is directly used the URI value. If the variable is not bound to a
URI value, then the named pattern has no solution.

If the URI that is used in a named pattern does not appear in any definition
of a named pattern, then the named pattern has no solution.

Imports of named patterns. Some definitions of named patterns can be
useful for many different queries. So it is useful to have a mechanism that allows
reuse of them.

In the Tequila language, it is possible to write down definitions of named
patterns to a file. This file then can be import to a query. An import directive
consists of the keyword import followed by a file name enclosed by quotation
marks. Import directives follow prefix directives. Prefix or import directives
can be also used in an imported file, then an effect of the prefix directive is
local for the file.

Example of a named pattern. Listing 1.2 shows the definition of the simple
recursive named pattern rdf:list, which selects a RDF Collection. It is just
an example of an import file, so it does not contain a main query.

The formal parameter ?N is a resource that represents a RDF Collection.
If it is different from rdf:nil, then the first case of the union pattern (line
5) matches the first element of the RDF Collection. In detail, the first triplet
pattern (line 6) matches the rdf:first property triplet and the second triplet
pattern (line 7) matches the rdf:rest property triplet of the element. Then the
named pattern use itself (line 8) on the rest of the RDF Collection recursively.
If the resource that represents the RDF Collection is rdf:nil, then the second
case of the union matches it (line 11).

It is good to say that if somebody creates a cyclic RDF Collection, then this
named pattern never ends its evaluation. It is possible to adapt this example
to be cyclic safe, but then this example becomes more complicated and less
effective.

2.4 Data construction

Now it is time to show how it is possible to construct a new triplet in the Tequila
language. It is possible in just one way by using of a construct pattern.

Construct patterns. A construct pattern consists of the keyword con-
struct followed by a triplet of variables, URIs, literals or blank nodes enclosed

Tequila - a query language for the Semantic Web 111

1 prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2
3 rdf:list(?N)
4 {
5 {
6 ?N rdf:first ?F.
7 ?N rdf:rest ?R.
8 use rdf:list(?R)
9 }

10 union
11 {
12 filter ?N = rdf:nil.
13 }
14 }

Listing 1.2. The RDF Collection pattern

by the point. A construct pattern has just one solution, which is equal to
its triplet with respect to the actual variable bindings. If some variable of the
construct pattern is not bound to a value, then the variable is bound to a new
(unique) blank node.

More construct patterns can be enclosed by braces following the keyword
construct. The individual construct patterns then have not the keyword
construct.

2.5 Query composition

The ability to create a query composition is very important for a query language.
The Tequila language has a more general construct.

From pattern. A from pattern consists of two subpatterns connected by the
keyword from. The second subpattern is used as a source pattern for the first
subpattern. Initially, a solution of the source pattern is found and it is used as
a data source for the first subpattern. Solutions of the from pattern are then
searched in the first subpattern. If the first subpattern has no other solution,
then the next solution of the source pattern is searched for and it is used as data
source for the first pattern again. The evaluation of the first pattern starts from
scratch. If the source pattern has no other solution, then the from pattern also
has no other solution.

2.6 Multiple sources

Other useful property of a query language is the ability to combine multiple data
sources. Also this property is supported by a pattern.

Source pattern. A source pattern consists of the keyword source followed by
a URI of a data source. Usually, it is used in combination with a from pattern.

A source pattern has just one solution, which includes all triplets of the
data source of the pattern. It is possible to use a variable instead of a URI of a
data source. If the variable is bound to a URI, semantics is same. If the variable
is not bound to a URI, solution is an empty RDF graph.

112 Jakub Galgonek

2.7 Other patterns

Now we introduce other patterns, which are also very important for the ability
to use the language for a general purpose.

Match patterns. It is sometimes useful to bind variables to values according
to the content of a data source. It is especially useful when we want to perform
some conversion of a data source but we do not want to include the original
content of the data source to a solution. Although some pattern can make this
binding, it also returns some triplets in its solution. To avoid this, a match
pattern has been introduced.

A match pattern consists of the keyword match followed by a subpattern.
The evaluation of a match pattern is equivalent to the evaluation of its subpat-
tern, but with one difference. If the subpattern has a solution, then a solution
of the match pattern is an empty RDF graph. If the subpattern has no other
solution, then the match pattern also has no other solution. Thus only variable
bindings are performed and the content of the solution is ignored.

Else patterns. An else pattern is a way how to express a graph condition.
An else pattern consists of two subpattern connected by the keyword else. If
the first subpattern has any solution, then the evaluation of the else pattern is
equivalent to the evaluation of the first subpattern. If the first subpattern has no
solution, then the evaluation of the else pattern is equivalent to the evaluation
of the second subpattern.

Any patterns. For a recursive walk through a graph, it is useful to have the
ability to select just one solution from all possible solutions. It is a goal of an any
pattern. An any pattern consists of the keyword any followed by a subpattern.
If its subpattern has a solution, then a solution of the the any pattern is an
arbitrary solution of solutions of the subpattern and the pattern has no other
solution. If its subpattern has no solution, then the any pattern has also no
solution.

2.8 Syntactic sugar

There are some other constructs for more comfort. They just form a syntactic
sugar and they do not increase a power of the language.

Where patterns. A where pattern is a syntactic sugar for people familiar with
the SQL-like syntax. A where pattern consists of two subpatterns connected
by the keyword where. The pattern subpattern1 where subpattern2 is
equivalent to the following construct:

match {subpattern2} {subpattern1}

Tequila - a query language for the Semantic Web 113

Uniplet pattern. Sometimes, it is useful to create (or to select) only a single
value, not a whole triplet. On the other hand, it is not good to change the RDF
data model. So the Tequila language introduces the syntactic sugar for a uniplet.

The uniplet node, which can be used instead of a triplet in a triplet pattern
or a construct pattern, is equivalent to the triplet tql:shadowSubject
tql:shadowPredicate node1.

Get-where-from query. If either a main query (i.e. query pattern which is
not used as a subpattern) or a expression query has a following structure2:

get {get {getpattern} where {wherepattern} from {frompattern}}

then the outer keyword get with its braces can be omitted.

2.9 Pattern operator priority

By now, we only say that a pattern consists of some subpattern in the defini-
tions and we do not say, which types of the subpatterns are possible to use. A
restriction on types of subpatterns is needed to have an unambiguous grammar
for the language.

It is possible to look at the keywords that are used for specifying patterns as
on pattern operators and on the braces of compound patterns as on parentheses.
The restriction on types of subpatterns is then done by an operator priority. The
operators have following descendent priorities:

1. any, match, optional, get
2. where
3. from
4. else
5. union

2.10 Blank nodes.

According to the RDF specification, blank nodes have no names. However, for
many reasons, it is necessary to introduce some kind of identification of blank
nodes. One of the reasons is the need to identify blank nodes in a data source
and to distinguish them from each other. Other reason is the necessity to have
the ability to refer to a concrete blank node in a triplet construct pattern.

The syntax of the Tequila language as well as of the SPARQL language
include a blank node term3, but the semantics are totally different. In contrast
to the SPARQL language, where the semantics of a blank node term is more
similar to the semantics of a variable, a blank node term is just a local name of
a blank node in the Tequila language. If a blank node term had the semantics
1 The tql: prefix is bound to the URI http://ulita.ms.mff.cuni.cz/tequila/term#.
2 The where part or the from part can be missing.
3 A qname with the prefix _:

114 Jakub Galgonek

similar to a variable, then a use of the blank node term would not be equivalent
to a use of a variable bound to a blank node. It is other reason for the used
semantics.

Although a blank node term means an identification of a blank node in the
Tequila language, the semantics of the Tequila language keep the fact that blank
nodes from two different data sources can never be equal. Also it keeps the fact
that a concrete form of a blank node name that is used in a non-query data
source is hidden for a user. These are the main ideas of blank nodes.

How does it do that? A name of a blank node has two components. The first
component determines a data source name; the second component determines a
local name of the blank node in the data source. Two blank nodes are equal, if
their source names and their local names are equal. Therefore, two blank nodes
from two different sources can never be equal, because their source names are
different.

A blank node term written directly in a pattern determines the blank node
that has the source name [query] and the local name that is equal to the local
name of the qname of the blank node term. Therefore, a blank node term can
never match a blank node from a non-query data source, so that the fact that a
concrete form of a name of a non-query blank node is hidden for a user is kept.
Finally, note that a blank node created by a construct pattern during binding
unbound variables has the source name [construct].

2.11 Expressions

A base of the syntax and semantics of the Tequila expressions is adopted from
the SPARQL language. In addition, it is extended by various concatenations and
a query expression. The like operator from the SeRQL language is also adopted.

A Tequila expression is used in a filter pattern in the same way as in the
SPARQL language. In addition, it is also possible to use it in a triplet pattern,
a construct pattern or a named pattern instead of a RDF term. In this case,
an expression must be enclosed by parentheses.

If a pattern contains an expression, then (before the evaluation of the pat-
tern begin) the expression is evaluated first and its result value is used during
the evaluation of the pattern instead of the expression as a RDF term. If the
evaluation of the expression returns the error value, then the pattern has no
solution.

It is important to point out that an element ?V used in a pattern is a variable,
but an element (?V) is an expression. If the variable is bound to a value, the
effect is same. But if the variable is not bound to a value, then the evaluation of
the expression returns the error value and the pattern has no solution.

Literal concatenations. A literal can be concatenated with other literal or a
URI. The simple string concatenation is used; a datatype and a language tag
are ignored, so a result of the literal concatenation is always a simple literal.

Tequila - a query language for the Semantic Web 115

URI concatenations. A URI can be concatenated with other URI or a literal.
The simple string concatenation is used again. The URI concatenation is impor-
tant, for example, for creating a RDF Container, where it is necessary to create
URIs that have the form rdf:_n.

Blank node concatenations. A result of a concatenation of two blank nodes
is a blank node, which source name is obtained by concatenation of their source
names and its local name is obtained by concatenation of their local names. An
exception is a concatenation of two query blank nodes. In this case, the source
name of a result is [query] again, because local names of query blank nodes
are not considered as hidden for a user.

If the second operand is not a blank node, then the source name of the second
operand is rated as [query] and the local name of the second operand is rated
as a result of the STR function applied on the second operand. Therefore, it
is not possible to get any other blank node from knowledge of some non-query
blank node, so the fact that a name of a blank node is hidden for a user is still
kept.

The blank node concatenation is a flexible way, how to create a new blank
node and be able to refer to them. For example, if there is the need to create a
blank node for each work group, then we simply create one by a concatenation
of a blank node base with a work group URI. If there is need to have a blank
node for each person, we concatenate other blank node base with a person URI.
If a person is added to different work groups, then this procedure creates always
the same blank node for this person. In addition, if there is the need to have
a blank node for each combination of a person and a work group, a solution is
also simple. We concatenate some blank node base with a work group URI and
a person URI.

Determining a type of the + operation. The numeric addition and all
types of the concatenations use the same symbol +. Determining a type of the
operation depends on the type of its first operand.

Query expressions. It is possible to use a query pattern as a unary expression.
A query expression is evaluated as a normal query pattern. If its solution has
just one triplet, then the object of the triplet is a result value of the expression.
If the solution has more than one triplet, then one triplet is selected from the
solution randomly and its object is used. If the solution has no triplet, then a
result value of the expression is "false"ˆˆxsd:boolean.

3 Possible improvements

Apparently, the Tequila language is not finished yet and there is still space for
improvements. Specially, it is in the following areas:

116 Jakub Galgonek

1 prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 prefix ex: <http://www.example.org/term#>
3
4 ex:convert(?bag, ?list)
5 {
6 {
7 match any
8 {
9 ?bag ?pred ?item.

10 filter ?pred like ("" + rdf: + "_[0-9]+").
11 }
12
13 use ex:convert(?bag, ?sublist) from get
14 {
15 ?bag ?Y ?Z.
16 filter ?Y != ?pred && ?Z != ?item.
17 }
18
19 construct ?list rdf:first ?item.
20 construct ?list rdf:rest ?sublist.
21 }
22 else
23 {
24 match ?list. from construct {rdf:nil.}
25 }
26 }

Listing 1.3. Converting a RDF Collection into a RDF Bag

1. The expressions should be more powerful. A good thing is a general support
for different datatypes, not only for built-in datatypes.

2. A support of a RDF dataset will bring the ability to have multiple sets of
triplets in one pattern solution. This may be useful for some type of problems.

3. A support for a RDF representation of a pattern will bring the ability to
store the pattern in a data source. Therefore, it will be possible to store data
together with the patterns, which can manipulate with these data.

4 Examples

This section presents two interesting examples. The first one shows how to con-
vert a RDF Collection into a RDF Bag. The second one shows how to evaluate
the aggregation function max without the need to have a built-in support for it.

4.1 Conversion of a RDF Collection into a RDF Bag.

This example is shown in Listing 1.3. The conversion is performed by the named
pattern ex:convert, which has two formal parameters. The parameter ?bag
represents an input bag and the parameter ?list represents an output collec-
tion. If the input bag is not empty, then the first case of the else pattern (line
6) is a success. The any pattern (line 7) selects one item from the bag. Due
to the match pattern (line 7), only variable bindings are considered. Then the
ex:convert pattern uses itself on the rest of the bag (line 13). The rest of
the bag is generated by the query pattern (line 13). Finally, a new collection is
made (line 19) from the selected item (variable ?item) and from the created
sub-collection (variable ?sublist). The variable ?list (line 19) is not bound

Tequila - a query language for the Semantic Web 117

1 prefix tql: <http://ulita.ms.mff.cuni.cz/tequila/term#>
2
3 tql:max()
4 {
5 {
6 match any ?subj ?pred ?obj.
7
8 match ?max. from use tql:max() from get
9 {

10 ?X ?Y ?Z.
11 filter !(?X = ?subj && ?Y = ?pred && ?Z = ?obj).
12 }
13
14 {
15 filter ?obj > ?max || ?max = "none".
16 construct ?obj.
17 }
18 else
19 {
20 construct ?max.
21 }
22 }
23 else
24 {
25 construct "none".
26 }
27 }

Listing 1.4. Evaluation of the aggregation function max.

to a value, so the construct pattern bind it to a new blank node, which will
represent the new collection.

If the bag is empty, then the second case of the else pattern (line 23) is a
success and the parameter ?list is bound to the empty collection rdf:nil
(line 24) by the match pattern (line 24).

4.2 Evaluation of the aggregation function max.

This example, which is shown in Listing 1.4, is partially similar to the previ-
ous one. The aggregation function max is implemented by the named pattern
tql:max. The maximum value is calculated from the objects of the triplets of
an input data source.

If the data source is not empty, then the first case of the else pattern (line
5) is a success. The any pattern and the match pattern (line 6) select just
one triplet and they bind the object of the triple to the variable ?object.
Then the tql:max pattern uses itself (line 8) on the rest of the input to get
the maximum value of the rest. The rest of the input is generated by the query
pattern (line 8). The maximum value of the rest is bound to the variable ?max by
the match pattern (line 6). Then the variable ?max and the variable ?object
are compared by the else pattern (lines 18 and 15) and the biggest value is
constructed (line 16 or 20). If the variable ?max is bound to the value "none",
then a value bound to the variable ?object is constructed.

If the data source is empty, then the second case of the else pattern is a
success (line 23) and the special value "none" is constructed.

