
Charles University in Prague, MFF, Department of Software Engineering
Czech Technical University in Prague, FEE, Dept. of Computer Science & Eng.

VŠB–TU Ostrava, FEECS, Department of Computer Science
Czech Society for Cybernetics and Informatics

Proceedings of the Dateso 2012 Workshop

Databases, Texts

Specifications, and Objects

2012
http://www.cs.vsb.cz/dateso/2012/
http://www.ceur-ws.org/Vol-837/

Sc.

Group

AMPHORA RESEARCH GROUP

A GR

Amphor

Supported by

http://www.mirlabs.org/ http://arg.vsb.cz/ieee-smc/

April 18 – 20, 2012
Zernov, Rovensko pod Troskami

http://www.cs.vsb.cz/dateso/2012/
http://www.ceur-ws.org/Vol-837/
http://www.mirlabs.org/
http://arg.vsb.cz/ieee-smc/

DATESO 2012
c© J. Pokorný, V. Snášel, K. Richta, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Technical editor:
Pavel Moravec, pavel.moravec@vsb.cz
VŠB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science
Department of Computer Science

Page count: 164

Publication: 365th

Impression: 100
Edition: 1st

First published: 2012

This proceedings was typeset by PDFLATEX.
Cover design by Pavel Moravec (pavel.moravec@vsb.cz) and Tomáš Skopal.
Printed and bound in Ostrava, Czech Republic by TiskServis.

Published by MATFYZPRESS publishing house of Faculty of Mathematics and Physics

Charles University in Prague, Sokolovská 83, 186 75 Praha 8, Czech Republic

as its 365th publication.

Workshop Partner

DATESO 2012 workshop proceedings was supported by SoSIReCR project
(CZ1.07/2.4.00/12.0039). The project is co-financed by ESF and Czech state
budget.

SoSIReČR
SOCIAL NETWORK OF COMPUTER SCIENTISTS IN THE REGIONS OF THE CZECH REPUBLIC

The project aims to promote communication and establish cooperation between the Czech IT
communities in academic and corporate sectors. The main output will be a Web portal that will
build a social network of computer scientists., which will differ from the usual social and
professional networks as Facebook or LinkedIn by providing unique tools to search for IT
specialists, to create teams (for joint projects, tenders), and in general to allow cooperation. The
aim of the project activities is to increase the competitiveness of the Czech Republic in the field of
computer science, as well as improvement of the status of IT in the Czech Republic and its
contribution to society.

Personal interconnection of educational and research activities and the cooperation of academic
and applied research are required for high-quality tertiary education and its fruitful cooperation
with industry and Government. From the social network will benefit students and graduates,
scientific personnel, schools, and businesses. It will be possible to search here for a job or an
interesting project, skilled workers or whole teams, even the schools can compare their learning
plans with the situation on the labor market. The social network portal SíťIT will be available for
general public in June, 2012 at https://www.sitit.cz/.

Another component of the project is to support personal meeting of the IT experts in the regions
(both among themselves and with companies), the sharing of experience and the identification of
needs. These are the conferences, regional seminars and workshops, aimed at improving
communication between the academic, corporate and public sector. One of the following activities
are for example Conversations with computer scientists (Hovory s informatiky), organised in the
framework of this project by Institute of Computer Science, Academy of Sciences of the CR.

On the SoSIReČR project cooperate:

Faculty of Mathematics and Physics , Charles University in Prague
Institute of Computer Science , Academy of Sciences of the Czech Republic
Czech Technical University in Prague
The Faculty of Informatics and Statistics , University of Economics, Prague
Higher Vocational School and Technical High School, Šumperk

The social network portal SíťIT will be at disposal at the address https://www.sitit.cz/.

Project (no CZ.07/2.4.00/12.0039) is running in period 01.11.2009 - 31.10.2012.

For more information please visit the sosirecr web pages.

Steering Committee

Jaroslav Pokorný Charles University, Prague
Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Karel Richta Czech Technical University, Prague

Program Committee

Jaroslav Pokorný (chair) Charles University, Prague
Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Karel Richta Czech Technical University, Prague
Vojtěch Svátek University of Economics, Prague
Peter Vojtáš Charles University, Prague
Dušan Húsek Inst. of Computer Science, Academy of Sciences, Prague
Michal Krátký VŠB-Technical University of Ostrava, Ostrava
Tomáš Skopal Charles University, Prague
Pavel Moravec VŠB-Technical University of Ostrava, Ostrava
Irena Mlynková Charles University, Prague
Michal Valenta Czech Technical University, Prague
Pavel Loupal Czech Technical University, Prague
Martin Nečaský Charles University, Prague
Jǐŕı Dvorský VŠB-Technical University of Ostrava, Ostrava
Radim Bača VŠB-Technical University of Ostrava, Ostrava
Tomáš Knap Charles University, Prague

Organizing Committee

Jaroslav Pokorný (chair) Charles University, Prague
Irena Mlynková Charles University, Prague
Martin Nečaský Charles University, Prague
Pavel Moravec VŠB-Technical University of Ostrava, Ostrava

Preface

DATESO 2012, the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming,
was held on April 18 – 20, 2012 in Zernov, Rovensko pod Troskami.

The 12th year was organized by Department of Software Engineering MFF
UK Praha, Department of Computer Science and Engineering FEL ČVUT
Praha, Department of Computer Science VŠB-Technical University Ostrava,
and Working group on Computer Science and Society of Czech Society for
Cybernetics and Informatics. The DATESO workshops aim for strengthening
connections between these various areas of informatics, particularly this year,
Sematic Web, semistructured data, social networks, and formal specifications.

The proceedings of DATESO 2012 are also available at DATESO Web site:
http://www.cs.vsb.cz/dateso/2012/ and CEUR Workshop Proceeding site:
http://www.ceur-ws.org/Vol-837/ (ISSN 1613-0073). The Program Commit-
tee selected 14 papers (11 full papers and 3 posters) from 22 submissions, based
on three independent reviews.

We wish to express our sincere thanks to all the authors who submit-
ted papers, the members of the Program Committee, who reviewed them
on the basis of originality, technical quality, and presentation. We are also
thankful to the Organizing Committee and Amphora Research Group (ARG,
http://www.cs.vsb.cz/arg/) represented by Pavel Moravec, for preparation of
workshop proceedings. Special thanks belong to Czech Society for Cybernetics
and Informatics and the SoSiReČR project (Social Network of the Computer
Scientists in the Regions of the Czech Republic) for their support of publishing
this issue.

April, 2012 J. Pokorný, V. Snášel, K. Richta (Eds.)

http://www.cs.vsb.cz/dateso/2012/
http://www.ceur-ws.org/Vol-837/
http://www.cs.vsb.cz/arg/

Table of Contents

Full Papers

On General-purpose Textual Modeling Languages . 1
Martin Mazanec, Ondřej Macek

P systems: State of the Art with Respect to Representation of
Geographical Space . 13
Zbyněk Janoška, Jiř́ı Dvorský

Methodology for Estimating Working Time Effort of the Software Project 25
Jakub Štolfa, Svatopluk Štolfa, Ondřej Koběrský, Martin Kopka, Jan
Kožuszńık, and Václav Snášel

Developers’ Cooperation based on Terms of Project Description 38
Štěpán Minks, Jan Martinovič, Pavla Dráždilová, Alisa Babskova,
Kateřina Slaninová

Dynamic Time Warping in Analysis of Student Behavioral Patterns 49
Kateřina Slaninová, Tomáš Kocyan, Jan Martinovič, Pavla Dráždilová,
Václav Snášel

The Bayesian Spam Filter with NCD . 60
Michal Pŕılepok, Jan Platoš, Václav Snášel, Eyas El-Qawasmeh

eXolutio: Tool for XML Schema and Data Management 69
Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

Unsupervised Algorithm for Post-Processing of Roughly Segmented
Categorical Time Series . 81
Tomáš Kocyan, Jan Martinovič, Štěpán Kuchař, and Jiř́ı Dvorský

Using OCL in Model Validation According to Stereotypes 93
Zdenek Rybola and Karel Richta

Models for Efficient Semantic Data Storage Demonstrated on Concrete
Example of DBpedia . 103
Ivo Lašek, Peter Vojtáš

Top-k Search Over Grid File . 115
Martin Šumák, Peter Gurský

Posters

On Indexing in Native XML Database Systems . 127
Pavel Loupal, Aleš Kantor, Ondřej Macek, Pavel Strnad

Inter-Project Dependencies in Java Software Ecosystems 135
Antońın Procházka, Mircea Lungu, Karel Richta

On Distributed Querying of Linked Data . 143
Martin Svoboda, Jakub Stárka, Irena Mlýnková

Invited Papers

Social Network Analysis: Selected Methods and Applications 151
Przemyslaw Kazienko

Author Index . 152

On General-purpose Textual Modeling Languages

Martin Mazanec and Ondřej Macek

Department of Computer Science, FEL, Czech Technical University,
Karlovo namesti 13, Praha, Czech Republic
{mazanma3, macekond}@fel.cvut.cz

On General-purpose Textual Modeling Languages

Martin Mazanec and Ondřej Macek

Department of Computer Science, FEL, Czech Technical University,
Karlovo namesti 13, Praha, Czech Republic

{mazanma3, macekond}@fel.cvut.cz

Abstract. Modeling is an important part of the software development
process because it allows for a better understanding of the domain as
well as an understanding of the software structure and function. Among
general-purpose modeling languages dominate the graphical ones such as
UML; textual modeling languages are not as popular though they have
a big potential. In this paper we define the important features of textual
modeling languages and then we compare existing general-purpose tex-
tual modeling languages according to these criteria to show if they meet
their potential. Based on the comparison results and our experience, we
propose our own modeling language called Earl Grey whose basics are
presented in this paper together with our experience from creating this
language.

Keywords: textual modeling, modeling languages, model driven development

1 Introduction

Modeling is an integral part of the software development process, where it helps
to explain the static part of the system (data the software works with and soft-
ware inner structures and states) and the dynamic part of the system (how the
software works). A lot of modeling languages exists; the best known and most
widespread is the Unified Modeling Language (UML) [12], which represents the
so called general purpose modeling languages. Besides the general purpose mod-
eling languages, domain specific languages (DSL) [3] exist, whose aim is to de-
scribe a concrete domain only, therefore their usage is limited. Nevertheless the
DSLs are very popular nowadays, in contrast with UML a lot of DSLs are tex-
tual. This may be caused by the fact that general purpose language is primarily
focused on the possibility to describe many various problems, where the graphi-
cal representation could be helpful even if it could cause a problem later with the
ambiguity of graphical structures and their meanings [2]; moreover many graph-
ical models are extended by some textual information which completes or refines
the model interpretation (e.g. together with UML models the Object Constraint
Language (OCL) [11] is used). On the other hand DSLs are focused on a single
domain and are often integrated into the software code so no ambiguity is al-
lowed. The textual modeling languages (TML) can benefit from the popularity
of DSLs and they can be improved by using DSL’s best practices.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 1–12, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

2 Martin Mazanec, Ondřej Macek

The unambiguity of model symbols and constructs interpretation is particu-
larly important for Model Driven Development (MDD) because transformations
between various models and layers of software require clearly defined inputs in
order to maintain consistency between models. That is why there are attempts
to define the UML language formally [2] or to create a general-purpose modeling
language with exact specification and therefore with no problems with inter-
pretation of models. The attempts for new general-purpose language are often
created as textual languages because the textual languages allow easy formal
definition, and moreover they are not limited by modeling tool capabilities and
maturity [4].

The next reason why the new modeling languages are textual is that it is quite
easy to create a new language and integrate it into a development environment
such as Eclipse or NetBeans; another possible reason for the textual modeling
is the simplicity of creating a textual model (especially for developers which are
used to create programs this way) compared to intrusive form filling in graphical
modeling tools [4].

The textual modeling languages have big ambitions, but there is no frame-
work that could help to evaluate TML capability and maturity; therefore we
define a set of features a TML should have to help us decide which language is
the best one. Requested features are based on our experience and experiments
with existing TMLs and are discussed in detail later, as well as the evaluation
of existing TMLs. Based on the evaluation and experiments with TMLs we de-
cide to create an alternative TML, which will fulfill the defined requirements
better than existing TMLS - its name is Earl Grey (EG). The creation of the
EG language was not an easy task and we had to solve several serious problems
during the language proposal. There is a discussion of these problems together
with possible solutions in this paper.

The paper is organized as follows: a set of required features of TML is defined
in Section 2, then existing TMLs are evaluated in Section 3 and experimental
language is presented in Section 4 together with a discussion of problems con-
nected with the proposal of a general-purpose TML.

2 Required Features of TML

The required features of a TML are defined and discussed in this section. The
list provides an overview of the most important ones and all mentioned features
should be considered during the creation of a TML so it can be used without
problems. Defined features should help with user experience with the language
as well as with its usage in MDD or other automatic processing. It is important
to realize the TML features are different from features of general programming
languages such as Java or C, because the TMLs have a different purpose, and
thus rather than focus on type system or object-orientation of the language, it
is important to focus on other features, such as readability and unambiguity,
which are similar to the features of DSLs [5] [4]. A lot of these features cannot

On General-purpose Textual Modeling Languages 3

be evaluated by an exact measurement, however they can help the user to decide
whether to use the language or not.

The Ability to Describe Whole Software As we focus on general purpose
TMLs the ability to describe whole Software is an important feature of such
a language. According to [6] there are five views on the software - use case,
logical view, process view, development view and physical view. This means each
TML has to be able to describe static and dynamic part of the system from the
customer and developer point of view. There is probably no such a language that
can describe all views at once; rather there is a set of languages each describing
one view of the software. This construction is similar to the UML, where there
are different kinds of models for different views. It is important that a meta-
model of the TML exists so that the constructs used in one view description
can be recognized in another view and so the dependencies between models can
be traced and used. TML has to provide enough expression power to describe
a modeled subject. This criterion is hard to evaluate because there is no way
how to measure the completeness of modeling language (what should be part of
the model and what exceeds models limits); sometimes a compromise between
completeness and easy or general usage has to be made.

The Ability to Describe Various Levels of Abstraction In the MDD we
differ four levels of model abstraction - a level describing a domain on comput-
ing independent level (CIM), a level describing a software independently on a
concrete implementation platform (PIM), a level describing the software in the
context of concrete implementation platform (PSM) and physical deployment;
the last level is the software code itself. In the situation when we use TML, the
last two levels can be considered the same - from our point of view it is not nec-
essary to distinguish between the source code (and configuration files) and the
PSM model, because both defines the same situation with respect to concrete
platform.

The description on the CIM level has to be able to cover the customer do-
main in a way in which the model could be understood by a customer, and at
the same time it should provide enough information for a software analyst or
developer. The description on the PIM level should extend the information from
CIM by adding some implementation details that explain how the software will
be implemented, however they will not be specific for a concrete platform or
framework.

Readability and Simplicity of Language The readability is very impor-
tant for each language especially if it should be used for communication with
a customer (CIM level). The TML has to be easy to read and easy to write so
that models can be created or validated by a customer with almost no technical
skills. The simplicity of a language is not only a customer requirement, because
developers appreciate a language that is easy to write and read, too.

4 Martin Mazanec, Ondřej Macek

Unambiguity of TML Expressions The lack of unambiguity is the main
problem of most graphical modeling languages therefore it is important for each
TML to provide expressions with no ambiguities. This criterion is important for
MDD because the ambiguities in models lead to misinterpretations during model-
to-model transformations or code generation. Part of the expression unambiguity
is the definition of relations between TML constructs - such as the meaning of
association between objects or the extension of one object by another.

Supportability and Integrability The requirement on supportability and
integrability is defined by [5], where supportability means TMLs feasible to pro-
vide DSL support via tools, for typical model and program management, e.g.,
creating, deleting, editing, debugging, transforming and integrability means the
language, and its tools, can be used in unison with other languages and tools
with minimal effort. This is essential to integrating the TML with other facilities
used in the engineering process. An alternative requirement for TML is exten-
sibility, i.e., that the TML can be extended to support additional constructs
and concepts. It means the stable core language that could be extended is over
frequent changes of the language.

We believe the most important features of a TML are readability for peo-
ple, unambiguity of language expressions and capability to describe the whole
software, because these features determines the acceptance of the TML by users.

3 Comparison of Existing TMLs

This section provides an overview of existing textual modeling languages and
their comparison according the criteria defined in Section 2. The overview pro-
vided in this paper could not cover all existing languages; on the other hand
it should provide an representative overview (for next languages evaluation see
[9]).

To provide a comparison we decide to create a set of UML models that repre-
sent different views on a system and that contains several nontrivial constructs
of the language. Three of the used models can be seen in Figure 1 there is a
class model, a model of activities and a state model. The models do not cover
the whole expressive capability of UML, rather they represent only a part from
all models we used for evaluation. The purpose of this chapter is to illustrate
the method and show the basic concepts of presented TMLs.

3.1 PlantUML

PlantUML [13] is a language that allows the describing of UML models directly
within the source code of software. The UML models are then part of the code
(as specialized comments) which is useful as there is one source of information.
PlantUML can describe all required views on the software on different levels
of abstraction; it contains definitions for modeling of use cases, class models,

On General-purpose Textual Modeling Languages 5

+x : int
+y : int

Shape

Point

+add(Shape) : void

ComposedShape

+red : int
+green : int
+blue : int

Color
0..*

0..1

0..*1

+background

(a)

Bulb onBulb off

blow out

on

off

off/turn off

on [is night]/light up

(b)

Eat food

Read a bookRelax on a sofa

still hungry?

[still hungry]

[had enough]

(c)

: House

: Pig: Wolf

3: die

2: collapse

2.1: run

1: create

(d)

Fig. 1: A selection from the set of UML models used for TMLs evaluation. There
is a class model (1a), state model (1b), activity model (1c) and sequence model
(1d) in the figure; together these models represent both the static and dynamic
view on the software.

state and activity models. The integrability is guaranteed by the integration of
PlantUML into Eclipse IDE.

The problem of PlantUML is its readability, as the language copies not only
the UML standard, but also the graphical constructs (see Listing 1) that expect
the user to be familiar with UML. The next problem is with the usage of state
or activity models that become confusing and unreadable.
class Color {

+red : int
+green : int
+blue : int

}
class Shape { ... }
class Point {}
class ComposedShape { ... }

Shape <|-- Point
Shape <|-- ComposedShape
ComposedShape "0..1" o-- "0..*" Shape
Shape "0..*" --> "1" Color

Listing 1: The class model from Figure 1a in the PlantUML language, the usage
of arrows expects the user is familiar with the UML syntax.

6 Martin Mazanec, Ondřej Macek

state "Bulb Off" as bulbOff
state "Bulb On" as bulbOn

[*] --> bulbOff
bulbOff --> bulbOff : off
bulbOff --> bulbOn : on [is night]/light up
bulbOn --> bulbOff : off/turn off
bulbOn --> bulbOn : on
bulbOn --> [*] : blow out

Listing 2: The state model from Figure 1b in the PlantUML language, usage of
pseudostates could be confusing.

(*) --> "Eat food"
if "still hungry?" then

-->[still hungry] "Eat food"
else

->[had enough] === Fork ===
endif
=== Fork === --> "Relax on a sofa"
=== Fork === --> "Read a book"
"Read a book" --> === Join==
"Relax on a sofa" --> === Join==
=== Join== --> (*)

Listing 3: The activity model from Figure 1c in the PlantUML language is hard
to read for larger models.

package testpackage;
class Color

attribute red : Integer;
attribute green : Integer;
attribute blue : Integer;

end;
class Shape end;
class Point specializes Shape end;
class ComposedShape specializes Shape end;

association
navigable role background : Color [1];
role shape : Shape [*];

end;
aggregation

navigable role child : Shape [*];
navigable role parent : ComposedShape [0, 1];

end;
end.

Listing 4: TextUML version of the class model from Figure 1a is quite verbose
therefore it is not simple to create a model.

3.2 TextUML

Text UML [1] is TML that is specialized only at class model, therefore the
capability of describing various views on the software is of course limited. This
limitation is partially compensated by the readability of its models that are read-
able even for non-developers. The grammar of the language can be understood
intuitively as it refers to UML and common programming language, however we
were not able to find any formal definition of the language. In contrast with Plan-
tUML, TextUML does not suppose the user knows UML concepts; on the other

On General-purpose Textual Modeling Languages 7

hand it could be considered verbose as it requires a large amount of information
about classes and relations, even though some of them are not necessary.

3.3 Umple

The main goal of the Umple language [8] is model-oriented programming that is
based on class and state modeling and code generation into Java, Ruby and other
languages. The mentioned models are the only one that can be used for modeling
so some views on software are missing (use cases, processes). The Umple is the
only language that provides the definition of its grammar.

The models are readable and no major complication with language usage
were observed. The Umple language is integrated in Eclipse IDE or the online
service Umple Online [7] can be used.
class Color { class Point {

int red; isA Shape;
int green; }
int blue;

} association {
class Shape { ... } 0..1 ComposedShape -- 0..* Shape;
class ComposedShape { }

isA Shape; association {
void add(Shape e); 0..* Shape -> 1 Color;

} }

Listing 5: Umple version of the class model from Figure 1a, there are no serious
problems.

class Bulb {
state {

Initial {
init -> BulbOff;

}
BulbOff {

on [isNight] -> / {lightUp ();} BulbOn;
off -> BulbOff;

}
BulbOn {

off -> / {turnOff ();} BulbOff;
on -> BulbOn;
blowOut -> Final;

}
Final { }

}
}

Listing 6: Umple version of the state model from Figure 1b, there are no serious
problems.

3.4 yUML

The purpose of the yUML [15] tool is fast and easy creation and publication
of UML class model and activity model diagrams. The language is focused on
only two languages, and its syntax does not allow for modeling large models in a
readable way. Therefore yUML will probably remain a tool for the creation and
sharing of small code snippets rather than become a widely accepted standard
for general-purpose TML.

8 Martin Mazanec, Ondřej Macek

[Color|red;green;blue]<1-0..*[Shape]
[Shape]^[Point]
[Shape]^[ComposedShape]
[ComposedShape] < >0..1 -0..*[Shape]

Listing 7: The yUML version of the class model from Figure 1a shows that a
definition of a class with many attributes could be confusing.

(start)->(Eat food)
(Eat food)-><if>had enough ->|fork|
<if>still hungry ->(Eat food)
|fork|->(Relax on a sofa) ->|join|
|fork|->(Read a book) ->|join|->(end)

Listing 8: The yUML activity model is quite verbose and becomes confusing for
large models.

3.5 Comparison Summary

The experiments show that existing TMLs do not meet the defined criteria and
so the potential of TMLs. The main problem is that the TMLs designer tries
to describe the UML model, not the domain (classes, states etc.) and that is
in contrast with the recommendations of [16] and it reduces the usability and
readability of large models.

Feature PlantUML TextUML Umple yUML EG UML
Multiple views on software yes no no no yes yes
Readability and Simplicity no yes yes no yes yes
Provided Language Definition Grammar - Grammar - Grammar MOF
Integrability Eclipse Eclipse Eclipse/Online Online Eclipse many

Table 1: The overview of experiments with existing TMLs and UML. Most of
the tested TMLs could not describe all views on software; some of them have
problems with readability.

4 Experimental Modeling Language

The previous sections show that the existing TMLs do not meet the potential of
textual modeling and they are not usually able to cover all requested views on
software and their semantic was not specified, rather it was based on a previous
knowledge of UML or common programming languages and intuitive understand-
ing of concepts such as generalization, association or aggregation. Moreover, the
TMLs are often hard to read and write and they are not usable for large models.
Therefore we decide to create our own textual modeling language called Earl
Grey (EG), whose concepts and creation is explained in the following text. In

On General-purpose Textual Modeling Languages 9

this paper we do not focus on formal specification, as it is beyond the scope of
this paper; instead we will focus more on user experience with the language. The
main purpose of this section is to show Earl Grey’s fundamental differences from
other textual modeling languages.

The EG is implemented as an Eclipse plugin using Xtext [14] and the latest
version of its grammar is available on-line [9]. There is an implementation of
class and state model at the moment. Use case and activity model languages
should be finished in the near future, therefore EG should cover all requested
views on the software. All EG models are connected with the CIM or PIM group
of models and the PSM is represented by the code itself.

The next sections discuss problems we have to solve during the Earl Grey
implementation. The majority of the problems are caused by differences in pre-
sentation of information in graph and textual environment. We will compare our
construct mostly with PlantUML because from the aforementioned TMLs, it is
the most complex one.

4.1 Language for Class Modeling

When creating each model we focus on creating a language that will fit the
modeling problem, whereas a lot of TMLs try to rewrite the UML models by text.
A typical example is the PlantUML language and its description of associations
between classes in a class model. There are examples of PlantUML associations
in Listing 1, and you can see the symbols are visually close to the UML symbols,
which is good if users already understand UML but for users who will meet
modeling for the first time these symbols will be confusing. In contrast we decide
to use a textual representation of each association type as you can see in Listing
4.
class Color aggregation

red : int 0..1 ComposedShape /*start */
green : int 0..* Shape /*end*/

end end
class Shape

/*...*/ association
end 0..* Shape
class Point isA Shape 1 Color
end end
class ComposedShape isA Shape

/*...*/
end

Listing 9: EG version of the class model

We believe the representation proposed in Listing 9 is more readable for users
of the language, and they obtain much more information than from PlantUML
symbols. The associations are represented as a sentence so it can be read and
understood with no need to know the meanings of pseudo-graphical symbols
in PlantUML. Next we prefer isA for inheritance indication over extends or
graphical symbol <|--, the reason is educational and expression isA should help
with inheritance usage (the problem of bad inheritance usage is described e.g.
in [10]). We believe the isA construct will improve the design of future code.

10 Martin Mazanec, Ondřej Macek

4.2 Language for State Model

The PlantUML state model language (in Listing 2) does not allow logic struc-
turing of a created model; all states and transitions are in one large cluster that
decreases the readability of the model.

The proposed language allows the splitting of the model into small sections –
one section for each state and its transitions. This structure improves not only the
readability of a model but also the change of transitions. In a PlantUML model
a user has to check the whole model to find the changed transition, whereas in
the EG state model the information is right in the state, where the transition
starts.

The next change we made against PlantUML is that we omit the usage of
graphical symbols – arrows (as in class model) and asterisk that PlantUML uses
for representation of initial and final (pseudo)state of the machine. Instead of
asterisk symbol (*) we use the keywords initial or final.
initial "Init" state "Bulb on"

do off do
light up -> "Bulb off" turn off -> "Bulb off"

end end
end on do

-> "Bulb on"
state "Bulb off" end

off do blow Out do
-> "Bulb off" -> End

end end
on do end

if is night then
light up -> "Bulb on" final "End"

end end
end

Listing 10: EG version of the state model

4.3 Language for Behavior Modeling

To model the behavior is an important part of software modeling. The UML
language provides two models - activity and sequence model; we use them as
templates because we want to preserve user experience with these models and
their expression abilities.

The first sequence model describe the communication (message sending)
among objects (for example of a model see Figure 1d). In the case that we
try to describe the same information textually, we face the problem of low read-
ability of the model because it is hard to provide a textual description of object
interactions so that the model is logically structured and allows easy orientation.
There is the textual version of the model from Figure 1d created according EG
grammar in Listing 11. We believe the list of messages in the EG model becomes
confusing for large models and it will not satisfy the condition of readability. The
expression capability of UML sequence model lies in the lifelines representation
of objects and in the time ordering of messages in left-to-right and top-to-bottom
directions; therefore we try to create a similar user experience in TML, but all
attempts end up with constructs that were unreadable even for small models.

On General-purpose Textual Modeling Languages 11

The visual representation of messages and their sequences provides the next
level of user experience that the textual language cannot provide.
sequence WolfAndPig

Pig creates House
Wolf calls House.collapse

House calls Pig.run
Wolf calls Pig.die

end

Listing 11: The textual sequence model is not as readable as the graphical; in
the case of parallelism or conditional branches it becomes confusing.

Next possibility for the behavior modeling in UML is an activity diagram
that focuses on business processes modeling and workflow representation. The
representation of workflow is quite hard in TML; the existing languages yUML
and PlantUML only rewrite the workflow as a set of activities and transitions be-
tween them, and the resulting model has no logical structure and it is unsuitable
for large models.

The TML is capable of describing activities and transitions in sufficient de-
tail in a single swim-lane; on the other hand there are difficulties with modeling
of decisions (conditional branching), parallelization and cross swim-lanes tran-
sitions and relationships. The reason is the loss of graphical information during
the rewriting of a model from graphical to textual form. When the model is
rewritten we are able to capture the processes, however we lose the information
about their flow.

There is not a solution that will help to solve problems with capturing the
sequence or flow in TML in a readable and structured way. The compromise can
be made between flow capturing and logical structure of a textual model.

5 Conclusion and Future Work

The textual modeling languages are said to have a great potential, and in this
paper we discussed features required for the success of a general-purpose TML
among users, the most important are readability for people and unambiguity of
language expressions.

Already existing TMLs suffer from lack of both important features, which is
often caused by a usage of UML-like symbols in textual language. The UML-like
symbols and concepts are hard to read and often hard to interpret ambiguously.
Therefore we decided to create our own TML that does meet defined criteria.
There are presented several basic language grammar constructions that should
improve the requested features.

Our experience is that it is easy to create a language for class and state
modeling, but on the other hand the creation of a language describing behavior is
very complicated, because it is hard to textually represent sequences of messages
in a structured, well-arranged way. The future work in the area of TML should
focus on finding a way of sufficient behavior modeling, and at the moment a
pseudocode looks to be the best way.

12 Martin Mazanec, Ondřej Macek

References

1. R. Chaves. TextUML Toolkit - textuml. http://sourceforge.net/apps/
mediawiki/textuml/index.php?title=TextUML_Toolkit, 2011.

2. A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a formal modeling
notation. The Unified Modeling Language.«UML»’98: Beyond the Notation, pages
514–514, 1999.

3. M. Fowler. Domain-Specific Languages. Addison-Wesley Professional, 1st edition,
2010.

4. H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel. Text-based
Modeling. 4th International Workshop on Software Language Engineering, 2007.

5. D. Kolovos, R. Paige, T. Kelly, and F. Polack. Requirements for Domain-specific
Languages. Proc. of ECOOP Workshop on Domain-Specific Program Development.

6. P. Kruntchen. The 4+1 View Model of Architecture. IEEE Software, 12:42–50,
1995.

7. T. Lethbridge. Umple Online. http://try.umple.org/, 2012.
8. T. Lethbridge, A. Forward, and O. Badreddin. Umplification: Refactoring to In-

crementally Add Abstraction to a Program. Reverse Engineering (WCRE), 2010
17th Working Conference on, pages 220–224, 2010.

9. O. Macek and M. Mazanec. tea-pot/earl-grey - GitHub. https://github.com/
tea-pot/earl-grey, 2012.

10. B. Meyer. The many faces of inheritance: a taxonomy of taxonomy. IEEE Com-
puter, 29(5):105–108, 1996.

11. Object Management Group. Object Constraint Language 2.0, 2006.
12. Object Management Group. Unified Modeling Language Specification 2.3, 2011.
13. A. Roques. PlantUML. http://plantuml.sourceforge.net/index.html, 2012.
14. The Eclipse Foundation. Xtext. http://www.eclipse.org/Xtext/, 2012.
15. H. Tobbin. Create UML diagrams online in seconds, no special tools needed.

http://yuml.me/, 2012.
16. D. Wile. Lessons learned from real DSL experiments. System Sciences, 2003.

Proceedings of the 36th Annual Hawaii International Conference on, pages 1–10,
2003.

P systems: State of the Art with Respect to
Representation of Geographical Space

Zbyněk Janoška and Jǐŕı Dvorský

Department of Geoinformatics, Palacký University,
Tř́ıda Svobody 26, 771 46, Olomouc, Czech Republic
zbynek.janoska@cdv.cz, jiri.dvorsky@upol.cz

P systems: State of the Art with respect to
Representation of Geographical Space

Zbyněk Janoška and Jǐŕı Dvorský

Department of Geoinformatics, Palacký University,
Tř́ıda Svobody 26, 771 46, Olomouc, Czech Republic
zbynek.janoska@cdv.cz, jiri.dvorsky@upol.cz

Abstract. Membrane computing is an emergent branch of natural com-
puting, taking inspiration from the structure and functioning of a living
cell. P systems, computing devices of this paradigm, are parallel, dis-
tributed and non-deterministic computing models which aim to capture
processes taking place in a living cell and represent them as a computa-
tion. In last decade, a great variety of extensions of model, introduced by
Paun in 1998, were presented. In this paper we present a comprehensive
review of current progress in the field of membrane computing, focusing
on representation of geographical space in P systems. Two approaches
are commonly used in Geographic Information Science (GIS) for repre-
sentation of entities: field-based and object-based. Both approaches are
discussed from the point of P systems and possibilities of using inherent
hierarchical structure of P systems in spatial modeling are mentioned.

Keywords: membrane computing, P systems, Geographical Information Systems, rep-

resentation of space

1 Introduction

Membrane computing represents new and rapidly growing branch of natural
computing, which starts from observation that the processes taking place in a
living cell can be understood as a computation. Membrane computing and its
computational device – P system – were introduced by Păun [32] and gained a lot
of interest in last decade. P systems start from observation, that membrane plays
a fundamental role in the functioning of a living cell. Membranes act as three-
dimensional compartments which delimit various regions of a living cell. They are
essentially involved in a number of reactions taking place inside cell and moreover
act as selective channels of communication between different compartments of a
cell [5].

P systems take inspiration from cell on two levels – the structure and the
functioning. Structure of cell is represented by its membranes and functioning is
governed by biochemical reactions. Every P system therefore has three main e-
lements: a membrane structure, where object evolve according to given evolution
rules [35]. Some authors add fourth basic element of membrane systems – com-
munication [5, 34]. Communication is always encoded in rules (they are called

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 13–24, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

14 Zbyněk Janoška, Jǐŕı Dvorský

communication rules instead of evolution rules) and will be dealt with later
in the text. From the point of view of Geographical Information Systems (GIS),
communication (e.g. topology) is essential feature of most real world phenomena.