118 Jakub Galgonek

5 Conclusion

In this paper, we introduce the new pattern-based query language Tequila. We
demonstrate its power on several examples, which are difficult (or impossible)
to express in other languages. Although the Tequila language is good suitable
to solve these examples, it does not use any single-purpose constructs to express
them. The language is designed to involve only general-purpose constructs.

The main construct of the language is a named pattern, which can be used to
express a recursive query. This construct makes the Tequila language different
from other query languages and makes the language so strong. On the other
hand, it is possible to specify a query, for which the evaluation will never finish.
It is one of disadvantages of the Tequila language, but it is the tax for the power.

Acknowledgements

This research was supported in part by Czech Science Foundation Project 201/09/0683.

References

1. ARQ - Property Paths, as accessible in February 2009.
URL http://jena.sourceforge.net/ARQ/property paths.html.

2. User Guide for Sesame,Chapter 6. The SeRQL query language (revision 1.2).
URL http://www.openrdf.org/doc/sesame/users/ch06.html.

3. RDF Primer, W3C Recommendation, February 2004.
URL http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

4. SPARQL Query Language for RDF, W3C Recommendation, January 2008.
URL http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

5. Jǐŕı Dokulil, Jakub Yaghob, and Filip Zavoral. Trisolda: The environment for se-
mantic data processing. In International Journal On Advances in Software 2008,
volume 1. IARIA, 2009.

6. Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis, and Georg Gottlob.
Rdf querying: Language constructs and evaluation methods compared. In Reasoning
Web, Second International Summer School 2006, volume 4126 of LNCS. 2006.
URL http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-33.

7. Jakub Galgonek. Query languages for the Semantic web. Master thesis, Charles
University in Prague, Czech republic, 2008.
URL http://siret.ms.mff.cuni.cz/galgonek/thesis/thesis.pdf.

8. Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A comparison
of rdf query languages. In Proceedings of the Third International Semantic Web
Conference, Hiroshima, Japan, 2004., November.
URL http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/
rdfquery.pdf.

9. Michael Sintek and Stefan Decker. Triple - a query, inference, and transformation
language for the semantic web. In ISWC ’02: Proceedings of the First International
Semantic Web Conference on The Semantic Web, pages 364–378, London, UK,
2002. Springer-Verlag.
URL http://portal.acm.org/citation.cfm?id=646996.711416.

The BPM to UML activity diagram
transformation using XSLT?

Ondřej Macek1 and Karel Richta1,2

1 Department of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University,

Karlovo náměst́ı 13, 121 35, Praha 2, Czech Republic
{maceko1, richta}@fel.cvut.cz

2 Department of Software Engineering, Faculty of Mathematics and Physics,Charles
University,

Malostranské náměst́ı 25, 118 00, Praha 1, Czech Republic
karel.richta@mff.cuni.cz

The BPM to UML activity diagram
transformation using XSLT?

Ondřej Macek1 and Karel Richta1,2

1 Department of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University,

Karlovo náměst́ı 13, 121 35, Praha 2, Czech Republic
{maceko1, richta}@fel.cvut.cz

2 Department of Software Engineering, Faculty of Mathematics and Physics,Charles
University,

Malostranské náměst́ı 25, 118 00, Praha 1, Czech Republic
karel.richta@mff.cuni.cz

Abstract. The Business Process Model represented as a diagram in
Business Process Modeling Notation (BPMN) is a commonly used way
how to describe business processes of an organization. Problems con-
nected with a complexity of notation and missing support in tools for
the software development can be solved by a transformation to a Unified
Modeling Language activity diagram. Another reason for creating such
a kind of transformation is that it can solve problems of time, cost and
quality associated with software creation in the scope of Model Driven
Development.
This article describes common problems with the transformation of a
BPMN diagram to a Unified Modeling Language activity diagram. One
of the key features of the described transformation is that it is tool
independent. This feature was achieved by using an XML metadata in-
terchange representation of both models as an input and output and by
using XSLT transformation for the model transformation itself.

Keywords: BPM, BPMN, UML, model transformation, XSLT

1 Introduction

The Business Process Model (BPM) is a model which describes business pro-
cesses of an organization. It is an important tool for understanding the activities
and information which are typically used to achieve business goals. So far it is a
popular way of describing and improving business processes. The BPM can be
described in various notations: in Business Process Modeling Notation (BPMN)
[1], in Eriksson-Penker’s notation [2], or sometimes as the Unified Modeling Lan-
guage (UML) activity diagram (UML-AD) [3].

? This paper was partially supported by the MŠMT grant No. MSM 6840770014. This
research has also been partially supported by the grant GACR No. GA201/09/0990

? This paper was partially supported by the MŠMT grant No. MSM 6840770014. This
research has also been partially supported by the grant GACR No. GA201/09/0990

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 119–129, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

120 Ondřej Macek, Karel Richta

The business process modeling is a recommendation for software develop-
ment according to the Unified Process [4]. The business process model is one
of utilizable analytical models. The aim of the business process modeling in the
phase of analysis is to understand processes in a domain.

2 The Need of the Transformation

The BPMN is commonly used by business process managers; therefore this part
of software analysis is often done before the process of software development even
starts. The BPM created by a business process manager is often represented as a
diagram in Business Process Modeling Notation because BPMN has a variety of
symbols allowing the description of the process effectively and in detail. Although
this representation is correct, it can have several disadvantages - the BPMN is
not fully supported by modeling tools used in the software development and in
the scope of support of Model Driven Software Development (MDD) there exist
only a few methods how to transform BPMN to other models.

Another problem connected with the BPMN is its complexity. The BPMN is
designed as a tool for efficient modeling of a business process; therefore it contains
symbols which represent non-atomic action and thus speeding the process of
modeling. This is an advantage for a creator of a model, but not for a reader
unfamiliar with the notation. And in phase of software analysis the analysts
(a creator of the model) often consult its models with such a kind of reader.
Therefore it will be useful to have the possibility to present the BPMN diagram
also in different notation. Different notation can carry new point of view at the
BPM or it can be easier to read and to understand by a customer (a reader of
the model).

There were published articles [5], [6] handling with the transformation be-
tween the business process model and the UML models, especially the trans-
formation into the use case model (diagram) and to the class diagram. If we
look closer at these transformations, we will see that these transformations are
information-loss, because both final diagrams contain only information about
the names of actors and actions and about the connection between them, but
information about the action flow is lost. With regard to this fact it will be
very useful, if a transformation is created between the BPMN and some of UML
behavioral diagrams (activity or sequence), because this transformation will pre-
serve both information - about the action flow, actors and action names.

From this point of view, the representation of the BPM according to the
notation of UML-AD can be more useful. At present, the support and the usage
of UML standard is matter of fact. There will be no problem in supporting UML-
AD in modeling tools. UML-AD can also help with the problem associated to
the complexity of BPMN. If we compare both notations, we realize that a lot
of symbols of BPMN cannot be easily represented as the only one symbol in
UML-AD. Often one symbol of the BPMN is represented as a complex structure
of elements in UML-AD. Therefore UML-AD can be considered as more naive

The BPM to UML activity diagram transformation using XSLT 121

and easier to understand, because the reader has to understand the meaning of
fewer symbols.

Despite of these reasons, it seems that the transformation between BPMN
and UML activity diagram is needed, although it will be a transformation be-
tween two models which are used to describe business processes. The transfor-
mation will allow us to use already created BPMN diagrams in the software
development, and the transformation can also assist in the communication with
a customer

3 Transformation Method

The transformation between models can be realized in various ways. It should
serve as a bridge among two different models and between tools which support
BPMN and tools supporting UML-AD. It will be useful if it is created in such a
way that it will be easy to implement as a plug-in to existing tools and can be
also used independently of any actual tool.

The first idea how to create the transformation was to create it by an Object
Management Group (OMG) standard for model transformations - Query View
Transformation language (QVT) [7], but there are not many modeling tools with
a QVT processor and the support for both BPMN and UML-AD.

The problem with a missing language processor in modeling tools is the prob-
lem associated with the most of all existing modeling and transforming languages
or with a language that we can create. Another problem connected with the usage
of the modeling language will be how to guarantee the interoperability between
the modeling tools, because each tool uses a different internal representation of
a model. Therefore, an alternative way of transformation is needed.

We decided to use model representation based on extensible markup language
(XML) [8]. This XML representation is standardized as the XML Metadata
Interchange (XMI) standard [9] by the OMG as an instrument for the transport
from one modeling tool to another. Thus, the XMI standard is based on the
XML and common tools working with XML can also be used to work with XMI.
The most interesting one is XSLT [10], because it allows transformation from
one XML document to another one and enables any change in its structure. The
combination of XMI and XSLT satisfies conditions on the tool independence and
solves the problem of a model representation. Similar approach was used at the
transformation between UML models in [11].

4 The Input and Output

As was written earlier, the input and output of the transformation will be the
XMI representation of appropriate models. The input will be an XMI represen-
tation of a diagram in BPMN - see chapter 4.1 - and the output will be an XMI
representation of a UML-AD - see chapter 4.2. The XMI standard describes the
nodes in the diagram and the way how the nodes are connected by edges. Unfor-
tunately, the description of the graphical representation of a model is not defined

122 Ondřej Macek, Karel Richta

in the XMI standard. The description of the graphical part is typically hidden
in an XMI element extension which is defined as a container for the tool-specific
data. Therefore, the graphical layout is not universally transportable and in the
transformation we will handle the diagram transfer only.

4.1 Description of the BPMN in XMI

The BPMN has no standardized XMI representation. Therefore, we decide to
use the representation which is used in Altova UModel [12], so BPMN diagrams
will be easy to visualize and XMI easy to generate. The BPMN representation
is based on similarities between BPMN and UML-AD. The BPMN model is
described by extending UML-AD XMI representation. This extension is made
by adding new elements and attributes to the UML-AD representation. In this
way a new profile is defined, which is a part of the BPMN XMI document and
serves as a declarative reference.

Every symbol in the BPMN has a corresponding element in XMI which de-
fines its type and attributes. Attribute xmi:type refers to the UML-AD symbol
which is extended and xmi:extension element and its subelements are used to
define the features typical for the BPMN by referring to the profile stored in the
document. Following XML snippet represents basic start event node:

<node xmi:type="uml:AcceptEventAction"

xmi:id="Uacfd64a5-9c7e-4eaf-995d-ab3849b7f8c9" name="start node">

<xmi:Extension extender="UModel">

<appliedStereotype xmi:type="uml:StereotypeApplication"

xmi:id="Ufbe96d2e-05fd-4c35-a6e9-49ab669549e2"

classifier="U00200106-7510-11d9-86f2-000476a22f44">

<slot xmi:type="uml:Slot" xmi:id="U1e97ab77-7cb5-47c9-bb56-28b4eb3a77fd"

definingFeature="U00080106-7510-11d9-86f2-000476a22f44">

<value xmi:type="uml:InstanceValue"

xmi:id="Ucec9e7bc-8716-4662-a2a5-de44a55930b7"

instance="U00100106-7510-11d9-86f2-000476a22f44"/>

</slot>

<slot xmi:type="uml:Slot" xmi:id="Ub80e3e24-3d83-437d-bf2f-46a84c93a341"

definingFeature="U00220106-7510-11d9-86f2-000476a22f44">

<value xmi:type="uml:InstanceValue"

xmi:id="Uc01150e2-3256-4052-9506-450485581e7c"

instance="U00140106-7510-11d9-86f2-000476a22f44"/>

</slot>

</appliedStereotype>

</xmi:Extension>

<clientDependency xmi:idref="U54b4a7eb-4e3f-4964-9323-268e4ffb5164"/>

</node>.

This representation has the advantage that the connection between the sym-
bols is mostly obvious. This fact helps to create transformation rules. On the
other hand, the BPMN XMI file is illegible for humans and, moreover, the slot
elements sometimes contain redundant information (the information was defined

The BPM to UML activity diagram transformation using XSLT 123

earlier or it is not necessary to define). Therefore, it is good reason why to im-
prove this XMI notation in the future.

4.2 UML-AD Description in XMI

The XMI representation of the UML-AD is defined by the OMG as a part of the
UML standard (current definition can be found in [13]), therefore the XMI file
dedicated to transport the UML diagram uses the namespace:

http://schema.omg.org/spec/UML/version,

where the version represents the number of a current UML version (e.g. 2.1.2
for used UML version)used to describe symbols contained in the diagram. The
XMI file of a UML activity diagram contains only the description of the nodes
in the diagram and the way they are connected. This is based on their definition
in the namespace. No extra profile is required. Since the description is based on
the usage of the UML namespace, the model description is very straightforward
and easy to read. This is the example of the XMI representation of an UML-AD
initial node (describes the same as the example of start event node in chapter
4.1):

<node xmi:type="uml:InitialNode" xmi:id="U002" name="start node">

<outgoing xmi:idref="U004"/>

</node>.

If both ways of the diagram representation are compared, it is obvious that
creating an XMI profile for the BPMN similar as the XMI profile for the UML-
AD, will be very useful.

5 Transformation problems

Although both models are very similar, the transformation from the BPMN to
the UML-AD is not as straightforward as it seems. Although both models de-
scribe the same thing and use similar symbols, the models differ fundamentally.
It is caused by the complexity of the BPMN symbols. In the UML activity di-
agram, every symbol represents one concrete and atomic information. On the
other hand, the symbols in the BPMN compress the information. For example
the symbol for the loop (see Fig. 1) in the BPM has no appropriate equivalent
in the group of UML-AD symbols, because the loop symbol contains non-atomic
information (information about the action and information about the loop con-
dition). The compression of the information is very useful for business process
managers, because it makes the diagram more synoptical, and therefore easy to
create and read. On the other hand,this complexity complicates the transforma-
tion from the BPMN to the UML-AD.

If we compare the BPMN and UML-AD, we will see that some symbols
can be transformed directly by using one-to-one transformation (e.g. the task
node in the BPMN is transformed to the UML activity node behavioral action),
but in most cases the compression of the information in BPMN symbols causes

124 Ondřej Macek, Karel Richta

Fig. 1. The BPMN symbol for loop.

the transformation is not one-to-one (one BPMN symbol to one UML activity
symbol) but typically one-to-many.

To demonstrate this fact there can be used the example of the BPMN loop
symbol (see Fig. 1), whose complexity was mentioned in the previous text. This
single symbol in the BPMN could not be transformed to one symbol of the
UML activity diagram. The loop symbol has an appropriate representation in a
construction consisting of four UML activity symbols - TASK, DECISION and
two edges, where one edge leads from the TASK to DECISION and the other
one leads backwards. The TASK represents the action and the decision node
is used to resolve the loop condition. Based on the result of the condition the
activity flow leads to the TASK or continues to the symbol following after the
loop. The construction of the loop in the UML activity can have two different
orders of the nodes. It depends on the fact if the loop condition is tested before
or after the action (see Fig. 2).

Further complication lies in the fact that some loops are limited by the num-
ber of loops and not by the condition - in the BPMN this information is hidden
in loop symbol attributes, but it does not hold for UML-AD. In this case, the
UML-AD construction matching a BPMN loop symbol should contain an action
initializing the counter of loops. The type of a loop determines the existence of
two possible constructions. The loops differ in time of checking a loop condition
- before and after the task. We assume that the counter is incremented in the
loop action. The loop with the counter can have also two possible matches in
UML-AD according the time when the condition is being checked. The incoming
edges, which were connected to the original loop node, is also necessary to redi-
rect according to the order of the task and decision symbols. Thus, one symbol
in the BPMN is replaced by four nodes in the UML activity which can be in two
different orders.