Fig. 1. Graphical representation
of P system, [46]

Simple example of P system is depicted
in Fig. 1. Membrane structure is hierarchi-
cally arranged set of membranes, contained
in a distinguished outer membrane, called
skin membrane. System is surrounded by
the environment, which may collect objects
leaving the system, or in some variants of P
systems, the environments can actively sup-
port system with objects [4, 11]. Membrane
structure can be represented in many ways
– as Venn diagram, as rooted tree, or by lin-
ear notation. Membrane structure of P sys-
tem depicted in Fig. 1 in linear notation is
written as [1 [2 [3]3]2]1. Membranes de-
limit regions, with which they are in one-to-
one relation. Therefore the terms membrane
and region are mostly interchangeable. Each
membrane is identified by its label, which can
be with membranes in one-to-many relation.
The position of inner membranes does not

matter; we assume, that in membrane there is no ordering, everything is close
to everything else [35]. Please note the difference with the first law of geography:
everything is related to everything else, but near things are more related than
distant things [39]. This applies not only to membranes, but also to objects in
them. From the biological point of view, inner membranes are considered floa-
ting free in their parental membranes and therefore definition of topological or
metric relations between them makes no sense. This is of course not valid for
geographical space and we will discuss it later.

Second basic element of P systems are objects. By objects in biological sense
are meant chemicals, ions, molecules etc. Those substances are present in a cell
in enormous amount, but the ordering again does not matter. What matters is
the concentration, the population, the number of copies of each molecule [35].
Abstracting from biological reality, we represent each substance by a symbol
from given alphabet and since the multiplicity matters, instead of objects we use
multisets of objects. Common notation of multisets in P systems is following: if,
for example, objects a, b, c are present in 7,2 and 5 copies, they will be represented
by multiset a7b2c5.

In basic variant of P systems, multisets of objects are considered to be floating
in inner regions of membrane systems. They evolve by the means of evolution
rules, which are localised with the regions of the membrane structure. There are
three main types of rules [35]: (1) multiset-rewriting rules, (2) communication

P systems: State of the Art . . . 15

rules and (3) rules for handling membranes. In this section only first type of
rules will be described.

Multiset-rewriting rules take form u → v, where u and v are multisets of
objects. For example, rule ab → cd2 says, that one copy of a and one copy of b
are consumed and one copy of c and two copies of d are produced. A number of
possible extensions of rules will be discussed later.

Two crucial features of P systems have to be mentioned at this point. As
mentioned earlier, in membranes everything is close to everything else. Therefore,
if one instance of an object can be processed by two or more rules, the rule to
be applied is chosen non-deterministically. All rules have the same probability
to be chosen. The rules also have to be used in maximally parallel manner.

More specifically, the objects are assigned to rules, non-deterministically
choosing the objects and the rules, until no further assignment is possible. An
evolution step in a given region of membrane system consists of finding the ma-
ximal applicable multiset of rules, removing from region all objects specified in
the left hand of the chosen rules and producing the objects on the right hand
side of the rules.

After giving short introduction to basic notions of P systems, let us continue
to more detailed survey on spatial properties of P systems. In Sect. 2 we will give
a formal definition of transition P system and in Sect. 3 some possible extensions
of P systems are presented. In Sect. 4 we will discuss how geographical space
is represented in Geographical Information Systems, in Sects. 5 and 6 we will
describe object-based and field-based representation of geographical space in P
systems and in Sect. 7 we will discuss how hierarchical structure of P systems
can be used to represent geographical phenomena. We will conclude with some
final remarks in Sect. 8.

2 Transition P system

P systems based on application of multiset-rewriting rules are called transition
P system. Formally, transition P system is a construct of the form:

Π = (O,C, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm, io), (1)

where:

– O is the finite and non-empty alphabet of objects,
– C ⊂ O is the set of catalysts,
– µ is a membrane structure, consisting of m membranes, labeled 1, 2, . . . ,m;

one says, that the membrane structure, and hence the system, is of degree
m,

– w1, w2, . . . , wm are strings over O representing multisets of objects present
in regions 1, 2, . . . ,m of membrane structure,

– R1, R2, . . . , Rm is finite set of evolution rules associated with regions 1, 2, . . . ,m
of membrane structure,

16 Zbyněk Janoška, Jǐŕı Dvorský

– io is either one of the labels 1, 2, . . . ,m and then the respective region is the
output region of the system, or it os 0 and then the result of the computation
is collected in the environment of the system.

A sequence of transitions of P system constitutes a computation. A computation
is successful if it halts, it reaches a configuration where no rule can be applied
to the existing objects, and output region io still exists [35].

The rules are of form u → v, where u ∈ O and v ∈ (O × Tar), where
Tar = {here, in, out}. Target indications Tar extend transition P system in
following way: rule ab→ cheredineout consumes one instance of each a and b and
produces one copy of c in current membrane, one copy of d in a child of current
membrane and one copy of e in the parent of current membrane. If current
membrane is skin membrane, object e is send to environment of the system. If
current membrane does not have a child, rule can not be applied.

Another extension comes from the existence of catalysts. Catalysts are ob-
jects, which participate in a chemical reaction, but are not consumed or produced
by it. They just enable the application of rule. Rule with catalysts takes following
form: ac→ bc, with object c being the catalyst.

One more extension must be mentioned at this place, and that is dissolu-
tion of membranes. During dissolution, membrane disappears and its content
(both objects and inner membranes) are left free in the surrounding membrane.
Dissolution rule takes form u→ vδ, where δ denotes the action of dissolution.

3 Possible Extensions of P systems

In this section we will mention some elementary extensions of P system, which
however constitute only a fracture of possibilities. We refer reader to The P
systems Webpage [45] for complete list of publications and further information.
Already in the text, three types of rules were mentioned. Evolution rules were
briefly covered in previous sections.

Communication rules were introduces in [34]. Basic idea of communicating
P systems is, that computation is achieved only by transporting object between
membranes. Direct inspiration from biology are symport and antiport. When two
chemical pass through membrane only together, in the same direction, the pro-
cess is called symport. When the two chemicals pass only with help of each other,
but in opposite directions, the process is called antiport [34]. Symport rules take
a form (ab, in) or (ab, out), and antiport rules take a form (a, out; b, in), where
a, b are object from alphabet of all possible objects. Meaning of rules is follo-
wing: for symport rule (ab, in) or (ab, out), if objects a, b are present in current
membrane, they are sent together into child (or parent, in second case) of the
membrane. For antiport rule (a, out; b, in), if a is present in current membrane
and b is present in the parent of a membrane, than a exits current membrane
and b enters it. Universality of P systems with symport and antiport have been
proven [34] and simplified version of communication, conditional uniport have
been studied [40]. Comprehensive review of communication strategies in P sys-
tems can be found in [41].

P systems: State of the Art . . . 17

Third type of rules are rules for handling membranes. Dissolution of mem-
branes has already been mentioned, but other ways to obtain dynamical mem-
brane structure, evolving during the course of computation, have been presented.
Most simple of those is assigning electrical polarization +,−, 0 to each mem-
brane. Polarization replaces target indicators in, out, here. Polarization of ob-
jects is introduced by the rules and polarized objects can enter only membranes
with opposite polarization. For example, ab→ c+d− means, that one instance of
c enters inner membrane with negative polarization and one instance of d enters
inner positive membrane. Rules can also be used to change the polarization of
membranes during the computation.

Another possibilities to alter membrane structure have been proposed. Di-
vision of membranes can be used to obtain exponential working space in linear
time [33] and have been used to solve NP-problems [31]. An optimalization
algorithms based on membrane computing were proposed [29, 24]. Also biologi-
cal processes of exocytosis, endocytosis and gemmation were translated into the
language of P systems and examined in detail [25].

Two issues seem essential, when P systems are used to simulate biological
phenomena rather than for computation. Non-determinism is first of the issues.
Some chemical reactions are more likely to occur than others. First attempt to
solve this is by assigning priorities to rules. Firstly, set of rules with the highest
priority is chosen and according to the principle of maximal parallelism, all rules
which can be applied, are applied. Then, the rules with second highest priority
are selected and the procedure repeats, etc.

Second approach is to assign probabilities to all rules. Probability can be
introduced to P system on different levels [30], but here we will mention only
probability on the level of rule selection. Different approaches have been proposed
[4, 13, 36]. Basic idea is to associate each rule with a constant k, so the rule takes
a form u

k−→ v, where u, v are multisets of objects and k can be interpreted
either as a probability, or as a “stoichiometric coefficient”, using which the true
probability is calculated.

Last extension, which we will mention at this point, is representation of
time of P systems. In real world, every biochemical reaction takes some time.
Representation of time in P systems is similar to representation of probability.
A constant t is assigned to each rule, so the rule takes the form u

t−→ v, where
u, v are multisets of objects and t is number of time units, which must pass to
complete the application of the rule [12]. In the first time step, multiset u is
consumed and removed from the current membrane. After t−1 more time steps,
multiset v is introduced into the system. Time can also be introduced into P
systems as a lifetime of objects or even membranes [1].

For the sake of brevity, we will not discuss more extensions of P systems, al-
though many possibilities were explored within this framework. Every real-world
application of P systems requires careful and accurate definition of system to be
modeled and once the real-world system is defined, P system as a mathematical
model for simulation can be developed. It is very unlikely, that any of presented
variants of P systems would accurately describe the complex real-world pheno-

18 Zbyněk Janoška, Jǐŕı Dvorský

mena, however when considered as a modelling paradigm, P systems offer great
variety of extensions, and arbitrary P system for concrete application can be
developed.

4 Geographical Representation of Space

Object-based and field-based models of space are accepted as two alternative
approaches for conceptualization and geographical modelling [20]. Object-based
conceptualization understands geographical entities as sharply bounded and
therefore represented by mostly polygonal boundaries. Objects are located in
space, i.e. location is attribute. Fields are continuous phenomena and characte-
rize space by properties – functions and values – related to locations [42]. Raster
and vector represetations are dual to field-based and object-based conceptual-
ization of space [37].

In field-based model, every location in a spatial framework is associated with
a set of attributes. Fields are spatially continuous by definition. Field can be
viewed as a mapping between spatial location and an attribute domain [43]. The
most common field-types are scalar, vector or tensor; with scalar fields being the
most commonly used in GIS modelling. Representation of field must be always
approximate and rectangular, triangular or hexagonal tessellations are used [16].
Fields are usually stored as a georeferenced raster.

In an object-based perspective, space is viewed as a container populated by
objects. Location is an attribute of each object. Object’s spatial projection is
mostly represented in GIS environment by points, lines (polylines, networks) or
polygons [16].

Possible merge of field-based and object-based approaches have been dis-
cussed in literature [16, 42], but GIS applications include only two basic repre-
sentations of space.

5 Object-based Representation of Geographical Space in
P systems

Two basic terms in representation of geographical space are distance and topolo-
gy. The mathematical theory of metric spaces is well-known to be inadequate as
a formal foundation for distance measures in geographic spaces [28]. Contextual
knowledge is a key feature of human apprehension of geographic space [44]. For
example distance between cities A and B is different from the point of view of
cyclist and pilot of an airplane. There is an important distinction between global
view (top-table space) and geographical view (geographical space).

Top-table space can be viewed from one single point, whether geographical
space is context-based [44]. Therefore classic definition of metric in mathematical
space does not apply (geographical space is asymmetric and triangle inequality
does not apply).

In geographical space, neighborhood relations are commonly treated as prior
to metrics. For example we know that Austria and Germany share the border,

P systems: State of the Art . . . 19

but we are unable to estimate the length. Regarding the fractal nature of geo-
graphical boundaries [26], measuring the length may not even make sense.

Definition of topology between geographical entities is therefore essential for
any geographical analysis.

As mentioned earlier in the text, object-based representation of geographical
space understands space as a container with entities, which are defined by their
locations. The relation of entities is described by their topology. Nearness of two
neighboring entities can be quantified as a distance between them. Distance can
be context-based (i.e. time necessary to overcome distance between two points
can depend on the mean of transportation) and also dependent on direction.
Those relations can be formalized using graph theory. Entities are represented
as nodes of the graph and links represent topological relation between them.
Cost of links represents distance between geographical entities.

Special variant of P systems with membranes arranged in the net have been
proposed as tissue-like P system [27]. In this variant, membranes are arranged
in an arbitrary graph instead of in a hierarchy. The computation is achieved
using symport/antiport rules, but generalization using evolution rules can be
considered. Links between membranes are represented using synapses. Formal
definitions are here omitted and can be found in [19, 27, 35]. This formalization
is suitable for representing topological relations between entities in geographical
space. Entities can be represented as membranes (nodes of the graph) and their
topology could be stored in links. Adding cost to synapses will achieve further
representation of distances between entities. This approach has been adapted
by [6, 7] to simulate interaction between spatially separate regions (so called
metapopulations). This research was however only theoretical.

Cardona et al. in [8] started research on modelling population of Beraded
Vulture in the Pyrenees using model with several spatially separated regions,
which could however interact with each other by sending objects to the environ-
ment and retrieving them. This model was later expanded to model population
of 12 animals [9, 10], modules for modelling biomass of plants were added [14]
and model was also used for management of the area [15]. Also, [10] used similar
model to simulate population growth of invasive species of zebra mussel in water
reservoir. The water body was represented by 17 regions with different regime
of water temperature fluctuations with their topology represented by oriented
graph.

Object-based representation of space can be coherently represented using P
systems. Different geographical entities can be represented by membranes, topol-
ogy can be stored in a graph and distances between entities could be represented
using costs of links of graph. Moreover, each node – membrane – can have inner
hierarchical structure. Take agglomeration of larger city as an example. This
agglomeration is connected with other cities by roads and rails, therefore repre-
sented as a membrane with synapses to other membranes – cities. In the same
time the agglomeration can have inner structure, represented either by smaller
set of interconnected membranes (public transportation network with nodes rep-
resenting stations) or a hierarchy of membranes, representing for example ad-

20 Zbyněk Janoška, Jǐŕı Dvorský

ministrative zoning with several levels. Moreover, both representations can be
stored within this membrane separately.

6 Field-based Representation of Geographical Space in P
systems

Field-based representation of space understands geographical space as a contin-
uous field, where every location has a set of attributes (temperature, air pressure
or elevation, for example). For analytical purposes, continuous fields must be ap-
proximated by grid, mostly rectangular. This representation of space is similar
to cellular automata.

Recently, [3] introduced spatial P systems, which embody concept of space
and position inside membranes in similar manner that cellular automata do.
Rules, as usual, specify the objects which are consumed and which are produced,
moreover, the position of produced objects can be specified. Although P systems
were used before to model processes in geographical space (see previous chapter),
[3] was first to inherently include space into P systems. In classical view of P
systems, position does not matter. Also [7, 9] and others, who worked with space,
did consider position of membranes only as an attribute of membranes, and
position of object inside membrane was never considered before.

We will not give formal definition of spatial P system and will focus on
possible applications instead, because up to date, there are none. Barbuti et
al. [3] defines spatial P systems in two-dimensional space, but living cells are
three-dimensional compartments, therefore extension to 3D would be suitable to
enhance expressiveness of the model.

Cellular automata are used in GIS for various applications, including mod-
elling of forest fires, urban growth and dispersion of pollution. Among these
application, modelling of spread of pollution seems as most promising ground
for P systems. Pollutants are mostly chemicals and their consumption, creation
and alteration can be naturally described using P systems. Their dispersion can
be described using spatial P systems.

Another example would be simulating growth of collonies of bacteria (both in
microscale and macroscale), where P systems can accurately describe behavior
of such simple organisms. In many other application, like modelling of defores-
tation, urban growth and qualitative changes in landscape, spatial P systems
could achieve similar results like cellular automata.

7 Using Hierarchy to Represent Space

Geographical space is without doubts structured in a hierarchical manner. Ad-
ministrative division of Czech republic is an example. Hierarchical data struc-
tures such as quadtree or octtree [38] are widely used in GIS and spatial databases.
Even methodology for adapting such data structures to globe was developed [21].

P systems: State of the Art . . . 21

Also hierarchical spatial reasoning gained interest in the community of geogra-
phers in last two decades [23]. This hierarchical approach mimics human rea-
soning when performing spatial operations: an appropriate scale is selected and
results are computed. The quality of results obtained is assessed, and if it is
satisfactory, the computation stops. If not, more detailed level of spatial data is
consulted.

Our literature search showed, however, that spatial modelling of hierarchi-
cally structured phenomena is rare. Eckhardt and Thomas [17] used multilevel
regression models for inspection of patterns of road accident occurrences. Other
publications dealing with hierarchical modelling also exist, but mostly use hie-
rarchical Bayesian models, where the structure of model is hierarchical, but not
in geographical sense [2]. Some research has been dedicated to possibilities of
visualization of geographical hierarchies [22].

deer 75

hardwood 150 coniferous 350

Fig. 2. Hierarchical structure of geo-
graphical space in P systems

P systems offer different ap-
proach, where modelling can be tak-
ing place on multiple levels of the
model simultaneously. In Fig. 2, a
simple system of forest is depicted
(rules are omitted). This model has
two levels. On upper level, the popu-
lation of animals (deers) is modelled.
On lower level, the competition be-
tween two parts of forests coniferous
and hardwood is modelled. Because
population of deers is not dependent
on the inner structure of the forest,
it can be modelled separately, on up-
per level, and inherent hierarchical
structure of P systems can be ex-
ploited.

In natural systems, ecosystems are hierarchically structured and this struc-
ture plays prominent role [18]. P systems for ecological application therefore offer
expressiveness, which most other computational models do not posses.

To our knowledge, no application, where multiple levels of a single system
were simultaneously modelled, were presented and also no theoretical research
of this topic was conducted. Hence, further research on application of P systems
should focus on this aspect of modelling.

8 Concluding Remarks and Future Work

We have presented brief introduction to membrane computing with emphasis on
description of handling of geographical space in P systems. Both representations
of geographical space – object-based and field-based were already discussed in
the literature and some application are available for object-based representation.

22 Zbyněk Janoška, Jǐŕı Dvorský

Only one publication so far was dedicated explicitly to computing with space in
P systems.

Currently, many extensions of classical transitional P system exist, and ex-
pressiveness of this model can be significantly enhanced. For real-world appli-
cation, however, unique models must be defined. We proposed some possible
application of P systems in geography, from which modelling the spread of pol-
lution seems the most promising, given the nature of the prenomenon.

Also perspectives of multi-level modelling were mentioned. This approach
exploits inherent hierarchical structure of P systems to simulate the behavior of
systems on multiple levels. Possible application can be seen in ecological studies,
since ecosystems are deeply hierarchized structures.

Our current research is focused on modelling of transportation using P sys-
tems. Individual based modelling, paralellism and evolution of components of a
system are key features needed to model complex behaviour of transport sys-
tems. However this research is in its initial stage and experimental results are
not available at the moment.

References

1. Aman, B., and Ciobanu, G. Adding Lifetime to Objects and Membranes in P
Systems. International Journal of Computers Communications and Control 5 (3).
2010. Pages 268-279.

2. Banerjee, S. Hierarchical Modeling and Analysis for Spatial Data. Chapman and
Hall, 2004, London, UK.

3. Barbuti, R., and Maggiolo-Schettini, A., and Milazzo, P., and Pardini, G., and
Tesei, L. Spatial P systems. Spatial P systems 10 (1). 2011. Pages 3-16.

4. Bernardini, F., and Manca, V. Dynamical aspects of P systems. BioSystems 70
(2). 2003. Pages 85-93.

5. Bernardini, F., and Gheorghe, M., and Krasnogor, N., and Muniyandi R.C., and
Perez Jimenez, M.J., and Romero-Campero, F.-J. On P Systems as a Modelling
Tool for Biological Systems. Pre-Proc. of the sixth Workshop on Membrane Com-
puting. Vienna, Austria, 2005. Pages 114-133.

6. Besozzi, D., and Cazzaniga, P., and Pescini, D., and Mauri, G. Seasonal variance in
P system models for metapopulations. Pre-proceedings of International Conference
on Bio-Inspired Computing - Theory and Applications, BIC-TA 2006, Membrane
Computing Section. Wuhan, China, 2006. Pages 27-36.

7. Besozzi, D., and Cazzaniga, P., and Pescini, D., and Mauri, G. Modelling metapop-
ulations with stochastic membrane systems. Biosystems 91 (3). 2008. Pages 499-
514.

8. Cardona, M., and Colomer, M.A., and Margalida, A., and Pérez-Hurtado I., and
Pérez-Jiménez, M.J. and Sanuy, D. Modeling Ecosystems Using P Systems: The
Bearded Vulture, a Case Study. Membrane Computing. Springer-Verlag, 2009,
Berlin/Heidelberg. Pages 137-156.

9. Cardona, M., and Colomer, M.A., and Margalida, A., and Pérez-Hurtado I., and
Pérez-Jiménez, M.J. and Sanuy, D. A P System Based Model of an Ecosystem of
Some Scavenger Birds. Workshop on Membrane Computing. 2009. Pages 182-195.

10. Cardona, M., and Colomer, M. and Margalida, A., and Palau, A., and Pérez-
Hurtado, I., and Pérez-Jiménez, M.j., and Sanuy, D. A computational modeling
for real ecosystems based on P systems. Natural Computing. 2010. Pages 39-53.

P systems: State of the Art . . . 23

11. Cavaliere, M. Evolution-Communication P Systems. Proceeding WMC-CdeA ’02
Revised Papers from the International Workshop on Membrane Computing. 2003.
Pages 134-145.

12. Cavaliere, M., and Sburlan, D. Time-independent P systems. Membrane Comput-
ing. International Workshop WMC5. Milano, Italy, 2005. Pages 239-258.

13. Cazzaniga, P., and Pescini, D., and Romero-Campero, F.-J., and Besozzi, D., and
Mauri, M. Stochastic Approaches in P Systems for Simulating Biological Systems.
Fourth Brainstorming Week on Membrane Computing. Seville, Spain, 2006. Pages
145-164.

14. Colomer-Cugat, M.A., and Fondevilla, Ch., and Valencia-Cabrera, A New P Sys-
tem to Model the Subalpine and Alpine Plant Communities. Ninth Brainstorming
Week on Membrane Computing. Seville, Spain, 2011. Pages 91-112.

15. Colomer, M.A., and Lav́ın, S., and Marco, I., and Margalida, A., and Pérez-
Hurtado, I., and Pérez-Jiménez, M.J., and Sanuy, D., and Serrano, E., and
Valencia-Cabrera, L. Modeling population growth of Pyrenean Chamois (Rupi-
capra p. pyrenaica) by using P systems. Lecture Notes in Computer Science. 2011.
Pages 144-159.

16. Cova, T.J., and Goodchild, M.F. Extending geographical representation to include
fields of spatial objects. Journal of geographical information science 16 (6). 2002.
Pages 509-532.

17. Eckhardt, N., and Thomas, I. Spatial nested scales for road accidents in the pe-
riphery of Brussels. IATSS Research 29 (1). 2005. Pages 66-78.

18. Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions. Cambridge
University Press, 1995, Cambridge, Uk.

19. Freund, R., and Păun, Gh., and Pérez-Jiménez M.J. Tissue-like P systems with
Channel-States. Second Brainstorming Week on Membrane Computing. Seville,
Spain, 2004. Pages 101-116.

20. Goodchild, M.F. Geographical data modelling. Computers and Geosciences 18.
1992. Pages 401-408.

21. Goodchild, M.F., and Yang, S. A hierarchical spatial data structure for global
geographic information systems. CVGIP: Graphical Models Image Processing 54
(1). 1992. Pages 31-44.

22. Hadlak, S., and Tominski, Ch., and Schulz, H.-J., and Schumann, H. Visualization
of Attributed Hierarchical Structures in a Spatio-Temporal Context. International
Journal of Geographical Information Science. 2010. Pages 1497-1513.

23. Hirtle, S.C., and Frank, A.U. Spatial Information Theory: A Theoretical Basis for
GIS. Lecture Notes in Computer Science 1329. 1997. Pages 1-15.

24. Huang, L., Suh, I.H., and Abraham, A. Dynamic multi-objective optimization
based on membrane computing for control of time-varying unstable plants. In-
formation Sciences 181. 2011. Pages 2370-2391.

25. Krishna, S.N., and Păun, Gh. P Systems with Mobile Membranes. Natural Com-
puting 4 (3). 2005. Pages 255-274.

26. Mandelbrot, B. How Long Is the Coast of Britain? Statistical Self-Similarity and
Fractional Dimension. Science 156 (3775). 1967. Pages 636-638.

27. Martin-Vide, C., and Pazos, J. and Păun, Gh., and Rodŕıguez-Patón, A. A New
Class of Symbolic Abstract Neural Nets: Tissue P Systems. Proceedings of the
8th Annual International Conference on Computing and Combinatorics. Springer-
Verlag, 2002, London, UK. Pages 290-299.

28. Montello, D.R. The Geometry of Environmental Knowledge. Spatio-Temporal Rea-
soning. 1992. Pages 136-152.

24 Zbyněk Janoška, Jǐŕı Dvorský

29. Nishida, T.Y. An application of P systems: A new algorithm for NP-complete
optimization problems. Proceedings of the 8th World Multi-Conference on Systems,
Cybernetics and Informatics. 2004. Pages 109-112.

30. Obtulowicz, A., and Păun, Gh. (In search of) Probabilistic P systems. Biosystems
70 (2). 2003. Pages 107-121.

31. Pan, J., Alhazov, A. Solving HPP and SAT by P Systems with Active Membranes
and Separation Rules. Acta Informatica 43 (2). 2005. Pages 131-145.

32. Păun, Gh. Computing with Membranes. Technical report, Turku Center for Com-
puter Science-TUCS. Turku, Finland, 1998.

33. Păun, Gh. P Systems with Active Membranes: Attacking NP Complete Problems.
Journal of Automata, Languages and Combinatorics 6. 1999. Pages (75-90)

34. Păun, A., and Păun, Gh. The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computation 20 (3). 2002. Pages 295-306.

35. Păun, Gh. Introduction to Membrane Computing. First brainstorming Workshop
on Uncertainty in Membrane Computing. Palma de Mallorca, Spain, 2004. Pages
1-42.

36. Pescini, D., and Besozzi, D., and Mauri, G., and Zandron, C. Dynamical proba-
bilistic P systems. International Journal of Foundations of Computer Science 17
(1). 2006. Pages 440-447.

37. Peuquet, D.J. A Conceptual Framework and Comparison of Spatial Data Models.
Cartographica. 1984. Pages 66-113.187-260

38. Samet, H. The Quadtree and Related Hierarchical Data Structures. ACM Com-
puting Surveys 16 (2). 1984. Pages 187-260.

39. Tobler, W. A computer movie simulating urban growth in the Detroit region.
Economic Geography 46 (2). 1970. Pages 234-240-

40. Verlan, S., and Bernardini, F., and Gheorghe, M., and Margenstern, M. Compu-
tational completeness of tissue p systems with conditional uniport. Proceedings of
the 7th international conference on Membrane Computing. Springer-Verlag, 2006,
Berlin/Heidelberg. Pages 521-535.

41. Verlan, S., and Bernardini, F., and Gheorghe, M., and Margenstern, M. Generalized
communicating P systems. Theoretical Computer Science 404 (1-2). 2008. Pages
170-184.

42. Winter, S. Bridging vector and raster representation in GIS. Proceedings of the sixth
ACM international symposium on Advances in geographic information systems GIS
98. ACM Press. 1998. Pages 57-62.

43. Worboys, M.F. GIS: a computing perspective. Taylor and Francis, 1995, London,
UK.

44. Worboys, M.F. Metrics and topologies for geographic space. Advances in Geo-
graphic Information Systems Research II: Proceedings of the Symposium on Spatial
Data Handling. Delft, The Netherlands, 1995. Pages 170-184.

45. The P Systems Web Page. http://ppage.psystems.eu/. Last revision: 2012-03-18.
46. P system - Wikipedia, the free encyklopedia. http://en.wikipedia.org/wiki/P_

system. Last revision: 2012-03-18.

Methodology for Estimating Working Time
Effort of the Software Project

Jakub Štolfa, Svatopluk Štolfa, Ondřej Koběrský, Martin Kopka, Jan
Kožuszńık, and Václav Snášel

Department of Computer Science
VŠB – Technical University of Ostrava, Faculty of Electrical Engineering and

Computer Science
17.listopadu 15, Ostrava-Poruba, Czech Republic

{jakub.stolfa, svatopluk.stolfa, ondrej.kobersky, jan.kozusznik,

vaclav.snasel}@vsb.cz, martin.kopka@c4u.cz

Methodology for Estimating Working Time Effort of

the Software Project

Jakub Štolfa, Svatopluk Štolfa, Ondřej Koběrský, Martin Kopka,

Jan Kožuszník, and Václav Snášel

Department of Computer Science

VŠB - Technical University of Ostrava, Faculty of Electrical Engineering

and Computer Science

17.listopadu 15, Ostrava - Poruba, Czech Republic

{jakub.stolfa, svatopluk.stolfa, ondrej.kobersky, jan.kozusznik,

vaclav.snasel}@vsb.cz, martin.kopka@c4u.cz

Abstract. The precise estimation of the time effort of the project is one

of the key limits of its success. One of the ways how to achieve a correct valua-

tion of the project is developing of a detailed analysis, which output is a struc-

tured solution that uses use cases. This paper focuses on developing a method-

ology for estimating working time effort of the project for one particular com-

pany. An important part of the methodology is to build up and maintain com-

parative database of valued use cases and time progress of realized projects.

The aim of the methodology is to deliver data for evaluating a new project.

1 Introduction

The proper estimation of the project is a goal which wants to achieve almost every

project manager. It is not easy quest and it is not essential. It is hard task which takes

a lot of effort to do it right. And the question is how to do it right. There are several

ways how to fulfill this task. Which one is the best is depending on the concrete com-

pany, concrete types of the projects etc.

However, one thing is clear, if we know supposed project progress (supposed pro-

ject progress of its activities), we can find out in which phase the project is. Thereby

we can figure out if the project plan is in time, late or ahead. So, we can determine the

effort and plan resources of the project. For example, since some point of time we

know that project will not need analyst activities anymore, so we can move analysts

(they do analyst activities) out of the project, to the another project.

1.1 State-of-the-art of estimation project approach

Many formal methods were published in the area of effort estimation for software

development projects. Heemstra wrote down the basic ideas why, when and how to

estimate projects in paper “Software cost estimation .In Information and Software

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 25–37, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

26 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

Technology” [12] in early 90s. This paper speaks about importance of estimation of

the project. One of the mentionable information is that lot of companies do not make

an estimation. And even if they make estimation, it is mainly not corresponding with

a reality. Since our method is based on the use cases, we will mention only some

methods utilizing the use case approach here (referenced also as parametric models).

The COCOMO methodology [1] computes the effort of the software projects as a

function of program size and a set of cost drivers on separate project phases. It is the

Constructive Cost Model, which has been originally developed by Dr. Barry Boehm

and Publisher in 1981 [13]. He found out a formula computing the classification of

separate cost drivers.

Similar access as COCOMO basic is used in [2] where author estimates that size of

a project is a function of the size of definition that was written into the use cases defi-

nition. Function points are popular method to estimate size of proposed application.

The ISO/EIR organization [6] created functional size metric standard which supports

that method.

Methodology introduced by [3] computes the project estimation using complexity

of use cases and its transactions applying the set of adjustment factors. Building the

database from really measured projects with several technologies is important ap-

proach.

J. Smith in 1999 speaks about use cases and their complexity [4]. It thinks about

how big should a use case be and about the complexity of the big or small use cases

and how much effort particular use case takes. It brings us an idea that we used for

categorizing standardized use cases in our assessed company.

Almost all methods, which use estimation based on use case points, are based on

method of Gustav Karner. He first described use case points. [2] Use case point is

described like function of the following:

 the number and complexity of the use cases in the system,

 the number and complexity of the actors on the system,

 various non-functional requirements (such as portability, performance,

maintainability) that are not written as use cases,

 the environment in which the project will be developed (such as the lan-

guage, the team’s motivation, and so on).

Like Gustav Karner says, the basic formula for converting these parameters into

single measure, which is mentioned use case point, there is that it is necessary to

weight the complexity of the use cases and actors and then to adjust their combined

weight to reflect the influence of the nonfunctional and environmental factors.

The case studies, which are based even on use case points, are described in the pa-

per of Bente Anda [11].

We can say that our methodology is even based on the use case point, but it looks

more precisely on the use case realization, that means text of the use case. It evaluates

rows, words and paragraphs of the standardized use case realization. How it works,

there is described later in our paper.

Our paper is organized as follows: Section 2 introduces the problem of the project

estimation in the particular company; Section 3 describes the concept of our method-

ology: filling of the database by the data from finished projects, categorization of the

Methodology for Estimating Working Time Effort of the Software Project 27

use cases and example that describes new project effort estimation. Concluding Sec-

tion 4 provides a summary and discusses the planned future research.

2 Definition of the problem

Our goal was to set up an estimation working time effort of projects in the particu-

lar company. Even that the company has 130 workers and lot of finished projects,

people in that company were not used to estimate a new project by some methodolo-

gy. The common issue was to estimate a new project working time effort by theirs

own decisions. That decisions are based on experiences obtained by solving past pro-

jects. The problem of that solution of the estimation of the project’s working time

effort is that it is so much human dependable. For example it means that an estimation

can be wrong because the particular worker had not enough experience to do that, or

he simply don’t know how to make the particular estimation. The solution to this

problem is the supporting tool for estimating time effort of new projects based on our

methodology. This can help workers to estimate a new project by showing them aver-

age project progress of similar projects. Thanks to that methodology, worker simply

knows the progress of projects with similar working time effort and can easily esti-

mate a new one.

It is important to mention that out methodology is based on particular company and

their software developing standards. The methodology was supposed to use only in

that particular company at the beginning. It means we do not declare that this is gen-

eral approach which can essentially work in other companies. On the other hand the

aim of this paper is to provide also the guidance for other companies, which develop

software in same way like our one. They can apply our methodology to their process-

es as well as we did it in that particular company.

2.1 Initial state

Initial state of the estimation in the company was described before. Thorough it is

important to mention how the company makes analysis and how is a progress of the

project captured.

The analysis in the company is made by use cases. These use cases are standard-

ized. That means, if the use case deals with same repeatable issue, then it is almost

similar to other use cases that are dealing with the same issue. It gives us the possibil-

ity to use these standardized use cases for the projects comparisons.

The capturing of the project progress is made by CRM system. In the CRM system

you can see how much time was spent on each activity. More information about cap-

tured activities is written in next sections.

28 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

3 Proposal of the methodology

The following chapter is focusing on the logical principles of the methodology.

Methodology consists of two main processes. Rectangle is an activity; oval is input or

output data to the activity.

Database

Method for

finding progress

Method for

determining the

dificulty of a Use

case

Data of former

projects

Fig. 1. Filling of the database.

The first process is named “Filling of the database” (Fig. 1). It is a process where

data about a recent project are filled into the database. It starts with data of recent

projects in particular company. These data are separately executed in two main meth-

ods. First one is the “Method for finding progress” and second one is the “Method for

determining the difficulty of a Use case”.

New project

Method for

determining the

dificulty of a Use

case

Database

Comparing with

former projects in

the database

Estimation of a

working time effort

of the new project

Fig. 2. Estimation of the new project

In case, that database is filed by the first process, the second process can be run.

The Name of that process is “Estimation of the new project”. The input of that pro-

cess is a new project. The exact input is the finished analysis of that new project. It

means that we have all required use cases. These use cases are elaborated in the activ-

ity “Method for determining the difficulty of a Use case”. It is the same method like

in the process named “Filling of the database”. After that, process continues with the

method named “Comparing with former projects in the database. The method com-

pares former project in the filled database with data of the new project, finds similar

project and estimate working time effort based on the similar projects progress. When

the project is finished, the database could be extended by the new finished project.

Next sections of this paper introduce particular steps of both processes.

Methodology for Estimating Working Time Effort of the Software Project 29

3.1 Method of finding Progress

The supposed project progress, it means how much effort and time particular

tracked activities should consume, is discovered by the comparison to the data of

finished projects in the company. According to these data, we can find out if the com-

pany is following project methodology. If it is true, than all projects have the same or

almost same progress of tracked activities.

Our method tracks progress of five main activities of the project.

 Consultation (in the system(CRM) like PORA)

 Analysis (ANAL)

 Programming (PROG)

 Testing (TEST)

 Implementation (IMPL)

Steps of the method finding progress.

1) Input project data. We need to know number of worked hours in each day

for particular activities, when that activity was practiced (see the table be-

low).

2) Setting number of segments to which we will split timeline of the project.

Methodology set default number of segments to 10, but we can set even an-

other number (5, 20, 100, etc.). The reason why to split timeline to the same

segments is that, we need to normalize timelines of projects. So that we can

compare projects whit each other. For example, one project last 10 months a

second one last 1 month. If it is slip up only to the weeks, then first project

is split to the 40 segments and second one to the 4 segments. Comparing the-

se two projects is impossible in this way. If we split up these two projects to

the same number of segments, we can compare them. First project has a 10

segments and one segments contains data of 28 days (project last 40 weeks =

280 days, we split up to 10 segments = 28 to each segment). Second project

contains in one segment 2,8 days.

This example shows that the last segment is not same as the others every

time. It depends on the technique in the methodology, if we round up (de-

fault) or down. If we round up, one segment contains 3 days (2,8 days > 3

days). A it means that last segment contains only 1 day (28 - 28/3 = 1). It

was proved by the experiments that this is not significantly important for the

comparison of the projects. It is only good to have in on your mind for later

refinement of the method.

3) Choosing the technique of the evaluation. Our methodology has two types

of evaluation of the project duration, which is later split up to the, before

mentioned, segments.

30 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

a. Counting all days. It means that we count all days – from the first

day to the last day, when some of tracked activities were performed.

Then the duration of the project (number of days) is counted. Num-

ber of days is divided by number of segments (default 10). So that

we know how many days the segment contains. After that calcula-

tion we add to first date number of days in segment. That date is

border line. Then we add number of day in the segment to that bor-

der line and establish second border line. We have second segment.

That technique we have to do same way to the penult segment. To

the last segment we put remaining days of the project. For example

first date is 1.7.2010 and one segment has 14 days. First segment

contains data of dates from 1.7.2010 to 14.7.2010. Second segment

from 15.7.2010 to 28.7.2010, etc.

b. Counting only days, where there was some work done. It means

that, we count on only days, when some of the tracked activities

were performed. We do not count empty days. Days where there

was not done any work on tracked activities. We count all effort

hour and divide them by number of segments. Then, there is a dif-

ference from the first technique, we count only days, where there

was some work. So segment of size 11 hours may contain for ex-

ample 1.7.2011 5 hours of analysis, 13.7.2011 6 hour of program-

ming.

This technique has one week aspect. When we reach the end of the

segment, actual summary of hours in that segment is 9 and next date

contains for example 3 hours, so we close segment with actual

summary 9 hours. Because we do not want to past out the limit of

the segment (limit is 11, 9+3=12, 12>11). It has an effect that seg-

ments could contain various numbers of hours. This might be a

problem if we count projects with low number of total hours. The

affection is minimal to the projects with big number of total hours.

4) Calculation. Inputs are fulfilled segments (day o hour method). Then we

need to count number of hours spent on particular activity in each segment.

5) Saving a result to the database. Saving the result of the methodology is

made by vectors. We can group these vectors and so that we can find out

similar projects. Vectors are easily transferable to the graph.

a. Structure of the vector (5 segments):

First is a name of the project. Then three numbers of particular dif-

ficultly of use cases. And then are worked hours of the activity in

particular segment. First is consultation, then analysis, program-

ming, testing and last implementation. Each activity has 5 numbers

divided by semicolon. It shows how much hours was worked in

each segment.

Methodology for Estimating Working Time Effort of the Software Project 31

Name of the

project

Difficulty of Use

cases

Hours of consultation per each

segment

Hours of analysis per each

segment

Project H M E 13,75 0 18,25 255,75 237,25 0 0 0 122,5 116,5

Hours of programming per each

segment

Hours of testing per each

segment

Hours of implementation per each

segment

0 0 0 138 2704 0 0 0 0 1071 4 0 11,75 8,5 171,25

Table 1. Structure of the vector. Table shows structure of the vector. It is one log

table, but for that paper was divided to two.

3.2 Method for determining the difficulty of a Use case

Following chapter describes how we evaluate particular use case.

Basic complexity according to the number of rows.

Complexity of a project is given by the difficulty of UC realizations. The difficulty

of UC is hard to determine, there is no easy benchmark for their comparison. Simplest

way is determining the complexity based on number of rows in every UC. We have

set 3 levels of difficulty based on number of rows:

 E (easy) – number of rows < 70

 M (medium) – number of rows ԑ <70;110>

 H (hard) – number of rows > 110

We can obtain number of hard, medium and easy use cases for one project with

this type of evaluation.

Extended complexity.

In terms of our method objectivity we decided to extend complexity with number

of paragraphs and number of words in each UC. The overall difficulty of UC is then

derived from the individual complexities.

Difficulty according the number of words.

 E (easy) – number of words < 200

 M (medium) – number of words ԑ <200;500>

 H (hard) – number of words > 500

Difficulty according the number of paragraphs.

 E (easy) – number of paragraphs <= number of paragraphs + X -> easy

 M (medium) - number of paragraphs > number of paragraphs + X AND

number of rows < number of paragraphs + Y -> medium

 H (hard) – number of paragraphs => number of paragraphs + Y -> hard

 Where X=10, Y=25

32 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

The overall difficulty.

Overall difficulty of UC can be determined as follows. Difficulty of words has the

highest weight, then difficulty of rows and difficulty of paragraphs. First of all we

compare difficulty of words with difficulty of rows, If they are in the same level, then

the overall difficulty is in this level. If not, we compare the difficulty of words with

difficulty of paragraphs, if they are on same level, then the overall difficulty is in this

level. If any of them differs then we compare the difficulty of rows with paragraphs in

the same way. If the comparison does not help us, overall difficulty is difficulty of

words, because we consider it the most important aspect. The difficulty types and

levels were checked by the correlation matrix. The result was that the actual depend-

ency setting varies between 60-100 %. Most of the difficulty types and levels more

than 2/3) are more than 95% dependable.

3.3 Comparing to former projects in the database

Input of this activity is evaluated by use cases of a new project. This overall diffi-

cultness of project use cases was determined in the activity Method for determining

the difficulty of a Use case.

After that we find recent project are in the database which have almost similar dif-

ficultness of a use cases. The similarity is determined by next proclamation. We pro-

claim that two projects are similar if their particular difficulties differ by +/- 2. This

simple differ was set up by several experiments made on real data in the company.

3.4 Example

This section describes an example of using a described methodology. Inputs are

analysis of four projects (Project1, Project2, Project3, Project4). It is only the example

so that’s why, we show only four representative projects. We cannot publish the

names of the project, and that is the reason why we call them like that. Important is

that all of these projects are development projects. That means they include all steps

of the life cycle of the project (consultation, analysis, programming, testing, imple-

mentation).

We fulfill the database by data (vectors) of these projects. After that we take a new

project, evaluate its use cases (by difficultness of UC) and find out estimated progress

and difficulty.

1) Determination of difficultness of UC of particular projects:

Difficulty according to the number of rows

T S L

Project1 6 8 57

Project2 1 1 12

Project3 4 0 17

Project4 0 2 4

Methodology for Estimating Working Time Effort of the Software Project 33

Table 2. Difficulty according to the number of rows.

Difficulty according to the number of paragraphs

T S L

Project1 12 17 42

Project2 1 11 2

Project3 3 5 13

Project4 0 4 2

Table 3. Difficulty according to the number of paragraphs.

Difficulty according to the number of words

T S L

Project1 16 11 44

Project2 3 7 4

Project3 5 3 13

Project4 2 2 2

Table 4. Difficulty according to the number of words.

Total difficultness

 T S L

Project1 12 15 44

Project2 1 9 4

Project3 3 4 14

Project4 0 4 2

Table 5. Total difficultness.

At the table 5 we can see the total difficultness of particular projects. This

view is most important for further processing. The section 3.2 describes how

the particular difficultness was set up.

2) Compilation of vectors and graphical representation of these vectors for

the projects progress

This section shows the vector for the project progress of the particular pro-

ject. Structure of these vectors was described in the table 1 above.

- Pro-

ject1;12;15;44;284,75;28;48;36,75;29;60,5;27,55;2,5;0;122,5;0,75;8,25;19;27,5;27,25;22,2;2;4,

5;0;52,5;444,75;332,75;317,5;341;320,5;256,75;275,25;259;0;0;10,5;93,25;109,5;91,25;7;9,5;1

60;188,75 ;185,5;0;24,25;3;9,25;1,75;0;0,5;27,25;16;37;0

- Pro-

ject2;1;9;4;23,75;20;12;30;15;40,25;20;10,5;1;130,50;20;10;18;25,5;20,25;10,25;1;3;2;2;20,25;

130,75;256;432;203;150,75;25,25;259;30;0;14,5;23,25;19,75;19,75;10;17;163;129,75;174,25;2;

12,25;6;10,25;4,75;0;3,5;20,25;13;20;35

34 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

- Pro-

ject3;3;4;14;5,25;13;18,25;5;12,75;7,5;8,5;11,25;8,25;5;2;10,75;1,5;0;10;6;5,5;0,5;0;5,5;3,75;1,

5;2;0;0;1;0;6;9;8,25;5,75;9,75;10,25;0;3,25;0,5;3;0;0;1,75;0;0;1,5;1;0;0;0;0;0;0;0;0;0;0;0,5

- Pro-

ject4;0;4;2;12;8;6;14;12,25;31,25;5;2;1;10,50;3;7,75;20,50;9,75;15;13,50;5;7,75;3,25;5;10,75;3

0,50;26;42;20;10,25;2,75;29;18;2;5,5;2,25;9,75;4,75;1;8;16;29,25;4,25;1;6,75;6,50;2,25;3;1;0,0;

0;25;13,50;18,25

3) Estimation of a new project – Project5

- Input is the new project – Project5

- Determination of difficultness of UC of the Project5:

o Hard; Medium; Easy = 4;6;13

- Finding similar projects in database:

o 4+-2; 6+-2; 13+-2 – we find out project with difficultness of

UC +-2 according a new project. From these specified projects we

make average of their progress. And that is set as estimation of the

new project.

o In our example it is only Project3, so we do not need to do average.

o Estimated progress of the Project5 is:

Fig. 3. Progress of the consultation activity. It shows estimation of working hours of

current activity in particular segments of the project.

Fig. 4. Progress of the analysis activity. It shows estimation of working hours of cur-

rent activity in particular segments of the project.

Methodology for Estimating Working Time Effort of the Software Project 35

Fig. 5. Progress of the programming activity. It shows estimation of working hours of

current activity in particular segments of the project.

Fig. 6. Progress of the testing activity. It shows estimation of working hours of cur-

rent activity in particular segments of the project.

Fig. 7. Progress of the implementation activity. It shows estimation of working hours

of current activity in particular segments of the project.

These figures show progress of particular activities of the Project5. We can see esti-

mation of working hours of particular activity in particular segments of the Project5.

We can have a look for example on activities consultation and programming. It is

interesting to note that estimation of working hours of consultation activity is almost

stable for every segment. On the other hand estimation of working hours of program-

ming activity is divided to the two parts. At the beginning of the project are hour

spend on programming activity minimal, but at the end are major. It is essential be-

cause at the begging is not too much programming work.

36 J. Štolfa, S. Štolfa, O. Koběrský, M. Kopka, J. Kožuszńık, and V. Snášel

4 Conclusion and Future Work

Our methodology was tested on the 20 past projects made by the company. Fifteen

projects were taken to the process of filling the database. Five projects were pro-

claimed as new projects. The result of our methodology – supposed project progress

(effort of each activity) was compared to the historical data of these projects. The

difference between the predicted progress and the actual data for the tested projects

was approximately 30%. The 30% inaccuracy seems not to be a good, but the previ-

ous ad-hoc human based estimation had inaccuracy 40%. We found out these data by

comparing their original estimations on the beginning of the projects with result of

these projects at their end. In 40 percent there was huge deflection of estimation and

the real execution. Therefore our methodology brings approximately 10% improve-

ment, which is a good result of the methodology. But we know that 30% is still huge

number of inaccuracy, so that there is place to improve our methodology in future.

In the future, we plan to improve our methodology by neuron nets as tools which

find out groups of similar projects. Otherwise, we plan to elaborate parameters de-

scribing the influence of the customer to every single project. Then we have to elabo-

rate if is better to use more parameters to describe particular use cases for an execu-

tion of the methodology. At least but not last we have to have on our mind that we

estimate project after first steps of analysis. Especially, after the use cases are fin-

ished. That’s important to mention, because we have to include that work to the esti-

mation of the project.

I any case the topic of estimation project’s effort is huge place for research and im-

provements. The methodology that works for one company does not have to work for

others. Our goal is to overcome that gap by trying to develop methods and that will be

used in more companies than one and the results will be more accurate.

5 References

1. Boehm, B., Abts, Ch., Brown, W., Chulani, S., Clark, B., Horowitz, E., Madachy, R.,

Reifer, D., Steece, B.: Software Cost Estimation with COCOMO II. Englewood Cliffs,

NJ:Prentice-Hall, 2000. ISBN 0-13-026692-2

2. Cohn, M.: Estimating With Use Case Points, Methods and Tools, Fall 2005 (Volume 13,

number 3), ISSN 1661-402X.

3. Ochodek, M., Nawrocki, J., and Kwarciak, K.: Simplifying effort estimation based on Use

Case Points. Information and Software Technology, 53(3):200–213, 2011.

4. Smith, J.: The Estimation of Effort Based on Use Cases, Rational Software white paper,

1999

5. Ruhe, M., Jeffery, R., Wieczorek, I.: Using web objects for estimating software develop-

ment effort for Web applications. In: Proceedings of the ninth international software met-

rics symposium, Sydney, Australia 3–5 September 2003, p 30

6. ISO/IEC 14143-1:1998 (1998) Functional size measurement.www.iso.org

7. Ribu, K.: Estimating Object-Oriented Software Projects with Use Cases. 2001. Master of

Science Thesis, 2001, University of Oslo, Department of Informatics.

8. Ochodek, M., Nawrocki, J.: Enhancing use-case-based effort estimation with transaction

types. Foun- dations of Computing and Decision Sciences, 35(2):91–106, 2010.

Methodology for Estimating Working Time Effort of the Software Project 37

9. Kemerer, Ch.: An empirical validation of software cost estimation models, Communica-

tions of the ACM, Volume 30, Issue 5, New York 1987.

10. Anda, B.: Comparing Effort Estimates Based on Use Case Points with Expert Estimates,

Empirical Assessment in Software Engineering (EASE), Staffordshire 2002.

11. Bente A, Hege D., Dag I. K. Sjoberg, and Magne Jorgensen. 2001. Estimating Software

Development Effort Based on Use Cases-Experiences from Industry. In Proceedings of the

4th International Conference on The Unified Modeling Language, Modeling Languages,

Concepts, and Tools (UML'01). Springer-Verlag, London, 2001.

12. F. J. Heemstra. Software cost estimation. In Information and Software Technology, Vol.

34, No 10, October 1992, Elsevier.

13. Boehm B.: Software Engineering Economics, Prentice Hall, 1981.

Developers’ Cooperation based on Terms of
Project Description

Štěpán Minks, Jan Martinovič, Pavla Dráždilová, Alisa Babskova, and
Kateřina Slaninová

VŠB - Technical University of Ostrava,
Faculty of Electrical Engineering and Computer Science,
17. listopadu 15/2172, 708 33 Ostrava, Czech Republic

{min111,pavla.drazdilova,jan.martinovic,alisa.babskova.st,
katerina.slaninova}@vsb.cz

Developers’ Cooperation based on Terms of Project
Description

Štěpán Minks, Jan Martinovič, Pavla Dráždilová, Alisa Babskova, and Kateřina
Slaninová

VŠB - Technical University of Ostrava,
Faculty of Electrical Engineering and Computer Science,
17. listopadu 15/2172, 708 33 Ostrava, Czech Republic

{min111,pavla.drazdilova,jan.martinovic,alisa.babskova.st,
katerina.slaninova}@vsb.cz

Abstract. Very interesting specialized web portal for collaboration of developers
is CodePlex 1. Registered users can participate in multiple projects, discussions,
adding and sharing source codes or documentations, issue a release, etc. In the
article we deal with strength extraction between developers based on their asso-
ciation. The research presented in this article is motivated by our previous work
[10]. From this paper we have used the approach for extraction of initial meta-
data, and we have used modified Jaccard coeficient for description of the strength
of associations between developers. Method is usable for creation of derived col-
laborators network, where as input is used the set of words, which will describe
the network (the developers used these words in project description).

1 Introduction

In the library science, keywords are used to describe the theme of the book and its
inclusion in the catalog, mostly controlled by selecting words from the register. By
using keywords, it is possible to search for books with similar content. In the same way,
the keywords are used on the Web Search for websites with specific content.

Recently the concept of social networks and online communities is becoming still
more and more popular. As a result, the number of their users significantly increasing.
Reasons for communication between people and creation of social networks in our time
are various: study, dating, travelling and tourism, work, games and programming is not
the exception.

Many programmers on the Internet are looking for interesting ideas, or assistance
when implementing their own solutions. Online collaboration is no longer a novelty in
our times and it is run by people all over the world. However, searching for suitable and
capable people who could implement a particular idea at reasonable deadlines and high
quality is an eternal problem.

OSS (Open Source Software) is a example of a dynamic network, as well as a pro-
totype of complex networks emerging on the Internet. By working through the Internet,
interactions between developers can be considered as relations in the synthetic network

1CodePlex: http://codeplex.com

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 38–48, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

Developers’ Cooperation based on Terms of Project Description 39

of collaborators. These relations arise when the developers join the project and begin
to communicate with others. OSS network consists of two entities - developers and
projects. An examples of such OSS social network established on the basis of interac-
tion between the participants is CodePlex.

In this paper we try to determine the strength of relationship or similarity between
CodePlex developers in the context of projects they work on. To determine the context,
we used project key words, which in the case of the CodePlex are extracted from project
descriptions.

Some related work dealing with the terms extraction in the social network. In the
article [11] author illustrate ontology emergence by a novel method for the extraction
of community-based ontologies from Web pages. Other approache is in the articel [12],
where authors examine the dynamics of social network structures in Open Source Soft-
ware teams but data were extracted monthly from the bug tracking system in order to
achive a longitudinal view of the interaction pattern of each project.

2 CODEPLEX

CodePlex is a specialized web portal operated by Microsoft. It is mainly used by devel-
opers for collaboration on projects, sharing source codes, communication and software
development. Generally, registered users can participate in multiple projects, discus-
sions, adding the source code and documentation, issue a release, etc. Some of the
users have defined a specific role within the project for which they work. Each user
has his own page, where he can share information about himself, his projects on which
he currently works, and the most recent activities. The CodePlex projects themselves
can be considered as a very interesting source of information. In addition to the list of
users and roles, CodePlex enables register keywords, add description of the project, the
number of visits, status, date of creation, url and other information about the project.
All activities are carried out on CodePlex by a particular user within a specific project.

Database which was created as a result of data obtained from CodePlex.com, con-
sists of 6 main tables: User - 96251 records, Project - 21184 records, Discussions -
397329 records, RecentActivity - 72285 records, Membership - 126759 records and
SourceCode - 610917 records.

In CodePlex, we can see two types of entities: users and projects. Both are repre-
sented by tables that contain specific characteristics (see Table 1).

The undirect connection between the user and the project is implemented through
activities within the scope of the project. These activities are in the database CodePlex
divided into different types: SourceCode, Discussion, RecentActivity and Membership.

– In the SourceCode, there are records about added projects.
– Discussion describes discussions about the project and the responses of individual

users.
– RecentActivity records activities such as check-in, task records, add project to the

Wiki information, note about Release version etc.
– In the table Membership, we are able to trace the users’ participation in the projects

and their assigned role in them.

40 Š. Minks, J. Martinovič, P. Dráždilová, A. Babskova, and K. Slaninová

Entity Attribute Type
User login character(32)

personalStatement character(255)
createdOn date
lastVisit date

url character(255)
Project nameProject character(255)

tags text
createdOn date

status character(255)
license character(255)

pageViews integer
visits integer

url character(255)
description text

Table 1. Tables User and Project

We can represent CodePlex as a bipartite graph of users and projects, where the
edge between the user and the project is a user’s activity in a project.

The Tables User, Project and Activity store in the CodePlex database information
about time of occurrence, as well as the last modification or the last visit. Time of cre-
ation or last modification is not defined for all activities. Membership activities have no
time component and Activities, SourceCode and RecentActivity do not track or change
the last visit.

The execution time for casual activity component is often defined by verbal descrip-
tion, such as Today, Last Week, Monday. This data format is not suitable for analysis,
and so the time was ignored for component-type Activities, Discussions and Source-
Code. Projects and users have the time records in the correct format. Furthermore, all
entities were analyzed for a better overview what data are available.

For each table were found a maximum and minimum time values of individual
entities (users, projects and activities). We introduce a table of data creation and changes
in the CodePlex database (see Table 2).

createdOn/InsertTime lastVisit/updateTime
Entity max min max min
User 6/3/2011 14/4/2006 20/3/2011 15/1/2009
Project 28/2/2011 28/4/2006 not defined
Discussions can’t be defined
RecentActivity 20/3/2011 19/1/2011 not defined
Membership not defined
SourceCode can’t be defined not defined

Table 2. Table Project

Developers’ Cooperation based on Terms of Project Description 41

If we look at the data that we have in the Table User, we are not able to define the
user’s profile. It consists of the field of interest, what he deals with, the programming
language he uses and at what level. PersonalStatement attribute is used to describe the
user, but from the total set of our users downloaded, there was not a single one, who
would fill it up. On the other hand, the project has enough information defined – which
fields are concerned, how long it lasted, whether it is completed, which technology it is
used, etc.

The main attribute, carrying the largest set of information, is the project Description
– the description of the project itself.

Using activities such as user links to the projects, we are able to determine with
some probability an area of specialization and a work of each user. For example, if a
user is working on three projects written in .NET and one in Java, we could include him
in .NET programmers with high probability, and less likely recommend him as a Java
programmer.

In other words, terms or description of the project may not only help us to provide
more information about projects, but also to determine the user’s area of interests or
abilities. As a result, the way we are able to compare user attributes determines the
similarity to other network participants.

3 How to Construct Graph of Collaborators

Whenever we think about collaboration between two persons, we not only look at the
relationship itself, but also at the context. It is clear that depending on context, the
strength of relationship changes. Therefore, we divide collaboration into two main parts
Persons’ Relationship and Relationship Context.

Comparing with definition in article [10], where the basis is relation between a
person and a term, and another colleague is seen as a context, we now consider the
relation between persons as a main part, while the term describes the context. Although
the computation process is almost the same, we think this reflects the reality better.

When we describe collaboration as a part of reality, we always start with defining
main set of collaborated persons P. Although persons P could in fact represent any
object in reality, process was designed specifically for the real persons.

Persons has additional attributes. Usually it could be publications, teams, organi-
zations, projects, etc. We called it attribute domain. Let us define a sample organi-
zations set as DO = {Microso f t,Oracle, IBM, . . .}. To specify organizations of per-
son Pi. We can then specify the set of all persons’ organizations as attribute set O =
{OP0 ,OP1 , . . . ,OPn}. If we want to express that person has some attribute, we create
a subset from set which defines all the possible values. For example we can create a
subset OPi ⊆ DO, so OPi could be {Microso f t,Oracle}.

Generally, let DX be a set of attribute domain, then X are attributes for all persons
P, where object XPi ∈ X is one person’s attributes described as XPi ⊆ DX .

3.1 Persons’ Relationship

We describe a persons’ relationship as commutative operation • on cartesian product of
person’s attribute X x X , where output is mapped to the set of real numbers R.

42 Š. Minks, J. Martinovič, P. Dráždilová, A. Babskova, and K. Slaninová

AttributeScore(XPi ,XPj) = XPi •XPj ∈ R (1)

An easy implementation of operation • are standard set operations like intersection
or union. To get a real number, we just compute cardinality. Jaccard coefficient is the
most typical operation we can use:

AttributeScore(XPi ,XPj) =
|XPi ∩ XPj |
|XPi ∪ XPj |

(2)

It is clear to see that no matter what order of cartesian product we use; the result is
the same. Other implementations could be simple matching coefficient, mutual infor-
mation, Dice coefficient, overlap coefficient and many others.

Listing 1.1. Exported CodePlex data from XML file.
<c o d e p l e x P r o j e c t key = ” . . . ” >

<d e v e l o p e r >hongmin0813 </ d e v e l o p e r >
<d e v e l o p e r >l e ng l e n g3 89 8 </ d e v e l o p e r >
<d e v e l o p e r >l eng leng38982nd </ d e v e l o p e r >
<d e s c r i p t i o n >???</ d e s c r i p t i o n >
<year >29.4 .2010 0 :00 :00 < / year>
<u r l >h t t p : / / l e n g l e n g 3 8 9 8 . c o d e p l e x . com/ < / u r l >
<meta>SS = 0</meta>
<meta>RA = 0</meta>
<meta>D = 0</meta>
<meta>M = 0</meta>

</ c o d e p l e x P r o j e c t >

Applying to the projects in CodePlex, the base set Developers D is chosen as persons
at first. We read sequentially the whole file and create sets D and CodePlex project CP
as an attribute. For recording, we firstly read the author of the project, and if he is not
in the set D, we add him as well the project he is working on, into CPDi . CP consists of
all person’s projects {CPD0 ,CPD1 , . . . ,CPDn}= CP. After the whole analysis of the file,
we can define AttributeScore computation for CodePlex:

AttributeScore(CPDi ,CPD j) =
|CPDi ∩ CPD j |
|CPDi ∪ CPD j |

(3)

3.2 Relationship Context

As we discussed above, every person has it’s attributes. Moreover, each person has a
description text. If we use lexical analysis on this text, we can define a term set (or
a m-gram set) for every person as TPi . Term set T consists of all persons term sets
{TP0 ,TP1 , . . . ,TPn}= T , when the domain for terms DT could be easily obtained as union
of all terms extracted for each person DT = TP0 ∪TP1 ∪ . . .∪TPn .

The whole process of obtaining term sets is described in [10], so we just remiding
(tk in TPi) stands for the number of terms tk in the titles of articles by TPi and (tk in T)
for the number of terms in titles in all articles.

Developers’ Cooperation based on Terms of Project Description 43

We can evaluate association between the selected term tk ∈DT and a person Pi ∈ P:

R(TPi , tk) =
(tk in TPi)

(tk in T)+ |TPi |− (tk in TPi)
(4)

RNorm(TPi , tk) =
R(TPi , tk)

MAX(R(TPi , t1), . . . ,R(TPi , t|TPi |))
(5)

Evaluation of the whole relationship context of two persons Pi and Pj has two steps.
First, we compute association between Pi and selecte term tk, and between the second
person Pj and tk separately. Afterwards, because each part is already evaluated by real
number, we combine both results in the same way; we can combine the whole result in
equation one. However, the most usual is again muliplication, so we could write:

ContextScore(TPi ,TPj , tk) = RNorm(TPi , tk)RNorm(TPj , tk) (6)

In CodePlex we see the description text for the developer as the all description of
all projects he is working on, joined together.

ContextScore(TDi ,TD j , tk) = RNorm(TDi , tk)RNorm(TD j , tk) (7)

3.3 Collaboration – Whole Score

The last step is to define Score, which consists of AttributeScore and ContextScore:

Score(XPi ,XPj ,TPi ,TPj , tk) = AttributeScore(XPi ,XPj)ContextScore(TPi ,TPj , tk) (8)

We obtain for CodePlex:

Score(CPDi ,CPD j ,TDi ,TD j , tk) = AttributeScore(CPDi ,CPD j)ContextScore(TDi ,TD j , tk) (9)

3.4 Building the Graph

To describe the network of collaboration, we use standard weighted graph G(V,E), where weighted
function is defined as w : E(G) 7→ R, when w(e)≥ 0.

The determination of set V is generally simple, because objects of vertices set V match with
objects of set P, so V = P. However, we can do the same with all the possible pairs from set P
to assign a set of edges E; it is better to design the algorithm to each implementation at first, and
to reduct the number of useless computations. In addition, we must choose term tk for function
w, which reflects the context. Because only the commutative operations are used, we do not need
to take into consideration the order of attribute objects in function parameters. Moreover E is
two-object set, where the order of objects does not matter, so the evaluating is done just once.

When we construct graph based on developers’ projects relationship, we use
AttributeScore(CPDi ,CPD j) as w, where no term is needed, then simply V = D, which means
that every developer is a vertex in the graph. Then, for each developer Di ∈ D we find collabora-
tors DiC and for each collaborator D j ∈DiC we create two-object set {Di,D j}, which corresponds
with an edge in the graph. Equation 3 is then used to evaluate the edge.

44 Š. Minks, J. Martinovič, P. Dráždilová, A. Babskova, and K. Slaninová

The function Score(CODi ,COD j ,TDi ,TD j , tk) is used for evaluating the edges in the context
of the term. The only difference is, that majority of developers has not chosen term in their
description text, so the result will be 0 and no edge would exists. Hence, we first determine
subset of developers Dtk ⊆ D for those that have a term in their description text, followed by the
same steps described in the last paragraph to compute developers’ projects relationship. Then,
the term tk is used for computation of the second part in ContextScore(TDi ,TD j , tk). Finally, we
calculate the whole Score by multiplication of both parts.

4 Experiments

For the basic computation of the collaboration, we chose the term ”team” and apply it to the
formula 5. The results were limited to the collaborators with whose the person has worked to-
gether on the project at least once. We show in the Table 3 values of AttributeScore for person
with nickname CareBear and in the Table 4 for person with nickname shanselman.

Fig. 1. Synthetic collaborators network for the term team - edge weights are computed by Score

Developers’ Cooperation based on Terms of Project Description 45

Fig. 2. Selected subnetwork with developers Carebare and shanelsman

Number Coworkers Projects Common projects AttributeScore

1 CareBear 13 13 1
2 EmilMelar 2 2 0,1538462
3 Maggie 2 2 0,1538462
4 Kudzu2 2 2 0,1538462
5 kudzu 12 3 0,1363636
6 hhariri 6 2 0,1176471
7 amccool 1 1 0,07692308
8 arundeep 1 1 0,07692308
9 badmaash 1 1 0,07692308

10 frasse 1 1 0,07692308
...

145 shanselman 20 1 0,03125
146 Microsoft 537 1 0,001821494

Table 3. Coworkers of CareBear

We can immediately notice that even though shanselman do not participate on many projects
with CareBear (they have one common project), the AtributeScore is 0.03125. Conversely then,
although shanselman (or CareBear) has with Microsoft 4 common projects, Microsoft cooper-
ate with many other persons. Therefore, the shanselman (or CareBear) has not such a strong
AtributScore with Microsoft.

46 Š. Minks, J. Martinovič, P. Dráždilová, A. Babskova, and K. Slaninová

Number Coworkers Projects Common projects AttributeScore

1 shanselman 20 20 1
2 Haacked 14 3 0,09677419
3 jongalloway 14 3 0,09677419
4 SteveSanderson 4 2 0,09090909
5 shahineo 4 2 0,09090909
6 JasonHaley 6 2 0,08333334
7 ben2004uk 7 2 0,08
8 bsimser 8 2 0,07692308
9 AArnott 8 2 0,07692308
10 dcazzulino 20 2 0,05263158
11 agsmith 1 1 0,05
12 BartRead 1 17 0,05
...

147 CareBear 13 1 0,03125
...

152 ReedMe 31 1 0,02
153 Microsoft 537 4 0,007233273

Table 4. Coworkers of shanselman

4.1 Key Terms Computation

At first, we have calculated the keywords for the CareBear and shanselman. We have selected
only the first 15 terms for illustration (see Table 5 and Table 6). For comparison we marked some
terms (bold text).

number tk tk in TPCareBear

1 flickr 1
2 cosmo 0,9894736
3 automaton 0,9415065
4 ovik 0,8872708
5 downloadr 0,8238943
6 weeb 0,7605178
7 scrum 0,571498
8 photo 0,5248883
9 team 0,4844927
10 tf 0,404665
11 associ 0,3172817
12 flickr downloadr 0,3168824
13 store 0,3070892
14 process templat 0,2949297
15 team foundat 0,2901235
...
926 set 0,007442362

Table 5. Key Terms for the person CareBear

Developers’ Cooperation based on Terms of Project Description 47

number tk tk in TPshanselman

1 syndic 1
2 administr 0,75
3 peer 0,6934211
4 creatur 0,6413794
5 terrarium 0,5994475
6 argot 0,5570145
7 reflector 0,5359043
8 ecosystem 0,5102881
9 nuget 0,3803681
10 browser 0,3582435
11 assembl 0,3461412
12 consum 0,3358614
13 mobil 0,3216281
14 ad 0,309705
15 nerddinn 0,2954391
...
82 team 0,1306442
...
174 store 0,08637504
1444 system 0,007958922

Table 6. Key Terms for the person shanselman

In the Figure 1 is whole network of collaborators for the term team. Here is 31 connected
components (communities) with collaborating developers. Figure 2 shows graphs of synthetic
collaborators network generated for the term ”team” and for selected developers.