Besides the symbols which can be transformed as one-to-one or one-to-many,
there exist also symbols which can be sometimes transformed using one-to-one

The BPM to UML activity diagram transformation using XSLT 125

Fig. 2. Two possible representation of the loop in the UML activity diagram - a) shows
loop where the condition is checked before the action is taken and b) shows the loop
where the loop condition is checked after taking action.

and sometimes using one-to-many. Typical example is the symbol representing
the start event which is transformed according to its trigger in both ways. If
the type of a start event trigger is NONE, MESSAGE or TIMER, the node
could be transformed as one-to-one, since there are appropriate symbols in the
UML activity diagram. Other trigger types (RULE, LINK, and MULTIPLE),
however, have not appropriate representation in the UML activity. That is why
the start event must be, in this case, transformed to more nodes of the UML
activity diagram.

Start event symbol can be transformed in two ways. First, as a construction
consisting of INITIAL NODE and DECISION (to resolve the event type) and
EDGE connecting the INITIAL NODE and the DECISION. In this case the
trigger became a part of the process itself, therefore the UML-AD will have a
little bit different meaning than the input BPMN diagram. Second, these nodes
can be transformed by creating an INITIAL NODE with a note, where the
trigger will be described. In this case, the trigger is not the part of the process.

Another problem is that some symbols in the BPMN can have two different
meanings according to the position in the diagram, concretely in dependency on
the number of edges leading to the node. Typical examples are decisions nodes.
The decision nodes can be used in two different ways. The decision nodes enable
either the branching or merging of the activity flow. As an example we can use
a parallel decision node - see Fig. 3.

This problem can be solved either by a naive method or by a method of
finding the pair. The naive method assumes that the decision node with two
or more entering edges is a MERGE node. The method of finding the pairs
will search the diagram through and it will find the decision nodes pairs. If the
method finds a pair of decision nodes, the first of them (in the action flow) will

126 Ondřej Macek, Karel Richta

Fig. 3. The BPMN symbol for parallel gateway (rhombus with a cross inside) can be
used for branching or merging the activity flow.

be transformed as a decision node and the other one as a merge node. In case
that no pair is found the naive method can be used or all decision nodes in the
BPMN are replaced by the decision nodes in UML-AD. In our transformation
we use the naive method, so all decision nodes with two or more incoming edges
will be transformed as merge nodes.

From the previous text it is obvious that the transformation of the BPMN to
the UML activity is possible, because the BPMN and the UML-AD has a very
similar representation of nodes. The structure of diagrams will differ strongly,
because the BPMN symbols cannot be transformed to the UML-AD matching
symbols one-to-one.

6 The Transformation

There was created an XSLT stylesheet to solve a proper transformation in be-
tween two discussed models. The transformation was tested on several BPMN
diagrams. See Fig. 4 where is a model describing a process of receiving the order
in a company. This diagram was exported to the XMI file and then the trans-
formation stylesheet was applied. The result was imported to the modeling tool
as is shown in Fig. 5. Both diagrams describe the same process. The only disad-
vantage was that the graphical layout of the activity diagram had to be created
manually.

The realized transformation satisfies all conditions which were set in analytic
parts of this paper and can be used in practice. Another positive feature is that
the transformation is fully automatic and no user intervention is needed.

The BPM to UML activity diagram transformation using XSLT 127

Fig. 4. The diagram in BPMN. Figure from [1]

The disadvantage of the transformation using XMI and XSLT is that it can-
not be used so easily for keeping consistency between two models. To solve the
problem, it is necessary to carry out a backward transformation (from UML-AD
to the BPMN) so that the changes in a UML-AD diagram could be reflected
back to a corresponding BPMN diagram.

7 The Backward Transformation

In the previous paragraphs it was stated that the backward transformation from
the UML-AD to BPMN is needed. Basically, such a transformation can be real-
ized by rewriting the UML-AD by BPMN symbols. This way of transformation
will use the fact that UML-AD symbols match the BPMN symbols. If we like
to have the output model more sophisticated, we can design the transformation
by reversal rewriting the rules from the original transformation. In this case, we
get a business process model that will contain also complex BPMN symbols, but
not all BPMN symbols can be reached by an automatic transformation, since
there is not enough information in the UML-AD. This lack of information can be
solved by adding this information manually. The aim was to create an automatic
transformation, and therefore we cannot use this solution.

Although the backward transformation is needed, it will be difficult to create
it to keep consistency of both models. The backward transformation can create
the BPMN diagram with the same information, which has the input UML-AD.
Thus, we are able to transform one model to another and vice versa. In case of

128 Ondřej Macek, Karel Richta

Fig. 5. The diagram in UML activity diagram which was created by using described
transformation from the diagram in Fig. 4. The graphical layout was modified manually.

keeping the consistency, there appears a problem how to match the UML-AD
symbols and construction with the BPMN symbols and how to solve the lack
of information in UML-AD (some information which was part of the BPMN
symbols can be not reachable in the UML-AD).

The problem connected with the symbol matching can be solved easily by
using an unique identifier for matching symbols. Similar solution can be used
for matching the UML-AD constructions and BPMN symbols. The UML-AD
construction should have an identifier which will carry information that the
symbols are parts of one construction and together are matched to concrete
BPMN symbol.

The problem of missing information can be solved by adding parameters
manually.

8 Conclusions

The transformation between diagrams in the BPMN and the UML activity dia-
grams is needed, because it will help to improve the development of software. The
UML-AD has better support in modeling tools and is easier for the customer (a
reader of the diagram unfamiliar with the BPMN). The transformation among
these two notations can serve as a bridge between the tools supporting the busi-
ness process management and the tools for the software development.

The BPM to UML activity diagram transformation using XSLT 129

The transformation is realized by using representation of both models in
XMI as the input and output. Transformation rules described in the form of XSL
transformation satisfy the requirements on the tool independence and integration
possibility. Disadvantage of this process is that the information about graphical
layout of the model is lost.

The designed transformation should be completed by creating the backward
transformation (from the UML-AD to the BPMN). Then the transformations
can be used to keep consistency between diagrams in these notations. The task
of backward transformation is complicated by the fact, that UML-AD does not
contain all needed information. This information can be added manually, but in
that case the backward transformation will not be automatic.

References

1. Object Management Group. Business Process Modeling Notation (BPMN). http:
//www.omg.org/technology/documents/br_pm_spec_catalog.htm, version 1.2, 3
January 2009 .

2. Eriksson, H., Penker, M.. Business Modeling with UML: Business Patterns at
Work. John Wiley & Sons. ISBN 978-0-471-29551-8, 2000.

3. Object Management Group: Unified Modeling Language (UML). http://www.

omg.org/technology/documents/modeling_spec_catalog.htm, version 2.1.2, 4
November 2007.

4. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley Professional. ISBN 020-1-571-692, 1999

5. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: Analysis-Level Classes from
Secure Business Processes Through Model Transformations. In Trust, Privacy and
Security in Digital Business 2007. Springer Berlin / Heidelberg. pp. 104-114. ISBN
978-3-540-744, 2007

6. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: CIM to PIM Transformation:
A Reality. In Research and Practical Issues of Enterprise Information Systems II.
Springer Boston. pp. 1239-1249. ISBN 978-0-387-763, 2008

7. Object Management Group: MOF Query / Views / Transformations. version
1.0, April 2008 . http://www.omg.org/technology/documents/modeling_spec_

catalog.htm,
8. World Wide Web Consortium: Extensible Markup Language (XML). version

1.0(fifth edition), 26 November 2008. http://www.w3.org/XML/
9. Object Management Group: XML Metadata Interchange (XMI). version 2.1.1,

1 December 2007. http://www.omg.org/technology/documents/modeling_spec_
catalog.htm#XMI,

10. World Wide Web Consortium: XSL Transformations (XSLT). version 1.0, 16
November 1999. http://www.w3.org/TR/xslt

11. Kovse, J., Härder, T.: Generic XMI-Based UML Model Transformations. In
Object-Oriented Information Systems 2002. Springer Berlin / Heidelberg. pp. 183-
190. ISBN 978-3-540-44087-1, 2002

12. Altova: UModel 2009. cite 10.1.2009. https://shop.altova.com/category.asp?
catalog_name=V2008R2C3_shop&category_name=UModel&Page=1,

13. Object Management Group: Documents associated with UML Version 2.1.2, 2006
. http://www.omg.org/spec/UML/20061001/Superstructure.cmof .

XML-λ Type System and Data Model Revealed

Pavel Loupal

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Praha 2
Czech Republic

loupalp@fel.cvut.cz

XML-λ Type System and Data Model Revealed

Pavel Loupal

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Praha 2
Czech Republic

loupalp@fel.cvut.cz

Abstract. Within this paper we provide formal description of a func-
tional type system for modeling XML formatted data along with an
annotated example of an XML document modeled using such approach.
We discuss its advantages and drawbacks in comparison with existing so-
lutions. This submission is a part of our long-term endeavor to propose,
examine, and implement an environment for XML data management,
especially utilized for XPath/XQuery semantics description.

1 Introduction

The Extensible Markup Language (XML) 1.0 [1] specifies both physical and
logical structure of XML documents. For purpose of related specifications (e.g.,
XPath or DOM) and other XML applications is such low-level description too
punctual and hence a number of more abstract data models has been proposed.
The best known data models nowadays are the XML Information Set (XML
Infoset) [4] and the XQuery 1.0 and XPath 2.0 Data Model [7].

This paper describes an alternative data model for XML that forms a part
of the XML-λ Framework – a functional framework for modeling, querying and
updating XML. The main goal of this work is to provide the reader very inti-
mate knowledge of the Framework and cover all its key concepts and properties.
We suppose that the accompanying example presents these facts in reasonable
complexity.

Contributions. The main outcome of this paper for the reader should be deep
insight into the type system concept and familiarization with the XML-λ data
model. We have aimed our endeavor to provide following contributions:

– Formal description of the functional type system for XML.
– Annotated example of an XML document modeled using the XML-λ.
– Informal discussion of Framework’s properties and brief comparison with

existing data models.
– Outline of the proof-of-the-concept prototype implementation.

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 130–141, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

XML-λ Type System and Data Model Revealed 131
2 Loupal, P.

Structure. The paper is organized as follows: Section 2 contains formal descrip-
tion of the XML-λ Framework and shows a simple XML document modeled
using this approach. General properties, features, and drawbacks of the Frame-
work along with a brief comparison with other data models are discussed in
Section 3. Then, in Section 4, we outline our prototype implementation and fi-
nally conclude our contribution in Section 5 together with outlook for future
work.

Related Work. The main area of interest that is discussed within this paper is
the domain of data models for XML. There are two principal data models for
XML in use nowadays; the first is the XML Infoset [4] and the second is the
XQuery 1.0 and XPath 2.0 Data Model [7]. Both specifications are proposed by
the W3C [15] and are employed in interrelated XML standards. Roots of the
XML-λ Framework might be found in Pokorný’s work [12, 13].

2 The XML-λ Framework

Under the term “framework” we understand both the data model and the query
language based on this model. Here, we define the fundamental cornerstone of
the framework, the functional type system for XML that is suitable for modeling
XML — TE . Then, in Section 2.3, we show a detailed example of an XML
document instance realized using the XML-λ Framework.

2.1 Overview

Our research is significantly influenced by the idea of a functional approach for
XML published by Pokorný in [12] and [13]. We found his work very appealing
and useful in wide range of applications related to XML. Our main motivation
is the belief that it is possible use this framework for expressing semantics of
various XML query languages in formally clear and understandable way by using
a simply-typed lambda calculus and a general type system. Thus, we set out
a goal to express the semantics of XPath and XQuery languages using this
approach called XML-λ. We do not aim to propose a new query language for
XML but we rather offer an alternative solution for evaluation existing query
languages.

Informal Introduction. Figure 1 illustrates the relationship between W3C and
XML-λ models. We can observe that the document schema expressed by DTD
is in the Framework modeled with two sets; the first one is a set of element types
available in XML schema and the second one is a set of element objects that
stores information about document structure. Every document instance then
comprises of a set of abstract elements (each is of an element type) and a set of
element object instances. Note that these two sets are changing in time, so as
the document changes.

132 Pavel Loupal
XML-λ Type System and Data Model Revealed 3

Fig. 1. The relationship between W3C and XML-λ models

2.2 Type System Definition

The main purpose of a type system is to prevent the occurrence of execution
errors in a program1 [2]. In this work we understand this definition as checking for
correct nesting of XML document structure, using the type system for semantic
query validation, and its further evaluation (including optimization).

But there is a unifying cornerstone for all type systems — each type system
has a finite set of rules for type construction and set of respective types defined
within this system. Following sections describe step-by-step process of definition
of a functional type system for XML. We begin with a general functional type
system and extend it with support for regular types. Finally, we propose the
type system TE that forms the core formalism in the XML-λ Framework.

Functional Type System First, we define a general functional type system T .
This definition basically follows the common approach presented for example
in [16, p.143].

Definition 1 (Type system T). Let B is a set of (atomic) types S1 . . . Sn,
n ≥ 1. Type System T over B is obtained by the grammar

T := S primitive type
| (T1 → T2) functional type
| (T1, . . . , Tk) tuple type
| (T1 + . . . + Tk) union type

where S ∈ B.

Presuming the members of B being non-empty disjoint sets, then the type
(T1 → T2) means a set of all (both total and partial) functions from T1 into T2.
1 In the context of this work, we understand by the term “program” an XML query

we aim to evaluate.

XML-λ Type System and Data Model Revealed 133
4 Loupal, P.

(T1, . . . , Tn) denotes the Cartesian product (T1 × . . .× Tn) and (T1 + . . . + Tn)
denotes the union T1 ∪ . . . ∪ Tn. We denote o : T an object o of type T (also
called “T -object”).

Regular Type System Subsequently, we define a regular type system Treg

that extends the type system T with regular constructs. For this definition, we
employ the set Bool ≡ {TRUE, FALSE} with its common Boolean semantics.
Next, let us suppose a set Name that contains all possible element names allowed
by the XML grammar [1].

Definition 2 (Type System Treg). Let B = {String, Bool, Name},
tag ∈ Name. The type system Treg over B is defined as follows.

T := tag : String | tag : elementary regular expression
| T ∗ zero or more (Kleene closure)
| T+ one or more (positive closure)
| T ? zero or one

where T is an alternative or elementary regular expression.
| (T1 | T2) alternative

Upon this type system we can define a type system for XML denoted TE as
follows.

TE — The Type System for XML The last step for obtaining a type system
suitable for modeling XML data is a slight alternation of Treg aiming to support
data types available from DTD. For this purpose, we have to take a closer look
at DTD properties. Due to the fact that we consider only typed XML documents
(i.e. always with an attached DTD) we can distinguish the type of each particular
XML element in a document. It is also obvious that in a document there can
exist two different elements with the same tag and content, therefore we have
to be able to treat them as distinct instances. Therefore, terms abstract element
and element object (or T-object) were introduced.

Definition 3 (Abstract Element). For each XML element there exists ex-
actly one abstract element. The (infinite) set of abstract elements is denoted
as E.

Definition 4 (Element Object). An element object of type T , denoted as
T -object, is a partial function of type E → Trng where Trng is an element type
or String.