5 Conclusion

Research presented in this article is oriented to the strength extraction between persons based
on their context in the CodePlex. The method was presented using the data collection from the
CodePlex database, which contains information of the activities of developers in the project. The
proposed method is usable for the development of collaboration network. The description of this
network is based on the set of terms (as the input), which are used in the description of projects
by the given developer. Using this method, we have obtained the new weight in the synthetic
collaborators network. By means of the set of selected term, belonging to one (or more) persons,
we can construct the subnetwork with only the context-related collaborators. This subnetwork
can be very helpful in searching of the persons who are interested in the same area, defined by
the selected term. It is usable for members of the project management, who need to find suitable
developers specialized to certain area. It follows that this method can be used to a certain extent
for prediction as well.

Acknowledgment

This work was supported by SGS, VSB – Technical University of Ostrava, Czech Republic, under
the grant No. SP2012/151 Large graph analysis and processing.

48 Š. Minks, J. Martinovič, P. Dráždilová, A. Babskova, and K. Slaninová

References

1. E. Deza and M. Deza. Dictionary of distances. 1-391, 2006.
2. Ch. Jacquemin and B. Didier. Term Extraction and Automatic Indexing. Handbook of Com-

putational Linguistics. Oxford University Press, 599-615, 2003.
3. M. Konchady. Text Mining Application Programming (Programming Se-ries). Charles River

Media, Rockland, MA, USA, May 2006.
4. A. H. Lashkari, F. Mahdavi, V. Ghomi. A Boolean Model in Information Retrieval for Search

Engines, 2009.
5. P. Lopez and R. Laurent. HUMB: Automatic Key Term Extraction from Scientific Articles in

GROBID. Computational Linguistics July, 248-251, 2010.
6. J. Mori, Y. Matsuo, M. Ishizuka, B. Faltings. Keyword extraction from the Web for FOAF

metadata, In Proceedings of the 1st Workshop on Friend of a Friend, Social Networking and
the (Semantic) Web, 2004.

7. M. F. Porter. An algorithm for suffix stripping. Program, 14:130-137, 1980.
8. Y. Ding. Scientific collaboration and endorsement: Network analysis of coauthorship and ci-

tation networks. Journal of informetrics 5.1,187-203, 2011.
9. R. R. T. Santamarı́a. Overlapping Clustered Graphs: Co-authorship Networks Visualization.

Lecture Notes in Computer Science 5166, 190-199, 2008.
10. S. Minks, J. Martinovic, P. Drazdilova and K. Slaninova. Author Cooperation based on Terms

of Article Titles from DBLP, IHCI 2011, Praha, 2011.
11. P. Mika. Ontologies are us: A unified model of social networks and semantics. Web Seman-

tics Science Services and Agents on the World Wide Web 5, 5-15, 2007.
12. Y. Long, K. Siau. Social Network Structures in Open Source Software Development Teams.

Journal of Database Management 18, 25-40, 2007.

Dynamic Time Warping in Analysis of Student
Behavioral Patterns

Kateřina Slaninová1, Tomáš Kocyan2, Jan Martinovič2,
Pavla Dráždilová1, and Václav Snášel2

1 VŠB - Technical University of Ostrava,
Faculty of Electrical Engineering and Computer Science,
17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
(katerina.slaninova,pavla.drazdilova)@vsb.cz

2 VŠB - Technical University of Ostrava,
IT4Innovations,

17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
(tomas.kocyan,jan.martinovic,vaclav.snasel)@vsb.cz

Dynamic Time Warping in Analysis of Student
Behavioral Patterns

Kateřina Slaninová1, Tomáš Kocyan2, Jan Martinovič2,
Pavla Dráždilová1, and Václav Snášel2

1 VŠB - Technical University of Ostrava,
Faculty of Electrical Engineering and Computer Science,
17. listopadu 15/2172, 708 33 Ostrava, Czech Republic

(katerina.slaninova,pavla.drazdilova)@vsb.cz
2 VŠB - Technical University of Ostrava,

IT4Innovations,
17. listopadu 15/2172, 708 33 Ostrava, Czech Republic

(tomas.kocyan,jan.martinovic,vaclav.snasel)@vsb.cz

Abstract. E-learning systems store large amount of data based on the history
of users’ interactions with the system. These pieces of information are usually
used for further course optimization, finding e-tutors in collaboration learning,
analysis of students’ behavior, or for other purposes.
The paper deals with an analysis of students’ behavior in learning management
system. The main goal of the paper is to find, how selected methods can influence
finding of behavioral patterns in learning management system and how we can
reduce the amount of extracted sequences. The methods of process mining and
sequential pattern mining were used for extraction of behavioral patterns. The au-
thors present the comparison of selected methods for the definition of students’
behavior with the focus to influence of dynamic time warping. Obtained patterns
and relations between them are presented using complex networks; the visualiza-
tion and pattern clusters extraction is optimized by spectral graph partitioning.

1 Introduction

E-learning is a method of education which utilizes a wide spectrum of technologies,
mainly internet or computer-based, in the learning process. It is naturally related to
distance learning, but nowadays is commonly used to support face-to-face learning as
well. Learning management systems (LMS) provide effective maintenance of particu-
lar courses and facilitate communication within the student community and between
educators and students [4]. Such systems usually support the distribution of study ma-
terials to students, content building of courses, preparation of quizzes and assignments,
discussions, or distance management of classes. In addition, these systems provide a
number of collaborative learning tools such as forums, chats, news, file storage etc.

LMS based on computer and web-based education environments provide storage
of large amount of accessible information. These systems record information about
students’ actions and interactions onto log files or databases. Within these records, data
about students learning habits can be found including favored reading materials, note

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 49–59, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

50 K. Slaninová, T. Kocyan, J. Martinovič, P. Dráždilová, and V. Snášel

taking styles, tests and quizzes, ways of carrying out various tasks, communication with
other students in virtual classes using chat, forum, and etc. Other common data, such
as personal information about students and educators (user profiles), student results and
user interaction data, is also available in the system databases [1].

Such data collections are essential for analyzing students’ behavior and can be very
useful in providing feedback both to students and educators. For students, this can be
achieved through various recommended systems and through course adaptation based
on student learning behavior. For teachers, some benefits would include the ability to
evaluate the courses and the learning materials, to detect the typical learning behavior
or to find possible students suitable for collaborative learning [18].

Regardless of LMS benefits, huge amount of recorded data in large collections
makes often too difficult to manage them and to extract useful information from them.
To overcome this problem, some LMS offer basic reporting tools. However, in such
large amount of information the outputs become quite obscure and unclear. In addition,
they do not provide specific information of student activities while evaluating the struc-
ture and content of the courses and its effectiveness for the learning process [23]. The
most effective solution to this problem is to use data mining techniques [1].

The main goal of the paper is to compare selected data mining methods suitable
for the extraction of students’ behavioral patterns performed in LMS Moodle. The be-
havioral patterns are obtained using methods of process mining and sequential mining,
the patterns are presented using methods from graph theory. The organization of the
paper is as follows: Section 2 consists of the background related to the methods used
for the analysis of students’ behavior. Process mining issues and selected methods for
comparison of sequences are presented here. In Section 3 is presented an extraction of
sequences used for students’ behavior description from log file of e-learning system.
Then, we are presented results of experiments provided on e-learning system Moodle.
The experiments are focused to the extraction of students’ behavioral patterns and to
the comparison of selected methods. For easier analysis of the students’ behavior is
important the reduction of amount of sequences. We have used spectral clustering algo-
rithm, which determine number of important clusters with behavioral patterns. The last
Section 4 contains the conclusion.

2 Analysis of Students’ Behavior

Several authors published contributions with relation to mining data from e-learning
systems to extract knowledge that describe students’ behavior. Among others we can
mention for example [11], where authors investigated learning process of students by
the analysis of web log files. A ’learnograms’ were used to visualize students’ behavior
in this publication. Chen et al. [3] used fuzzy clustering to analyze e-learning behav-
ior of students. El-Hales [6] used association rule mining, classification using decision
trees, E-M clustering and outlier detection to describe students’ behavior. Yang et al.
[22] presented a framework for visualization of learning historical data, learning pat-
terns and learning status of students using association rules mining. The agent tech-
nology and statistical analysis methods were applied on student e-learning behavior to
evaluate findings within the context of behavior theory and behavioral science in [2].

Dynamic Time Warping in Analysis of Student Behavioral Patterns 51

However, contributions oriented to analysis of students’ behavior in e-learning sys-
tems describe the behavior using statistical information, for visualization and represen-
tation of obtained information are mostly used only common statistical tools like figures
or graphs. They usually do not provide information about behavioral patterns with ef-
fective visualization, nor information about relations between students based on their
behavior.

2.1 Process Mining

Our subject of interest in this paper is student behavior in LMS, which is recorded in
form of events and stored in the logs. Thus, we can define the student behavior with the
terms of process mining which are used commonly in business sphere. Aalst et al. [20,
19] defines event log as follows:

Definition 1. Let A be a set of activities (also referred as tasks) and U as set of per-
formers (resources, persons). E = A×U is the set of (possible) events (combinations of
an activity and performer). For a given set A, A∗ is the set of all finite sequences over A.
A finite sequence over A of length n is mapping σ =< a1,a2, . . . ,an >, where ai = σ(i)
for 1 ≤ i ≤ n. C = E∗ is the set of possible event sequences. A simple event log is a
multiset of traces over A.

Then, student behavior in LMS can be described by set of event sequences. More
detailed description is presented in Section 3.

The paper is oriented to finding behavioral patterns. Behavioral patterns are dis-
covered using similarity of extracted sequences. A sequence is an ordered list of el-
ements, denoted < e1,e2, . . . ,el >. Given two sequences α =< a1,a2, . . . ,an > and
β =< b1,b2, . . . ,bm >. α is called a subsequence of β , denoted as α ⊆ β , if there
exist integers 1 ≤ j1 < j2 < .. . < jn ≤ m such that a1 = b j1,a2 = b j2, . . . ,an = b jn. β
is than a super sequence of α .

In the problem of finding similar behavior, we do not use traditional methods of
sequential pattern mining where usually frequently repeated patterns are extracted. For
finding the behavioral patterns, we need to use the methods for the sequence compari-
son, described in Section 2.2.

2.2 Comparison of Sequences

There are generally known two basic groups of algorithms for the comparison of two or
more categorical sequences. The first group divides the algorithms by the fact, whether
the sequences consist of ordered or unordered elements. The second group of algorithms
focuses on the comparison of the sequences with the different lengths and with the
possible error or distortion.

The basic approach to the comparison of two sequences, where the order of elements
is important, is The longest common substring (LCS) method [10] (see example in Table
1). As obvious from the name of the method, the main principle of the method is to find
the length of the common longest substring. Given the two sequences x and y, we can
find such subsequence z =< z1,z2, . . . ,zp >, where zk = xi+k−1 = y j+k−1 ∀k = 1, . . . p
and p≤ m,n.

52 K. Slaninová, T. Kocyan, J. Martinovič, P. Dráždilová, and V. Snášel

The LCS method respects the order of elements in the sequence. However, the main
disadvantage is, that it can find only identical subsequences, where no extra element
is presented in the sequence. For some domains, typically where is large amount of
different sequences, gives this fact too strict limitation.

As a solution of this problem we can consider The longest common subsequence
(LCSS) described for example in [12] (see example in Table 1). Contrary to The longest
common substring, this method allows (or ignores) the inserted extra elements in the
sequence, and therefore, it is immune to slight distortions.

a b c
Sequence X EABCF EAEBCE ABBCC
Sequence Y ZABCT FABCF EABCE
Longest Common substring ABC BC AB
Common subsequence (LCSS) ABC ABC ABC
Common subsequence (TWLCS) ABC ABC ABBCC

Table 1. Results of algorithms for subsequence detection

Whether we define the similarity of compared sequences as a function using a length
of common subsequence, we can find one characteristic of this method. The length of
the common subsequence is not immune to recurrence of identical elements, which can
occur only in one of the compared sequences. We can find such situations, for example
due to inappropriate sampling or due to any kind of distortion.

In some applications, it is suitable (or sometimes even required) to eliminate such
type of distortions and to work with them like with equivalent elements. The solu-
tion is in another method, The time-warped longest common subsequence (T-WLCS)
[9] (see example in Table 1). The method combines the advantages of LCSS method
with dynamic time warping[13]. Dynamic time warping is used for finding the optimal
visualization of elements in two sequences to match them as much as possible. This
method is immune to minor distortions and to time non-linearity. It is able to compare
sequences, which are for standard metrics evidently not comparable.

The method emphasizes recurrence of elements in one of the compared sequences.
Due to this fact the length of the common subsequence can be longer than the shorter
length of the compared sequences.

In the experiments described in the paper, the authors compare the impact of LCSS
and T-WLCS methods to the construction of derived network based on similar behavior
of students in e-learning system.

3 Sequence Extraction in LMS Moodle

In this section is presented the extraction of students’ behavioral patterns performed
in the e-learning educational process. The analyzed data collections were stored in the
Learning Management System (LMS) Moodle logs used to support e-learning educa-
tion at Silesian University, Czech Republic.

Dynamic Time Warping in Analysis of Student Behavioral Patterns 53

The logs consist of records of all events performed by Moodle users, such as com-
munication in forums and chats, reading study materials or blogs, taking tests or quizzes
etc. The users of this system are students, tutors, and administrators; the experiment was
limited to the events performed only by students.

Let us define a set of students (users) U , set of courses C and term Activity ak ∈ A,
where A = P×B is a combination of activity prefix pm ∈ P (e.g. course view, resource
view, blog view, quiz attempt) and an action bn ∈ B, which describes detailed informa-
tion of an activity prefix (concrete downloaded or viewed material, concrete test etc.).
Event e j ∈ E then represents the activity performed by certain student ui ∈U in LMS.
On the basis of this definition, we have created a set Si of sequences si j for the user ui,
which represents the students’ (users’) paths (sessions) on the LMS website. Sequence
si j is defined as a sequence of activities, for example si j =< a1 j,a2 j, . . . ,aq j >, which
is j-th sequence of the user ui.

The sequences were extracted likewise the user sessions on the web; the end of the
sequences was identified by at least 30 minutes of inactivity, which is based on our
previous experiments [5]. Similar conclusion was presented by Zorrilla et al. in [23].

Using this method, we have obtained a set of all sequences S = ∪∀iSi, which con-
sisted of large amount of different sequences sl performed in LMS Moodle. We have
selected the course Microeconomy A as an example for the demonstration of proposed
method. In Table 2 is presented detailed information about the selected course.

Records Students Prefixes Actions Sequences
65 012 807 67 951 8 854

Table 2. Description of Log File for Course Microeconomy A

Sequence appearance in the selected course follows the power law distribution.
As mentioned in Section 3, the obtained set S of sequences consisted of large

amount of different sequences, often very similar. Such large amount of information
is hard to clearly visualize and to present in well arranged way. Moreover, the compari-
son of users based on their behavior is computationally expensive with such dimension.
Therefore, we present the identification of significant behavioral patterns based on the
sequence similarity, which allows us to reduce amount of extracted sequences.

Following experiment is oriented to exploration, how the different methods for mea-
surement of sequence similarity can influence finding of behavioral patterns. We have
used LCSS a T-WLCS methods for the similarity measurement of sequences, described
in Section 2.2, with comparison to the common one, cosine similarity. Cosine similarity
[15] is well known method for similarity measurement in informational retrieval while
working with vector model. Both methods LCSS and T-WLCS find the longest com-
mon subsequence α of compared sequences βx and βy, where α ⊆ βx ∧α ⊆ βy, with
relation to both methods, see Section 2.2. Similarity was counted by the Equation 1.

Sim(βx,βy) =
(l(α)∗h)2

l(βx)∗ l(βy)
, (1)

54 K. Slaninová, T. Kocyan, J. Martinovič, P. Dráždilová, and V. Snášel

where l(α) is a length of the longest common subsequence α for sequences βx and
βy; l(βx) and l(βy) are analogically lengths of compared sequences βx and βy, and

h =
Min(l(βx), l(βy))
Max(l(βx), l(βy))

(2)

Table 3 shows cosine similarity and similarity counted by the methods LCSS and
T-WLCS for selected sequences and sequence ’4408,4409,4407,2181,2133’.

Similarity
Sequence Cosine LCSS T-WLCS

’4408,4409,4407,2181,2133’ 1 1 (5) 1 (5)
’4409,4407,4408,2181,2133’ 1 0.64(4) 0.64 (4)
’4407,4409,4408,2181,2133’ 1 0.36 (3) 0.36 (3)

’4408,4409,4407,2181’ 0.991 0.512 (4) 0.512 (4)
’4409,4407,4408,2181’ 0.991 0.288 (3) 0.288 (3)

’4409,4407,4408,2181,2133,225’ 0.979 0.370 (4) 0.370 (4)
’4408,4409,4407,2181,225,2133’ 0.979 0.579 (5) 0.579 (5)
’4407,4408,4409,2181,2133,225’ 0.979 0.370 (4) 0.370 (4)

’4407,4408,4409,2181,2133,225,2133’ 0.976 0.233 (4) 0.364 (5)
’4408,4409,4407,4408,2181,2133’ 0.972 0.579 (5) 0.579 (5)

Table 3. Example: Similarity of ’4408,4409,4407,2181,2133’to Selected Sequences

Numbers in the brackets present the length of the founded longest common se-
quence for each method. From Table 3 (for example from the second row of the table)
is evident the significant disadvantage of cosine similarity: it does not take into consid-
eration the ordering of events in the sequence, while the methods LCSS and T-WLCS
do. However, cosine similarity supports weighted vector model, where frequency of at-
tributes is taken into consideration. In our method, tf-idf weighting was used. From the
9th row we can see the difference between the methods LCSS and T-WLCS. T-WLCS
method takes into consideration the recurrence of elements in one of the compared se-
quences.

On the basis of selected method for finding the similarity of sequences, we have
constructed the similarity matrix for sequences (|S|× |S|) which can be represented us-
ing tools of graph theory. For the visualization of network was constructed weighted
graph G(V,E), where weight w is defined as function w : E(G)→ R, when w(e) > 0.
Set V is represented by set of sequences S, weights w are evaluated by the similarity of
sequences, see Equation 1, depending on selected method. In Table 4 is more detailed
description of weighted graphs of sequences, where weight is defined by cosine sim-
ilarity and similarity counted on the basis of LCSS and T-WLCS method for selected
threshold θ . The number of nodes for each graph is 5908.

From Table 4 we can see, that each graph consists of large amount of similar se-
quences. Moreover, they are dense and very large for further processing. Better in-
terpretation of results is possible by finding the components, which can represent the

Dynamic Time Warping in Analysis of Student Behavioral Patterns 55

Cosine Measure
θ Isolated Nodes Edges Avg. Degree Avg. Weighted Degree

0.1 0 13292202 2249.865 464.377
0.2 2 4651152 787.263 261.303
0.3 5 2040406 345.363 155.013
0.4 32 1050138 177.748 97.387
0.5 122 554278 93.818 60.066
0.6 395 290632 49.193 35.747
0.7 897 147984 25.048 20.181
0.8 1851 67584 11.439 10.034
0.9 3289 21966 3.718 3.524

LCSS
θ Isolated Nodes Edges Avg. Degree Avg. Weighted Degree

0.1 113 1622206 274.578 45.563
0.2 672 352504 59.666 17.112
0.3 1711 85266 14.432 6.037
0.4 2586 39922 6.757 3.309
0.5 3812 13796 2.335 1.351
0.6 4891 3320 0.562 0.371
0.7 5697 390 0.066 0.049
0.8 5900 12 0.002 0.002
0.9 5908 0 0 0

T-WLCS
θ Isolated Nodes Edges Avg. Degree Avg. Weighted Degree

0.1 31 5577366 944.036 179.431
0.2 143 1739042 294.354 88.883
0.3 606 534648 90.496 38.735
0.4 1200 271826 46.010 22.998
0.5 2465 103028 17.439 10.430
0.6 3781 29298 4.959 3.596
0.7 5038 8080 1.368 1.269
0.8 5517 5914 1.001 0.997
0.9 5568 5788 0.980 0.980

Table 4. Description of Sequence Graphs for Cosine Similarity, LCSS and T-WLCS

behavioral patterns. The graph reduction using only threshold θ leads to undesirable
loss of information. Due to this reason, we have used spectral clustering by Fiedler vec-
tor and algebraic connectivity [7, 8]. More detailed description of finding components
using this method was presented in our previous work [21, 14].

In table 5 are described graphs with different methods for computing similarity
between sequences. The threshold was selected θ ≥ 0.1 or 0.2 for comparison between
the largest components with similar size (bold numbers). We have analysed the largest
connected components of each graph and we have obtained significant clusters after
spectral clustering.

56 K. Slaninová, T. Kocyan, J. Martinovič, P. Dráždilová, and V. Snášel

Cosine LCSS T-WLCS T-WLCSS
θ ≥ 0.1 θ ≥ 0.1 θ ≥ 0.1 θ ≥ 0.2

Connected Components 1 122 33 145
Size of the Largest Component 5908 5778 5875 5763
Clusters in the Largest Component 2 19 10 20
Size of Cluster 1 2969 2629 3472 1623
Size of Cluster 2 2939 1573 762 1247
Size of Cluster 3 1138 745 772
Size of Cluster 4 307 557 567
Size of Cluster 5 50 322 561

Table 5. Description of Components After Spectral Clustering

In Figure 1 we can see the weighted graph constructed for better visualization of
the components with the similar sequences.

Fig. 1. Weighted Graph With Behavioral Patterns

The graph was constructed using an open souce software Gephi3. In Figure 1, the
nodes in the graph represent the sequences, while the edges are weighted by their simi-
larity using T-WLCS method. The graph was constructed using threshold θ=0.8. Each
component in the graph can represent a behavioral pattern of similar sequences.

3http://gephi.org

Dynamic Time Warping in Analysis of Student Behavioral Patterns 57

Figure 2 shows the detailed view to the selected component from the graph on Fig-
ure 1. The component consists of 2940 sequences, each node is described by the se-
quence, while the actions in sequences have its own unique ID.

Fig. 2. Selected Component of Similar Sequences

It is possible to generate subgraphs relevant to selected activity, which can be in
the area of our interest. The filtering by selected activities is performed by using vector
model of sequences × activities.

4 Conclusion

The paper is oriented to finding the students’ behavioral patterns performed in the e-
learning system. The behavioral patterns were obtained using the methods of process
mining and sequential mining, the patterns were visualized by the methods from graph
theory. The authors focused on the comparison of the selected data mining methods
suitable for the definition of the sequence similarity.

On the basis of previous experiments with suffix tree method and common vector
model [17, 16] we have found, that the sequences are order dependent and it is better
to respect this fact while comparing the sequence similarity. Due to this reason, the
methods for finding the longest common subsequence were used.

In the experiments, the comparison of methods LCSS and T-WLCS with common
vector model was described. Our results showed that each method has its unique char-
acteristics. Vector model does not take into consideration ordering of actions inside the
sequences, which is important disadvantage. On the other side, it allows weighting of
activities on the basis of their frequency. LCSS and T-WLCS methods work with action

58 K. Slaninová, T. Kocyan, J. Martinovič, P. Dráždilová, and V. Snášel

ordering and allow slight distortions in the sequence, while T-WLCS emphasizes the
recurrence of elements in one of the compared sequences. These methods allowed to
find the similarity between the two sequences more precisely.

On the basis of our experiments we have found that proposed method is usable for
sequence extraction. Moreover, it can be effectively used for the reduction of sequence
dimension. As we can see from presented results, we need to provide more precise di-
vision of extracted components to obtain more accurate behavioral patterns in some
cases. The LCSS and T-WLCS methods are more time demanding than common co-
sine similarity. In our further work we intent to focus on their optimization. Another
possible further work can be oriented to the definition of sequence similarity which
will exploit the advantages from cosine measure and methods for finding the longest
common subsequence.

Proposed method is suitable for finding the students’ behavioral patterns in e-learning,
which can be useful in providing feedback both to students and educators. Such type
of information is valuable neither in e-learning sphere, nor in other areas like business
process mining, finding behavior of users on the web, marketing etc.

Acknowledgment

This work was partially supported by SGS, VSB – Technical University of Ostrava,
Czech Republic, under the grant No. SP2012/151 Large graph analysis and process-
ing and by the European Regional Development Fund in the IT4Innovations Centre of
Excellence project (CZ.1.05/1.1.00/02.0070).

References

1. F. Castro, A. Vellido, A. Nebot, and F. Mugica. Applying data mining techniques to e-
learning problems. Studies in Computational Intelligence (SCI), 62:183–221, 2007.

2. B. Chen, C. Shen, G. Ma, Y. Zhang, and Y. Zhou. The evaluation and analysis of student
e-learning behaviour. In IEEE/ACIS 10th International Conference on Computer and Infor-
mation Science (ICIS), 2011, pages 244 – 248, 2011.

3. J. Chen, K. Huang, F. Wang, and H. Wang. E-learning behavior analysis based on fuzzy clus-
tering. In Proceedings of International Conference on Genetic and Evolutionary Computing,
2009.

4. P. Dráždilová, G. Obadi, K. Slaninová, S. Al-Dubaee, J. Martinovič, and V. Snášel. Computa-
tional intelligence methods for data analysis and mining of elearning activities. In F. Xhafa,
S. Caballe, A. Abraham, T. Daradoumis, and J. Perez, editors, Studies in Computational
Intelligence For Technology Enhanced Learning, volume 273, pages 195–224. Heidelberg,
Germany: Springer-Verlag, 2010.

5. P. Dráždilová, K. Slaninová, J. Martinovič, G. Obadi, and V. Snášel. Creation of students’
activities from learning management system and their analysis. In A. Abraham, V. Snášel,
and K. Wegrzyn-Wolska, editors, IEEE Proceedings of International Conference on Compu-
tational Aspects of Social Networks CASON 2009, pages 155–160, 2009.

6. A. El-halees. Mining students data to analyze learning behavior: a case study. 2008.
7. M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23:298–

305, 1973.

Dynamic Time Warping in Analysis of Student Behavioral Patterns 59

8. M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application
to graph theory. Czechoslovak Mathematical Journal, 25:619–633, 1975.

9. A. Guo and H. Siegelmann. Time-Warped Longest Common Subsequence Algorithm for
Music Retrieval, pages 258–261. Universitat Pompeu Fabra, 2004.

10. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

11. A. Hershkovitz and R. Nachmias. Learning about online learning processes and students’
motivation through web usage mining. Interdisciplinary Journal of E-Learning and Learning
Objects, 5:197–214, 2009.

12. D. S. Hirschberg. Algorithms for the longest common subsequence problem. J. ACM,
24:664–675, October 1977.

13. M. Müller. Information Retrieval for Music and Motion. Springer, 2007.
14. G. Obadi, P. Dráždilová, J. Martinovič, K. Slaninová, and V. Snášel. Using spectral clustering

for finding student’s patterns of behavior in social networks. In Proceedings of the Dateso
2010 Annual International Workshop on DAtabases, TExts, Specifications and Objects, pages
118–130, 2010.

15. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Informa-
tion Processing and Management, 24(5):513–523, 1988.

16. K. Slaninová, R. Dolák, M. Miškus, J. Martinovič, and V. Snášel. User segmentation based
on finding communities with similar behavior on the web site. In Proceedings - 2010
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Tech-
nology - Workshops, WI-IAT Workshops 2010, pages 75–78, 2010.

17. K. Slaninová, J. Martinovič, T. Novosád, P. Dráždilová, L. Vojáček, and V. Snášel. Web site
community analysis based on suffix tree and clustering algorithm. In Proceedings - 2011
IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent
Technology - Workshops, WI-IAT 2011, pages 110–113, 2011.

18. V. Snášel, A. Abraham, J. Martinovič, P. Dráždilová, K. Slaninová, T. Daradoumis, F. Xhafa,
and A. Martiı́nez-Monés. E-assessment of individual and group learning processes. Journal
of Computational and Theoretical Nanoscience, 9(2):286–303, 2012.

19. W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Heidelberg, 1st edition, 2011.

20. W. M. P. van der Aalst, H. A. Reijers, and M. Song. Discovering social networks from event
logs. Comput. Supported Coop. Work, 14(6):549–593, 2005.

21. L. Vojáček, J. Martinovič, K. Slaninová, P. Dráždilová, and J. Dvorský. Combined method
for effective clustering based on parallel som and spectral clustering. In V. Snášel, J. Pokorný,
and K. Richta, editors, Proceedings of the 11th Annual Workshop DATESO 2011, pages 120–
131. VŠB - TU Ostrava, 2011.

22. F. Yang, R. Shen, and P. Han. Construction and application of the learning behavior analysis
center based on open e-learning platform. 2002.

23. M. Zorrilla, E. Menasalvas, D. Marı́n, E. Mora, and J. Segovia. Web usage mining project
for improving web-based learning sites. In Computer Aided Systems Theory – EUROCAST
2005, volume 3643/2005 of Lecture Notes in Computer Science, chapter Web Usage Mining
Project for Improving Web-Based Learning Sites. Springer Berlin / Heidelberg, 2005.

The Bayesian Spam Filter with NCD?

Michal Pŕılepok1, Jan Platoš1, Václav Snášel1, and Eyas El-Qawasmeh2

1 Department of Computer Science, FEI, VSB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
{michal.prilepok, jan.platos, vaclav.snasel}@vsb.cz

2 King Saud University, Saudi Arabia
eyasa@usa.net

The Bayesian Spam Filter with NCD?

Michal Pŕılepok1, Jan Platoš1, Václav Snášel1, and Eyas El-Qawasmeh2

1 Department of Computer Science, FEI, VSB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
{michal.prilepok, jan.platos, vaclav.snasel}@vsb.cz

2 King Saud University, Saudi Arabia
eyasa@usa.net

Abstract. Undesired e-mail (spam) becomes a big problem nowadays
not only for users, but also for Internet providers. One of the main ob-
stacles for elimination of this problem is a complicated security issues. In
particular, the very low rate of falsely detected e-mails in practice. We
tried to eliminate this problem by a sufficient similarity check of checked
e-mails with e-mails marked as unrequested or spam. This paper uses
Bayesian algorithm with many variations. For comparison purposes, we
used a normalized compression distance which helped us reduce the rate
of false detection of individual mails.

Keywords: e-mail, spam, Bayesian filter, data compression

1 Introduction

Spam senders are flooding us with increasing number of unrequested e-mails.
Such practice makes us think about developing of defensive techniques. Cur-
rently, there are many developed techniques and approaches, which enable us to
eliminate unrequested e-mails. These techniques and approaches can be divided
into the following categories:

– Sender or mediator analysis
– E-mail content analysis
– Sponsor analysis

Neither of the given categories is separately effective enough. Nowadays, combi-
nation of various techniques and attitudes occurs in order to improve success of
fighting against spam [10].

? This work was partially supported by the Grant Agency of the Czech Republic
under grant no. P202/11/P142, SGS in VSB Technical University of Ostrava, Czech
Republic, under the grant No. SP2012/58, and has been elaborated in the framework
of the IT4Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070
supported by Operational Programme ’Research and Development for Innovations’
funded by Structural Funds of the European Union and state budget of the Czech
Republic.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 60–68, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

The Bayesian Spam Filter with NCD 61

The organization of this paper will be as follows. Section 2 describes current
related work. Section 3 contains description of the Bayesian spam filter. Section 4
describe normalized compression distance. Section 5 defines the interconnection
of the Bayesian Spam filter an NCD. The results of our experiments are described
in Section 6 and Section 7 contains conclusion of this paper.

2 Current Related Work

First techniques of fighting against spam came out of detection key words in the
e-mail subject. These spam filters compared words contained in e-mail subject
with the list of prohibited words. Spam authors started to avoid this way of
spam detection by several modifications of e-mail subjects. Modification of e-
mail subject is often used and makes us think that it was a forwarded e-mail
from the third person, e.g. ”RE: About us” [6, 10].

Later, filter techniques started to use body of the e-mail as well. In the same
way, words from the e-mail body were compared to the list of prohibited words.
This extension brought only a little improvement. Rate of success in detection of
unrequested e-mail was dependent on the quality of the list of prohibited words.
Individual prohibited words had to be chosen very carefully so that increasing
in final false detection rate would not happen.

Filters use check-sums and marks for elimination of false detection rate. The
check-sums are calculated over each received e-mail and resulting hash are com-
pared with database of known spam e-mails. One-way transformation function
also called hash function (MD5, SHA1, ...) are used as check-sum calculators.

Spam filtering based on key words [10] did not bring required success of
unrequested e-mails detection. Analysis of recent e-mails trend seems to be a very
effective method in fighting against unrequested mail. This technique reduces the
rate of unrequested e-mail false detection. Heuristic filters are ranked to these
techniques - rules-based filters and learning-based filters.

Rules-based filters [10] are looking for features which are characteristic for
spam in the e-mails. These are some words (e.g. viagra), collocations and mis-
takes typical for spam. Example of such mistake can be sending e-mail with a
future date, prohibited marks in the heading, incorrectly marked MIME type
of e-mail, etc. Each detected feature has defined certain points score. Usually,
points are summed up and if the sum exceed defined limit, the email is marked
as a spam. Detected features are defined by the help of rules that have to be
regularly updated and conformed to spamers practices.

Learning-based filters (often called bayesian) [7, 4, 2, 1] use tricks from the
area of artificial intelligence. In the learning phase, the email is submitted into
filter. Each email is marked as spam of ham (not spam). Filter extracts features
from each email and stores them into database. Usually, the e-mail divided into
words (eventually other text segments) and a probability of individual words is
computed and statistically evaluated. The words probability for spam and ham
emails is evaluated.