An arbitrary XML element is then modeled as a mapping from one particular
abstract element to its respective codomain (whose type is determined by cor-
responding element type). Hence, by application of an T -object to this abstract
element we may obtain either a character string (typed as PCDATA in DTD) or
a more complex structure regarding to the type system.

134 Pavel Loupal
XML-λ Type System and Data Model Revealed 5

Definition 5 (Type System TE). Let Treg over B be the type system from
Definition 2 and E be the set of abstract elements. Then the type system TE

induced by Treg is defined as follows.

E := TAG : T | TAG : elementary element types
where tag : T and tag : are elementary regular expressions over B.

| E∗ zero or more (Kleene closure)
| E+ one or more (positive closure)
| E? zero or one
| (E1 | E2) alternative
| TAG : (E1, . . . , Ek)

where tag ∈ Name complex element types

Elementary element types and complex element types are hereafter denoted
as element types. For example, with respect to the DTD shown in Figure 2, we
write respective element types as:

BIB : BOOK*
BOOK : (TITLE, (AUTHOR+ | EDITOR+), PUBLISHER, PRICE)
AUTHOR : (LAST, FIRST)
EDITOR : (LAST, FIRST, AFFILIATION)
TITLE : String
LAST : String
FIRST : String
AFFILIATION : String
PUBLISHER : String
PRICE : String

Due to constraints given by DTD, there exists exactly one content model
for each XML element (see the “local tree languages” in [11]). Therefore, we
can omit the part beyond the colon because it cannot lead to any misun-
derstanding; i.e., we may use a shorter notation and write AUTHOR instead of
AUTHOR : (LAST, FIRST).

For convenience, we also define a nullary function. It is a useful construct
that allows us to access abstract elements and filter them by corresponding ele-
ment type. Later on, we will utilize it in the query language.

Definition 6 (Nullary function). A T -nullary function returns the domain
of a T -object, where T denotes an element type.

Note that the set E of all abstract elements is thus split by these functions into
a number of disjoint subsets for all respective element types.

Attributes. Until now we have discussed only elements, their structural proper-
ties, and their content. Other important data in XML are elements’ attributes.
In the XML-λ Framework we use the same way for accessing them as for ele-
ments; we model attributes as functions too. For example, we model the year

XML-λ Type System and Data Model Revealed 135
6 Loupal, P.

attribute of the book element as a partial function Y EAR : E → String whereas
its domain is EBOOK ⊆ E such that BOOK-nullary function is there defined
(thus, this function is defined only for elements that have associated attributes
with this name).

2.3 Data Model Definition

A data model is an abstract model that describes how data is represented and
accessed. In our work we employ simple and functional types defined by the TE

type system (see Section 2.2). Apparently, in the XML-λ Framework the main
entity to be described is the XML document. We can see the instance of an
XML document (which is basically a valuation of a type from TE) as a structure
containing

– set of abstract elements, denoted Edoc (subset of the infinite set E),
– set of T -objects,
– set of all text content of document’s elements and attributes.

Note that for simplification we consider character strings typed as String for
all textual content instead of more accurate definitions of PCDATA and CDATA
proposed in [1].

A Data Model Example This section provides an example of a type system
definition and realization of an XML document instance in the XML-λ Frame-
work. Let us consider a sample DTD2 shown in Figure 2 and a respective XML
document in Figure 3.

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT affiliation (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT price (#PCDATA)>

Fig. 2. An example XML schema — biblio.dtd

2 This DTD is taken from the “XMP” Use Case published in the XML Query Use
Cases [3] specification

136 Pavel Loupal
XML-λ Type System and Data Model Revealed 7

<?xml version="1.0"?>

<!DOCTYPE bib SYSTEM "biblio.dtd">

<bib>

<book year="2008">

<title> XML technologie </title>

<author>

<last> Pokorny </last>

<first> Jaroslav </first>

</author>

<author>

<last> Richta </last>

<first> Karel </first>

</author>

<publisher> Grada </publisher>

<price> 286.00 </price>

</book>

</bib>

Fig. 3. A well-formed and valid XML document

For given schema we obtain (as illustrated in Section 5) following set of both
elementary and complex element types: {BIB, BOOK, AUTHOR, EDITOR,
TITLE, LAST , FIRST , AFFILIATION , PUBLISHER, PRICE}. The set
of abstract elements, Edoc, contains for the XML document in Figure 3 eleven
items: Edoc = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}. The set of element objects
with corresponding mappings is illustrated in Table 1.

In this scenario, for instance, the title-element object (a function of type
E → String) is defined exactly for one abstract element (the one that serves
for modeling the title element) and for this abstract element it returns value
“XML technologie”.

In a more complex case, function book of type BOOK : E → E×2E×E×E,
applied to an arbitrary abstract element from its domain, returns a quadruple
— subset of this Cartesian product. Within the tuple, we can then access its
particular components by performing name-based projections (more precisely,
“element type name”-based projections).

3 Framework Features Summary

The previous section describes formally the XML-λ Framework along with a
simple example. In this part of the contribution, we discuss various aspects of
the Framework, its attributes, features, weaknesses, and drawbacks. We have
selected nine topics that are, as for us, important for comprehension, usage, and
comparison of existing data models for XML. We present such brief comparison
with the XML Infoset [4] and the XQuery 1.0 and XPath 2.0 Data Model [7].

XML-λ Type System and Data Model Revealed 137
8 Loupal, P.

Function Function domain/range Mappings

bib BIB : E → 2E bib(e1) = {e2}
book BOOK : E → E × 2E × E × E book(e2) = (e3, {e4, e7}, e10, e11)

book year Y EAR : E → String book year(e2) = “2008”

title TITLE : E → String title(e3) = “XML technologie”

author AUTHOR : E → E ×E author(e4) = (e5, e6),
author(e7) = (e8, e9)

editor EDITOR : E → E × E ×E none

last LAST : E → String last(e5) = “Pokorny”,
last(e8) = “Richta”

first FIRST : E → String first(e6) = “Jaroslav”,
first(e9) = “Karel”

affiliation AFFILIATION : E → String none

publisher PUBLISHER : E → String publisher(e10) = “Grada”

price PRICE : E → String price(e11) = “286.00”
Table 1. Set of T -objects induced by the running example

Following paragraphs discuss each topic one-by-one and this text is later
summarized3 in Table 2.

1.Functional Approach. One of the main forces at the rise of XML-λ was the aim
to provide an alternative to existing W3C proposal. Therefore the Framework is
strictly tied to the concept of functions; it uses both a functional type system
and a query language based on simply typed lambda calculus.

2.Multiple Data Models. The XML-λ Framework is presented here as a tool
for modeling and querying (and updating) XML formatted data typed by the
DTD. Considering the properties of the relational model we can also provide a
relational type system within the Framework and work with relational data, or
even pursue heterogeneous data transformation and integration between XML
and relational data sources.

In addition, although the DTD is still a relatively sufficient solution for most
real XML applications we claim that we can provide a type system that is based
on W3C’s XML Schema [5]. This extension of the Framework will be available
in our consecutive work. Yet there are (at least for now) some formal difficulties
and therefore we expect that we will be able to support only a part of the
specification.

3.Full XML Coverage. Within the Framework we can access and modify only
elements and attributes. With regard to the XML Infoset Data Model [4] there
may occur other information items in an XML document — e.g., comments,
processing instructions, etc. At the present time we do not plan to extend this
model but it is certainly possible to enrich it with other sorts of such items.
3 Y/N/? stands for Yes/No/Unknown; feature is supported, is not supported, or is

not examined yet.

138 Pavel Loupal
XML-λ Type System and Data Model Revealed 9

4.Uniform Data Model Access. The XML-λ data model does not strongly distin-
guish between elements and attributes. We model them with the same approach
— by functions; and access their content by evaluating these functions indepen-
dently on their “origin”.

5.Element Ordering. Formal foundations of the Framework stand on the set the-
ory. For its utilization in the world of XML we have to employ a kind of ordering
among elements. The concept known as “document order” [6, Section 2.4] is
realized in the Framework as a partial function f : E → Integer that assigns to
each abstract element an unique number according to this specification.

6.Mixed Content Model. This is probably the weakest spot of the Framework.
With respect to proposed type system it cannot handle data with mixed content
model [1]. This is still an issue that must be resolved as soon as possible since
it disables the usage of the Framework for document-centric XML data.

7.Mandatory Typing. Another questionable feature is the necessity of an XML
schema existence for all XML data processed by the XML-λ Framework. It is a
natural requirement with respect to the fact that the type system is built upon
this schema. Moreover, for vast majority of XML data available on the web such
schema does exist and is used [10].

8.Support for Recursive Types. XML data may also contain some recursive con-
tent, even though in small amount only [10]. However, all three data models we
mention here can settle this situation.

9.Performance. This aspect is one of the most important data model charac-
teristics for its production deployment. We have carried out some preliminary
XPath 1.0 benchmarks with promising results in [14] but we consider this early
evaluation as superficial and do not publish and discuss details here. With no
doubt, it is one of important issues that have to be furthermore examined.

Feature XML-λ Infoset XDM

1. Functional Approach Y N N

2. Multiple Data Models Y N N

3. Full XML Coverage N Y Y

4. Uniform Data Model Access Y N N

5. Element Ordering Y N Y

6. Mixed Content Model N Y Y

7. Mandatory Typing Y N N

8. Support for Recursive Types Y Y Y

9. Performance ? ? ?
Table 2. The comparison of selected data models

XML-λ Type System and Data Model Revealed 139
10 Loupal, P.

4 Prototype Implementation Overview

We already have a Java prototype implementation available. The main part is a
core library that realizes the type system and data model. Existing applications,
an XPath 1.0 Processor and the ExDB [9] database management system, are
built upon this library. The internal structure of this component is illustrated in
the UML class diagram in Figure 4.

TObjectSet

put(to : TObject) : void
getSubelements(uid : int) : UIDTuple
setSubelements(uid : int,tuple : UIDTuple) : void
getParent(uid : int) : int
getByType(type : ElementType) : List

logger : Logger
types : Map
values : Map
parents : Map

UIDTuple

<<create>> UIDTuple()
<<create>> UIDTuple(intList : List)
contains(uid : int) : boolean
add(uid : int) : void
toList() : List
toString() : String

content : List

ElementType

<<create>> ElementType(_name : String)
getName() : String
toString() : String
equals(o : Object) : boolean
hashCode() : int

name : String
fullName : String

ElementTypeLibrary

<<create>> ElementTypeLibrary()
isAny(typeName : String) : boolean
getInstance() : ElementTypeLibrary
getTypeForName(elementName : String) : ElementType
toString() : String

types : HashMap
instance : ElementTypeLibrary

TObject

<<create>> TObject(elem : AbstractElement,uid : UIDTuple)
getType() : ElementType
getUID() : int
getContent() : UIDTuple
toString() : String

logger : Logger
element : AbstractElement
uidTuple : UIDTuple

AbstractElement

<<create>> AbstractElement(_elementId : int,_type : ElementType)
toString() : String
getElementId() : int
getType() : ElementType
compareTo(o : Object) : int

type : ElementType
elementId : int

swing::xla::data::Document

<<create>> Document(uri : String)
getSchema() : DocumentSchema
getAbstractElements() : AbstractElementSet
getTObjectSet() : TObjectSet
getPCData() : PCData
getCData() : CData
addElement(e : AbstractElement) : void
addCData(uid : int,attrs : Attributes) : void
addPcData(uid : int,s : String) : void
addTObject(to : TObject) : void

docId : String
schema : DocumentSchema
E : AbstractElementSet
pcData : PCData
cData : CData
tObjects : TObjectSet

type

1

1
element

1

1

AbstractElementSet

<<create>> AbstractElementSet()
add(e : AbstractElement) : void
add(set : AbstractElementSet) : void
clear() : void
getByType(type : ElementType) : AbstractElementSet
getByID(id : int) : AbstractElement
iterator() : Iterator
size() : int

E : SortedMap

10..*

0..* 1

1

1

Fig. 4. The main classes in the swing.xla.core package

The core package comprises of approximately 20 classes that provide basic
functionality as a SAX handler, XMLOutputFormatter and other classes that
cover the essential functionality.

Our preliminary benchmark of the XPath 1.0 processor based upon this li-
brary is ready to be published in [14]. This work contains a comparison with
state-of-the-art XPath processors inspired by the XPathMark test [8]. We con-
sider the results as promising but the test did detect a serious performance leak
in XML document parsing; in contrast to the others, the process of memory
allocation and internal data model structures building behaves exponentially in-
stead of linearly as expected. It is an implementation issue that must be fixed
in order to catch up with the rivals.

140 Pavel Loupal
XML-λ Type System and Data Model Revealed 11

5 Conclusion

We have published a detailed description of the XML-λ’s type system based on
the Document Type Definition along with a data model suitable for description
of XML formatted data. This model is subsequently demonstrated on a sim-
ple example where we describe the concept and utilization of the Framework.
Further, we have discussed various issues and features of our approach. We can
observe that some of the features are interesting for more detailed examination,
e.g. the elegance of the functional approach combined with a reasonable perfor-
mance of our prototype implementation. Despite of few remaining issues, we still
believe that the idea of a functional approach we have presented is interesting,
interim results are promising, and our work on this topic will bring meaningful
accomplishments.

Future Work. So far, we have proposed a theoretical base for modeling and
querying XML. As shown in this paper there are still issues to be solved, in
particular the ability to treat mixed element content and developments with the
prototype implementation. We find these topics apparently as the most impor-
tant for the moment.

Acknowledgments. This research has been partially supported by the grant of
The Czech Science Foundation (GAČR) No. GA201/09/0990.

References

1. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible markup language (XML) 1.0 (fourth edition), August 2006.
http://www.w3.org/TR/2006/REC-xml-20060816.

2. L. Cardelli. Handbook of Computer Science and Engineering, chapter 103: Type
Systems. Digital Equipment Corporation, 1997.

3. D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML
Query Use Cases, March 2007. http://www.w3.org/TR/2007/NOTE-xquery-use-
cases-20070323/.

4. J. Cowan and R. Tobin. XML information set (second edition), April 2004.
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

5. D. C. Fallside, P. Walmsley, H. S. Thompson, D. Beech, M. Maloney, N. Mendel-
sohn, P. V. Biron, and A. Malhotra. XML Schema 1.0, October 2004.
http://www.w3.org/XML/Schema.

6. M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0
and XPath 2.0 Data Model, September 2005. http://www.w3.org/TR/xpath-
datamodel/.

7. M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and
XPath 2.0 Data Model, January 2007. http://www.w3.org/TR/2007/REC-xpath-
datamodel-20070123/.

8. M. Franceschet. XPathMark: An XPath Benchmark for the XMark Generated
Data. In S. Bressan, S. Ceri, E. Hunt, Z. G. Ives, Z. Bellahsene, M. Rys, and
R. Unland, editors, XSym, volume 3671 of Lecture Notes in Computer Science,
pages 129–143. Springer, 2005.

XML-λ Type System and Data Model Revealed 141
12 Loupal, P.

9. P. Loupal. Experimental DataBase (ExDB) Project Homepage.
http://swing.felk.cvut.cz/~loupalp.

10. I. Mlýnková, K. Toman, and J. Pokorný. Statistical Analysis of Real XML Data
Collections. In COMAD ’06: Proceedings of the 13th International Conference
on Management of Data, pages 20 – 31. Tata McGraw-Hill Publishing Co. Ltd.,
December 2006.

11. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema
languages using formal language theory. ACM Trans. Internet Techn., 5(4):660–
704, 2005.

12. J. Pokorný. XML functionally. In B. C. Desai, Y. Kioki, and M. Toyama, editors,
Proceedings of IDEAS2000, pages 266–274. IEEE Comp. Society, 2000.

13. J. Pokorný. XML-λ: an extendible framework for manipulating XML data. In
Proceedings of BIS 2002, pages 160–168, Poznan, 2002.

14. J. Stoklasa and P. Loupal. Benchmarking a lambda calculus based XPath proces-
sor. Yet unpublished.

15. The World Wide Web Consortium. W3C Homepage. http://www.w3.org.
16. J. Zlatuška. Lambda-kalkul. Masarykova univerzita, Brno, Česká republika, 1993.

Combination of TA- and MD-algorithm
for Efficient Solving of Top-K Problem

according to User’s Preferences

Matúš Ondreička and Jaroslav Pokorný

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

matus.ondreicka@mff.cuni.cz,jaroslav.pokorny@mff.cuni.cz

Combination of TA- and MD-algorithm
for Efficient Solving of Top-K Problem

according to User’s Preferences

Matúš Ondreička and Jaroslav Pokorný

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

matus.ondreicka@mff.cuni.cz,jaroslav.pokorny@mff.cuni.cz

Abstract. In this article we focus on efficient solving of searching the
best K objects in more attributes according to user’s preferences. Local
preferences are modelled with one of four types of fuzzy function. Global
preferences are modelled concurrently with an aggregation function. We
focused on searching the best K objects according to various user’s pref-
erences without accessing all objects. Therefore we deal with the use of
TA-algorithm and MD-algorithm. Because of local preferences we used
B+-trees during computing of Fagin’s TA-algorithm. For searching the
best K objects MD-algorithm uses multidimensional B-tree, which is also
composed of B+-trees. We developed an MXT-algorithm and a new data
structure, in which MXT-algorithm can effectively find the best K ob-
jects by user’s preferences without accessing all the objects. We show
that MXT-algorithm in some cases achieves better results in the number
of accessed objects than TA-algorithm and MD-algorithm.

1 Introduction and Motivation

Nowdays, huge amounts of data in various web systems grow exponentially.
Users try to find various objects in this data, such as laptops, cars, apartments,
holidays, etc. These objects have various attributes. According to the values of
attributes, users search for the best objects for them. However, each user prefers
objects with other values of attributes [7][6].

Most users look for only a few objects that are best suited to their preferences.
Therefore, it is advantageous according to the user’s preferences directly to find
the best K objects. Making it possible to find the best K objects from the set
of objects X, it must be possible to judge which objects are better or worse for
a user U . Every user prefers objects with own preferences, which are modelled
locally by means of a fuzzy function and globally by means of an aggregation
function [9]. In this paper we assume that the set of objects of the same type
is stored in one data structure. The problem of searching the best K objects
according to values of different attributes in the same time is indicated as a
top-K problem [4][7].

In the next, text we describle using B+-tree [2] for sorting objects acording
to fuzzy function for supporting the local preferences [1][3][10].

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 142–153, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

Combination of TA- and MD-algorithm ... 143
2 M. Ondreička and J. Pokorný

We deal also with methods and data structures for effective solution of top-
K problem [1]. We discuss the problem of finding the best K objects without
accessing all the objects via Fagin’s TA-algorithm [4] and MD-algorithm [1]. For
application of local preferences TA- and MD-algorithm are using data structures
based on B+-trees [1]. These structures are independent from user’s preferences.
Moreover, it is possible to update these structures easily and quickly.

We developed a MXT-algorithm and a new data structure based on B+-
trees, in which MXT-algorithm can effectively find the best K objects by user’s
preferences without accessing all the objects. We will show advantages of the
new MXT-algorithm and a comparison with the results of other algorithms. We
show that MXT-algorithm in some cases achieves better results in the number
of accessed objects than TA- and MD-algorithm.

A background concerning modelling user preferences is contained in Sec-
tion 2. Section 3 presents use of B+-tree for approaching the top-K problem.
Sections 4 and 5 are devoted to explaining principles of Fagin’s TA-algorithm
and MD-algorithm. In Section 6 we describe our new MXT-algorithm and new
data structure, which is used during computation of MXT-algorithm. Section
7 presents the results of the tests and compares MD-algorithm with Fagin’s
algorithms. Finally, Section 8 provides some suggestions for a future work.

2 User’s preferences

In this article, we suppose a set of objects X with m attributes A1, ..., Am.
Every object x ∈ X has m values ax

i , ..., a
x
m of corresponding attributes. When

searching for the best K objects, a user U chooses user’s preferences, which
determine suitability of the object x ∈ X in dependence with its m values of
attributes ax

1 , ..., a
x
m for user U . In accordance to user U preferences, it is possible

to find the best K object for user U . We are using a model of user preferences,
which is based on concatenation of local preferences and global preferences. At
first, user U decides how he prefers objects according to each of attributes Ai,
i = 1, ...,m, and then chooses a relationship between these attributes.

Local preferences reflect how the object is preferred according to only one
attribute. In this work, we used a mapping fi: dom(Ai)→ [0, 1]. In general, we
differentiate two possible attribute types.

Nominal attribute has a finite range of possible values, usually strings. For a
nominal attribute Ai user U has to rate each value of the attribute. For example,
it is mark of some products. Local preference of user U for the nominal attribute
Ai is represented as mapping fU

i (x): ax
i → [0, 1], where i = 1, ...,m.

Ordinal attribute has some natural value ordering, other than lexical ordering.
Typical examples are integer numbers. Domain of ordinal attribute is subset of
continuous interval. The local preference of user U for the ordinal attribute Ai

is represented by fuzzy function [9]. We denoted it also as fU
i (x) the user’s fuzzy

function for i-th attribute. In this case, fuzzy functions have a scheme fU
i (x):

ax
i → [0, 1], where i = 1, ...,m.

144 Matúš Ondreička, Jaroslav Pokorný
Title Suppressed Due to Excessive Length 3

For the worst object x ∈ X, fU
i (x) = 0 holds and for the best one, fU

i (x)
= 1. Comparing fU

i (x1) and fU
i (x2) of two objects x1 and x2, it is possible to

decide which of them is suitable for the user U according to the value of i-th
attribute. When fU

i (x1) > fU
i (x2), then x1 is more suitable. When fU

i (x1) =
fU

i (x2), then x1 and x2 are equally suitable.
Article [10] describes four types of user’s fuzzy functions, which are sufficient

for entering user’s preference of ordinal attributes. It is showed in Figure 1. There
are nondecreasing function, nonincreasing function, function in the form of hill,
and function in the form of valley. In next text we suppose only these four types
of user’s fuzzy functions.

Fig. 1. Four used types of fuzzy functions: nondecreasing, nonincreasing, hill, valley.

Global preferences express how the user U prefers objects from X according
to all attributes A1, ..., Am. On the set of objects X, we consider aggregation
function @ with m variables p1, ..., pm specified as @(p1, ..., pm) : [0, 1]m → [0, 1].
For the user U with his user fuzzy functions fU

1 , ..., f
U
m, a user rating function

@U originates by means of substitution of pi = fU
i (x), i = 1, ...,m. Then, for

every x ∈ X @U (x) = @(fU
1 (x), ..., fU

m(x)). With @U (x) it is possible to evaluate
global rating of each object x ∈ X.

With aggregation function, a user U can define the mutual relations of the
attributes. For example, we can use arithmetic average. For implementation of
user’s influence to the aggregate function, it is possible to use weighted average,
where weights u1, ..., um of single attributes A1, ..., Am determine how the user
prefers single attributes, @(x) = u1·p1+...+um·pm

u1+...+um
. When the user does not care

about i-th attribute Ai when rating the objects, he can then put 0 into the
aggregate function, i.e. ui = 0.

In this work, every user U express his preference as functions fU
1 , ..., f

U
m and

@U . Every object x ∈ X has its own special global rating @U (x), a measure of
pertinence for the user U . In this way, it is possible to find the best K objects
for the user U . When there are more objects with the same rating as rating of
the best K-th object, a random object is chosen.

3 Usage of B+-tree

For application of local user’s preferences we need a data structure, from which it
is possible to obtain objects according to user’s fuzzy function fU in descending
order according to fU . Let the objects of the set X be indexed in the B+-tree
[2] according to the values of attribute A [1][3][10].

Combination of TA- and MD-algorithm ... 145
4 M. Ondreička and J. Pokorný

Fig. 2. Ordering interpretation of four used types of fuzzy functions.

Every object x ∈ X is indexed by the key k ∈ dom(A), a value of which is
equal to a value of attribute ax of object x, i.e. k = ax. For a key k, in general,
more objects with the same A attribute value can exist in X. Therefore, we use
the object array, in which are stored objects with the same value of the key k.
For every key k there is a pointer to corresponding object array.

Since the leaf nodes of the B+-tree are linked in two directions [2], it is
possible to cross the B+-tree through the leaf level and to get all the keys.
According to course of user’s fuzzy function fU , which is one of four types [10],
we can obtain objects in the following different ways (Figure 2).

1. Nondecreasing function. In this case, we have to cross the leaf level of the B+-
tree from the right to the left. It is possible to get the pairs (x, fU (x)) in the
descending order according to the user’s preference fU , because ax ≤ ay ⇒
fU (x) ≤ fU (y) holds.

2. Nonincreasing function. In this case, we have to cross the leaf level of the B+-
tree from the left to the right. It is possible to get the pairs (x, fU (x)) in the
descending order according to the user’s preference fU , because ax ≥ ay ⇒
fU (x) ≤ fU (y) holds.

3. Function in the form of hill. In this case, we must find key k in leaf level
of B+-tree. Key k is the nearest point from maximum of fuzzy function fU .
From the key k we cross the leaf level in two ways concurrently from k to
both borders of the B+-tree as in previous two cases.

4. Function in the form of valley. In this case, we have to cross the leaf level
of the B+-tree in two ways concurrently from both borders to the key k in
to inside of leaf level. Key k is the nearest point from minimum of fU .

In general, fU cannot be monotone in its domain. In this case, the domain
can be divided into continuous intervals (also leaf level of B+-tree), where fU

is monotone on each of these intervals. From the intervals, objects are obtained
concurrently according to fU as well as for monotone fuzzy function [1].

4 Fagin’s TA-algorithm

Fagin et al. describe in [4] top-K algorithms, which solve top-K problem without
searching of all objects in set X. Algoritms assume that the objects from the set
X are, together with values of their m attributes A1, ..., Am, stored in m lists

146 Matúš Ondreička, Jaroslav Pokorný
Title Suppressed Due to Excessive Length 5

L1, ..., Lm. Each i-th list Li contains pairs (x, ax
i). Lists L1, ..., Lm are sorted

in descending order according to the values of attributes ax
1 , ..., a

x
m of objects

x ∈ X. The aggregate function @ must be monotone according to the ordering
in lists [4][1], e.g. weighted average. Then Fagin’s algorithms can find the best
K objects with regard to existing aggregate function @ without making |X| ·m
accesses into the lists L1, ..., Lm [4].

Fagin’s algorithm TA (threshold algorithm) needs to access the lists L1, ...,
Lm sequentially and also directly. With the sequential access, TA searches the
lists step by step from the top to the bottom and obtains pairs (x, ax

i). For every
object x, which is detected for the first time in obtained pair (x, ax

i), TA obtains
the missing attribute values of the object x by a direct access to the other lists.

TA uses the list TK , in which it keeps the best actual K objects ordered ac-
cording to their value of @(x). During the run of TA a threshold Th is counted,
which is calculated by means of inserting the last seen values of attributes
alast
1 , ..., alast

m in the lists L1, ..., Lm, respectively, at the sequential access to the
aggregate function Th = @(alast

1 , ..., alast
m). Rating of the K-th best object in TK

we denote MK . When Th ≤ MK , TA is able to stop and returns TK as the list
of the best K objects. TA can finish before it comes to the end of all the lists
[4]. TA-algorithm is described by the following pseudo-code.

Input: Lists L1, ..., Lm, Aggregation @, int K;
Output: List TK;
var List TK; {temporary list of objects}
begin

while(|TK| < K or Th > MK)do
(x, ax

i) = getNextPair(L1, ..., Lm); {it obtains next pair from
alast

i = ax
i ; one of the lists L1, ..., Lm} [1][5]

Th = @(alast
1 , ..., alast

m);
if(x /∈ TK)then

get the missing attribute values of the object x;
if(|TK| < K)then

insert object x to the list TK on the right place according to @(x);
else

if(@(x) > MK)then
begin

delete K-th object from the list TK;
insert object x to the list TK on the right place by @(x);

end;
endwhile;

end.

4.1 Application of local preferences

Original Fagin’s algorithms offer the possibility of rating objects only globally
with an aggregate function @ and to find the best K object for the user U only
according to his global preference. For the support of the local preferences, it

Combination of TA- and MD-algorithm ... 147
6 M. Ondreička and J. Pokorný

is necessary that every i-th list Li contains pairs (x, fU
i (x)) in descending order

according to user’s fuzzy function fU
i (x).

For application of local user’s preferences, we use B+-tree (see Section 3).
We use as the lists L1, ..., Lm a list of m B+-trees B1, ..., Bm, where in B+-
tree Bi all objects are indexed by values of i-th attribute Ai. Moreover, this
structure is common for all users. A particular user U only specifies his local
preferences with fuzzy functions fU

1 , ..., f
U
m and global preferences with function

@U . Then the algorithm sequentially obtains pairs (x, fU
i (x)) from B+-trees

B1, ..., Bm according to preferences of user U [1].
Algorithm TA also uses the direct access to the lists L1, ..., Lm, where for

object x it is needed to obtain its unknown value ax
i from Li. B+-tree is not able

to make this operation, because it is not possible to obtain the value directly.
For a realization of direct access we can use, for example, an associative array.

5 Multidimensional B-tree and MD-algorithm

In [1] we describe a top-K algorithm, which solves top-K problem with using
the multidimensional B-tree [8] (MDB-tree) without searching all the objects.
MDB-tree with m levels allows to index set of objects X by attributes A1, ...,
Am. Each level of MDB-tree is composed from B+-trees containing key values
from domain of one attribute. It is showed in Figure 3. Ordering of attributes in
levels of MDB-tree is very important [1] (see Section 6).

We use the mark ρ(ki) for the pointer of the key k in B+-tree in i-th level of
MDB-tree. If i < m, then ρ(ki) refers to B+-tree in (i+ 1)-th level of MDB-tree.
If i = m, i.e. B+-tree is in the last level of MDB-tree, then ρ(ki) refers to object
array, where objects with the same values of all the m attributes are stored.

For explicit identification of B+-tree in MDB-tree, we use the sequence of
keys, which is called tree identifier [1]. An identifier of B+-tree in i-th level is
(k1, ..., ki−1). Tree identifier (∅) identifies B+-tree in the first level of MDB-tree.

Furthermore, in MDB-tree we use the best rating B(S) of B+-tree S [1]. By
the best rating B(S) of B+-tree S with identifier (k1, ..., ki−1) in the i-th level
of MDB-tree, we understand a rating of not yet known object x, calculated with
@(ax

1 , ..., a
x
m), where the first i − 1 attribute’s values of object x are k1, ..., ki−1

and values of other attributes are 1, i. e. B(S) = @(k1, ..., ki−1, 1, ..., 1).