62 Michal Pŕılepok, Jan Platoš, Václav Snášel, Eyas El-Qawasmeh

In detection phase, the filter uses collected information and computed the
probability that the tested email is spam. The most often formula for probability
calculation was suggested by mathematician Bayes. Learning filters are the most
efficient if they are taught what is and what is not spam by end users according
to their individual opinion. The Bayesian filters are also used in servers where
the learning is made by all users together.

Even the Bayesian filter shows a high success of unrequested e-mail detection,
false marking or non-detection still happens in some cases. This imperfection can
be eliminated by comparison of the examined e-mail content with unrequested
e-mails known in advance [6, 10].

3 The Bayesian spam filter

Bayesian spam filter is a statistic technique for filtering e-mails. It uses naive
Bayesian classifiers for spam identification. The Bayesian classifiers work with
relations between elements (typically words) from unrequested (spam) and re-
quested e-mails. They calculate probability whether an e-mail is spam or not
by the help of the Bayesian statistics. Particular words have a particular proba-
bilities of occurrence in unrequested e-mails and legitimate e-mails. Filter does
not recognize these probabilities in advance. It first has to learn them so that
he could build upon them. Each new e-mail must be manually marked whether
it is spam or is not. For all words in each e-mail the filter must adjust proba-
bility with which the given word occurs in spam or in legitimate e-mails in its
database. For instance words ”viagra” or ”refinance” are often found in spam
e-mails and names of friends or family members are often found in legitimate
e-mails.

3.1 Calculation of probability that e-mail containing a word is spam

Probability of e-mail which contains a particular word can be calculated by the
help of the following formula [7, 4, 2, 1]:

Pr(S |W) =
Pr(W | S)× Pr(S)

Pr(W | S)× Pr(S) + Pr(W | H)× Pr(H)

where:

– Pr(S |W) is probability that e-mail is spam with knowledge that it contains
the examined word.

– Pr(S) is total probability that e-mail is spam.
– Pr(W | S) is probability that the examined word occurs in spam
– Pr(H) is probability that the given e-mail is not spam (ham)
– Pr(W | H) is probability that the examined word occurs in ham e-mail

Probabilities for Pr(W | S) and Pr(W | H) will be determined in learning
phase of the filter. By the help of Pr(H) and Pr(S), it may potentially affect
partiality or impartiality of the filter against the checked mails. The more is

The Bayesian Spam Filter with NCD 63

value of Pr(S) closer to 1.0, the more is filter partial against spam mails. The
value Pr(H) adjust the filter’s opposite. The more is this value higher, the less
is the filter partial against spam mails. Summary of values Pr(H) and Pr(S)
must be equal to 1.0. The statistics presents that the probability of spam is
approximately 80%. On the basis of this statement we can determine values for
Pr(s) = 0.8, Pr(h) = 0.2. In this case, the Bayesian filter anticipates that 80%
of checked e-mails are spams and remaining 20% are legitimate ham mails. The
majority of the Bayesian filters for detection uses a hypothesis that incoming
e-mails contain less spam than legitimate e-mails (ham). Therefore, they have
adjusted both probabilities to 50% (Pr(S) = 0.5; Pr(H) = 0.5)).

It can be said about the filters which use this hypothesis that they are im-
partial, they do not have any prejudice against incoming mails. This hypothesis
enables simplification of the general formula to:

Pr(S |W) =
Pr(W | S)

Pr(W | S)× Pr(W | H)

This number is called spamcity or spaminess of the examined word. The
value of Pr(W | S) that is used in this formula is rounded to frequency of e-mails
containing the examined word in e-mails marked as spam during the learning
phase. Similarly, the Pr(W | H) is rounded to frequency of e-mails containing
the examined word in e-mails marked as ham during the learning phase. The
collection of e-mails determined for learning has to be representative enough
due to these approximations. Data files of ham and spam e-mails should be in
accordance with a 50% hypothesis of the same size. Determination whether the
e-mail is spam or ham, just on the basis of a single word, is prone to mistake.
That is why the Bayesian filter tries to take into account several words and
interconnect their spamcity in order to determine total probability.

3.2 Combination of individual probabilities

The Bayesian filter of unrequested e-mail assumes that words are independent.
This is bad in natural languages where probability of detection of an adjective
is affected, e.g. by probability of a noun. Considering this assumption we can
deduce further formulas of the Bayesian theorem:

p =
p1 × p2 . . . pn

p1 × p2 . . . pn + (1− p1)× (1− p2) . . . (1− pn)

where p is probability that the suspected e-mail is spam and pi is probability
that Pr(S |Wi) is spam containing the i− th examined word.

The result p is compared to a specific value. If the result p is higher than the
given limit, then the email is considered as a spam, otherwise it is a ham mail.

3.3 Use of rare words

In case that the word does not occur during the learning phase, numerator and
denominator is equal to zero in general, but also in spamcity formula. Software

64 Michal Pŕılepok, Jan Platoš, Václav Snášel, Eyas El-Qawasmeh

may leave out the words which do not provide any information. Words that
occurred several times only in the phase of learning may cause a problem because
it would be a mistake to believe to a blind information. Solution of this problem
is to prevent of acceptance of such words into account. The Bayesian theorem is
applied several times, and the division between spam and ham e-mails containing
the examined word is a random quantity with beta distribution. Therefore, we
may use a modified formula for calculation of probability:

P̄r(S |W) =
s× Pr(S) + n× Pr(S |W)

s + n

where

– P̄r(S | W) is corrected probability of spam e-mail with knowledge that it
contains the examined word.

– s is a strength by which we give basic information about incoming unre-
quested mail.

– Pr(S) is probability that incoming e-mails are spams.
– n is a number of occurrences of the examined word in the course of the

learning phase.
– Pr(S |W) is spamcity of the examined word.

This corrected probability is used instead of spamcity in combined formula.
Pr(S) may equal to 0.5 in order to avoid too big distrust towards incoming mails.
Three is a good value for s, which means that the examined word must exist
three times within learning e-mails in order to increase trust of spamcity value
as a default value. This formula may be extended in case when n is equal to 0
(and where spamcity is not defined). In this case, Pr(S) is evaluated.

3.4 Other heuristics

Neutral words like the, and, some, or is (in English), or their equivalents in other
languages may be ignored. Generally said, some Bayesian filters ignore all words
which has spamcity around 0.5, because they bring insufficiently good decision.
Words taken into account should have spamcity close to 0.0 (distinctive mark of
legitimate mail), or 1.0 (distinctive mark of spam mail). Method may look like
this for example: 10 words that have the highest absolute value |0.5− p|.

Some software products consider the fact that the given word occurs several
times in the examined e-mail and others not.

Some software products use samples (word sequences) instead of separated
words of natural language. For instance, they calculate the spamcity value of
four words ”Viagra is good for”, instead of calculation of spamcity values for
each word ”Viagra”, ”is”, ”good” and ”for”. This method provides a higher
sensitivity to context and leads to better elimination of the Bayesian noise to
the detriment of a bigger database.

The Bayesian Spam Filter with NCD 65

4 Normalized Compression Distance

Normalized Compression Distance (NCD) is a mathematical way for measuring
similarity of objects. Measuring of similarity is realized by the help of compres-
sion where repeating parts are suppressed by compression. It is based on algo-
rithmic difficulty of the Normalized Information Distance (NID) developed by
Andrey Kolmogorov. NCD may be used for comparison of different objects, such
as music, texts or gene sequences. We may use NCD for detection of plagiarism
and visual data extraction [9].

Resulting rate of probability distance is calculated by the following formula:

NCD =
C(xy)−min (C(x), C(y))

max (C(x), C(y))

Where:

– C(x) is size of compressed file x.
– C(y) is size of compressed file y.
– C(xy) is size of compressed file created by interconnected files x and y.
– min{x, y} is minimum of values x and y.
– max{x, y} is maximum of values x and y.

The NCD is in the interval 0 ≤ NCD(x, y) ≤ 1. If NCD(x, y) = 0, then
files x and y are equal. They have the highest difference when the result value
of NCD(x, y) = 1.

4.1 Implementation

In our approach we use a GZIP program for data compression. GZIP internally
use a DEFLATE compression algorithm [3]. Deflate algorithm is based on the
variant of LZ77 algorithm [11] called LZSS [8]. It also uses a semi-adaptive ver-
sion of Huffman encoding [5]. LZ77 algorithm and its variants belong to the
dictionary based compression algorithms which replace a symbol (bytes, char-
acters, etc.) sequences by references into dictionary. LZSS algorithm uses two
types of reference. The first type of reference in not reference at all because it
represents one symbol. The second type of reference is a position and length
of the same sequence in the already encoded text. All three parts - characters,
positions and lengths are encoded by Huffman encoding, but each element has
its own model, which increases the compression efficiency.

This algorithm is widely used in data compression. Because of popularity of
this algorithm and its simplicity, it is very good choice for our purpose because
its implementation is very efficient and fast. Therefore, involvment of NCD into
spam detection will not reduce the speed of the decision engine.

66 Michal Pŕılepok, Jan Platoš, Václav Snášel, Eyas El-Qawasmeh

5 Interconnection of the Bayesian spam filter and NCD

We may complete the Bayesian spam filter with further helping techniques that
enable us to increase detection probability of unrequested email messages. One
of the possibilities is comparison of the checked e-mail with a group of spam
e-mails which were used for learning of individual probabilities of the Bayesian
filter.

Additional check is applied in e-mails where spamcity is higher than 0.5. For
each e-mail whose spamcity value is higher than 0.5, NCD-value of similarity, to
the file which has approximately the same size after compression as the checked
mail, is calculated.

Email with a similar size after compression is searched in the collection spam
e-mails. We select the email according its size only. We take the email with the
same or the size closest to the tested one. The size criterion helps in location
of the possible similar one because messages with a similar size should be more
similar to the checked email. Moreover, we may use a binary search algorithm
for location of these emails. This step saves a lot of time and similarity values for
files that have a higher or smaller size, will not be calculated. There is a small
probability that files of a different size will have a similar content like the tested
mail.

NCD results are values in the interval of 0 to 1, as was mentioned above.
Whereas 0 stands for a maximum similarity of the tested files. In order to com-
bine spamcity values from the Bayesian filter and NCD, it is necessary to modify
NCD value by the help of the following simple formula:

pNCD = 1− (NCD)

By the help of this modification we can get probability with the same meaning
like in the Bayesian filter. The more the files are similar, the closer is the value
of pNCD to 1. To get resulting spamcity value we have to combine probabilities
from the Bayesian filter and NCD into one probability.

The combination proceeds by the help of the following Bayesian theorem:

P =
pB × pNCD

pB × pNCD + (1− pB)× (1− pNCD)

where P is resulting probability, pB is probability from Bayesian filter, and
pNCD is probability from NCD.

6 Results of unrequested e-mail detection

The Bayesian algorithm was implemented with many variations. These algo-
rithms were tested in database of 270 045 e-mails, where 170 750 (63,23%) emails
were marked as spam and 99 295 (36,77%) emails were marked as ham, i.e. legit-
imate mails. Test database comes from The Text REtrieval Conference (TREC)
organized in years 2005, 2006 and 2007, co-sponsored by the National Institute

The Bayesian Spam Filter with NCD 67

of Standards and Technology (NIST) and U.S. Department of Defense. In our
experiments we tested three versions of the algorithm:

1. Classic Bayesian filter without any modification.
2. Classic Bayesian filter with NCD, all e-mails which reached spamcity higher

than 0.5 were checked by means of NCD.
3. Classic Bayesian filter with NCD, all e-mails which had spamcity interval in

the range of 0.5 to 0.75 were checked by means of NCD

The results are depicted in Table 1. The Classic Bayesian filter successfully
indicated 162 894 (94.50%) spam e-mails, 7 856 (4.60%) spam e-mails were not
recognized. The filter incorrectly marked as spam e-mails 9743 (9.81%) of 99 295
ham e-mails. Total number of incorrectly marked e-mails was 17 599 (6.52%).
Average speed of e-mail checking process was 288 e-mails per second.

The Bayesian filter combined with NCD (with spamcity¿0.5) was able to
successfully identify 169 886 (99.49%) spam e-mails. There were 864 (0,51%) of
unidentified spam e-mails. Number of ham e-mails that were marked as spam
was 12 575 (12.66%) emails. Total error rate of this algorithm modification was
13 439 (4.98%) of incorrectly marked e-mails. Average speed of e-mails checking
process was 32.83 e-mails per second.

Last modification of the Bayesian filter in which additional testing by the help
of NDC was limited on spamcity range from 0.5 to 0.75, successfully identified
169 886 (99.49%) of spam e-mails. Number of unidentified spam e-mails was 864
(0.51%). In examination of (legitimate) e-mails 12 852 (12.67%) of incorrectly
marked e-mails was found out. Total error rate of the algorithm was 13 446
(4.98%) of incorrectly marked e-mails. Average speed of e-mails checking was
reached in the level of 192 e-mails per second.

In comparison with the Classic Bayesian filter, versions completed with NCD
show a higher efficiency in detection of spam e-mails. With the higher success
rate of spam detection, the rate of incorrectly marked legitimate e-mails also
increased. The Bayesian filter without NCD shows a very good filter permeability
in the level of 288 e-mails per second. The version with NCD is slowed down by
additional check of e-mails to 32.83 e-mails per second with NCD check, where
spamcity is higher than 0.5 and 192 e-mails with restriction spamcity value in
the interval of 0.5 to 0.75.

The difference in effectiveness and error rate of both Bayesian filter versions
completed with NCD is not high. The only difference is in the speed of filtering
process, where the version with limited usage of NCD was faster.

7 Conclusions

In this paper, a novel variant of Classic Bayesian filter with combination of Nor-
maliced Compressed Distance was described. This combined filter was tested as
filter for spam identification. In addition to Classical implementation of Bayesian
filter, two versions of combination with NCD were implemented. The first version
uses NCD for all emails which have spamcity higher than 0.5. The second version

68 Michal Pŕılepok, Jan Platoš, Václav Snášel, Eyas El-Qawasmeh

Table 1. Results of the three tested algorithms

Bayesian filter Bayesian filter Bayesian filter
NCD > 0.5 0.5 > NCD < 0.75

Spam
Success rate 95.40% 99.49% 99.49%
Error rate 4.60% 0.51% 0.51%

Ham
Success rate 90.19% 87.64% 87.33%
Error rate 9.81% 12.66% 12.67%

Total error rate 6.52% 4.98% 4.98%

Filter speed 288.36 32.93 192.59

uses NCD only, when the spamcity was in the interval from 0.5 to 0.75. Both
filters have the same efficiency in detection of spam emails which was 99.49%.
The second version is much faster than the first version and its speed is almost
the same as speed of Classical Bayesian filter. Both new developed versions have
worse efficiency in successfull marking of non spam emails. The overall efficiency
of both new algorithm was better than the original filter.

References

1. T. Almeida, A. Yamakami, and J. Almeida. Evaluation of approaches for dimen-
sionality reduction applied with naive bayes anti-spam filters. In Machine Learning
and Applications, 2009. ICMLA ’09. International Conference on, pages 517 –522,
dec. 2009.

2. Y. Begriche and A. Serhrouchni. Bayesian statistical analysis for spams. In Local
Computer Networks (LCN), 2010 IEEE 35th Conference on, pages 989 –992, oct.
2010.

3. P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. RFC
1951 (Informational), May 1996.

4. B. C. Dhinakaran, D. Nagamalai, and J.-K. Lee. Bayesian approach based com-
ment spam defending tool. In Proceedings of the 3rd International Conference and
Workshops on Advances in Information Security and Assurance, ISA ’09, pages
578–587, Berlin, Heidelberg, 2009. Springer-Verlag.

5. D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of IRE, 40(9):1098–1101, 1952.

6. A. Khorsi. An overview of content-based spam filtering techniques. Informatica
(Slovenia), 31(3):269–277, 2007.

7. Y. Song, A. Kolcz, and C. L. Giles. Better naive bayes classification for high-
precision spam detection. Softw. Pract. Exper., 39:1003–1024, August 2009.

8. J. A. Storer and T. G. Szymanski. Data compression via textual substitution.
Journal of the ACM, 26(10/82):928–951, 1982.

9. P. M. B. Vitányi. Universal similarity. CoRR, abs/cs/0504089:5, 2005.
10. P. Wolfe, C. Scott, and M. Erwin. Anti-Spam Tool Kit. McGraw-Hill Osborne

Media, March 2004.
11. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, IT-23(3):337–343, 1977.

eXolutio: Tool for XML Schema and Data
Management?

Jakub Kĺımek, Jakub Malý, Irena Mlýnková, and Martin Nečaský

XML and Web Engineering Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměst́ı 25, 118 00 Praha 1, The Czech Republic
{klimek, maly, mlynkova, necasky}@ksi.mff.cuni.cz

eXolutio: Tool for XML Schema and Data Management?

Jakub Klı́mek, Jakub Malý, Irena Mlýnková, and Martin Nečaský

XML and Web Engineering Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměstı́ 25, 118 00 Praha 1, The Czech Republic
{klimek, maly, mlynkova, necasky}@ksi.mff.cuni.cz

Abstract. Recently XML has achieved the leading role among languages for
data representation and, thus, the amount of related technologies and applications
exploiting them grows fast. However, only a small percentage of applications is
static and remains unchanged since its first deployment. Most of the applications
change with newly coming user requirements and changing environment. In this
paper we describe a tool for evolution and change propagation of XML appli-
cations called eXolutio, which has been developed and improved in our research
group during last few years. The text should help the reader to get acquainted
with the tool and its theoretical background.

Keywords: XML schema, conceptual modeling, tool, evolution

1 Introduction

The eXtensible Markup Language (XML) is currently a de-facto standard for data rep-
resentation and together with accompanying standards, such as XML Schema, XPath,
XQuery, XSLT, etc., it becomes a powerful tool. Consequently, the amount and com-
plexity of software systems that utilize XML and/or selected XML-based standards
and technologies for information exchange and storage grows very fast. The systems
represent information in a form of XML documents. One of the crucial parts of such
systems are XML formats which describe the syntax of the XML documents in a form of
XML schemas expressed in some XML schema language, e.g. DTD or XML Schema.
Usually, a system does not use only a single XML format, but a set of different XML
formats, each in a particular logical execution part. The XML formats represent partic-
ular views of the application domain of the software system. We can, therefore, speak
about a family of XML formats utilized by a software system.

Having a system which exploits a family of XML formats, we face the problem of
XML format evolution as a specific part of evolution of the software system as a whole.
The XML formats may need to be evolved whenever user requirements or surrounding
environment changes. Each such change may influence many different XML formats
in the family. Without a proper technique, we have to identify the XML formats af-
fected by the change manually and ensure that they are evolved coherently with each

? This work was supported in part by the Czech Science Foundation (GAČR), grant numbers
P202/10/0573 and P202/11/P455 and in part by the grant SVV-2012-265312.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 69–80, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

70 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

other. Such evolution brings a challenge for research, so that the user interaction and,
hence, the expensive and error-prone work can be minimized. We cannot leave the user
out completely, there still remain cases when user decision is unavoidable; however,
automatic management of evolution enables to identify all the affected parts of the ap-
plication and perform the user-selected changes correctly and efficiently and, possibly,
exploit them in further automatic processing.

In our research group we have focused on the area of efficient and correct manage-
ment of a family of XML formats for several recent years. Starting with a simple idea
of propagation of changes among related XML formats, we have gradually extended
our effort towards a robust framework and its implementation in a tool called eXolutio.
It currently supports the original idea of designing XML formats using the principles of
Model Driven Architecture (MDA) [18], their evolution, and integration of new XML
formats into the framework.
Contributions The aim of this paper is to provide a covering overview of our research
in the area of XML evolution, to describe architecture and implementation of the eXo-
lutio tool, to present results of our experiments with the tool proving the concept and
efficiency and a comparison of the tool with similar tools.
Outline The rest of the paper is structured as follows: In Section 2 we focus on the
background theoretical aspects – our conceptual model for XML. In Section 3 we in-
troduce eXolutio, our tool in which we implement our research results. In Section 4 we
provide the proof of the concept using a set of experiments. In Section 5 we discuss the
related work. Finally, in Section 6 we conclude.

2 Conceptual Model for XML

In this section, we introduce our conceptual model for XML and its inheritance exten-
sion. It has two levels, PIM and PSM, which is inspired by MDA.

A PIM schema is based on UML class diagrams and models real-world concepts
and relationships among them. It contains three types of components: classes, attributes
and associations. A sample PIM schema is depicted in Figure 1. Where association
cardinality is not explicitly stated, default cardinality 1..1 applies. A part of the PIM
are also integrity constraints which we are currently working on, but which are not in
the scope of this paper.

Definition 1. A platform-independent (PIM) schema is a triple S = (Sc,Sa,Sr) of
disjoint sets of classes, attributes, and associations, respectively.

– Class C ∈ Sc has a name assigned by function name. For inheritance purposes,
function isa assigns a parent class to a child class (UML generalization) and must
not form a cycle. Furthermore, functions abstract and final determine whether the
class can have instances in data and whether this class can be inherited from,
respectively.

– AttributeA∈ Sa has a name, data type and cardinality assigned by functions name,
type, and card, respectively. Moreover, A is associated with a class from Sc by
function class.

eXolutio: Tool for XML Schema and Data Management 71

0..*

makes

0..*

0..*

1..*

1..*

Supply

amount

supply-price

date

name

email {1..*}

Supplier

Product

title

price

code

Item

tester

item-price

amount

Customer

name

email {1..*}

phone {0..*}

Purchase

code

create-date

status

Address

street

city

LocalAddress

has

GlobalAddress

country

ShippingAddress

country

Fig. 1. Example of a PIM diagram

– AssociationR ∈ Sr is a setR= {E1, E2}, whereE1 andE2 are called association
ends of R. R has a name assigned by function name. Both E1 and E2 have a
cardinality assigned by function card and are associated with a class from Sc by
function participant. We will call participant(E1) and participant(E2) participants
of R. name(R) may be undefined, denoted by name(R) = λ.

For a class C ∈ Sc, we will use attributes (C) to denote the set of all attributes of C,
i.e. attributes (C) = {A ∈ Sa : class(A) = C}. Similarly, associations (C) will denote
the set of all associations with C as a participant, i.e. associations (C) = {R ∈ Sr :
(∃E ∈ R)(participant(E) = C)}. For a given association R = (E1, E2), we will use
notation (C1, C2) as an equivalent of (participant(E1), participant(E2)) if there are
no more associations connecting C1 and C2.

The platform-specific model (PSM) specifies how a part of the reality is represented
in a particular XML schema in a UML-style way. We introduce it formally in Defini-
tion 2. We view a PSM schema in two perspectives. From the grammatical perspective,
it models XML elements and attributes. From the conceptual perspective, it delimits
the represented part of the reality. Its advantage is that the designer works in a UML-
style way which is more comfortable then editing the XML schema. Formally, there is
a mapping from each PSM schema to the PIM schema.

Definition 2. A platform-specific (PSM) schema is a tuple S ′ = (S ′c,S ′a,S ′r,S ′m, C′S′)
of disjoint sets of classes, attributes, associations, and content models, respectively, and
one specific class C′S′ ∈ S ′c called schema class.

– Class C ′ ∈ S ′c has a name assigned by function name. For inheritance purposes,
function isa assigns a parent class to a child class and the relation must not form
a cycle. Furthermore, functions abstract and final determine whether the class can
have instances in data and whether this class can be inherited from, respectively.

– Attribute A′ ∈ S ′a has a name, data type, cardinality and XML form (whether it
models an XML attribute or an XML element) assigned by functions name, type,
card and xform, respectively. xform(A′) ∈ {e, a}. Moreover, it is associated with
a class from S ′c by function class and has a position assigned by function position
within the all attributes associated with class(A′).

72 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

Items

Item

ProductBase

Product
|

Purchase

@version

Customer

name

Contact

email {1..*}

phone {0..*}

ItemTester

@tester

ItemPricing

price

amount

cust items

item

PurRQSchema

purchaseRQ

1..*

Items

Item

ProductBase

Product

Customer

name

cust items

item

PurRSSchema

purchaseRS

1..*

Purchase

@code

create-date

@version

status

@version

ProductBase

code

title

CommonSchema

(a) (b) (c)

Address

street

city

addr

ShippingAddress

country

gps

LocalAddress
GlobalAddress

street

city

country

addr

Fig. 2. Examples of PSM schemas

– Association R′ ∈ S ′r is a pair R′ = (E′1, E
′
2), where E′1 and E′2 are called asso-

ciation ends of R′. Both E′1 and E′2 have a cardinality assigned by function card
and each is associated with a class from S ′c or content model from S ′m assigned by
function participant, respectively. We will call participant(E′1) and participant(E′2)
parent and child and will denote them by parent(R′) and child(R′), respectively.
Moreover, R′ has a name assigned by function name and has a position assigned
by function position within the all associations with the same parent(R′). name(R′)
may be undefined, denoted by name(R′) = λ.

– Content model M ′ ∈ S ′m has a content model type assigned by function cmtype.
cmtype(M ′) ∈ {sequence, choice, set}.

The graph (S ′c ∪S ′m,S ′r) must be a forest1 of rooted trees with one of its trees rooted in
C′S′ . ForC ′ ∈ S ′c, attributes (C ′) will denote the sequence of all attributes ofC ′ ordered
by position, i.e. attributes (C ′) = (A′i ∈ S ′a : class(A′i) = C ′ ∧ i = position(A′i)). Sim-
ilarly, content (C ′) will denote the sequence of all associations with C ′ as a parent or-
dered by position, i.e. content (C ′) = (R′i ∈ S ′r : parent(R′i) = C ′∧ i = position(R′i)).
We will call content (C ′) content of C ′.

A sample PSM schema is depicted in Figure 2. PSM uses similar constructs to PIM:
classes, attributes and associations. The PSM-specific constructs have precisely defined
semantics. A class models a complex content. The complex content is specified by the
attributes of the class and associations in its content (their ordering is given by functions
attributes and content). An attribute models an XML element declaration with a simple
content or XML attribute declaration depending on its XML form (function xform).
An association models an XML element declaration with a complex content if it has
a name. Otherwise, it models only that the complex content modeled by its child is
nested in the complex content modeled by its parent. Type of the modeled content (set,

1 Note that since S ′ is a forest, we could model R′ directly as a pair of connected components.
However, we use association ends to unify the formalism of PSM with the formalism of PIM.

eXolutio: Tool for XML Schema and Data Management 73

choice, sequence) can be specified by a special construct that can be, for example, seen
in Figure 2(a) under the Item class.

2.1 Interpretation of PSM schema against PIM schema

A PSM schema represents a part of a PIM schema. A class, attribute or association in
the PSM schema may be mapped to a class, attribute or association in the PIM schema.
In other words, there is a mapping which specifies the semantics of classes, attributes
and associations of the PSM schema in terms of the PIM schema. The mapping must
meet certain conditions to ensure consistency between PIM schemas and the specified
semantics of the PSM schema. The interpretation of a PSM schema against a PIM
schema is what we call the mapping. It is the core feature of our conceptual model.
It interconnects constructs on the platform-specific level with those on the platform-
independent level and allows for interesting use cases for the conceptual model like
XML schema evolution and integration [13, 14, 19, 20]. Its definition is, however, not
trivial and is beyond the scope of this paper.

3 eXolutio architecture

The implementation of our research results is a tool called eXolutio [12]. There exists
also an older version of our conceptual model and its implementation called XCase [11],
which is the predecessor of eXolutio. For simplicity, we will stick to the current name.
eXolutio allows the user to model a PIM schema and multiple PSM schemas with inter-
pretations against the PIM schema. The user can then evolve the whole set of schemas
coherently, because his operations are propagated to all affected places by a mechanism
described in [19].

Fig. 3. eXolutio screenshot

74 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

useruser

Model

Controller

Presentation

Updates

Input

Operations

View

(a) Overall architecture

+CommandOperation()
+UndoOperation()
+PrePropagation()
+PostPropagation()

CommandBase

AtomicCommand

+CommandOperation()

ComposedCommand

1*

1 *

foreach c in SubCommands

 c.PrePropagation()

 c.CommandOperation()

 c.PostPropagation()

+Undo()
+Redo()

Controller

1 1

SubCommands

UndoStack
RedoStack

+Push(in c : CommandBase)
+Pop() : CommandBase

CommandStack

c = UndoStack.Pop()

c.UndoOperation()

RedoStack.Push(c)

(b) Controller

Fig. 4. eXolutio – main MVC components

The architecture of eXolutio is based on the Model–View–Controller (MVC) design
pattern (Figure 4(a)). This means that we hold all the project data in the model part,
neither mixing it with operations, nor visualization. Whenever a user issues a command,
it is handled by the controller part. The controller makes all the necessary changes in the
model. The view part observes that the model has changed and updates the visualization.
The connections between individual parts are loose enough so it is possible to, e.g., use
multiple visualizations. In particular, we have a Windows Presentation Foundation [17]
visualization (a desktop application) a Silverlight [16] visualization (a web application)
and a no-visualization (a console application) versions of eXolutio which all share the
same model and the same controller.

Model The model part of the tool based on our conceptual model [21] consists of classes
for each modeled component, such as a class, an association or an attribute on each of
the modeled levels (PIM and PSM), a class for PIM and PSM schemas and a class for
the whole project. Besides the obvious properties of components like a name or a collec-
tion of attributes of a class, each component class implements methods for serialization
and deserialization of the component to and from XML. Therefore, when we save and
load a project, we simply call a serialization or a deserialization method on all found
objects in a certain order. Finally, each schema contains lists of all the components of
individual types in that schema, so we can easily go through, e.g., all associations in a
certain schema. Since one of the main features of our tool is the visualization of connec-
tions between the two levels of abstraction, one of the most common queries is “Give
me all PSM classes which have this PIM class as their interpretation”. We basically go
through each PSM schema in the project and through each PSM class in that schema
and check whether its interpretation is the given PIM class. In addition, the model con-
tains methods for easy traversal of both the PIM and PSM schemas. An example can
be a method for retrieval of all attributes of a PSM class including those inherited by
the structural representative constructs. Another example can be a method that gets all
uninterpreted descendants of an interpreted PSM class. When a certain method repre-
senting a query over the model is needed by the controller more than once, we make it
a model method so that everyone can use it.

eXolutio: Tool for XML Schema and Data Management 75

View The view component serves for two purposes: it visualizes the model for the user
and provides user-friendly interface to run the controller commands. PIM schemas are
depicted as UML diagrams and the layout of the diagram is left up to the user prefer-
ence, for PSM schemas we use automatic hierarchical layouting to emphasize the fact
that a PSM schema is a tree/forest. Besides the visualizations of the schemas, view com-
ponent provides several windows and controls that help the user to navigate the modeled
project, see the connections between individual concepts and follow the various links
(e.g. find interpretation of an attribute or a class referred from a structural representant).
The view component can be run either as a desktop application or inside a web browser
using Silverlight plugin technology. This browser view can be used to accompany a
documentation of published XML schema standards (e.g. [1]). An interactive visualiza-
tion of a family of schemas joined by a common model can benefit greatly every system
designer, who wants to adopt a third party standard and needs a clear overview of the
whole problem domain and its individual schemas.

Controller The controller is the core of the tool. It contains all the operations and algo-
rithms that make the tool unique. Also, it contains the usual command and undo/redo
management. Whenever a user issues a command from view, it is handled by the con-
troller. The controller (depicted in Figure 4(b)) gets all the necessary parameters from
view such as what command is requested, the currently selected components, the new
name for a component, etc. The controller creates the appropriate command, which in
most cases will be one of our composite operations (described later in this section) and
passes all the required parameters. The operation executes and updates the model ac-
cordingly. Then it places the command on the undo stack. The command itself contains
all the information it needs to change the model back to the state it was in before the
command was executed. In other words, we can simply call undo and the command
knows what it needs to do and whether it is possible. This way, we can stack the exe-
cuted commands and perform undo and redo operations as needed and as usual. In [19]
we have described a theoretical background for atomic (simple, well defined) and com-
posite (user-friendly) operations, which we will now describe from the implementation
point of view. One of our goals was also to make the two levels of abstraction (PIM and
PSM) work as independently of each other as possible while maintaining consistency
when there are connections between the levels. Therefore, the operations need to work
at their respective levels and be propagated only when there is an interpretation. Since
we have a quite complex system of operations, we had to break it down into simpler
parts. This means that among our atomic operations one can find for example an oper-
ation that creates an attribute. But it does not do anything else than that. Specifically, it
does not give a name to the attribute, it does not set its datatype, etc. For that, we have
other atomic operations. Having the atomic operations, we can compose more complex
and user-friendly ones. A basic composite operation can be the already mentioned cre-
ation of an attribute, which this time is user friendly. It is composed of the creation
of the attribute, renaming the attribute, setting its cardinality and its datatype. If it was
a PSM attribute, the operation would also set its xform (Definition 2). So this is basi-
cally a predefined sequence of 4 or 5 operations, which is quite simple. Another simple
example can be deletion of an attribute. This means setting its cardinality, name and
datatype to default values and then deleting it. The reason for this is that when we undo

76 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

this operation, we want the name and the other values of the attribute to recover, so it is
not correct to just delete the attribute. Let us have a look at a more advanced example.

So far we have described how to compose atomic and composite operations. How-
ever, these worked on their respective levels of abstraction. Now we have to make sure
that when there is an interpretation of a PSM schema against a PIM schema, we keep
the model in a consistent state and save the user’s time by propagating the changes be-
tween the levels. This is achieved by the propagation. Before each atomic operation is
executed, a method implementing its propagation to the other level is called. It deter-
mines whether there is an interpretation and therefore the need to propagate. If so, it
creates a (possibly) composite operation on the other level of abstraction and integrates
it to the currently running operation. Only when the propagation succeeds, the original
atomic operation that caused it is executed. This way, the propagation actually becomes
a part of the currently running operation. This is convenient because when it finishes, it
can be undone and redone like any other operation.

4 Experiments

To provide the proof of the whole concept and show the advantages of our tool, we eval-
uate our approaches using experiments based on a real-world family of XML schemas.
We experiment with the National Register for Public Procurement System (NRPP)2. It
is a governmental information system where public authorities in the Czech Republic
publish data about their public contracts. Authorities send contract information to the
information system formatted in one of the 17 XML formats accepted by the NRPP.
This includes, e.g. XML format for contract notifications, supplier selection notifica-
tions, etc. The information is then published by the system in the form of HTML pages.
The goal of the experiment is to show how our approach would save time if the authors
of the NRPP XML formats used eXolutio to design the XML formats and evolve them
according to changing legislation instead of their manual editing and adaptation.

Currently, the NRPP only provides a textual documentation for the XML formats
and a set of sample XML documents. Therefore, our first goal is to design a conceptual
schema in a form of a PIM schema which models the domain of public contracts and
design PSM schemas of the XML formats mapped to the PIM schema.

The PIM schema contains classes which model public contracts and their procurers
and suppliers. There are also some additional concepts modeled – i.e. prices and contact
information. A supplier is associated with a contract, a procurer is associated with a
contract by a path of associations has contact and main. Each contract has additional
contact information – where documentation for the contract is provided and where bids
to the contract are collected. Finally, there are four different prices – expected price, the
best offered price, price agreed by a selected supplier and procurer, and a final real price
known after finishing the contract. The PSM schema depicted in Figure 5 (a) models
an XML format which a public authority uses to send a notification about a new public
contract to NRPP. The PSM schema depicted in Figure 5 (b) models an XML format
for notifications about the supplier selected for the contract.

2 http://www.isvz.cz (in Czech only)

eXolutio: Tool for XML Schema and Data Management 77

Fig. 5. PSM schemas modeling XML formats for (a) sending contract notifications to NRPP, (b)
reporting on contract supplier selection to the NRPP, and (c) representing procurer detail

We can measure the amount of manual work required to design the PIM and PSM
schemas in terms of numbers of executed atomic operations. The numbers of atomic
operations executed to create the PIM and PSM schemas are depicted in Figure 6 (a). It
shows that only creation and update operations were used. Here, manual creation of the
schemas is necessary so there is no direct advantage in comparison to writing the XML
schemas of the XML formats directly. However, eXolutio saves time because for each
performed atomic operation it checks whether it does not break the consistency between
the XML formats. When the designer codes the XML schemas of the XML formats
directly no such control is performed automatically and (s)he must do it manually in
each step during coding.

0

50

100

150

200

250

300

α ν δ σ

0

100

200

300

400

500

600

α ν δ σ

0

20

40

60

80

100

120

α ν δ σ

0

50

100

150

200

250

300

350

400

450

α ν δ σ

(a) (b) (c) (d)

Fig. 6. Numbers of atomic operations performed manually by the designer (dark grey) and auto-
matically by the propagation mechanism (light grey)

Having the PIM schema and a set of PSM schemas of the XML formats used by
NRPP we set ourselves three goals. The first goal is to show how eXolutio facilitates
creating new XML formats on the basis of an existing PIM schema. A PSM schema of

78 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

a new XML format for public procurer details is depicted in Figure 5 (c). The numbers
of the atomic operations executed at this step are depicted in Figure 6 (b). Again, only
the creation and update operations were performed. Even though the designer needs to
design the PSM schemas for the new XML formats manually, the experiment shows
that our approach saves him/her a great deal of work and prevents him/her from making
unnecessary errors. This is because our technique enables us to create the PSM schemas
on the basis of the PIM schema (which is faster than creating PSM schemas separately)
and ensures that the designer creates the PSM schemas coherently with the PIM schema
(as it preserves the consistency of the interpretation).

The second goal is to improve the quality of the NRPP XML formats, which is
low. The designers of the XML formats did not follow basic XML design principles
(e.g. exploiting the hierarchical nature of XML). For example, contact information is
modeled by XML elements with names prefixed with cont , docs , etc. It would
have been better to remove the prefixes and enclose the semantically related XML el-
ements into separate XML elements (e.g. enclose contact XML elements to XML el-
ement contact structured to main, doc, etc. or enclose all information related to
the supplier into XML element supplier). We have made these adaptations in the
present XML formats. The numbers of the executed atomic operations are depicted in
Figure 6 (c). In this step, synchronization and removal operations were also used, be-
cause some of the old parts of the PSM schemas were replaced by new ones. Again,
the experiment demonstrated that our approach saves a lot of work as it preserves the
consistency of PSM schemas against the PIM schema when changes are performed.

The third goal was to show how the set of schemas can be evolved coherently. We
implemented various changes which resulted from new requirements on the NRPP func-
tionality and from new legislation. In both cases, changes to the PIM schema needed to
be done.

The new legislation required to report not only the number of bids received for each
contract, but also particular bids including the bidding supplier and offered price.

Finally, there was a requirement to update the XML format for contract notifications
(Figure 5 (a)) so that it is possible to give notification not only on the expected months
and days in which the contract should be finished, but also on the exact date. This
change was correctly propagated to the PIM schema, because it is a conceptual change.
From here, it was propagated to the other PSM schemas.

The numbers of the atomic operations executed during the last two steps are de-
picted in Figure 6 (d). The darker part shows the numbers of manually executed op-
erations. The lighter part shows the numbers of operations executed automatically by
the propagation mechanism. α are additions, υ are changes, δ are deletions and σ are
synchronizations - statements that two modeled sets of attributes or associations are se-
mantically equivalent. The synchronizations are very useful in our change propagation
mechanism, for details refer to [19, 20].

5 Related work

The current approaches towards evolution management can be classified according to
distinct aspects [15, 8]. The changes and transformations can be expressed [22, 4] as

eXolutio: Tool for XML Schema and Data Management 79

well as divided [6] variously too. However, to our knowledge there exists no general
framework comparable to our proposal; particular cases and views of the problem have
previously only been solved separately, superficially and mostly imprecisely without
any theoretical or formal basis.
XML View We can divide the current approaches to XML schema evolution and change
management into several groups. Approaches in the first group consider changes at
the schema level and differ in the selected XML schema language, i.e. DTD [2, 7] or
XML Schema [24, 5]. The changes are expressed variously and more or less formally.
Approaches in the second and third group are similar, but they consider changes at
an abstraction of logical level – either visualization [10] or a kind of UML diagram
[9]. Both cases work at the PSM level, since they directly model XML schemas with
their abstraction. No PIM schema is considered. All approaches consider only a single
separate XML schema being evolved.

In all the papers cited the authors consider only a single XML schema. In [23] multi-
ple local XML schemas are considered and mapped to a global object-oriented schema.
Then, the authors discuss possible operations with a local schema and their propagation
to the global schema. However, the global schema does not represent a common prob-
lem domain, but a common integrated schema; the changes are propagated just upwards
and the operations are not defined rigorously. The need for well defined set of simple
operations and their combination is clearly identified in Section 6 of a recent survey of
schema matching and mapping [3].

6 Conclusion

In this paper, we introduced eXolutio, our tool for XML schema and data management.
We surveyed related work and we showed the theoretical background behind our tool
and evaluated it on real-world XML schemas.

References

1. OpenTravel.org.
2. L. Al-Jadir and F. El-Moukaddem. Once Upon a Time a DTD Evolved into Another DTD...

In Object-Oriented Information Systems, pages 3–17, Berlin, Heidelberg, 2003. Springer.
3. Z. Bellahsene, A. Bonifati, and E. Rahm. Schema Matching and Mapping. Data-Centric

Systems and Applications. Springer Berlin Heidelberg, 2011.
4. A. Boronat, J. A. Carsı́, and I. Ramos. Algebraic Specification of a Model Transforma-

tion Engine. In FASE ’06: Proc. of the 9th Int. Conf. Fundamental Approaches to Software
Engineering, Vienna, Austria, volume 3922 of LNCS, pages 262–277. Springer, 2006.

5. F. Cavalieri. EXup: an Engine for the Evolution of XML Schemas and Associated Docu-
ments. In EDBT ’10: Proc. of the 2010 EDBT/ICDT Workshops, pages 1–10, New York, NY,
USA, 2010. ACM.

6. A. Cicchetti, D. D. Ruscio, and A. Pierantonio. Managing Dependent Changes in Coupled
Evolution. In Proc. of the 2nd Int. Conf. on Model Transformations, ICMT 2009, Zurich,
Switzerland, volume 5563 of LNCS, pages 35–51. Springer, 2009.

7. S. V. Coox. Axiomatization of the Evolution of XML Database Schema. Program. Comput.
Softw., 29(3):140–146, 2003.

80 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

8. K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transformation Approaches.
IBM Syst. J., 45(3):621–645, 2006.

9. E. Domı́nguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving XML Schemas and Doc-
uments Using UML Class Diagrams. In DEXA’05: Proc. of the 16th Int. Conf. on Database
and Expert Systems Applications, volume 3588 of LNCS, pages 343–352. Springer, 2005.

10. M. Klettke. Conceptual XML Schema Evolution – The CoDEX Approach for Design and
Redesign. In M. Jarke, T. Seidl, C. Quix, D. Kensche, S. Conrad, E. Rahm, R. Klamma,
H. Kosch, M. Granitzer, S. Apel, M. Rosenmüller, G. Saake, and O. Spinczyk, editors,
BTW’07, pages 53–63, Aachen, Germany, March 2007.

11. J. Klı́mek, L. Kopenec, P. Loupal, and J. Malý. XCase - A Tool for Conceptual XML Data
Modeling. In Advances in Databases and Information Systems, volume 5968/2010 of Lec-
ture Notes in Computer Science, pages 96–103. Springer Berlin / Heidelberg, March 2010.
http://www.springerlink.com/content/v45198r1v783xu13.

12. J. Klı́mek, J. Malý, and M. Nečaský. eXolutio – A Tool for XML Data Evolution, 2011.
http://exolutio.com.

13. J. Klı́mek and M. Nečaský. Integration and Evolution of XML Data via Common Data
Model. In Proceedings of the 2010 EDBT/ICDT Workshops, Lausanne, Switzerland, March
22-26, 2010, New York, NY, USA, 2010. ACM.

14. J. Klı́mek and M. Nečaský. Generating Lowering and Lifting Schema Mappings for Se-
mantic Web Services. In 25th IEEE International Conference on Advanced Information
Networking and Applications Workshops, WAINA 2010, Biopolis, Singapore, 22-25 March
2011. IEEE Computer Society, 2011.

15. T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. Electron. Notes Theor.
Comput. Sci., 152:125–142, 2006.

16. Microsoft. Silverlight. http://www.microsoft.com/silverlight/.
17. Microsoft. Windows Presentation Foundation (WPF). December 2010.

http://msdn.microsoft.com/en-us/library/ms754130.aspx.
18. J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management Group, 2003.
19. M. Nečaský, J. Klı́mek, J. Malý, and I. Mlýnková. Evolution and Change Management of

XML-based Systems. Journal of Systems and Software, 85(3):683 – 707, 2012.
20. M. Nečaský, I. Mlýnková, and J. Klı́mek. Model-Driven Approach to XML Schema Evolu-

tion. In R. Meersman, T. S. Dillon, and P. Herrero, editors, OTM Workshops, volume 7046
of Lecture Notes in Computer Science, pages 514–523. Springer, 2011.

21. M. Nečaský, I. Mlýnková, J. Klı́mek, and J. Malý. When conceptual model meets grammar:
A dual approach to XML data modeling. Data & Knowledge Engineering, 72(0):1 – 30,
2012.

22. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification Version
1.0. Object Modeling Group, April 2008. http://www.omg.org/spec/QVT/1.0/.

23. K. Passi, D. Morgan, and S. Madria. Maintaining Integrated XML Schema. In IDEAS ’09:
Proc. of the 2009 Int. Database Engineering, Applications Symp., pages 267–274, New York,
NY, USA, 2009. ACM.

24. M. Tan and A. Goh. Keeping Pace with Evolving XML-Based Specifications. In EDBT’04
Workshops, pages 280–288, Berlin, Heidelberg, 2005. Springer.

Unsupervised Algorithm for Post-Processing
of Roughly Segmented Categorical Time Series

Tomáš Kocyan1, Jan Martinovič2, Štěpán Kuchař2, and Jǐŕı Dvorský1

1 VŠB - Technical University of Ostrava,
Faculty of Electrical Engineering and Computer Science,
17. listopadu 15/2172, 708 33 Ostrava, Czech Republic

{tomas.kocyan,jiri.dvorsky}@vsb.cz
2 VŠB - Technical University of Ostrava,

IT4Innovations,
17. listopadu 15/2172, 708 33 Ostrava, Czech Republic

{jan.martinovic,stepan.kuchar}@vsb.cz

Unsupervised Algorithm for Post-Processing
of Roughly Segmented Categorical Time Series

Tomáš Kocyan1 , Jan Martinovič2 , Štěpán Kuchař2 , and Jǐŕı Dvorský1

1 VŠB - Technical University of Ostrava,
Faculty of Electrical Engineering and Computer Science,
17. listopadu 15/2172, 708 33 Ostrava, Czech Republic

{tomas.kocyan,jiri.dvorsky}@vsb.cz
2 VŠB - Technical University of Ostrava,

IT4Innovations,
17. listopadu 15/2172, 708 33 Ostrava, Czech Republic

{jan.martinovic,stepan.kuchar}@vsb.cz

Abstract. Many types of existing collections often contain repeating
sequences which could be called as patterns. If these patterns are recog-
nized they can be for instance used in data compression or for prediction.
Extraction of these patterns from data collections with components gen-
erated in equidistant time and in finite number of levels is now a trivial
task. The problem arises for data collections that are subject to different
types of distortions in all axes. This paper discusses possibilities of using
the Voting Experts algorithm enhanced by the Dynamic Time Warp-
ing (DTW) method. This algorithm is used for searching characteristic
patterns in collections that are subject to the previously mentioned dis-
tortions. By using the Voting Experts high precision cuts (but with low
level of recall) are first created in the collection. These cuts are then
processed using the DTW method to increase resulting recall. This al-
gorithm has better quality indicators than the original Voting Experts
algorithm.

Keywords: Voting Experts, Dynamic Time Warping, Time Series

1 Introduction

This paper is focused on processing of semistructured data such as text. It is
commonly know fact that the amount of this data rapidly grows so that there
are two subproblems: how to store this kind of data and retrieve any piece of
information from the data. To efficiently store the data it is common to use data
compression. Data compression methods [11] can treat the data as sequence of
bytes, or they can use additional knowledge about the data, such as knowledge
of the language of the data. With this additional knowledge data compression
methods can improve their results for example by moving from byte oriented
alphabet to alphabet of words. The word alphabet is connection to the second
subproblem – information retrieval. Information retrieval algorithms usually do

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 81–92, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

82 Tomáš Kocyan, Jan Martinovič, Štěpán Kuchař, and Jǐŕı Dvorský

not process the input data as sequence of bytes, but they use even bigger pieces
of the data, say words or generally some chunks of the data. This is the main
motivation of the paper. How to split the input data into smaller chunks without
a priori known structure of the input data? To do this, we use Voting Experts
Algorithms in our paper. For test purposes, the Czech and English text was
used as test bed for the segmentation algorithm, because the segmentation into
words is known without any doubts for Czech or English text so that results of
the Voting Experts Algorithm can be easily checked. During the future research,
text inputs will be substituted by quantitative time series, such as river measured
dicharge volume, and the typical patterns will be searched. These patterns will be
further used in Case-Based Reasoning methodology as a input step for prediction.

The paper is organized as follows: in Sect. 2 a brief introduction of Voting
Experts algorithm is given. Section 3 describes Dynamic Time Warping post-
process of Voting Experts. Experimental results are provided in Sect. 4, and
conclusion is given in Sect. 5.

2 Voting Experts

The Voting Expert Algorithm is a domain-independent unsupervised algorithm
for segmenting categorical time series into meaningful episodes. It was first pre-
sented by Cohen and Adams in 2001 [3]. Since this introduction, the algorithm
has been extended and improved in many ways, but the main idea is always
the same. The basic Voting Experts algorithm is based on the simple hypothesis
that natural breaks in a sequence are usually accompanied by two statistical in-
dicators [4]: low internal entropy of episode and high boundary entropy between
episodes.

The basic Voting Experts algorithm consists of following three main steps3:

– Build an nGram tree from the input, calculate statistics for each node of this
tree (internal and boundary entropy) and standardize these values in nodes
at the same depth.

– Pass a sliding window of length n over the input and let experts vote. Each
of the experts has its own point of view on current context (current content
of the sliding window) and votes for the best location for the split. The first
expert votes for locations with the highest boundary entropy, the second
expert votes for locations with a minimal sum of internal split entropy. By
this way, the votes are counted for each location in the input.

– Look for local maximums which overcome selected threshold. These points
are adepts for a split of sequence.

Tests showed that the algorithm is able to segment selected input into mean-
ingful episodes successfully. It was tested in many domains of interest, such as
looking for words in a text [3] or segmenting of speech record [8].

There are several ways how to improve the basic Voting Experts algorithm.
Simply we can divide these improvements into the two main groups. On the
3 For detailed explanation of each of mentioned steps see [4].

Unsupervised Algorithm for Post-Processing . . . 83

one hand, custom “expert” can be added to voting process (for example Markov
Expert in [2]) and receive additional point of view on your input. On the other
hand, there are methods based on repeated or hierarchical segmenting of the
input [5, 9].

One of the simplest ways how to slightly improve performance of segmenting
is two-way passing of the sliding window. It means using classic voting algorithm
supplemented by segmenting of reversed input. This idea was outlined in [5]
which showed the way to make high-precision cut points by selection of higher
values of the threshold. Additionally, reversing the corpus and segmenting the
reversed input with Voting Experts generates a different set of backward cut
points. The subsequent intersection of sets of cut points offers high precision
segmenting. However, on the other hand, this high precision causes loss of recall.

3 Voting Experts Post-Process

Proposed solution for Voting Experts improvement takes the task of using Dy-
namic Time Warping algorithm (introduced below) and high precision cuts as
a starting point for looking for typical patterns located in the input. Basic idea
is to refine the sparse set of high precision cuts into regular sequences as cor-
rectly as possible. The mentioned refinement will be done by several types of
post-processing methods and the results will be compared.

Methods will differ, but they share a common principle (as shown in Fig. 1).
If there are high precision cuts in the input (such as cuts A, B, C a D in Fig. 1)
and if the shorter sequence (bounded by cuts C and D) is subsequence of the
longer one (bounded by cuts A and B), we can deduce new boundaries E and F
by projecting the boundaries of common subsequence to the longer sequence. In
this very simplified example the sequences were composed by definite number of
values and limited length, so the evaluation is quite straightforward.

Fig. 1. Refinement of high precision cuts

3.1 Voting Experts DTW Post-Process

Dynamic time warping (DTW) is a technique to find an optimal alignment be-
tween two given sequences under certain restrictions [10]. The sequences are

84 Tomáš Kocyan, Jan Martinovič, Štěpán Kuchař, and Jǐŕı Dvorský

warped in a nonlinear fashion to match each other. First DTW was used for
comparison two different speech patterns in automatic speech recognition. In
information retrieval it has been successfully applied to dealing with time de-
formations and different speeds associated with time-dependent data. For our
purposes the DTW algorithm will be used as a tool for finding the longest com-
mon subsequence of two sequences.

In the case of application of previously mentioned process on distorted data,
it is necessary to slightly modify it. Typical episodes of measurement of natural
phenomena (such as precipitations, measured discharge volume etc.) are, unfor-
tunately, subject to distortion in both time and value axes. For this reason, it
is necessary to find out suitable mechanism that is able to deal with this defor-
mation. The Dynamic Time Warping algorithm can be used for this purpose.
The main idea of the Voting Experts DTW post-process is summarized into the
following steps:

1. First of all, the high precision (but not complete) cuts are created by split-
ting the input with high level of threshold by the Two-Way Voting Experts
method.

2. Let’s suppose that there are m unique sequences which have been created
according to cuts from step 1.

3. A m×m distance matrix is build.
4. For each pair in this matrix, where the length of sequence s1 is bigger than

length of sequence s2:
(a) The optimal mapping of shorter sequence s2 to longer sequence s1 is

found by using DTW modified for searching subsequences.
(b) If the mapping cost does not overcome selected threshold, the longest

sequence s1 stores the shorter sequence s2 into its own list of similar
sequences. By this way, every sequence gets its own list of the most
similar shorter sequences.

(c) Each of the shorter sequences points to positions in the longer sequence,
where it should be splitted. Because there are usually more than one
similar shorter sequences, it is pointed to several locations whereas many
of these locations are duplicated. For this reason, the votes are collected
into internal vote storage.

(d) After these votes are collected, the local maximums are detected. These
places are suggested as new cuts in original input.

5. The granted votes from step 4d are summed with votes of frequency and
entropy experts in the input. Subsequently, the local maximums of votes are
searched again. The cuts are made in locations where the number of granted
votes is higher than the specified threshold.

6. Algorithm ends or it can continue with step 2 for further refinement.

3.2 Variations of the proposed algorithm

For our algorithm improvement, several variants of each particular step were pro-
posed and then their influence were tested on final results. The most important
variants of the algorithm will be introduced in the following paragraphs.

Unsupervised Algorithm for Post-Processing . . . 85

Method for finding similar sequences. The algorithm works only with se-
quences that do not overcome specified cost threshold of mapping (see step 4b
in Sect. 3.1). For this reason, it is necessary to specify this threshold and limit
for splitting of long sequences only to reasonable number of subsequences. Test
showed that when the length of subsequences is not limited to reasonable length
with respect to the length of longer sequence, the input is broken into large num-
ber of short sequences. On one hand, it increases the recall, but on the other
hand, it rapidly decreases the precision.

To avoid unwanted splitting we used two parameters – divisor and offset.
Length of the longer sequence is divided by the divisor and then the offset
is added. In order to avoid removing the shorter sequence from list of similar
sequences, its length has to be longer than the resulting number. Formally we
can specify the necessary condition as:

‖shorter sequence‖ > ‖longer sequence‖
divisor

+ offset (1)

Method for voting. Method for granting votes based on mapping shorter se-
quence to longer one was introduced in Sect. 3.1. Additional three modifications
were proposed for this experiment. These methods and their modifications will
be further called as V otingMethod1, V otingMethod2, etc. Their principles are
described as:

– V otingMethod1: Post-process runs as well as described in Sect. 3.1.
– V otingMethod2: Post-process is the same as in the V otingMethod1, but it is

supplemented by boundary condition. This condition limits voting on bound-
ary positions in found sequences. This restriction should avoid situations, in
which the high precision cuts have some errors and whole pattern is longer
than the area bounded by cuts. Automatic cuts on sequence boundaries may
distort further computation, so they are ommited.

– V otingMethod3: First of all, the algorithm groups all similar found sequences
and then find the longest common prefixes and suffixes in original input. For
example, if the three sequences of value ’3456’ are found (see Fig. 2), the
common prefix is ’2’ and the longest common suffix is ’78’. The resulting
common sequence is ’2345678’. Subsequently, the same procedure as in the
step 1 is performed.

– V otingMethod4: The last method of post-process also looks for common
prefix and suffix. But in this case the DTW is substituted by the longest
common substring method.

Method for determining local threshold. All subsequences that satisfy the
condition (1) subsequently vote for places in which they should split the longest
(parent) sequence. In this way, several potentional places for cuts are created.
Now it is necessary to decide in which locations will be the input really cut. In
our experiments, the required threshold was computed in two ways:

86 Tomáš Kocyan, Jan Martinovič, Štěpán Kuchař, and Jǐŕı Dvorský

Fig. 2. Common prefix and suffix

1. Threshold was chosen as a multiple of maximum of votes (from 0.2 to 0.8).
2. Threshold was chosen as a multiple of nonzero votes average (from 1 to 2).

Method for determing incrementing value. Locations in which number of
local votes overcomes the threshold are new proposals for cuts. This locations
increment votes in original input. The question is how many votes should be
these locations incremented. Three various types were suggested:

1. Incrementation of specified constant.
2. Incrementation of frequency with which the sequence appears in input and

multiplied by specified constant.
3. Incrementation of multiple by which the threshold was overcome.

4 Experiments

Typical test of algorithm’s verification of Voting Experts algorithm’s perfor-
mance is searching words in continuous text. In this text, spaces and punctua-
tions (dots, dashes, new lines etc.) are removed and the goal of the algorithm is
to put spaces back into correct places. Because the correct placement of spaces
in the original text is known, it is very easy to quantify the algorithm’s accuracy.
To objectively compare the accuracy of suggested improvement with the basic
method, experiments were performed on the same type of data, specifically on
Jaroslav Hasek’s novel named Good Soldier Svejk. To compare performance on
different languages same text written in English and Czech language was chosen.
English version was choosen as a default language, because original algorithm
was tested on George Orwell’s novel 1984. Czech version was selected as a dif-
ferent type of language, which is characterized by large amount of possible word
suffixes.

4.1 Evaluation

For the evaluation of proposed algorithm performace, precision and recall coef-
ficients were defined. precision coefficient P and recall coefficient R rank among
the most often used for the methods that are able to provide relevant documents
in the information system. The precision coefficient is understood as the ratio
of the amount of relevant documents returned to the entire number of returned

Unsupervised Algorithm for Post-Processing . . . 87

documents. Recall represents the ratio of the amount of relevant documents
returned to a given query to the entire amount of documents relevant to this
query. In our case, the precision coefficient will be understood as the ratio of the
amount of correct spaces induced by algorithm to the entire number of induced
spaces. Recall will represent the ratio of the amount of correct induced spaces
to the entire amount of spaces in input. In order to simplify information about
system effectivity, methods have been created to display precision and recall
measured in a 1-dimensional space. One of these methods is Van Risjbergen’s
F -measure[10, 6]:

Fβ =
1 + β2

β2

R + 1
P

=

(
1 + β2

)
R P

β2P +R
(2)

where β indicates the ratio of significance between precision and recall. For
example, when β is an even 0.5, it means that the user is twice as interested in
precision than in recall and when β is an 2, the users interest is vice versa. β
was set to 1 in our experiment.

Each of the parameter combinations mentioned above were tested and the
results were compared with basic algorithm. In all cases we observed percentage
improvement of qualitative indicators.

4.2 Czech version results

The best configuration of input parameters for the Czech version is described in
Table 1.

Table 1. The best parameter configuration for Czech version

Method for voting Name V otingMethod1

Method for finding similar sequences Threshold 0
Delimiter 3
Offset 0

Method for determining local threshold Name Nonzero votes avg.
Multiplier 0.6

Method for determining incrementing value Name Increment of constant
Value 2

Votes threshold Value 3

Results of the best configuration applied on various input lengths are summa-
rized in Table 2 and graphically in Fig. 3. It is evident that modified algorithm
slightly decreases precision P but considerably increases recall R (up to 17.5%).
Observed F -measure has an average improvement about +5.5%.

4.3 English version results

English input version reached the best results with configuration listed in Table 3
and its concrete qualitative indicators are specified in Table 4. In comparison

88 Tomáš Kocyan, Jan Martinovič, Štěpán Kuchař, and Jǐŕı Dvorský

Table 2. Algorithm improvement for various input length of Czech input

Input length F -measure Precision Recall

1000 7.02 -1.59 13.33
2000 8.40 -0.23 17.59
4000 3.81 -3.67 11.84
5000 5.04 -4.00 15.14
6000 5.88 -3.50 16.57
8000 5.65 -4.53 17.18

10000 4.25 -5.78 15.54
15000 4.23 -5.47 15.46

Fig. 3. Graphical representation of the best Czech configuration

with the Czech version, the English results are slightly worse. However, the
average algorithm improvement of F -measure reaches 4.8%.

4.4 Overal methods evaluation

In previous sections, only the best configuration of parameters for each language
were introduced. Now, overal success of each splitting method (V otingMethod1,
V otingMethod2, etc.) regardless of remaining parameters and used language will
be compared.

From each of the particular input size results, the top 300 configurations
were selected and then the frequency, average frequency and relative frequency
of concrete methods in this list were observed. These values are presented in
Table 5.

The V otingMethod4 reached the best result in average. This method appears
in 42.38% of all selected configurations. It is probably caused by the fact that the

Unsupervised Algorithm for Post-Processing . . . 89

Table 3. The best parameter configuration for English version

Method for voting Name V otingMethod4

Method for finding similar sequences Threshold 0
Delimiter 4
Offset 1

Method for determining local threshold Name Nonzero votes avg.
Multiplier 0.8

Method for determining incrementing value Name Increment of constant
Value 2

Votes threshold Value 3

Table 4. Algorithm improvement for various input length of English input

Input length F -measure Precision Recall

1000 0.15 -4.40 5.30
2000 6.66 -2.05 15.33
4000 4.48 -3.61 12.73
5000 6.78 -2.23 16.15
6000 6.10 -3.02 15.81
8000 4.48 -3.97 13.93

10000 5.34 -3.91 15.34
15000 3.87 -5.45 14.21

longest common substring algorithm used in this method is designed specifically
for strings. The second-best was the V otingMethod3 with 29%. However, we
hope that this method using DTW will overcome the V otingMethod4 while
testing on quantitative time series, because it is more robust against distortion
in time axis.

Table 5. Algorithm improvement for various input length of English input

Used method Frequency Average frequency Relative frequency

V otingMethod1 387 48.38 16.13%
V otingMethod2 300 37.50 12.50%
V otingMethod3 696 87.00 29.00%
V otingMethod4 1017 127.13 42.38%

4.5 Influence of algorithm configuration to results

During the tests we have not observed only the relative increment of F -measure,
Presion and Recall, but we have also evaluated the influence of values of indu-

90 Tomáš Kocyan, Jan Martinovič, Štěpán Kuchař, and Jǐŕı Dvorský

Fig. 4. Graphical representation of the best English configuration

vidual parameters to the results. This information will be further important for
design algorithm parameters run on quantitative time series.

Test ran on grouped configurations by all parameters without the moni-
tored one and the dispersion of resulting F -measure (caused by the ommited
parameter) was observed. The dispersions of particular parameters are displayed
in Fig. 5.

Fig. 5. Dispersions of particular parameters

It is evident that the proposed method is sensitive to the choise of the voting
method, method for determining local threshold and incremental method. The
algorithm is little less sensitive to the method for searching similar sequences
and it is insensitive to the value of the threshold.

Unsupervised Algorithm for Post-Processing . . . 91

4.6 Reusing on other data collections

Once the best configuration for specific colection type has been found, it can
be further reused on this type of input data (text data in our experiments). We
verified this idea with the best English configuration on the another two English
texts – Gorge Orwell’s novel 1984 and Mark Twain’s Adventures of Huckleberry
Finn. In Fig. 6 you can see the results. Both inputs reached better results than
the basic algorithm.

Fig. 6. Reusing the best configuration to other data collections

5 Conclusion and Future Work

Practical applications of the Voting Experts algorithm showed that it can be
used in many domains in which we want to look for some meaningful episodes.
Proposed solution overcomes qualitative indicators of original Voting Experts
algorithm and offers different point of view to the solution of searching mean-
ingful episodes. Experiments showed that if the proposed algorithm modification
is trained to a specific type of data (such as English text, Czech text etc.) it can
be further used on various inputs and it should always overcome the basic version
of Voting Experts.

Our future work will be focused on searching typical patterns in measured and
distorted time series, specifically on searching typical patterns in measured river
discharge volumes. This found patterns will be further used for prediction using
the Case-Based Reasoning method. This method requires suitable mechanism
that is able to extract the most similar patterns from the input.

92 Tomáš Kocyan, Jan Martinovič, Štěpán Kuchař, and Jǐŕı Dvorský

Acknowledgement

This work was supported by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

References

1. G. Altmann. Prolegomena to Menzerath’s law. Glottometrika 2 (1980). P. 1-10.
2. J. Cheng, and M. Mitzenmacher. Markov Experts. Proceedings of the Data Com-

pression Conference (DCC). 2005.
3. P. R. Cohen, and N. Adams. An Algorithm for Segmenting Categorical Time Series

into Meaningful Episodes. Proceedings of the Fourth Symposium on Intelligent Data
Analysis, Lecture Notes in Computer Science. 2001.

4. P. R. Cohen, N. Adams, and B. Heeringa. Voting Experts: An Unsupervised Algo-
rithm for Segmenting Sequences. In Journal of Intelligent Data Analysis. 2007.

5. D. Hewlett, and P. Cohen. Bootstrap Voting Experts. Proceedings of the Twenty-
first International Joint Conference on Artificial Intelligence (IJCAI). 2009.

6. T. Ishioka. Evaluation of criteria on information retrieval. Systems and Computers
in Japan, 35(6):42–49, 2004.

7. T. Kocyan, J. Martinovic, J. Dvorsky, V. Snasel. Czech Text Segmentation Using
Voting Experts and Its Comparison with Menzerath-Altmann law. Computer Infor-
mation Systems Analysis and Technologies, 2011, 978-3-642-27245-5, pages 152-160.

8. M. Miller, P. Wong, and A. Stoytchev. Unsupervised Segmentation of Audio Speech
Using the Voting Experts Algorithm. Proceedings of the Second Conference on
Artificial General Intelligence (AGI). 2009.

9. M. Miller, and A. Stoytchev. Hierarchical Voting Experts: An Unsupervised Algo-
rithm for Hierarchical Sequence Segmentation. Proceedings of the 7th IEEE Inter-
national Conference on Development and Learning (ICDL). (Best Paper Award,
ICDL 2008)

10. M. Muller. Dynamic Time Warping. Information Retrieval for Music and Motion,
Springer, ISBN 978-3-540-74047-6, 69–84, 2007.

11. D. Salomon. Data Compression: The Complete Reference. Springer-Verlag. 2007.
12. B. E. Swartz, and E. S. Goldensohn. Electroencephalography and Clinical Neuro-

physiology, in Electroencephalography and Clinical Neurophysiology, 106(2), 173 -
176, 1998.

13. C. J. Van Rijsbergen. Information Retrieval, Second Edition. Department of
Computer Science, University of Glasgow, 1979.

Using OCL in Model Validation According to
Stereotypes?

Zdenek Rybola1 and Karel Richta2,3

1 Faculty of Information Technology, Czech Technical University in Prague
rybolzde@fit.cvut.cz

2 Faculty of Mathematics and Physics, Charles University in Prague
richta@ksi.mff.cuni.cz

3 Faculty of Electrical Engineering, Czech Technical University in Prague
richta@fel.cvut.cz

Using OCL in Model Validation According to
Stereotypes?