Fig. 3. Set of eleven objects with values of three attributes stored in MDB-tree.

148 Matúš Ondreička, Jaroslav Pokorný
Title Suppressed Due to Excessive Length 7

5.1 MD-algorithm

Obtaining all the objects from MDB-tree is possible with a recursive procedure,
which searches MDB-tree in depth-first search. The work [1] includes a sequence
of statements with proofs, which shows that it is possible to find best K objects
in MDB-tree with the recursive procedure findTopK according to a monotone
aggregate function @ and without getting all the objects.

Let the keys from the B+-tree S with the identifier (k1, ..., ki−1) be the keys
obtained one by one by a run of procedure findTopK. The pointer ρ(p) refers
to B+-tree P in the next level or to the object array P . Let MK be the rating
of the K-th best object in temporary list TK of best K objects. If B(P) ≤MK

holds, then the procedure findTopK(MDB-tree, (k1, ..., ki−1)) can stop in S.
The following pseudo-code describes MD-algorithm.

Input: MDBtree MDB-tree, Aggregation @, int K;
Output: List TK;
var List TK; {temporary list of objects}
begin

findTopK(MDB-tree, (∅), @, K); return TK;
end.

procedure findTopK(MDBtree MDB-tree, Identifier (k1, ..., ki−1),
Aggregation @, int K);

while(there is next key in B+-tree)do {with identifier (k1, ..., ki−1)}
ki = getNextKey(MDB-tree, (k1, ..., ki−1));

{ρ(ki) refers to B+-tree P or it refers to the object array P}
if(|TK| = K and B(P) ≤MK)then return;
if(P is B+-tree)then

findTopK(MDB-tree, (k1, ..., ki−1, ki), @, K);
if(P is object array)then

while(there is the next object x in P)do
if(|TK| < K)then

insert object x to TK to the right place according to @(x);
else

if(@(x) > MK)then begin
delete K-th object from the list TK;
insert object x to the list TK on the right place by @(x);

end;
endwhile;

endwhile;
end.

procedure getNextKey(MDBtree MDB-tree, Identifier (k1, ..., ki−1));
choose the next key ki with next highest value of Ai

in B+-tree of MDB-tree with identifier (k1, ..., ki−1);
return ki ;

end.

Combination of TA- and MD-algorithm ... 149
8 M. Ondreička and J. Pokorný

5.2 Application of local preferences

From B+-tree we can obtain keys in descending order according to user’s fuzzy
function fU

i (x). Because MDB-tree is composed from B+-trees, it is possible to
use application of the local user preferences directly in MD-algorithm by finding
the K best objects in MDB-tree. The following procedure getNextKey changes
the original MD-algorithm.

procedure getNextKey(MDBtree MDB-tree, Identifier (k1, ..., ki−1),
FuzzyFunction fU

i);
choose the next key ki with next highest value of i-th fuzzy function
in B+-tree of MDB-tree with identifier (k1, ..., ki−1);
return ki;

end.

6 Combination of TA and MD-algorithm

Here we describe a new top-K algorithm, which is based on combination of MD-
algorithm and Fagin’s TA-algorithm.

MD-algorithm has the best results, when the objects stored in MDB-tree are
distributed regularly (uniform distribution) [1]. When attributes of objects have
different size of their actual domains, order of attributes in levels of MDB-tree is
very important for efficiency of MD-algorithm. It is better for MD-algorithm to
build MDB-tree with smaller actual domains in its higher levels and attributes
with bigger actual domains in its lower levels. When most of the object’s at-
tributes have their actual domains of big sizes, the usage of MD-algorithm is not
suitable solution of top-K problem. In this case, the usage of TA-algorithm is
more suitable. In general, we can suppose according to size of attribute’s domains
of a known object set, which of the algorithms will achieve better results.

Example 1. We have set of 8 822 flats for rent in Prague. Flats have four
important attributes for users, District, Type, Area, and Price. These attributes
have sizes of domains, ‖dom(District)‖ = 10, ‖dom(Type)‖ = 10, ‖dom(Area)‖
= 229, ‖dom(Price)‖ = 411, respectively. When a user prefers attributes District
and Type, then it is better to store flats in MDB-tree and to use MD-algorithm.
On the other hand, when a user prefers attributes Area and Price, then it is
better to use TA-algorithm and to store flats in Fagin’s lists.

In general, the attribute with a small domain size is nominal attribute and
attribute with big domain size is ordinal attribute (see Section 2). It is valid also
in Example 1, attributes District and Type are nominal attributes, Area and
Price are ordinal attributes.

6.1 MXT-algorithm

Therefore we developed a new top-K algorithm, MXT-algorithm, which is based
on combination of MD-algorithm and Fagin’s TA-algorithm. MXT-algorithm

150 Matúš Ondreička, Jaroslav Pokorný
Title Suppressed Due to Excessive Length 9

Fig. 4. Two nominal attributes are stored as MDB-tree and two ordinal attributes are
stored as Fagin’s lists. Under dotted line there is part of the data structure, in which
the MXT-algorithm does not access during its computation.

uses a new data structure, which is composed of MDB-tree and Fagin’s sorted
lists. This data structure is shown in Figure 4.

We suppose a set of objects X with m attributes A1, ..., Am. Attributes
A1, ..., An are nominal attributes and An+1, ..., Am are ordinal attributes. At-
tributes A1, ..., An are stored in MDB-tree with n levels. Instead of the following
m− n levels of MDB-tree, groups of m− n Fagin’s sorted lists are used. These
lists contain pairs (x, ax

i) with values of attributes An+1, ..., Am.
MXT-algorithm is developed on the base of MD-algorithm. First n attributes

A1, ..., An are searched in the same way as during the computation of MD-
algorithm. In every B+-tree there are references into the groups of m−n Fagin’s
sorted lists. In each of these groups a new instance of TA-algorithm is run.

The efficiency of MXT-algorithm is based on idea that we do not need to
obtain the best K objects from each the group of m − n Fagin’s sorted lists.
We need to obtain only objects with better rating as MK (rating of the K-th
best object in global list TK). There, it is sufficient that local threshold T local

h

(in each the group of m − n Fagin’s sorted lists) with MK is compared. Local
TA-algorithm is able to stop earlier in group of Fagin’s sorted lists, T local

h ≤MK

holds earlier than in original TA-algorithm. (see Figure 4, dotted line).
The following pseudo-code describes the MXT-algorithm, where procedure

getNextKey is the same as in the MD-algorithm (see Section 5).

Input: MDBtree MDB-tree, Aggregation @, int K;
Output: List TK;
var List TK; {temporary list of objects}
begin

findTopK(MDB-tree, (∅), @, K);
return TK;

end.

Combination of TA- and MD-algorithm ... 151
10 M. Ondreička and J. Pokorný

procedure findTopK(MDBtree MDB-tree, Identifier (k1, ..., ki−1),
Aggregation @, int K);

while(there is next key in B+-tree)do {with identifier (k1, ..., ki−1)}
ki = getNextKey(MDB-tree, (k1, ..., ki−1));

{ρ(ki) refers to B+-tree P or it to group of Fagin’s lists P}
if(|TK| = K and B(P) ≤MK)then return;
if(P is B+-tree)then

findTopK(MDB-tree, (k1, ..., ki−1, ki), @, K);
if(P is group of Fagin’s lists)then

while(|TK| < K or T local
h > MK)do

(x, ax
i) = getNextPair(L1, ..., Lm); {it obtains next pair from

alast
i = ax

i ; one of the lists L1, ..., Lm}
T local

h = @(alast
1 , ..., alast

m);
if(x /∈ TK)then

get the missing attribute values of the object x;
if(|TK| < K)then

insert object x to the list TK on the right place by @(x);
else

if(@(x) > MK)then
begin

delete K-th object from the list TK;
insert object x to the list TK oaccording to @(x);

end;
endwhile;

endwhile;
end.

6.2 Application of local preferences

Analogously to MD-algorithm in attributes A1, ..., An it is possible to use ap-
plication of the local user preferences. Procedure getNextKey changes MXT-
algorithm in the same way as in the MD-algorithm (see Section 5.1).

In attributesAn+1, ..., Am it is also possible to use application of the local user
preferences. Analogously to TA-algorithm, we use as the group of m−n Fagin’s
lists Ln+1, ..., Lm, a list of m− n B+-trees Bn+1, ..., Bm, and for a realization of
direct access we can use, for example, an associative array.

7 Implementation and Experiments

We implemented top-K TA-algorithm, MD-algorithm and MXT-algorithm using
lists based on B+-trees. The implementation has been developed in Java and it
uses data structures created in memory. Important for us was the number of
accesses into used data structures during calculation of top-K algorithms.

We tested TA-, MD- and MXT-algorithm. During the tests, we used uniform
preferences. We used user’s fuzzy functions with course ”f(x)=x” as user’s local
preferences, and we used the arithmetic average as user’s global preference.

152 Matúš Ondreička, Jaroslav Pokorný
Title Suppressed Due to Excessive Length 11

Fig. 5. Normal and regular distribution of the attributes values.

At first, we tested two sets of 100 000 objects with 5 attributes with normal
and regular (uniform) distribution of attribute values. We used TA-algorithm,
MD-algorithm and three variants of MXT-algorithm, i.e. MXT 3, MXT 2, MXT
1, because attribute types were not important there. For example, variant MXT
3 uses first 3 attributes as nominal attributes, which are stored as MDB-tree
with 3 levels and other 2 attributes are stored as groups of 2 Fagin’s sorted lists.
Figure 5 shows results of this test.

The best results have been achieved with MXT 3 and MD-algorithm for the
set of objects with the regular distribution of the attributes values. Test for sets
of objects with normal distribution of attribute values has shown that the new
MXT-algorithm can in some cases also achieve worst results.

Afterwards, we tested the sets of 8 822 flats for rent in Prague (see Section 6,
Example 1). There were two nominal attributes with a small domain size and two
ordinal attributes with a big domain size. We used TA-algorithm, MD-algorithm
and the most suitable variant of MXT-algorithm (as MXT 2 in previous test).
Figure 6 shows results of this test for uniform preferences, and for real user’s
preferences, where user prefers flats of some types in specific districts, with
smaller prices and bigger areas. These two ordinal attributes were preferred
according to non-monotone fuzzy functions.

The best results has been achieved with MXT-algorithm for both of used
preferences. The test has shown that MXT-algorithm is most efficient solution of
top-K problem for some cases. Especially it is efficient for a set of objects, which
has nominal attributes with a small domain size and several ordinal attributes
with a big domain size.

Fig. 6. Number of accesses objects during finding the best flats in Prague.

Combination of TA- and MD-algorithm ... 153
12 M. Ondreička and J. Pokorný

8 Conclusion

We developed a new MXT-algorithm, which can effectively find the best K ob-
jects by user’s preferences without accessing all the objects. We implemented
top-K algorithms TA-, MD- and MXT-algorithm with support of user’s pref-
erences. Results of MXT-algorithm have shown to be comparable with those
obtained by others used top-K algorithms.

MXT-algorithm is based on combination TA- and MD-algorithm. According
to type of object attributes it is possible to store a set of objects in MDB-tree, in
Fagin’s lists or in data structure, which MXT-algorithm uses. Moreover, MXT-
algorithm can find the best K objects in each of these data structures. In this
meaning, TA- and MD-algorithm are extreme cases of MXT-algorithm.

Motivation of future research can be to find application of developed al-
gorithms in various data structures. The article [11] deals with solving of the
top-K problem in XML. Application of our algorithms in XML might be also
interesting.

References

1. Ondreička, M., Pokorný J.: Extending Fagin’s algorithm for more users based on
multidimensional B-tree. In: Proc. of ADBIS 2008, P. Atzeni, A. Caplinskas, and H.
Jaakkola (Eds.), LNCS 5207, Springer-Verlag Berlin Heidelberg, 2008, pp. 199214.

2. Bayer, R., McCreight, E.: Organization and Maintenance of Large Ordered Indices,
Acta Informatica, Vol. 1, Fasc. 3, 1972 pp. 173-189.

3. Eckhardt, A., Pokorný, J., Vojtáš, P.: A system recommending top-k objects for
multiple users preference. In Proc. of 2007 IEEE International Conference on Fuzzy
Systems, July 24-26, 2007, London, England, pp. 1101-1106.

4. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
Journal of Computer and System Sciences 66 (2003), pp. 614-656.

5. Gurský, P., Lencses, R., Vojtáš, P.: Algorithms for user dependent integration of
ranked distributed information. Proceedings of TED Conference on e-Government
(TCGOV 2005), Pages 123-130, 2005.

6. Bruno, N., L. Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible
databases. in: Proc. of International Conference on Data Engineering (ICDE), 2002,
pp. 369 - 380.

7. Chaudhuri, S., Gravano, L., Marian, M.: Optimizing Top-k Selection Queries over
Multimedia Repositories. IEEE Trans. On Knowledge and Data Engineering, Au-
gust 2004 (Vol. 16, No. 8) pp. 992-1009.

8. Scheuerman, P., Ouksel, M.: Multidimensional B-trees for associative searching in
database systems. Information systems, Vol. 34, No. 2, 1982.

9. Vojtáš, P.: Fuzzy logic aggregation for semantic web search for the best (top-k)
answer, Capturing Intelligence, Volume 1, Chapter 17, 2006, Pages 341-359.

10. Gurský P., Vaneková V., Pribolová J.: Fuzzy User Preference Model for Top-
k Search. Proceedings of IEEE World Congress on Computational Intelligence
(WCCI), Hong Kong, FS0377, 2008.

11. Marian, A., Amer-Yahia, S., Koudas, N.: Adaptive Processing of Top-k Queries in
XML. Data Engineering, 2005. ICDE 2005. Proceedings. 21st International Confer-
ence on 05-08 April 2005 Page(s):162 - 173.

Efficiency Improvement of Narrow Range Query
Processing in R-tree?

Peter Chovanec and Michal Krátký

Department of Computer Science
Technical University of Ostrava, Czech Republic
{peter.chovanec,michal.kratky}@vsb.cz

Efficiency Improvement of Narrow Range Query
Processing in R-tree?

Peter Chovanec and Michal Krátký

Department of Computer Science
Technical University of Ostrava, Czech Republic
{peter.chovanec,michal.kratky}@vsb.cz

Abstract. Indexing methods for efficient processing of multidimensional
data are very requested in many fields, like geographical information
systems, drawing documentations etc. Well-known R-tree is one of the
multidimensional data structures. The R-tree is based on bounding of
spatial near points by multidimensional rectangles. This data structure
supports various types of queries, e.g. point and range queries. The range
query retrieves all tuples of a multidimensional space in the defined query
box. Narrow range query is an important type of the range query includ-
ing at least one narrow dimension. Despite many variants of R-trees,
narrow range query processing is inefficient. In this paper, we depict a
modification of Signature R-tree: data structure for the narrow range
query processing. This data structure applies signatures for a descrip-
tion of tuples stored in a tree’s page. We present an improvement of this
technique.

Key words: multidimensional data structure, narrow range query, R-
tree, signature

1 Introduction

Multimedia databases have become increasingly important in many application
areas such as medicine, CAD, geography, and molecular biology. Processing of
multi-dimensional data is requested in almost all fields. There are a lot of ap-
plications of multi-dimensional data structures [15], e.g., data mining [10], term
indexing [5, 12], XML documents [8, 11], text documents and images [4]. Query
processing in high-dimensional spaces has therefore been a very prominent re-
search area over the last few years. A number of new index structures and algo-
rithms have been proposed.

There are two major approaches to multi-dimensional indexing [16]: data
structures for indexing metric spaces and data structures for indexing vector
spaces. The first approach includes, for example, n-dimensional B-tree [7], R-
tree [9], R*-tree [2], Signature R-tree [13], X-tree [3], UB-tree [1] and BUB-
tree [6]. The second one includes M-tree [4], for example.

? Work is partially supported by Grant of GACR No. 201/09/0990
? Work is partially supported by Grant of GACR No. 201/09/0990

c© K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 154–165, ISBN 978-80-01-04323-3.
Czech Technical University in Prague, Dept. of Computer Science & Eng., 2009.

Efficiency Improvement of Narrow Range Query Processing in R-tree 155

A multi-dimensional data structure often supports the range query. This
query may be written as the following pseudo SQL statement:
SELECT * FROM T WHERE ql1 ≤ t1 ≤ qh1 AND . . . AND qln ≤ tn ≤ qhn.

The narrow range query is special type of the range query, where at least
one dimension is narrow. In Figure 1, we see examples of query boxes for the
narrow range queries in spaces with the dimensions n = 2 and n = 3, respectively.
Another example of this query is the following SQL statement: SELECT * FROM
<table name> WHERE 1 < a0 < 10000 AND a1 = 2 AND a2 = 3

narrow query
hyperblocks

Fig. 1. Examples of the narrow range queries in spaces with the dimensions n = 2 and
n = 3, respectively.

In paper [13], we depicted that the narrow range query processing is rather in-
efficient in current multidimensional data structures. Signature R-tree, handling
point data, is introduced in this work. In our paper, we describe an improve-
ment of the Signature R-tree called ESR-tree. In Section 2, we review existing
approaches for the narrow range query processing. Section 3 presents our im-
provement of the Signature R-tree. Section 4 reviews possibilities of signature
building for this data structure. In Section 4.3, we outline some implementation
details of the improved data structure. In Section 5, we put forward experimen-
tal results. Finally, we conclude with a summary of contributions and discussion
about future work.

2 Existing Approaches

In this section, we describe two data structures which have been often applied for
the narrow range query processing. These data structures, B-tree and Signature
R-tree, are compared with the novel ESR-tree in Section 5.

2.1 B-trees

The B-tree is an m-ary balanced tree introduced by Bayer in 1972. This struc-
ture guarantees the logarithmic complexity for the item searching. Due to the
ordering, B-tree enables searching only by one attribute. In many cases, it is

156 Peter Chovanec, Michal Krátký

necessary to search by more than one attribute. Therefore, there are some im-
provements of B-tree for searching of multidimensional data, e.g. B-tree with
compound keys. In this case, we create one compound index with keys related
to each narrow dimension. Obviously, this technique is not as general as mul-
tidimensional data structures. For example, we create the compound index for
dimensions 1, 3, and 10 for a 10-dimensional tuple collection. It means, narrow
range query with these narrow dimensions is as efficient as possible. Moreover,
no intermediate results are created. If want to process a query with the narrow
dimensions: 1, 3, 10, and 5, we retrieve an intermediate result again. If we want
to solve a general query without the intermediate result, we should create n!
compound indices. Therefore, we do not suppose this technique in our article.

If the range query is concerned in B-tree, we must index each attribute (or
dimension) in a separate B-tree. The range query is processed by a sequence of
searching in B-trees, and individual intermediate results are joined. Obviously,
there are two issues. If the size of an intermediate result >> the overall result,
this processing is rather inefficient. The second issue is the size of the index file.
In Section 5, we use this implementation for a comparison with our method. We
propose that the index file built in this way is 3× larger in average than the
index file of a multidimensional data storage.

2.2 Signature R-trees

Since 1984 when Guttman proposed his method [9], R-trees have become the
most cited and most used as reference data structure in this field. The R-trees
can be thought of as an extension of B-trees in a multi-dimensional space. It
corresponds to a hierarchy of nested n-dimensional minimum bounding boxes
(MBB). There are many approaches based on an improvement of original R-
trees. In [13], Signature R-tree was introduced for more efficient processing of
narrow range queries.

T

B
l
:B

h
 S

indexed
tuples

index – hierarchy
of MBBs and
n-dimensional

signatures

B
l
:B

h
 S...

B
l
:B

h
 S B

l
:B

h
 S... B

l
:B

h
 S B

l
:B

h
 S...

T... T T......

...

T T... T T.........

... ...

n-dimensional
signature of tuples in

the region

super-region n-dimensional signature of
tuples in the super-region

region
(MBB)

 tuples in the region

...

Fig. 2. Structure of the Signature R-Tree

Efficiency Improvement of Narrow Range Query Processing in R-tree 157

Signature R-tree is a variant of the R-tree including multidimensional signa-
tures for a more efficient filtration of irrelevant tree nodes. In this case, irrele-
vant node does not contain any tuple of the query box. The multidimensional
signature contains a signature of tuples in the node for each dimension (see Sec-
tion 4.1). A general structure of the Signature R-tree is presented in Figure 2.
Leaf nodes include tuples clustered into MBBs (MBB is defined by two multi-
dimensional points). These MBBs are clustered into super-MBBs as well. This
hierarchy is finished by MBBs in the root node. Consequently, MBBs are stored
in inner nodes. In the case of Signature R-tree, the multidimensional signature
is assigned to each MBB. It means that each inner node item includes the MBB
definition together with multidimensional signature, where this signature is su-
perimposed with signatures of the node’s children. Consequently, such a tree
contains two hierarchies, the hierarchy of MBBs and hierarchy of signatures.

In [13], we show that many irrelevant nodes are skipped during the narrow
range query processing if we compare Signature R-tree and R-tree. However, we
distinguish some negative consequences of this data structure. If signatures are
long, the inner node capacity is low. This issue results in a degeneration of the
tree: inner node can contain only a trivial number of items and, therefore, the
height of the tree is very high. Similar issue appears if we use more hash functions
for each signature. Therefore, in this paper, we introduce an improvement of
Signature R-tree supporting these refinements.

3 ESR-Tree – An Improvement of Signature R-tree

3.1 Introduction

Signature R-tree significantly decreases the number of processed irrelevant nodes,
however the number > 0 (see Section 6). In [13], we introduced the following
quality measurement of the range query processing (so called relevance): cQ =
Nr/Np, where Nr is the number of relevant nodes, Np is the number of all
processed node. Obviously, if only relevant nodes are processed during a range
query then cQ = 1.

If we want to reach the most efficient cQ value, we must use longer signatures,
a higher number of hash functions (it means more signatures is related to one
dimension), signatures with different lengths for different levels of a tree, and
various hashing functions building the signatures. However, in the case of Sig-
nature R-tree, each this idea extends the size of inner node item and decreases
the inner node capacity. Therefore, our improvement of Signature R-tree, called
ESR-tree, removes signatures from inner nodes: the signatures are stored in a
persistent array. A structure of the novel ESR-tree is presented in Figure 3.

The isolation of signatures from R-tree enables to enlarge signatures although
the node capacity is not decreased. Moreover, we can use signatures with different
lengths for different levels of the tree. In our paper, we use the inverted level
number for the signature labeling. Consequently, we use S0 as the label of an
MBB’s signature, S1 as the label of a super-MBB signature, and so on.

158 Peter Chovanec, Michal Krátký

T

B
l
:B

h

indexed
tuples

index – hierarchy
of MBBs

B
l
:B

h...

B
l
:B

h
B
l
:B

h... B
l
:B

h
B
l
:B

h...

T... T T......

...

T T... T T.........

... ...

super-region

n-dimensional signatures

region
(MBB)

 tuples in the region

...

Signatures

...

...
Signatures

Fig. 3. A structure of the ESR-tree

3.2 ESR-tree Operations

Operations Insert, Delete and Find (or point query) are handled by algo-
rithms of the selected R-tree variant. In the case of the Insert operation (see
Algorithm 1), we must update the signature of the MBB which was changed. In
this way, we must update signatures for each level of the tree from the current
node to the root node. In this algorithm, we use the following variables: tuple is
an inserted tuple, Z represents a stack containing the current path of the tree,
and N is the current node.

Signature index may be created after all tuples are inserted into the tree.
This bulkload algorithm must preordered process all tree nodes and create the
signature for each MBB. Obviously, signatures may be created for an arbitrary
level of the tree.

A common issue of ESR-tree is that the query processing efficiency of a
common range query is not influenced by signatures. Signature R-tree includes
signatures in tree’s nodes, therefore, signatures are read from the secondary
storage although these signatures are not used for the node filtering. On the
other hand, in the case of the narrow range query, we apply signatures for the
more efficient filtration of irrelevant tree nodes.

Let us suppose the range query algorithm. Intersection operation computes
whether an MBB is intersected by the query box in the linear time, on the other
hand, AND operation is used as a test of the signature matching. If both operations
are matched, the child node is processed.

Delete operation is based on the algorithm of the R-tree variant used. It is
necessary to mention that after the item is deleted, unperfect signature may be
related to the leaf node containing the deleted item. It means that the signature
may contain bits describing a tuple that is not included in the R-tree anymore.
Signatures for higher levels of the tree may be unperfect as well. Consequently, we
may correct the signatures related the changed node. The complete description
of this operation is out of scope of this paper.

Efficiency Improvement of Narrow Range Query Processing in R-tree 159

Algorithm 1: Insert algorithm

N = root ;1

Z.Push (N);2

splitted ← true ;3

while ¬Z.IsEmpty() do4

if splitted then5

N .InsertItem();6

if N .IsOverfull() then7

N .GenerateSignature();8

NewNode.GenerateSignature();9

end10

else11

N .AddSignature(tuple.GetSignature());12

splitted ← true ;13

end14

if N .IsLeaf() then15

N = Z.Pop();16

end17

if ¬N .IsLeaf() then18

if Z.LastMBB() then19

Z.Push(N);20

end21

else22

N = Z.Pop();23

end24

end25

end26

end27

4 Signature Generating

4.1 Signature Methods

The signature is a bit string formed from the terms which are used to index
records in a data file [14]. Each term is converted to a bit string by the hashing
function. The number of 1’s in the signature S is called weight γ(S). In the case
of a query, we build the query signature in the same way as record signatures
have been created. If the query signature has 1’s in the same positions as the
record signature, the record can be considered as a potential match. There can
be a case where a record signature matches a query signature, however the record
itself does not satisfy the query. This is called the false drop.

4.2 Signature Generating for the Irrelevant Node Filtering

The Hamming distance is applied for measuring of the signatures similarity.
Signature data structures like S-tree [14] are based on clustering of signatures

160 Peter Chovanec, Michal Krátký

with the minimal Hamming distance. However, R-tree clusters tuples into MBBs.
Nodes do not contain tuples with the minimal Hamming distance. If signatures
of tuples in an MBB include many true bits, then the MBB’s signature contains
almost only true bits. In this case, irrelevant node filtering is not successful.
Consequently, one true bit is set for one tuple coordinate and the query signature
includes only one true bit for each dimension. In other word, weight of the query
signature is rather low.

Our improvement is based on the following assumptions. Query signature
weight should be closed to 0.5 as it is known in signature methods [14]. However,
signature weight for all tuples of an MBB should be closed to 0.5 as well. These
two assumptions are in a contradiction. In this paper, we set more bits as well as
we use more hashing functions for one tuple coordinate. In Section 5, we show
the efficiency improvement of these novel features.

4.3 Implementation

In the case of ESR-tree, signatures are stored out of the R-tree. In this way,
tree height is not influenced by the signature length. The relation between an
MBB and its signatures is provided by a conversion table. The conversion table
contains couples 〈node index in the R-tree, signature index in the persistent data
structure〉.

5 Experimental Results

In our tests1, we compare ESR-tree with Signature R∗-tree, R∗-tree, and the
proposed B-tree-based implementation. We have implemented B+-tree, R∗-tree,
and ESR-tree in C++. Three collections have been chosen for these tests. We
created two random collections with million tuples of dimensions 2 and 10. The
third collection represents a set of paths in an XML document [11]. These paths
are modeled as 10-dimensional tuples. All collections have been inserted into the
multidimensional data structure (see Table 1 for index characteristics). In our
experiments, we do not use the Signature R-tree, we use signatures with one
true bit generated for one tuple coordinate as the Signature R-tree uses this. We
call this signature as the simple signature. This fact has a significant impact on
DAC as well as query processing time. However, result relevances are credible
for a comparison of Signature R-tree and ESR-tree.

Efficiency of the narrow range query processing was measured by DAC, cQ,
and query processing time. Tested range queries have various number of narrow
dimensions |Nrq|. The 2 kB page size and random accesses are applied in the
case of all data structure, therefore, we can measure DAC by the number of
MBs read in the secondary storage.

1 The experiments were executed on an AMD Opteron 865 1.8Ghz, 2.0 MB L2 cache;
2GB of DDR333; Windows 2008 Server.

Efficiency Improvement of Narrow Range Query Processing in R-tree 161

Table 1. Characteristics of the R-tree indices

1st Random 2nd Random Real
Collection Collection Collection

Dimension 2 10 10
Coordinate value range < 0, 109 > < 0, 5 · 104 > < 0, 109 >
Result size < 31, 40 > < 1, 1 > < 0, 12000 >
#Nodes 120 499 852
Inner item capacity 102 48 48
#Items 8,513 15,793 21,612
Node utilization 69.6% 65.9% 52.8%
#Leaf nodes 8,394 15,295 20,761
Leaf item capacity 170 92 92
#Leaf items 999,904 1,000,000 1,031,080
Leaf node utilization 70.1% 71.1% 54.0%
#Leaf signatures – S0 8,394 15,295 20,761
#Overleaf signatures – S1 117 483 821

5.1 1st Random Collection

In Table 2, DAC results are presented for the random collection of dimension 2.
We use 2 hashing functions and 3 true bits in the signatures. Results are average
values of 10 various queries. We measure DAC for R-tree (RT) and signature
data structure (SA).

Table 2. 1st Random Collection: DAC

Signature DAC [MB]
Length Simple ESR-tree – S0 ESR-tree – S1 ESR-tree – S0 AND S1

S0/S1 RT SA RT + SA RT SA RT + SA RT SA RT + SA RT SA RT + SA
128/1,024 0.55 0.01 0.56 0.57 0.02 0.59 0.83 0.01 0.84 0.57 0.04 0.61
256/3,072 0.36 0.02 0.38 0.23 0.05 0.28 0.80 0.03 0.83 0.22 0.08 0.30
384/7,168 0.28 0.04 0.32 0.14 0.07 0.21 0.65 0.07 0.72 0.12 0.13 0.25
512/10,240 0.25 0.05 0.30 0.11 0.10 0.21 0.59 0.10 0.69 0.09 0.17 0.26
640/12,288 0.20 0.06 0.26 0.10 0.12 0.22 0.57 0.12 0.69 0.09 0.21 0.30
768/14,336 0.20 0.07 0.27 0.10 0.15 0.25 0.54 0.14 0.69 0.08 0.24 0.32

R-tree without signature filtering: 0.83

Obviously, DAC is 4× lower if we compare the R-tree and ESR-tree with the
leaf signature of the length 512. DAC of signature reading is an essential part of
overall DAC, therefore, we can not use longer signatures. Table 3 including the
query processing time supports this conclusion. This time is 5.25× lower than
in the case of R∗-tree. Obviously, we see that ESR-tree saves 20% of the query
processing time of the simple signature.