Zdenek Rybola1 and Karel Richta2,3

1 Faculty of Information Technology, Czech Technical University in Prague
rybolzde@fit.cvut.cz

2 Faculty of Mathematics and Physics, Charles University in Prague
richta@ksi.mff.cuni.cz

3 Faculty of Electrical Engineering, Czech Technical University in Prague
richta@fel.cvut.cz

Abstract. Model-Driven Development approach became popular in past
years. Domain-specific profiles are defined for various domains and tools
are used to transform models using these profiles to source code artifacts.
However, rules need to be defined for the profile elements usage so the
transformation can be effective and reliable.
This paper deals with an approach of expressing these rules using spe-
cial type of metamodel with UML class diagrams with the stereotypes
defined in the profile – we call them constraint diagrams. Each class in
this metamodel represent all classes in the model with the same stereo-
type. Using stereotyped associations, we can link classes with different
stereotypes and restrict the usage of such stereotype only to relations
between specific stereotyped classes in the model. OCL constraints can
be generated from the constraint diagram to enable validation of the
model according to the rules in the metamodel. This paper deals with
the description of the constraint diagram creation and OCL constraints
generation.

Keywords: UML, OCL, constraint, stereotype, validation

1 Introduction

Model Driven Development [10] is a modern and popular software development
approach. It is based on creation of model of different abstraction levels and
transformations between those models. It also includes forward and reverse engi-
neering methods. Forward engineering becomes especially popular for generation
of source code from models.

Models of software systems are usually created using UML and transformed
to source code using a tool that generates all required artifacts from the model.
For instance, many various artifacts for J2EE application such as Entities, Ses-
sion beans, Message-driven beans and many others can be generated from an
? This research was partially supported by Grant Agency of CTU No.

SGS12/093/OHK3/1T/18 and Czech Grant Agency (GAČR) No. GA201/09/0990

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 93–102, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

94 Zdenek Rybola, Karel Richta

UML class model. Because of various domains of software systems, domain-
specific UML profiles are usually defined. UML profile [9] is a meta-model that
allows the definition of stereotypes and tagged values for model elements. If a
profile is defined and used, model transformation can be adapted according to
the specified stereotypes and tagged values. However, special rules usually come
with the profile to restrict usage of various profile artifacts that needs to be sat-
isfied by any model based on the profile. To make those adapted transformations
effective, model validation against the defined rules is required.

In our current research, we deal with an approach to generate OCL con-
straints for domain-specific profiles using an instance of the meta-model defined
in the profile. Creating a constraint diagrams using artifacts of the profile allows
us to graphically express domain-specific rules. These diagrams can be easily
transformed to OCL constraints that can be used for model validation using
various CASE and OCL tools. Whole process is shown in Fig. 1.

Fig. 1. Graphical description of the model validation process - model diagrams and a
constraint diagram are created using the profile; the constraint diagram is transformed
to OCL constraints; model diagrams are validated using OCL constraints resulting in
a set of constraints violation messages

In this particular paper, we deal with generation of OCL constraints for
rules restricting connections between various stereotypes. An example is based
on fundamental analysis class model specification [2]. In this specification, only
classes with Entity, Control and Boundary stereotypes can be used with some

Using OCL in Model Validation According to Stereotypes 95

restrictions for connections between various stereotypes. However, our approach
can be used for any profile defined for any domain.

The paper is structured as follows: Section 2 presents related work and their
difference from our approach. In section 3, we show an example of model with
a profile and definition of rules for stereotype usage. In section 4, we describe
the constraint diagram for expressing the rules. Generation of OCL invariants is
explained in section 5. Conclusions and further work plans are given in section
6.

2 Related work

There have been done some research on model checking and model validation
using OCL. Richters and Gogolla [11] presented an approach of animating model
snapshots and validating it against OCL constraints. The authors use USE tool
[12] for model animation and validation. The authors also introduced a method
of automatic model snapshot generation in USE tool [5]. However, the authors
only generate snapshot of the model and the constraints must be defined as
required directly in OCL.

Some research was made on model validation against fundamental properties
of models defined in UML. Chae et al. [2] focuses on analysis class model used
in many standard object-oriented processes where three basic stereotypes are
defined for analysis classes - boundary, control and entity. The authors define a
set of constraints in OCL that any analysis class model should satisfy includ-
ing constraints for associations between classes of particular stereotypes. The
authors also demonstrate a case study of validation of analysis models against
defined OCL constraints using OCLE tool [3]. However, the authors only define
particular constraints for these three basic stereotypes of analysis classes.

In [6], Guizzardi defines ontological extension of UML class diagram with
ontology stereotypes and constraints called OntoUML. He presents a fine-grained
approach for domain modelling using stereotypes to distinguish between various
types of domain artefacts and relationships. In [1], Benevides and Guizzardi
present a graphical editor for OntoUML and validation of OntoUML model using
OCL constraints. These constraints are based on stereotypes of model elements
and defined according to the specification of OntoUML.

In comparison to the approaches mentioned above, in our approach we do not
define any particular constraint for any particular domain. Instead, we propose
a general approach to create a constraint diagram using domain-specific and
user-defined profile to model domain-specific business rules. This diagram can
be used to generate OCL constraints for validation of any model based on the
user-defined profile. We deal with generating OCL constraints for UML class
diagrams in this particular paper.

There is also a lot of tools that support model transformation and validation
against OCL constraints. Dirigent [7] is an open-source MDA tool for generation
of source code from model. The tool reads model stored in XMI format and
generate source code files according to specified patterns in Apache Velocity.

96 Zdenek Rybola, Karel Richta

These patterns can be based on model element stereotype and generate a set
of source files. If extended appropriately, Dirigent would be able to parse the
proposed constraint diagram and generate OCL constraints for validation of a
model based on the same profile.

Dirigent could also be extended to validate the model using the generated
OCL constraints itself. However, there are also many other tools that support
model validation using OCL constraints. OCLE tool [3] can be used as mentioned
above. DresdenOCL [4] is a toolkit for creating and validating OCL constraints
for specified model. It also supports model validation and model transformation
together with the constraints to SQL and Java with AspectJ.

3 Defining rules

To make transformations of domain-specific model in UML to source code files
effective, domain-specific UML profile should be defined. This profile includes
mostly stereotypes of classes and associations for class diagrams and can de-
fine tagged values of such stereotypes as well. In the model, various defined
stereotypes are used to model various types of artifacts using classes and their
associations. During transformation to source files, various stereotyped classes
can be transformed to various source code artifacts such as J2EE entities, session
beans or servlets.

Lets imagine an example shown in Fig. 2 where a class model of a part of
a university information system is shown. The model is created using analysis
model profile with stereotypes entity, control and boundary to distinguish be-
tween three kinds of analysis classes. We use only a part of the analysis model
profile required for our model. The original analysis model profile with full set
of rules is defined in [2].

For each of these stereotypes, various source code artifacts can be generated
during transformation. For instance of a J2EE application:

– an entity class, a data access object class and a SQL creation script for each
entity-stereotyped class,

– a session bean local interface and implementation for each control-stereotyped
class,

– and a servlet for each boundary-stereotyped class can be generated.

With generation of source code artifacts for each model element, references be-
tween those generated artifacts can be also generated. For instance:

– relationships between entities for each association between entity-stereotyped
classes,

– reference between session beans,
– and reference to session bean from servlets can be generated.

However, to generate such artifacts and connections effectively and correctly, the
model must satisfy specific rules. These rules must be defined and obeyed during

Using OCL in Model Validation According to Stereotypes 97

Fig. 2. Model of a part of a university information system with analysis model stereo-
types

modeling. The rules for analysis class model are defined in [2]. However, for our
example with simplified profile, only some of these rules are important and they
can be expressed as follows:

1. Each entity class can be related by stereotype-free association only to another
entity class.

2. Each control class can be related by use-stereotyped association to entity
class.

3. Each control class can be related by stereotype-free association only to an-
other control class.

4. Each boundary class can be related by use-stereotyped association to control
class.

Notice, that the definition is always defined in the direction from the source
class in the relation. This is to eliminate redundancy and to make each relation
checked only once. If these rules are obeyed in the model, the transformation to
the source code artifacts will be correct and no error shall appear.

4 Modeling constraints

Unfortunately, developers and analysts make mistakes so we need to validate
and check the model before transformation and source code artifacts generation.

98 Zdenek Rybola, Karel Richta

Therefore, the rules must be defined in some formal way so a tool such as OCLE
[3] or DresdenOCL [4] can be used to validate the model against the defined
rules for stereotype usage and relations restrictions.

Object Constraint Language (OCL) [8] is the part of UML used to define
model constraints in a form of invariants that each instance of the element in
the context must satisfy. However, definition of the required OCL invariants can
be a bit tricky for unfamiliar developers. Not many developers or even analysts
posses the knowledge of OCL. Therefore, we propose an approach of creating a
special class diagram – we call it constraint diagram – to model the rules using
stereotypes used in the analysis model and to generate the OCL constraints for
model validation.

Definition 1. A constraint diagram is a UML class diagram with classes and
relations using domain-specific stereotypes used to define domain-specific rules
for relations allowed between various used stereotypes and to generate OCL in-
variants to validate domain-specific UML class diagrams.

In the constraint diagram, we have to model all relations allowed in the
model between classes with particular stereotypes. Therefore, we add classes
with defined stereotypes as required and add relations with defined stereotypes
and direction. Names of the classes and multiplicity values are not important in
this diagram, they just represent any instance of a particular stereotype and any
relation of a particular type and stereotype in the model. Each relation in the
constraint diagram stands for a rule that restricts relations between particular
stereotypes. Each of them can be transformed to OCL constraint as described
later in section 5.

Fig. 3. Constraint diagram for the used part of analysis model profile

In Fig. 3, constraint diagram is shown for the rules defined in section 3. We have
created two classes with stereotype entity. These represent any class with that
stereotype used in the model. We add an association between AnyEntity and
AnotherEntity – in this direction – with no stereotype to express that any class
with stereotype entity can be related by stereotype-free association to any other
class with stereotype entity. This relation stands for the rule 1.

Using OCL in Model Validation According to Stereotypes 99

To define rule 2 in the constraint diagram, we add a class with stereotype con-
trol. Then we connect it with a class with stereotype entity by a use-stereotyped
association to express that each control class can be related to any entity by a
use-stereotyped association. In our case on Fig. 3 we connected AnyControl to
AnyEntity class.

Similar to the rule 1, to define rule 3 in the constraint diagram, we add an-
other class with stereotype control and connect it from the class AnyControl
to express the allowed stereotype-free association between control-stereotyped
classes. Finally, similar to rule rule:control-entity, a class with stereotype bound-
ary is added to the diagram with a connection to class AnyControl by a use-
stereotyped association to define the rule rule:boundary-control.

Notice that for correct rules definition and constraint generation, some con-
straints for the constraint diagram must be obeyed as well. For instance, only
one relation of each partial type and stereotype can be connected from each
particular-stereotyped classes, otherwise there would be redundant rules defined
in the diagram for the same relation and the same source artifact. Also, no di-
rected relations can be used in the diagram. As mentioned in section 3, only out-
going relations stand for a rule to eliminate redundancies. If a relation of both
directions between two various-stereotyped classes can be used in the model,
two distinct relations must be created in the constraint diagram, each with the
different direction – source and target classes – of the relation.

Although we have to check the constraint diagram for these rules satisfaction,
we do this only for this single constraint diagram, while all the model diagrams
based on the same profile with the rules defined in the constraint diagram can
be validated and checked automatically by the generated constraints.

5 Generating OCL constraints

A set of OCL constraints can be generated from a constraint diagram using a
tool such as Dirigent [7] to parse the model diagrams. The tool traverses the
model and for each relation in the diagram, an OCL invariant is generated. To
explain the constraint structure, let us define several terms used in the constraint
first.

Definition 2. Source Class Stereotype is the stereotype of the source class of
the relation in the constraint diagram just being processed by the generation tool.
Target Class Stereotype is the stereotype of the target class of that relation.
Relation Stereotype is the stereotype of that relation.

The structure of such constraint is shown in Fig. 4. The invariant is defined in
the context of Class with its name generated from the Source Class Stereotype,
the RelationStereotype and the type of the relation. Then, two functions are
defined – sts() return a set of names of stereotypes of the classifier parameter –
i.e. a class or an association –; associationSet() return a set of associations – that
have no stereotype or include the given stereotype according to the stereotype
given as parameter – from the given classifier. Then, the main constraint body is

100 Zdenek Rybola, Karel Richta

defined – if the class in context includes the Source Class Stereotype then target
classes of all associations with the same stereotype as the RelationStereotype
must include the Target Class Stereotype.

context c:Class inv <SourceClassStereotype><RelationStereotype>Association:

let sts(c:Classifier) : Set(String) =

c.stereotype->collect(name)->asSet()

let associationSet(c:Classifier, s:String) : Set(Association) =

c.association.association.connection->

select(isNavigable = true)->

select(a:Association | (s = "" and sts(a)->empty())

or sts(a)->includes(s))->asSet()

sts(self)->includes(<SourceClassStereotype>) implies

associationSet(self, <RelationStereotype | "">)->collect(participant)->

select(ac:Classifier | ac <> self)->

forAll(ac:Classifier | sts(ac)->includes(<TargetClassStereotype>))

Fig. 4. General form of OCL invariant generated from a constraint class diagram with
wildcards for Source Class Stereotype, Target Class Stereotype and RelationStereotype

When parsing the constraint diagram shown in Fig. 3, the tool will find four
associations to generate OCL invariants – stereotype-free associations between
two entities and two control classes, respectively, a use-stereotyped association
from AnyControl class to AnyEntity class and a use-stereotype association from
AnyBoundary class to AnyControl class. Therefore, four OCL invariants are
generated as shown in Fig. 5. All generated invariants use the same functions
sts() and associationSet as defined in Fig. 4, however, they are not displayed in
the figure because of limited space in the paper.

Now, having these OCL invariants describing rules for the use of the profile
stereotypes, we can use any tool supporting model validation using OCL con-
straints such as OCLE or DresdenOCL Toolkit. Using such a tool, we can validate
any part of a model of a system using the same profile against the defined rules.
The tool will find any classes that does not satisfy any of our invariants pointing
the class is connected to some other class using wrong-stereotyped association
or the target class have wrong stereotype attached.

6 Conclusions

Model-Driven Development approaches for software development became popu-
lar in last years. Many software development processes use a tool to transform
models and to generate source code artifacts. Many domain-specific UML pro-
files are also created for various domains or software projects and generation
tools are adapted to utilize these profiles during transformation and generation.
However, this approach brings the need of domain rules definition of how the
profile should be used.

Using OCL in Model Validation According to Stereotypes 101

-- rule 1

context c:Class inv EntityAssociation:

sts(self)->includes("entity") implies

associationSet(self, "")->collect(participant)->

select(ac:Classifier | ac <> self)->

forAll(ac:Classifier | sts(ac)->includes("entity"))

-- rule 2

context c:Class inv ControlUseAssociation:

sts(self)->includes("control") implies

associationSet(self, "use")->collect(participant)->

select(ac:Classifier | ac <> self)->

forAll(ac:Classifier | sts(ac)->includes("entity"))

-- rule 3

context c:Class inv ControlAssociation:

sts(self)->includes("control") implies

associationSet(self, "")->collect(participant)->

select(ac:Classifier | ac <> self)->

forAll(ac:Classifier | sts(ac)->includes("control"))

-- rule 4

context c:Class inv EntityAssociation:

sts(self)->includes("boundary") implies

associationSet(self, "use")->collect(participant)->

select(ac:Classifier | ac <> self)->

forAll(ac:Classifier | sts(ac)->includes("control"))

Fig. 5. OCL invariants for the rules to check and validate the model

102 Zdenek Rybola, Karel Richta

In this paper, we presented an approach of modeling these domain rules for
the use of user-defined stereotypes and relations between each other using UML
class diagram. We presented a method how such diagram can be created for
a set of example rules. We also presented a technique how to generate OCL
invariants from the diagram to be used for model validation. Whole process
was illustrated on an example using analysis model profile with standard class
stereotypes entity, control and boundary.

In our further research, we would like to extend our approach to enable to
model directed association constraints to validate usage of directed associations
in the model, other types of relations such as generalization or dependency. Some
research can also be done to define multiplicity constraints for the number of
related classes using each particular stereotyped relation. Finally, extending the
approach by other types of model artifacts such as actors, components or use
cases can be researched.

References

1. Benevides, A.B.: A Model-based Graphical Editor for Supporting the Creation,
Verification and Validation of OntoUML Conceptual Models. Ph.D. thesis, Federal
University of Esṕırito Santo (UFES), Vitória, E.S., Brazil (Feb 2010)

2. Chae, H.S., Yeom, K., Kim, T.Y.: Specifying and validating structural con-
straints of analysis class models using OCL. Information and Software Technology
50(5), 436–448 (Apr 2008), http://www.sciencedirect.com/science/article/B6V0B-
4NVH7T5-1/2/02217cd36c68c34c93fc63253c28bf62

3. Chiorean: OCLE 2.0 - object constraint language envi-
ronment. http://lci.cs.ubbcluj.ro/ocle/index.htm (Feb 2012),
http://lci.cs.ubbcluj.ro/ocle/index.htm

4. Demuth, B.: DresdenOCL. http://www.reuseware.org/index.php/DresdenOCL
(Jan 2011)

5. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. Software and Systems Modeling 4(4), 386–398
(2005)

6. Guizzardi, G.: Ontological foundations for structural conceptual models.
PhD thesis, University of Twente, Enschede, The Netherlands (Oct 2005),
http://eprints.eemcs.utwente.nl/7146/

7. Hubl, K.: Dirigent (Jan 2012), code.google.com/p/dirigent/
8. OMG: Object constraint language, version 1.3.

http://www.omg.org/spec/OCL/2.2/PDF (Feb 2010)
9. OMG: UML 2.4. http://www.omg.org/spec/UML/2.4/ (Aug 2011),

http://www.omg.org/spec/UML/2.4/
10. OMG, Miller, J., Mukerji, J.: MDA guide version 1.0.1. http://www.omg.org/cgi-

bin/doc?omg/03-06-01.pdf (Jun 2003)
11. Richters, M., Gogolla, M.: Validating UML models and OCL constraints. UML

2000 - THE UNIFIED MODELING LANGUAGE, PROCEEDINGS - ADVANC-
ING THE 1939, 265–277 (2000)

12. Richters, M., Buettner, F., Gutsche, F., Kuhlmann, M.: USE - a UML-based spec-
ification environment. http://www.db.informatik.uni-bremen.de/projects/USE/
(Jan 2011)

Models for Efficient Semantic Data Storage
Demonstrated on Concrete Example of DBpedia

Ivo Lašek and Peter Vojtáš

1 Czech Technical University in Prague, Faculty of Information Technology, Prague,
Czech Republic, lasekivo@fit.cvut.cz

2 Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czech
Republic, vojtas@ksi.mff.cuni.cz

Models for Efficient Semantic Data Storage
Demonstrated on Concrete Example of DBpedia

Ivo Lašek and Peter Vojtáš

1 Czech Technical University in Prague, Faculty of Information Technology, Prague,
Czech Republic, lasekivo@fit.cvut.cz

2 Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czech
Republic, vojtas@ksi.mff.cuni.cz

Abstract. In this paper, we introduce a benchmark to test efficiency of
RDF data model for data storage and querying in relation to a concrete
dataset. We created Czech DBpedia - a freely available dataset composed
of data extracted from Czech Wikipedia. But during creation and query-
ing of this dataset, we faced problems caused by a lack of performance
of used RDF storage. We designed metrics to measure efficiency of data
storage approaches. Our metric quantifies the impact of data decompo-
sition in RDF triples. Results of our benchmark applied to the dataset
of Czech DBpedia are presented.

Keywords: Semantic Web, Linked Data, Storage, RDF

1 Introduction

DBpedia is a community effort to extract structured information from Wikipedia
and to make this information available on the Web. In this paper, we introduce
a Czech branch of this effort. The main DBpedia development gathers around
English DBpedia. However, couple of local clones have emerged lately. To name
some of them, we mention Greek, Russian or German local DBpedias. The com-
plete list may be found in [17]. To the best of our knowledge, there has not
been any other Czech DBpedia clone, apart from our work. We aim to extract
structured information from Czech Wikipedia and provide the data for free use.
In this paper, we show some use cases in order to demonstrate what can be such
a huge database of machine readable information good for (focused particularly
on Czech users).

We describe the data, we have extracted so far. We show basic statistics
that can provide also a new point of view on the information available at Czech
Wikipedia - not limited to DBpedia.

Described data are accessible via the SPARQL endpoint3, so anyone can
query them and use them. Also anyone can contribute to the community driven
extraction effort via Mappings Wiki [15].

3 The SPARQL endpoint is accessible on http://cs.dbpedia.org/sparql.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 103–114, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

104 Ivo Lašek, Peter Vojtáš2 Models for Efficient Semantic Data Storage

1.1 The Problem

Though datasets such as DBpedia can be very useful as pointed out in section 4,
the adoption of these datasets is often limited to semantic web community. One
of the main drawbacks is lack of performance. Data are usually stored as RDF
triples. The performance of main RDF stores (or triple stores) increases as indi-
cated by several benchmarks [1, 2]. But ordinary operations that are effectively
executed in relational databases remain very demanding in the case of RDF
stores.

The main factor that causes RDF stores to be inefficient for certain types
of queries is a number of joins the store has to perform in order to evaluate a
query. However, in many cases on the web, data is presented in a joined form
(e.g. description of one entity and its properties on one page like in a Wikipedia
article) and it is split in order to represent it as RDF. We elaborate this process
in detail in Section 5. The opened question is, whether this split is necessary. We
evaluate this phenomenon and quantify its influence on the dataset performance.
Czech DBpedia is used as a representative dataset.

1.2 Contributions

– We introduce a comprehensive dataset of machine readable information ex-
tracted from Czech Wikipedia.

– The presented dataset covers wide variety of areas and preserves the con-
nection of data to corresponding Wikipedia articles. As such can serve as
a data integration hub and a source of common identifiers facilitating data
integration of diverse data sets.

– We show possible applications of this dataset. We focus particularly on spe-
cific Czech use cases, where Czech DBpedia is worth than the global one.

– We point out the problem of ineffective data representation in case of RDF
and quantify its influence on a dataset.

– We provide a SPARQL benchmark for testing data stored in triple stores.

1.3 Organization of the Paper

The rest of the paper is organized as follows. Related work is recalled in Section 2.
Section 3 introduces the process of our dataset creation and Section 4 describes
possible use cases of the dataset. Section 5 describes methods used to store RDF
data and introduces our metrics measuring efficiency on a concrete dataset.
Experimental results are presented in Section 6. The paper is summarized in
Section 7.

2 Related Work

The whole philosophy of DBpedia and technical details are provided in [3, 4].
Both papers provide a broad overview of the DBpedia background. In our paper

Models for Efficient Semantic Data Storage . . . 105Models for Efficient Semantic Data Storage 3

we focus on a specific Czech environment and describe the dataset based on data
from Czech Wikipedia, which might have slightly different characteristics (i.e.
more fine grained information about locally specific entities).

Additionally, based on our dataset, we introduce metrics to measure the
performance of data storage. There are several benchmarks measuring the per-
formance of RDF data stores using SPARQL queries, similarly to our work.
The suite of benchmarks for comparing the performance of SPARQL endpoints
- Berlin SPARQL Benchmark [1] - tests the performance of SPARQL engines
in prototypical e-commerce scenarios. Another recent benchmark built on top
of English DBpedia dataset is DBpedia SPARQL Benchmark [2]. Contrary to
Berlin Benchmark, that is composed of artificially designed queries, DBpedia
Benchmark uses real world queries of real users. The queries are extracted from
query logs of DBpedia SPARQL endpoint.

All the mentioned benchmarks use same metrics to measure the performance.
The basic metrics are Queries per Second (QpS), Query Mixes per Hour (QMpH)
and Overall Runtime (oaRT). But all these metrics are heavily dependent on a
hardware configuration and overall system conditions of a test run. In Section 5.2,
we introduce metrics that are more qualitative and quantitative characteristics
of the tested dataset according to the used storage approach. Thus the results of
our benchmark are completely independent of a concrete hardware configuration.

In order to develop our metrics, we considered various approaches to RDF
data storage presented by major triple stores Jena [5], Virtuoso [9], Sesame [7],
Oracle [6] and 3store [8]. Additionally, we consider vertical partitioning presented
in [10]. These approaches are described and compared in Section 5. A similar
problem of transformation of an ontology into a relational database is discussed
in [11].

3 DBpedia Extraction Framework

In order to obtain raw data from Wikipedia, we use the DBpedia Extraction
Framework [12]. This is a module based framework maintained by the interna-
tional DBpedia team. Wikipedia provides freely accessible dumps of the whole ar-
ticle database [13]. The framework thus downloads recent dumps of all Wikipedia
pages covering all topics described on Wikipedia. The pages are downloaded in
the source format marked by Wiki markup [14]. These source files are parsed.
Data are extracted from parsed pages using various extractors. An extractor is
a mapping from a page node to a graph of statements about it.

Various information can be obtained from Wikipedia pages. It is quite easy
to get labels of entities and extract their connections by analysis of links between
corresponding Wikipedia articles. However, the core of the extraction process is
the retrieval of information contained in so called infoboxes. An example of such
an infobox in a Wikipedia article is shown in Figure 1.

In case of the Czech DBpedia, we use following extractors provided by the
extraction framework: Label Extractor (extracts labels of entities from titles of
corresponding articles), Geo Extractor (extracts geographic coordinates), Page

106 Ivo Lašek, Peter Vojtáš4 Models for Efficient Semantic Data Storage

Fig. 1. Infobox example taken from Czech Wikipedia. On the right side, there is a
source code of this Wikipedia infobox written using Wiki markup.

Links Extractor (extracts internal links between DBpedia instances from the
internal pagelinks between Wikipedia articles), Wiki Page Extractor (extracts
links to corresponding articles on Wikipedia), Infobox Extractor (extracts all
properties from all infoboxes) and Mapping Extractor (extracts structured data
based on hand-generated mappings of Wikipedia infoboxes to the DBpedia on-
tology).

It is important to note the difference between Infobox Extractor and Map-
ping Extractor. Consider the source code from Figure 1. The Infobox Extractor
extracts this information as it is written in the source code. Property names
are not cleaned, there is no consistent ontology for the infobox dataset. Thus
generating RDF triples like:

<http://cs.dbpedia.org/resource/Albert_Einstein>
<http://cs.dbpedia.org/property/misto_narozeni>
<http://cs.dbpedia.org/resource/Ulm> .

Unfortunately, infoboxes on Wikipedia are inconsistent and it is usual that
same property is described in many different ways. Someone can call the same
property misto narozeni (placeOfBirth), whereas someone else might use puvod
(origin), or narozeni misto (birthPlace).

The answer to these difficulties is the Mapping Extractor which uses hand
written rules that map different patterns used in Wikipedia infoboxes to a con-
sistent ontology of DBpedia.

For our dataset we generated rules covering 60 most important entities (e.g.
cities, politicians, actors, writers). Totally, there are currently about 109 Infobox

Models for Efficient Semantic Data Storage . . . 107Models for Efficient Semantic Data Storage 5

templates on Czech Wikipedia that can be potentially mapped to DBpedia on-
tology. This means so far we have mapped more than half of them. Mappings
can be edited via the Mappings Wiki [15]. As the mapping effort is community
driven, everyone can join and help creating and maintaining mapping rules.

4 Use Case Scenarios

In this section, we want to point out the advantages of a local clone of DBpedia
compared to the English one.

Similarly to local Wikipedias, local DBpedias usually provide more compre-
hensive information about specific local entities, like geographical data (smaller
Czech cities, mountains, rivers, lakes), data about important persons (Czech
politicians, movie directors, writers, etc.).

As such, this dataset may serve as a base for various mashup application or
automatic data processing tools. Apart from the range of locally specific data,
the language of entries and their direct connection to Czech Wikipedia pages
might be an advantage too.

Thanks to tens of manually created mapping rules, Czech DBpedia is a good
ontology mapping dictionary as well. It may serve as a central hub providing a
set of common identifiers together with basic properties of identified entities.

All machine readable data on DBpedia have a direct connection to corre-
sponding Wikipedia articles, where the information is presented in an unstruc-
tured way, usually as a plain text. Thus Czech DBpedia might serve as a testing
dataset for various natural language processing and information retrieval ap-
proaches focusing on Czech language.

5 Efficiency of Data Storage

5.1 Data Representation

The RDF data model represents data as statements about resources using a
graph connecting resource nodes. An RDF statement has the form of a triple
consisting of subject, predicate and object. In the following text, unless otherwise
stated, under subject, predicate and object, we understand the appropriate part
of an RDF triple.

The majority of RDF data storage solutions including Jena [5], Virtuoso [9],
Sesame [7], Oracle [6] and 3store [8] use relational databases to store the data.
The general idea is to create one giant triples table with three columns (corre-
sponding to RDF triples: subject, predicate, object) containing one row for each
RDF statement. This data representation results in many self-joins on triples
table even to execute simple SPARQL queries. Consider following query that
returns names of movies directed by Jan Svěrák and filmed in 19964:
4 Usually, when querying real SPARQL endpoints, queries involve use of identifiers

in similar form to URLs. For clarity of presented SPARQL queries, we omit these
long identifiers as well as declaration of appropriate prefixes. Instead we use shorter
identifiers in our examples (e.g. director, filmed, name).

108 Ivo Lašek, Peter Vojtáš6 Models for Efficient Semantic Data Storage

SELECT ?name
WHERE { ?movie director "Jan Svěrák" .
?movie filmed "1996" .
?movie name ?name . }

This query results in following SQL query over triples table, invoking three
joins:

SELECT T3.object
FROM triples_table AS T1,

triples_table AS T2,
triples_table AS T3

WHERE T1.subject = T2.subject AND T1.property = ’director’
AND T1.object = ’"Jan Svěrák"’ AND T2.subject = T3.subject
AND T2.property = ’filmed’ AND T2.object = ’"1996"’
AND T3.property = ’name’

Instead of storing whole identifiers and literals directly in the triples table,
Oracle, Virtuoso and Sesame replace strings with integer identifiers, so that the
data is normalised in two tables. Whereas Jena takes the trade off - space for
speed - and keeps strings directly in the triples table.

In order to minimize the count of inefficient join operations that are invoked
by each statement used in SPARQL query, various optimizations were proposed.

Property tables first introduced by authors of Jena [5] optimize data organ-
isation in following way:

– Create clusters of properties that often occur together.
– Based on identified clusters, create tables having properties occurring to-

gether as columns.
– The primary key of tables are subjects, in columns are stored objects that are

connected with a particular subject by property represented by the column.

A variant of property tables are property-class tables, where clusters are
created based on RDF types of subjects.

A similar approach to the property table data structure was introduced in [11]
in order to store ontologies in relational databases.

A different approach is vertical partitioning described in [10]. The basic prin-
ciple is to create a table for each property in the dataset. The table has two
columns: subject and object. Each row thus corresponds to an RDF statement
in that the particular property (represented by the table) connects subject and
object stored in the same row. The performance optimization is achieved by
storing data in a column oriented storage.

5.2 Metrics

The aim to minimize the impact of joins on the query execution leads us to
define metrics that quantify this impact on a particular dataset.

Models for Efficient Semantic Data Storage . . . 109Models for Efficient Semantic Data Storage 7

In the following text, we use the term shallow properties to label properties
such that there is at least one resource appearing with them in an object position
that does not appear in a subject position in another statement.

Contrary, by deep properties we mean properties such that there is at least
one resource appearing with them in an object position that appears in a subject
position in at least one another statement.

Joinability measures an average count of shallow properties on a subject. If
shallow properties were stored in one table (as columns of the table), there would
not be a need to join the data at all. Shallow properties result in an avoidable
subject-subject join in that case. Joinability is defined as follows:

j =
cs

|S|

Where cs is the count of statements, where a property plays a role of a shallow
property and |S| is the count of distinct subjects in the dataset.

Linkability is an average count of deep properties on a subject. The occur-
rence of deep properties may result in an object-subject join, if we query for
properties of an object as well. Linkability is defined in the following way:

l =
cd

|S|

Where cd is the count of statements, where a property plays a role of a deep
property and |S| is the count of distinct subjects in the dataset.

Finally, we defineWeighted Joinability as:

w =
j

l

Another interesting characteristic of a dataset is an average indegree of an
object and outdegree of a subject. Especially outdegree of a subject indicates,
how many joins could be potentially saved, if all the properties of a particular
subject were stored in one row. Note that sum of an average joinability and
linkability gives an average outdegree of subjects in a dataset.

6 Evaluation

6.1 Data Characteristics

For the evaluation, we used the dataset of Czech DBpedia. It is smaller than the
dataset of English DBpedia, so it is feasible to run some more demanding queries
that are difficult to run in reasonable time on the English one. However, still
Czech DBpedia represents a comprehensive dataset, with similar characteristics
to the English one. In this section, we provide some basic characteristics of data
that can be extracted from Czech Wikipedia and compare it to the English
Wikipedia.

110 Ivo Lašek, Peter Vojtáš8 Models for Efficient Semantic Data Storage

Czech DBpedia contains totally 12 402 513 RDF statements. About 251 877
RDF statements are extracted based on our hand written mappings, whereas
the English DBpedia composes of about 17,5 million RDF statements based on
mappings (according to the last dataset release report [16]).

Data is extracted from 220 000 articles on Czech Wikipedia. English Wikipedia
has about 3 800 000 articles which is more than 17 times bigger dataset.

There are 704 760 distinct subjects that have some property in the current
Czech dataset.

Additionally, we counted entities. Under entities, we mean real world con-
cepts. Usually, each entity corresponds to a Wikipedia article that describes it.
Thus total count of entities should correspond to 220 000 Wikipedia articles.
But in reality the count of identified entities is heavily dependent on a coverage
of hand written mapping rules. Entities have commonly a type. Counts of most
common entities compared to the English dataset are provided in Table 1. It is
remarkable that in case of cities, the count of entities in Czech dataset is closer
to the English dataset than in other cases (it is more than 34% of the count of
cities in English dataset). This points to the fact that information about cities
are well elaborated on Czech Wikipedia and also good mappings are provided
to transform it to DBpedia. The English DBpedia presents actually much more
countries than their real count in the world. This fact is caused by a vague defi-
nition of a country on Wikipedia. For example a self-governing British Overseas
Territory Falkland Islands is considered to be a country as well.

Table 1. Comparison of Czech and English DBpedia. Count of entities of certain types.
In the column Size Comparison the sizes of both datasets are compared in percent.