Another view of the trend is the higher values of relevance. We use the vari-
ous count of hashing functions, more true bits of the signature as well as various
signature lengths. In Table 3, relevances for leaf and overleaf nodes are presented.

162 Peter Chovanec, Michal Krátký

Relevance rapidly increases with the increasing signature length. Summary Ta-
ble 4 presents results for the relevance > 0.9. We suppose that the signature
weight should be closed to 0.5. In the case of this experiment, we get the signa-
ture weight in the range 0.38 – 0.51.

Table 3. 1st Random Collection: results for 2 hashing functions, 3 true bits

Signature Time [s] cQ of S0 cQ of S1

Length Simple S0 S1 S0 AND S1 Simple S0 S1 S0 AND S1

128/1024 0.045 0.064 0.069 0.042 0.19 0.18 0.14 0.18 0.67
256/3072 0.037 0.020 0.061 0.020 0.26 0.36 0.14 0.37 0.70
384/7168 0.022 0.020 0.050 0.020 0.31 0.61 0.16 0.66 0.87
512/10240 0.022 0.016 0.044 0.011 0.34 0.85 0.16 0.89 0.94
640/12288 0.020 0.016 0.045 0.014 0.41 0.93 0.17 0.95 0.94
768/14336 0.020 0.019 0.044 0.016 0.44 0.96 0.17 0.98 0.98

R-tree: 0.084 R-tree: 0.14 R-tree: 0.67

Table 4. 1st Random Collection: summary table

Signature Results for cQ > 0.9
Type Signatures Length DAC – RT [MB] DAC – SA [MB] Time [s]

2 hash/ 3 bits 640/12288 0.087 (0.054+ 0.033) 0.207 0.0140
2 hash/ 1 bit - - - -
3 hash/ 1 bit 512/4096 0.093 (0.057 + 0.036) 0.178 0.0140
2 hash/ 6 bits 768/10240 0.088 (0.052+ 0.036) 0.217 0.0078

5.2 2nd Random Collection

The second collection includes 10-dimensional randomly generated tuples. 3 nar-
row dimensions of range queries are used. In this case, we can use shorter signa-
tures than in the case of the first test. It seems that this 10-dimensional space is
sparser than the 2-dimensional space, therefore, shorter signatures can describe
the tuple distribution as well. In Table 5, we can see that DAC of ESR-tree is
much more lower than DAC of R∗-tree. The query processing time is improved
9×. Obviously, we can see the importance of overleaf signatures in this case.
Summary Table 6 presents results for the relevances > 0.9.

5.3 Real Collection

Third collection contains a set of paths in an XML document. We test 15 range
queries Q1–Q15 with various narrow dimensions. We use the same signature

Efficiency Improvement of Narrow Range Query Processing in R-tree 163

Table 5. 2nd Random Collection: DAC

Signature DAC [MB]
Length Simple ESR-tree – S0 ESR-tree – S1 ESR-tree – S0 AND S1

S0/S1 RT SA RT + SA RT SA RT + SA RT SA RT + SA RT SA RT + SA
96/1024 4.62 0.69 5.31 4.35 1.39 5.74 23.25 0.95 24.20 3.99 2.23 6.22
128/1536 3.20 0.93 4.13 2.21 1.85 4.06 16.84 1.43 18.27 1.44 2.67 4.11
160/2048 2.58 1.16 3.74 1.71 2.31 4.02 10.92 1.91 12.83 0.71 2.91 3.62
192/2560 2.20 1.39 3.59 1.62 2.78 4.40 5.69 2.38 8.07 0.36 3.01 3.37
224/3072 1.99 1.62 3.61 1.60 3.24 4.84 2.79 2.86 5.65 0.20 3.22 3.42
256/3584 1.89 1.85 3.74 1.59 3.70 5.29 1.58 3.34 4.92 0.14 3.56 3.70

R-tree without signature filtering: 25.28

Table 6. 2nd Random Collection: summary table

Signature Results for cQ > 0.9
Type Signatures length Relevance DAC – RT [MB] DAC – SA [MB] Time [s]

2 hash/ 3 bits 256/3584 0.95 0.140 (0.004 + 0.136) 3.564 0.0780
2 hash/ 1 bit 352/2048 0.95 0.214 (0.004 + 0.210) 2.499 0.0936
3 hash/ 1 bit 160/1376 0.90 0.261 (0.004 + 0.257) 2.444 0.1092
2 hash/ 6 bits 352/4096 1.00 0.342 (0.004 + 0.338) 4.924 0.1420

lengths as in the case of the second collection. In Table 7, DAC and cQ are
put forward. We use signature lengths 256/3584 with 2 hashing functions and 3
true bits. We see that the cQ of Signature R∗-tree significantly increases in the
comparison with the common R∗-tree. Obviously, this relevance is not sufficient
in many cases. ESR-tree overcomes the Signature R∗-tree and R∗-tree.

5.4 The Comparison with B-tree

In this test, we compare the efficiency of ESR-tree and B-tree (one B-tree was
created for each dimension). We use the queries from the previous test. The join
operation takes the most processing time (see Table 8). Obviously, B-tree is much
more efficient in the case of small intermediate results. With the increasing size of
intermediate results, join processing time increases. Table 8 includes information
about all queries. We measure DAC for B-trees (BT) and tuple array (TA)
including whole tuples. Obviously, ESR-tree clearly overcomes this B-tree based
implementation, DAC is 7.5× lower in the case of ESR-tree. Another important
issue is the index size. In Table 9, we see that the index size of the ESR-tree is 3×
lower in all tested cases. The experiments show an significant improvement, e.g.
applications of two hashing functions causes double increasing of the relevance.

6 Conclusion

In this article, we present an improvement of Signature R-tree, data structure for
the efficient processing of narrow range queries. Moreover, we introduce an en-
hanced signature creation that provides more efficient filtration characteristics.
Since signatures are relevant only in higher levels of a tree, it is not appropri-
ate to handle them to each MBB of an inner node. We show some advantages

164 Peter Chovanec, Michal Krátký

Table 7. Real Collection Test: comparison of R∗-tree, Signature R∗-tree, and ESR-tree

Query Result R∗-tree Simple ESR-tree – S0 AND S1

Sizes cQ DAC [MB] cQ DAC [MB] cQ DAC [MB]

Q1 2000 0.76 1.04 1.00 0.82+0.07 1.00 0.78+0.34
Q2 1201 0.26 13.77 0.80 4.88+1.03 0.98 3.91+2.71
Q3 12000 0.64 15.82 1.00 10.43+1.19 1.00 10.22+2.98
Q4 3 0.27 0.09 1.00 0.06+0.003 1.00 0.04+0.08
Q5 10 0.36 0.09 1.00 0.07+0.003 1.00 0.05+0.08
Q6 6 0.03 0.91 0.13 0.29+0.06 1.00 0.06+0.24
Q7 10 0.13 0.30 0.88 0.13+0.02 1.00 0.07+0.17
Q8 18 0.48 0.18 0.63 0.16+0.01 1.00 0.09+0.13
Q9 1 0.0006 6.02 0.003 1.43+0.45 0.08 0.13+0.74
Q10 27 0.03 3.99 0.23 0.68+0.29 0.79 0.23+0.70
Q11 43 0.03 5.19 0.21 1.13+0.38 0.87 0.35+1.11
Q12 13 0.18 0.36 0.58 0.19+0.02 1.00 0.11+0.24
Q13 1 0.06 0.13 1.00 0.07+0.005 1.00 0.03+0.11
Q14 24 0.50 0.14 1.00 0.11+0.004 1.00 0.07+0.14
Q15 3 0.14 0.15 1.00 0.07+0.01 1.00 0.05+0.11

Average 0.26 3.21 0.69 1.87 + 0.24 0.91 1.08 + 0.66

of longer signatures, however longer signatures mean the lower node’s capacity.
Consequently, we put signatures of each MBB in a special data structure: a per-
sistent array. In our experiment, we test range queries and compare the efficiency
of our approach with R-tree, Signature R-tree, and B-tree based implementation.
From DAC point of view, ESR-tree is up to 3× more efficient than R-tree and
6× than B-tree. Obviously, DAC of the signature retrieval is often rather high.
Therefore, we want to develop a more efficient data structure for the storage of
signatures.

References

1. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts.
In Proceedings of WWCA’97, Tsukuba, Japan, 1997.

2. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient
and robust access method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD, pages 322–331.

3. S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index structure for
high-dimensional data. In Proceedings of the 22nd International Conference on
VLDB, pages 28–39, San Francisco, U.S.A., 1996. Morgan Kaufmann Publishers.

4. P. Ciaccia, M. Pattela, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of 23rd International Conference
on VLDB, pages 426–435, 1997.

5. V. Dohnal, C. Gennaro, and P. Zezula. A Metric Index for Approximate Text
Management. In Proceedings of IASTED International Conference Information
Systems and Database – ISDB 2002, 2002.

Efficiency Improvement of Narrow Range Query Processing in R-tree 165

Table 8. Real Collection Test: results of the B-tree-based implementation

Query |Nrq| Intermediate Result DAC (BT + TA) Time Time
Result Sizes Size [MB] join [s] [s]

Q1 2 2000; 1031080; 2000 19.80 (15.90 + 3.90) 9.91 14.22
Q2 2 12000; 2539; 1201 2.58 (0.24 + 2.35) 0.13 0.27
Q3 1 12000; 12000 23.63 (0.19 + 23.44) 0 1.91
Q4 4 1031080; 105161; 10; 3; 3 17.51 (17.50 + 0.01) 4.06 4.07
Q5 3 1031080; 105161; 10; 10 17.51 (17.49 + 0.02) 4.06 4.07
Q6 2 7512; 126; 6 0.14 (0.13 + 0.01) 0.031 0.032
Q7 4 1031080; 279205; 13; 10; 10 20.19 (20.17 + 0.02) 4.73 4.73
Q8 3 1031080; 279205; 18; 18 20.20 (20.17 + 0.04) 4.79 4.79
Q9 2 25500; 1; 1 0.41 (0.41 + 0.002) 0.093 0.094
Q10 2 37843; 104; 27 0.65 (0.60 + 0.05) 0.14 0.14
Q11 2 12715; 43; 43 0.30 (0.21 + 0.08) 0.046 0.047
Q12 4 1031080; 251465; 69340; 13; 13 20.84 (20.81 + 0.03) 4.86 4.86
Q13 4 1031080; 105161; 9; 1; 1 17.502 (17.50 + 0.002) 4.06 4.06
Q14 4 1031080; 4324; 25; 24; 24 16.00 (15.95 + 0.05) 3.77 3.77
Q15 4 1031080; 105161; 10; 3; 3 17.51 (17.50 + 0.01) 4.06 4.06

Average 1024 12.98 (10.98 + 1.99) 2.98 3.41

Table 9. Sizes of indexes

Dimension Data Collection R-tree + SA [MB] B-trees + Tuples Array [MB]

2 1st Random 16.89 (16.6 + 0.29) 40.95 (2 × 16.6 + 7.63)
10 2st Random 65.1 (61.6 + 3.49) 204.2 (10 × 16.6 + 38.2)
10 Real 89.38 (84.4 + 4.98) 204.4 (10 × 16.6 + 38.4)

6. R. Fenk. The BUB-Tree. In Proceedings of 28rd VLDB International Conference
on VLDB, Hongkong, China, 2002.

7. M. Freeston. A General Solution of the n-dimensional B-tree Problem. In Proceed-
ings of SIGMOD International Conference, San Jose, USA, 1995.

8. T. Grust. Accelerating XPath Location Steps. In Proceedings of ACM SIGMOD
2002, Madison, USA, June 4-6, 2002.

9. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of ACM SIGMOD 1984, Annual Meeting, Boston, USA, pages 47–57.
ACM Press, June 1984.

10. N. Karayannidis, A. Tsois, T. Sellis, R. Pieringer, V. Markl, F. Ramsak, R. Fenk,
K. Elhardt, and R. Bayer. Processing Star Queries on Hierarchically-Clustered
Fact Tables. In Proceedings of VLDB Conf. 2002, Hongkong, China, 2002.

11. M. Krátký, J. Pokorný, and V. Snášel. Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In Current Trends in Database
Technology, Int’l Conference on EDBT 2004, volume 3268. Springer–Verlag, 2004.

12. M. Krátký, T. Skopal, and V. Snášel. Multidimensional Term Indexing for Efficient
Processing of Complex Queries. Kybernetika, Journal, 40(3):381–396, 2004.

13. M. Krátký, V. Snášel, P. Zezula, and J. Pokorný. Efficient Processing of Narrow
Range Queries in the R-Tree. In Proceedings of IDEAS 2006. IEEE CS Press, 2006.

14. Y. Manolopoulos, A. Nanopoulos, and E. Tousidou. Advanced Signature Indexing
for Multimedia and Web Applications. Kluwer, 2003.

15. Y. Manolopoulos, Y. Theodoridis, and V. Tsotras. Advanced Database Indexing.
Kluwer Academic Publisher, 2001.

16. C. Yu. High-Dimensional Indexing. Springer–Verlag, LNCS 2341, 2002.

Author Index

Bača Radim, 23, 32

Eckhardt Alan, 56

Galgonek Jakub, 105

Hassanien Aboul Ella, 13
Horák Zdeněk, 13

Chovanec Peter, 154

Krátký Michal, 32, 154
Kudělka Miloš, 13

Loupal Pavel, 130

Macek Ondřej, 119
Mart́ınek Vladislav, 1
Mlýnková Irena, 90
Moravec Pavel, 80

Nečaský Martin, 90

Ondreička Matúš, 142

Pawlas Martin, 23
Pokorný Jaroslav, 44, 142
Pribolová Jana, 44

Richta Karel, 119

Snášel Václav, 13, 80

Vajbar Michal, 68
Vojtáš Peter, 44

Walder Jǐŕı, 32

Žemlička Michal, 1

	Speeding Up Shortest Path Search in Public Transport Networks
	Vladislav Martínek, Michal Žemlicka
	From Web Pages to Web Communities
	Miloš Kudelka, Václav Snášel, Zdenek Horák, Aboul Ella Hassanien
	Compression of the Stream Array Data Structure
	Radim Baca, Martin Pawlas
	Benchmarking Coding Algorithms for the R-tree Compression
	Jirí Walder, Michal Krátký, Radim Baca
	Translation of Ontology Retrieval Problem into Relational Queries
	Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš
	Various aspects of user preference learning and recommender systems
	Alan Eckhardt
	Using Top Trees For Easy Programming of Tree Algorithms
	Michal Vajbar
	Dimension Reduction Methods for Iris Recognition
	Pavel Moravec, Václav Snášel
	Five-Level Multi-Application Schema Evolution
	Martin Necaský, Irena Mlýnková
	Tequila - a query language for the Semantic Web
	Jakub Galgonek
	The BPM to UML activity diagram transformation using XSLT
	Ondrej Macek, Karel Richta
	 Type System and Data Model Revealed
	Pavel Loupal
	Combination of TA- and MD-algorithm for Efficient Solving of Top-K Problem according to User's Preferences
	Matúš Ondreicka, Jaroslav Pokorný
	Efficiency Improvement of Narrow Range Query Processing in R-tree
	Peter Chovanec, Michal Krátký