Count of Entities

Entity Type Czech DBpedia English DBpedia Size Comparison

Person 8478 416079 2,0%

Company 964 40132 2,4%

Country 287 2531 11,3%

City 4730 13790 34,3%

6.2 Measurements and Benchmarks

In this section, we provide some characteristics, we measured on the dataset of
Czech DBpedia with respect to metrics introduced in Section 5.2. Due to the
lack of space in this paper, we present the actual benchmark on a separate web
page5.

In Figure 2, we compare count of distinct subjects with at least one shallow
property and at least one deep property. We can see that almost all subjects
5 The whole benchmark used to obtain presented results composes of SPARQL queries

and basic scripts to parse results of these queries. It is available for download at
http://research.i-lasek.cz/semantic-web/joinability-benchmark/

Models for Efficient Semantic Data Storage . . . 111Models for Efficient Semantic Data Storage 9

have a shallow property as well as a deep property. There were less than 6 000
subjects having all properties shallow. These were in most cases operational and
meta data information rather than real entities such as cities, persons etc.

Fig. 2. Counts of distinct subjects with at least one shallow property and at least
one deep property compared to the total count of distinct subjects in the dataset.
Additionally subjects with all properties shallow are displayed.

In Figure 3, we further investigated overall count of distinct shallow proper-
ties and distinct deep properties. It is remarkable that both sets have a common
intersection. According to the results, almost all properties are in some cases
shallow. While some of them play a role of a deep property as well. This is legal,
because a property might connect a subject with an object, that is not further
described in the dataset, while in another case another connected object is a
subject in another statement. Also sometimes, data is messy and same property
connects subject with a literal value and at the same time connects it with an
object with further properties. 1 697 out of 6 714 properties played a role of deep
properties in at least one statement.

In Figure 4, we compare counts of objects that do not play a role of a subject
in any other statement (result in a shallow connecting property), with objects
that play a role of subjects in at least one another statement (result in a deep
connecting property).

Afterwards, we measured counts of non distinct shallow and deep properties
and counted Linkability and Joinability. For Czech DBpedia, these are: j = 8, 92
and l = 8, 67.

Finally, we evaluated average outdegree of subjects (for Czech DBpedia it is
approximately 17,6) and average indegree of objects (approximately 5,0). For the
quantification of join impact, the outdegree of subjects is especially important.
This means that, while querying DBpedia for all properties of an entity, a query
results in average in almost 18 self-joins, if we consider the triples table approach

112 Ivo Lašek, Peter Vojtáš10 Models for Efficient Semantic Data Storage

Fig. 3. Counts of distinct shallow properties and distinct deep properties compared to
overall count of distinct properties.

Fig. 4. Counts of distinct objects that have at least one property in the dataset (are
in the role of a subject in another triple) and distinct objects that do not have any
property within the given dataset.

Models for Efficient Semantic Data Storage . . . 113Models for Efficient Semantic Data Storage 11

described in Section 5.1. The distribution of subjects outdegree is displayed in
Figure 5.

Fig. 5. Subjects outdegree distribution. Counts of occurences are displayed in a loga-
rithmic scale.

7 Conclusion

We introduced Czech DBpedia and briefly described the process of creation of
this dataset. The main idea was introduced: On the web, huge amount of data
is presented in a joined from (e.g. infobox tables on Wikipedia). However, often
this data is split in order to present it as RDF. Afterwards it has to be joined
again, while querying RDF data storage, which is a demanding operation. We
designed metrics to measure efficiency of data storage approaches, according to
the join demands. We introduced a benchmark to test efficiency of RDF data
model for data storage and querying in relation to a concrete dataset. Finally,
we presented results of this benchmark applied to a dataset of Czech DBpedia.
The benchmark is publicly available on the web, so anyone can use it to test any
dataset accessible via a SPARQL endpoint.

7.1 Future Work

In our future work, we plan to design an efficient RDF repository. Based on our
current findings, we intend to use property tables. Our modification is that we
use a variant of the algorithm for creating concepts (in the sense of Conceptual
lattices (see [18]) on properties (columns of tables). Our optimisation is driven
by requirement to minimize number of joins in most frequent expected queries
(conjunctive queries looking for subject with conjunction of conditions on prop-
erty values). Secondary optimization is devoted to minimization of number of
NULL values (which occurs when a subject does not have some property).

114 Ivo Lašek, Peter Vojtáš12 Models for Efficient Semantic Data Storage

Acknowledgments. This work has been supported by the grant of Czech Tech-
nical University in Prague (SGS12/093/OHK3/1T/18) and by the grant GACR
P202/10/0761.

References

1. Bizer, C., Schultz, A.: Benchmarking the Performance of Storage Systems that ex-
pose SPARQL Endpoints. In International Journal On Semantic Web and Informa-
tion Systems, 2009.

2. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo: DBpedia SPARQL Benchmark
– Performance Assessment with Real Queries on Real Data. In The International
Semantic Web Conference – ISWC 2011, Springer Berlin / Heidelberg, 2011, 7031,
Pages 454–469.

3. Bizer, Ch., Lehmann, J., Kobilarov, G., Auer, S., Becker, Ch., Cyganiak, R., Hell-
mann, S.: DBpedia - A crystallization point for the Web of Data. In Web Semantics:
Science, Services and Agents on the World Wide Web, Volume 7, Issue 3, September
2009, Pages 154–165, ISSN 1570-8268.

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A
Nucleus for a Web of Open Data The Semantic Web. Springer Berlin / Heidelberg,
2007, 4825, Pages 722–735.

5. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and Re-
trieval in Jena2. In SWDB, Pages 131–150, 2003.

6. Chong, E. I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF Query-
ing Scheme. In VLDB, Pages 1216–1227, 2005.

7. Broekstra, J., Kampman, A., Harmelen, F.: Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In ISWC, Pages 54–68, 2002.

8. Harris, S., Gibbins, N.: 3store: Efficient bulk RDF storage. In In Proc. of PSSS 03,
Pages 1–15, 2003.

9. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In Networked Knowl-
edge - Networked Media, Studies in Computational Intelligence, Springer Berlin /
Heidelberg, isbn: 978-3-642-02183-1, 2009, Pages 7–24.

10. Abadi, D. J., Marcus, A., Data, B.: Scalable semantic web data management using
vertical partitioning. In VLDB 2007, Pages 411–422, 2007.

11. Pokorný, J., Pribolová, J., Vojtáš., P.: Ontology Engineering Relationally. In
DATESO 2009, Špindler̊uv Mlýn, Czech Republic, 2009, Pages 44–55.

12. The DBpedia Information Extraction Framework, http://wiki.dbpedia.org/

Documentation

13. Wikipedia Database Download http://en.wikipedia.org/wiki/Wikipedia:

Database_download

14. Wiki markup http://en.wikipedia.org/wiki/Help:Wiki_markup

15. Czech Mappings on DBpedia Mappings Wiki http://mappings.dbpedia.org/

index.php?title=Special%3AAllPages&from=&to=&namespace=224

16. Dataset Release Report http://blog.dbpedia.org/category/

dataset-releases/

17. DBpedia Internationalization Committee http://dbpedia.org/

Internationalization

18. Ganter, B., Stumme, G., Wille, R., eds. (2005): Formal Concept Analysis: Founda-
tions and Applications. In Lecture Notes in Artificial Intelligence, no. 3626, Springer-
Verlag, ISBN 3-540-27891-5.

Top-k Search Over Grid File

Martin Šumák and Peter Gurský

Institute of computer science, Faculty of Science, P. J. Šafárik University in Košice
Jesenná 5, 040 01 Košice, Slovakia

martin.sumak@student.upjs.sk, peter.gursky@upjs.sk

Top- search over grid file

Martin Šumák, Peter Gurský

Institute of computer science, Faculty of Science, P. J. Šafárik University in Košice,

Jesenná 5, 040 01 Košice, Slovakia
martin.sumak@student.upjs.sk, peter.gursky@upjs.sk

Abstract. In the era of huge datasets, the top- search becomes an effective

way to decrease the search time of top- objects. Since we suppose locally ac-

cessible data only, the multidimensional indexes containing all attributes to-

gether seem to be more effective than a distribution of each attribute to a sepa-

rate index. Therefore we introduce the top- search algorithm over grid file –

the multidimensional index not used for the top- search yet. Grid file does not

require computation with all attribute values together like R-tree, R*-tree (i.e.

computation of area, perimeter) nor a metric like M-tree. Grid file can be used

directly for indexing any type of attributes with natural ordering. Our experi-

ments show that grid file, R-tree and R*-tree offer much better performance of

the top- search than separated B+-trees and table scan.

1 Introduction

In our research we deal with the problem of searching top- products in e-shops ac-

cording to user preferences. Current e-shops typically provide fulltext search, menu of

product domains, single attribute value specification and products sorted usually ac-

cording to price or product name. We are not aware of any e-shop with more complex

user preferences model e.g. a combination of selection techniques mentioned above.

Our model of user preferences [6] consists of preferences to values of several at-

tributes in the form of fuzzy functions (see Figure 1) and a monotone combination

function. Such complex user preference model approaches real life preferences and

leads to more precise results than standard selection techniques. The preferences can

be obtained implicitly by tracking user actions in the e-shop or explicitly by user

specification. The top- search with a query based on such preferences can be com-

puted over different index structures – a set of B+-trees [5, 6], MDB-tree [12] and R-

tree [13]. In this paper we introduce a top- search algorithm over the next multidi-

mensional index – Grid file.

In [12, 13] it was shown that the top- search over multidimensional indexes

(MDB-tree, R-tree, R*-tree) is faster over local data than over a combination of mul-

tiple indexes. The MDB-tree can hold all types of ordered attributes but the query

cannot hold any subset of attributes. The R-tree structure allows a query to contain

any subset of attributes but the metrics used in the R-tree requires having the num-

bered attributes only. The reason why we employed a grid file for the top- search

was the elimination of the limitations along with the preservation of the advantages of

the mentioned indexes.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 115–126, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

116 Martin Šumák, Peter Gurský

Fig.1. User’s local preferences to a floor and a price of a flat

This paper is organized as follows. Section 2 presents the related work. Section 3

formalizes the problem of the top- search over our user preference model. Section 4

presents the main contribution of this paper – the top- search over grid file. Section 5

reports the experiments results comparing the top- search performance over several

index structures. Section 6 concludes this paper.

2 Related work

The top- search was introduced by R. Fagin [4] as a problem of finding best ob-

jects according to a monotone aggregation function over distributed ordered lists of

attribute values. The original Threshold algorithm (TA) [4] has many improvements

and modifications for the similar distributed environment, e. g. [1, 2, 4, 6]. We call

them the TA-like algorithms.

The idea of the top- search over data stored in several indexes was considered al-

so for local data, especially inside a RDBMS, e. g. [10]. These approaches are con-

cerned with augmenting the query optimizer to consider rank-joins (similar to TA)

during a plan evaluation. Optimization can be effective especially in case of very

selective attributes. The rank-join algorithm requires ordered data on input similarly

to the middleware algorithms.

The idea of using R-tree for top- search is already presented in [14] where the al-

gorithm incremental nearest neighbour is exploited for that purpose. Nevertheless,

this approach does not offer a query as complex as we offer in our query model.

Originally in the top- query, the simple monotone aggregation function was con-

sidered only [4]. The query composed of local preferences and monotone combination

function (resulting in non-monotone aggregation function) was introduced in [5]. In

[6] it was shown that the simulations of sorted accesses using separated indexes for

each attribute allow using TA-like algorithms.

The algorithm in [16] does a top- search with an arbitrary non-monotone query

analyzing the aggregation function with numerical methods. The algorithm supposes

that the numerical methods can analyze any aggregation function over any domain

sub-region (to find the maximum and possibly recognize monotonicity). In our opin-

ion this analysis is rather difficult to do in a reasonable time. Note that this approach

uses multiple indexes.

The grid file was introduced in [11]. In many papers the grid file is considered to

be a dynamic index with a directory structure mapping grid windows to the disk pages

Top-k Search Over Grid File 117

[7, 11, 15]. In our pilot grid file implementation we considered static data only, thus

we made some simplifications (see Section 4). First, we made the numbering of grid

windows that can substitute the presence of directory structure and dramatically de-

crease the number of accesses, thus making most objects accessible in 1 I/O. Second,

unlike the original grid file we employed the overflow pages to avoid dense grid

structure with many empty windows over possibly skew data. We analyzed several

bulk loading techniques [3, 8, 9]. The STR algorithm [9] has the best results for our

top- search.

3 Top- search problem definition

For a given set of objects we have to find most preferred objects for the user.

Each object has the same attributes with values from at-

tribute domains respectively (i.e. for all). Query,

i.e. input obtained from the user, consists of fuzzy functions (or less if

user does not consider all attributes) and a monotone combination function . The

overall value of object is . For example, if is a

weighted sum, user is expected to specify only nonnegative weights – one for each

considered attribute to specify a non-descending combination function. Then we have:

where are the weights. The bigger the overall value, the more preferred the

object is to user. The output is a list of objects from ordered from the most

preferred objects to the less preferred ones.

4 Grid file

The grid file [9] is an index structure for multidimensional points designed to store

the data on disk pages. Grid file is based on slicing space in each dimension, i. e. an

attribute domain, to get a multidimensional grid. For the formal description we intro-

duce the following notation. Partition

 is

determined by a sequence of intervals in each dimension. Each (-th) sequence con-

sists of disjunctive intervals such that
 . Picking one interval in

each dimension specifies a window . Each window is mapped to

one data page on disk (these pages are called primary pages). The grid file contains as

many primary pages as windows. All data pages have the same fixed size (i.e. the

same fixed capacity). Overfilled windows are handled by creating a linked chain of

overflow pages.

118 Martin Šumák, Peter Gurský

Fig. 2. An example of a two-dimensional grid with 20 windows and the overfilled window .

Window is determined by the third interval in both dimensions.

On the other hand, the grid file may contain empty windows. Each empty window

refers to an empty primary page. Reading empty pages (e. g. during query evaluation)

is avoided by a set of numbers of non-empty windows held in memory. The windows

are numbered in a fashion shown on Figure 2. Since we have a static grid, the map-

ping between a window and its number is easy to compute without the need of a di-

rectory structure. The extension of this idea to more dimensions is straightforward.

We create the grid file with bulk loading algorithm STR [9]. Page capacity and the

number of objects in determine the final number of windows (primary pages). In a

 -dimensional space the -th root of the number of windows determines the number

of intervals in each dimension. Each dimension is partitioned into intervals with the

same number of objects falling in them. Since real data is rarely distributed uniformly

we reduce the number of overfilled windows by increasing the number of windows by

the multiplication with appropriate filling factor (we use filling factor 1.3). After the

bulk loading of input data we are not restricted from adding more objects – it simply

leads to higher utilization of pages and possibly to some new overflow pages.

4.1 Top-k search over grid file

A contribution of this paper is a top- search algorithm over grid file. As shown in the

experiments, this approach is much more effective than B
+
-trees based approach and

it is comparable with the top- search over R-tree [13].

Since each object can be represented by the point in

 -dimensional space (note that is the function mapping objects

to -dimensional points), the set of objects can be stored in multidimensional index

such as grid file [8, 9]. Grid file does not require attribute domains to be sets of num-

bers. It can handle different types of attributes at once. For example the first attribute

can be price represented by decimal numbers while the second attribute can be a

manufacturer represented by strings (with alphabetical ordering). Grid file treats at-

tribute domains separately therefore they are not required to have any common prop-

erty. Attribute domain just needs to be an ordered set.

Top-k Search Over Grid File 119

For searching top- objects over a grid file we developed algorithm similar to the

breadth first search in graphs. For formal description of our algorithm some concepts

need to be defined first.

Definition 1: Point is -dimensional vector .

Having and point such that then for all .

Definition 2: A window is defined as an -tuple of intervals where is

an interval within for all .

Object belongs to a window if for all .

Definition 3: We say that window is a neighbour to window

 iff there is a such that and for all

 holds .

Note that window in a 2-dimensional grid has at most 4 neighbour windows – top,

bottom, left and right. Window in the corner of the gird has two neighbour windows.

For the top- search over a grid file we need to know how to evaluate objects and

also grid windows. For this purpose we define aggregation function giving the

overall value for an object and the maximal possible overall value for any object in a

grid window.

Definition 4: Function where is a set of windows of grid file is

defined as follows: where

 for all if OR

 if .

Lemma 1: If is a window and is an object such that
 (i.e. belongs to a window) then .

Proof: From definition 4 we have and
 . Moreover for all
holds: because . Since combination func-

tion is monotone (non-descending in each parameter) we get .

Lemma 2: If (where is an object and is a window) then for any

object within holds .

Proof: directly from Lemma 1 and the transitivity of relation .

120 Martin Šumák, Peter Gurský

Fig. 3. Graphical representation of the aggregation function giving the overall

value for a 2-dimensional data with user-defined fuzzy functions and on

the right.

Preferential top- search algorithm over grid file:

Input: grid file containing objects from S, fuzzy

 functions f1,...,fm, combination function C and number k

Output: ordered list of k objects with the highest value

 of the h function

1. queue = empty priority queue ordered by the value of

 the h function of its elements in descending order

2. result = empty list of objects

3. for each local extreme of the function h do

 a. choose arbitrary one window W containing the

 extreme

 b. if queue does not contain W then put W into queue

 and label W as visited window

4. while the result does not contain k objects do

 a. let E be the first element of the queue, remove E

 from the queue

 b. if E is a window then

 i. add all objects within E to the queue

 ii. add all not visited neighbour windows of E to

 the queue and label them as visited windows

 c. if E is an object then add it at the end of the

 result

5. return result

The estimation of time and space complexity can be reduced to an estimation of the

number of visited windows, which is highly dependent on the grid partition, data

distribution and query. The only estimation we can make are the lower and upper

bounds, which is not very rewarding. In the best case we get the top- objects after

processing one window – the first one in the queue containing global extreme. In the

worst case all the windows must be read – typically when a high or low discriminat-

ing fuzzy functions or fuzzy functions containing many local extremes are obtained

Top-k Search Over Grid File 121

from user. Fuzzy functions with many local extremes are not common in a queries

made by people.

Labeling visited windows can be realized by maintaining a set of numbers of visit-

ed windows starting with an empty set. Avoiding repetitive reading of visited win-

dows is implemented the same way as avoiding reading of empty windows – by main-

taining a set of window numbers in memory.

4.2 Correctness of the top- search over grid file

The proof of correctness of presented algorithm can be reduced (without impact on

generality) to the situation with just one local extreme of function . If we prove that

it works for the case of one local extreme then the generalization to more extremes

can go as follows: we can prepare as many priority queues as windows with local

extremes in step 3. Then in step 4.a we can pick the priority queue with the highest

value of its first element and continue without any other changes. Using separated

priority queues for each starting window picked in step 3 is not necessary. The same

effect can be achieved by one priority queue managing windows of all local extremes

because on the top there is always an element with the highest value from all top

elements in imaginary separated priority queues.

Let us focus on one local extreme of the function . First of all we will show that

the value of the first element in priority queue is non-ascending. Using mathematic

induction we will show that each time the first element is removed from priority

queue, the new top element of the priority queue (i.e. in the next iteration of while

cycle) has lower or equal value to the previous top element.

If the top element in the priority queue is an object then the condition holds trivial-

ly, since no new element is added into priority queue and the next top element was

already in the priority queue in previous iteration.

Let’s assume that there is a window at the top of the priority queue. We have to

show that all new elements added into priority queue in steps 4.b.i and 4.b.ii have the

overall value lower or equal to the window just removed from the top. For better

imagination we will use the example on Figure 4.

The first induction step is as follows: at the beginning, the priority queue contains

just one window – the one containing a local extreme of function . Window is

to be removed from the queue directly in the first iteration of while cycle (step 4).

After that, the algorithm inserts the objects within window and its neighbour win-

dows , , and to the priority queue. In Lemma 1 we showed that objects be-

longing to window have the overall value lower or equal to the overall value of

window . Trivially, the neighbour windows , , , do not have the overall val-

ue greater than window because the algorithm started with window containing the

only local extreme.

122 Martin Šumák, Peter Gurský

Fig. 4. On the left, there is a window containing local extreme and its neighbour windows ,

 , and . On the right, there is an example of the second inductive step with local extreme

somewhere in left top corner. The darker shade means higher overall value.

For the second induction step we assume the following induction assumption: in

each of previous iterations of while cycle, the overall value of the top element in the

priority queue decreases or does not change. Let window (Figure 4 on the right) be

the first element in the queue. After removing the window from the priority queue,

the objects from E and not visited neighbour windows (, , ,) are inserted into

the priority queue. In each dimension there is one direction in which the respective

fuzzy function is non-descending and the opposite direction oriented off the local

extreme in which the fuzzy function is non-ascending. In the example on Figure 4 the

local extreme is somewhere in the top left corner. Therefore we can trivially say that

 , , , , and

 . We are left to show that windows and have been already visited

and therefore they are not to be inserted to priority queue now. From the induction

assumption we get that window was added to priority queue as neighbour when

either window or was removed from the top. Without impact on generality let us

suppose that window is the removed window. Since we know that window has

been already visited we are left to discuss window . Since window has higher

value than window and is its neighbour, from the induction assumption we get

that window must have been visited before . Moreover only top windows from the

priority queue are processed. Therefore window must have been processed before

window and window must have been added into priority queue when window

was being processed. Hence windows L and M had been visited before window E was

processed and are not inserted into the priority queue.

Although we described the second induction step on an example in a 2-dimensional

space the generalization to more dimensions is straightforward. Even in 2D we can

imagine a situation slightly different from the one drawn on Figure 4 on the right. Let

us imagine the following change: . In this situation window has only

one neighbour with higher overall value – window . The discussion for this case is

even simpler. From the induction assumption we know that window must have

been visited prior to window E.

Since value of the element at the top of the priority queue is non-ascending the first

object that appears at the top is the best object of all. Each object which would appear

Top-k Search Over Grid File 123

in the priority queue later will be at most as good as any object in the result set. Since

we look at all neighbour windows, processing the rest of the priority queue leads to

acquiring all objects within grid file in order from the best to the worst.

Note that the presented grid file expansion strategy in the top- search works cor-

rectly for our user preferences model, however it cannot be used for arbitrary aggre-

gation function in general. For arbitrary aggregation function it requires a modifica-

tion of the neighbour windows definition to two windows with a common point and it

leads to exponentially more priority queue insertions according to number of dimen-

sions than in the presented algorithm.

5 Experiments

Average time of top- query evaluation is the basic measure we surveyed. We used a

real data set containing approximately 27 000 flat or house advertisements in Slovakia

having 6 attributes: price, area, floor, the highest floor of building, year of approba-

tion and the number of rooms. Since the real data set was small we generated bigger

pseudo real sets by generation of several similar objects for each one from the original

set. This way we generated two sets, one with about 550 000 objects (the 20-multiple

set) and second one with about 2 700 000 objects (the 100-multiple set).

We compared the following approaches for top- search problem: grid file based

approach, R-tree and R*-tree based approach [13], local TA on B
+
-trees [6] and table

scan (on heap file).

There are several algorithms based on ordered lists presented in [6]. All of them

work with distributed data and sorted access. Moreover the original TA requires also

the random access. Since we presuppose only locally accessible data (not distributed)

we slightly adapted the TA in the following way: each B
+
-tree which represents one

ordered list (providing sorted access for one attribute) will contain all the data i.e.

values of all attributes. Thus no random access is necessary because one sorted access

to any ordered list provides complete information about all attribute values of one

object. Such version of TA does not longer suffer from the handicap of distributed

data. We made a small experiment which showed that algorithms NRA [6] and origi-

nal TA are significantly less efficient than the local version of TA. Due to this handi-

cap we have not involved algorithms NRA and original TA to the tests.

Each of the tests consists of the same set of 1100 random queries (i.e. about 200

random queries containing gradually 2, 3, 4, 5 and all 6 attributes). Not all -attribute

queries consist of the same attributes.

All of the compared approaches manage data file on disk differently. The page size

is the only adjustable parameter common to all of them. Since we wanted to compare

them objectively we had to find the most suitable page size for each one. For the

brevity we do not present graphs showing the time dependency on page size. We

found out that the best page sizes for top- search over 20-multiple set are the follow-

ing: 1 kB for R-tree, 2 kB for R*-tree, 8 kB for grid file, 4 MB for heap file (table

scan) and 64 kB for B
+
-trees (local TA). For the 100-multiple set we found out the

following: 2 kB for R-tree, 1 kB for R*-tree, 4 kB for grid file, 2 MB for heap file

(table scan) and 128 kB for B
+
-trees (local TA). We strongly recommend to do such a

124 Martin Šumák, Peter Gurský

survey for all application domains and not to consider these results to be universal.

Different size of objects leads to a different capacity of page sizes and probably a

different best page sizes. We compared average time of top- query just for the best

page sizes.

Fig. 5. The average time of top-25 query evaluation in milliseconds over 20-multiple data set

(about 550 000 objects). On the right graph the table scan and the local TA are omitted for

detailed comparison.

Fig. 6. The average time of top-50 query evaluation in milliseconds over 100-multiple data set

(about 2 700 000 objects). On the right graph the table scan and the local TA are omitted for

detailed comparison.

On the left graphs we see that number of attributes in query has a very low impact

on time of table scan and very high impact on time of local TA. Moreover we can say

that table scan is significantly less efficient than R-tree, R*-tree and grid file based

approaches. The local TA is quite efficient for queries with only 2 attributes. Local

TA loses its efficiency when 3 or more attributes are required.

R-tree, R*-tree and grid file based approaches seem to be faster therefore the

graphs on the right bring the detailed look just on them. We can see that R*-tree of-

fers a better efficiency than grid file in all cases. Moreover R*-tree with normalized

data does not offer better search performance than R*-tree with original data. We did

Top-k Search Over Grid File 125

not use R-tree with normalized data because normalization of data has no effect when

quadratic split algorithm is used [13].

6 Conclusion

In this paper we introduced the top- search algorithm over grid file. Grid file is a

multidimensional index structure in which we can store objects with arbitrary ordered

attributes (numbers, strings, hierarchies) and which allows using a query with any

subset of attributes.

Grid file organizes data by means of multidimensional intervals (windows) which

are used also in R-tree as hyper-rectangles of nodes. In grid file there is no hierarchy

or overlaps as it is in case of nodes of R-tree. Hence there was a question: can grid file

offer better top- search performance than R-tree or R*-tree? It would be premature

to say no just because our introductory tests showed that the top- search over R*-tree

is faster. Our grid file implementation is quite simple. We have found many overflow

pages and many empty windows because of the real data distribution. The results are

quite promising and encourage us to look for more sophisticated ways of creating and

organizing grid file.

Acknowledgement

This work was partially supported by VEGA 1/0832/12.

References

1. Akbarinia, R., Pacitti, E., Valduriez, P.: Best Position Algorithms for Top-k Queries. In

VLDB, (2007)

2. Bast, H., Majumdar, D., Schenkel, R., Theobald, M., Weikum, G.: IOTop-k: Index-Access

Optimized Top-k Query Processing. In VLDB, (2006)

3. Bercken, J., Seeger, B.: An Evaluation of Generic Bulk Loading Techniques. Proceedings

of the 27th International Conference on Very Large Data Bases, ISBN:1-55860-804-4,

pp.461-470, (2001)

4. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. Proc.

ACM PODS, 2001

5. Gurský, P.: Towards better semantics in the multifeature querying. Proceedings of Dateso

2006, ISBN 80-248-1025-5, pages 63-73 (2006)

6. Gurský, P., Pázman, R., Vojtáš, P.: On supporting wide range of attribute types for top-k

search. Computing and Informatics, Vol. 28, no. 4, 2009, ISSN 1335-9150, p. 483-513.

7. Kumar, A.: G-tree: a new data structure for organizing multidimensional data. IEEE Trans-

actions on knowledge and data engineering, ISSN: 1041-4347, pp. 341 - 347, vol. 6, issue

2, (1994)

8. Leutenegger, S. T., Nicol, D. M.: Efficient Bulk-Loading of Grid files. IEEE Transactions

on knowledge and data engineering, ISSN: 1041-4347, vol. 9, no. 3, (1997)

126 Martin Šumák, Peter Gurský

9. Leutenegger, S.T.; Lopez, M.A.; Edgington, J.: STR: a simple and efficient algorithm for

R-tree packing. Proceedings of the 13th International Conference on Data Engineering,

ISBN: 0-8186-7807-0, pp. 497-506, (1997)

10. Li, C, Chang, K., Ilyas, I.F., Song, S.: RankSQL: Query Algebra and Optimization for

Relational Top-k Queries. SIGMOD (2005)

11. Nievergelt, J., Hinterberger, H., Sevcik, K. C.: The Grid File: An Adaptable, Symmetric

Multikey File Structure. ACM Transactions on Database Systems, pp. 33-71, vol. 9, issue

1, (1984)

12. Ondreička M., Pokorný J.: Efficient Top-K Problem Solvings for More Users in Tree-

Oriented Data Structures. Proceedings of Signal-Image Technology & Internet-Based Sys-

tems, ISBN: 978-1-4244-5740-3, pp. 345-354 (2010)

13. Šumák, M., Gurský, P.: Top-k Search in Product Catalogues. Proceedings of Dateso 2011,

ISBN 978-80-248-2391-1, pp. 1-12 (2011)

14. Tsaparas, P., Palpanas, T., Kotidis, Y., Koudas, N., Srivastava, D.: Ranked Join Indices.

ICDE, pp.277-288 (2003)

15. Whang, K.-Y., Krishnamurthy, R.: The Multilevel Grid File - A Dynamic Hierarchical

Multidimensional File Structure. Proceedings of Database Systems for Advanced Applica-

tions, ISBN 981-02-1055-8, pp. 449-459, (1992)

16. Xin, D., Han, J., Chang, K.: Progressive and Selective Merge: Computing Top-K with Ad-

Hoc Ranking Functions. SIGMOD (2007)

On Indexing in Native XML Database Systems?

Pavel Loupal1, Aleš Kantor1, Ondřej Macek2, and Pavel Strnad2

1 Department of Software Engineering
Faculty of Information Technology, Czech Technical University in Prague

Czech Republic
loupalp@fit.cvut.cz, kantoale@fit.cvut.cz

2 Department of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University in Prague

Czech Republic
macekond@fel.cvut.cz, pavel.strnad@fel.cvut.cz

On Indexing in Native XML Database Systems?

Pavel Loupal1, Aleš Kantor1, Ondřej Macek2, and Pavel Strnad2

1 Department of Software Engineering
Faculty of Information Technology, Czech Technical University in Prague

Czech Republic
loupalp@fit.cvut.cz, kantoale@fit.cvut.cz

2 Department of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University in Prague

Czech Republic
macekond@fel.cvut.cz, pavel.strnad@fel.cvut.cz

Abstract. Database indices are fundamental data structures that im-
prove the speed of data retrieval operations. In this paper, we focus on
native XML database systems and provide an elementary survey of ex-
isting approaches for indexing semistructured data employed in selected
academic open-source systems. Considering the requirements set for a
particular system, ExDB, and the results of the accomplished research,
we provide a design proposal of the indexing facility and discuss the
properties of the solution we plan to subsequently realize.

1 Introduction

Native XML database management systems (NXDs) are nowadays a promis-
ing sort of document-based systems oriented on semistructured data. With the
growing amount of XML data available it is essential to provide systems that
can still process increased workloads efficiently. It is a fairly obvious challenge
that is addressed by many research teams working on various aspects of data
management. As a consequence of this situation there is a huge variety of ex-
isting algorithms and their prospective implementations in production-quality
systems. To clarify the purpose and contribution of this submission let us first
identify our position in this space and depict the issues we aim to address.

Our effort is driven by the endeavour to design and develop an indexing mod-
ule in the ExDB system [7] that is being developed within our research group.
Thus, this paper reflects the approach how to achieve this goal as a software
engineering task. First, we depict here the theoretical background related to in-
dexing (naturally only in a conceptual overview) to get acquainted with existing
methods. The next step is to identify some of existing systems that might offer
a useful real-world experience. The selection of presented systems we have made

? This work was partially supported by the Czech Technical University in Prague,
grant no. SGS10/226/OHK3/2T/18 and by the grant project of the Czech Grant
Agency (GAČR) No. GA201/09/0990.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 127–134, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

128 Pavel Loupal, Aleš Kantor, Ondřej Macek, Pavel Strnad

is not random; we have decided to include those claiming to offer distinct index-
ing facilities and which are regarded as stable products. We have already had a
positive experience with some of them from our past experiments. An additional
condition was also the source code availability for potential detailed exploration.

Upon the comparison of existing open-source products we can then provide a
design proposal how to construct the indexing module in ExDB according to the
requirements we have set. Subsequently, we discuss potential influence of this
newly built module to operation of the database system. The final evaluation of
the proposal will be naturally available after the implementation and adequate
benchmarking.

Related Work. There are loads of papers and books focused on database systems
and on related particular problems. Here we highlight only the most important
resources for us. The general theoretical foundations required for the work are
sufficiently covered by well-known ”database Bibles”, by Date [3], and Ramakr-
ishnan [10]. Some internals of the systems we discuss later in this paper can be
found on respective project homepages (i.e., for BaseX [4], eXist [9], Sedna [1],
and CellStore [11]) – either by reading the documentation provided or by ac-
cessing their source codes.

2 Native XML Database Systems

Apparently, the most natural way of storing XML documents is to employ a
native XML database system (NXD). The term itself is nevertheless understood
differently by various groups. For our purposes we consider the XML:DB ini-
tiative definition [13]: a NXD database utilizes an (arbitrary) logical model for
an XML document, as opposed to the data in that document, and stores and
retrieves documents according to that model. At a minimum, the model must
include elements, attributes, PCDATA, and document order. The system then
considers such XML document as its fundamental unit of (logical) storage (but,
obviously, may employ an arbitrary physical storage model). To distinguish from
so called XML-enabled databases, we require an NXD to be freshly grown-up
upon the XML technology and not to benefit from facilities available in an ex-
isting (e.g., either relational or object) database system.

2.1 Selected Current NXDs & Feature Survey

To gain some experience with existing products we have selected few products
that seem to offer appropriate and helpful view into the world of production-
quality open-source systems and are initially originated in the academic envi-
ronment. We try to study their internals and assess the particular findings to
learn the best from it. There are two key decision points to be made in order
to obtain valuable and beneficial information – which systems to examine and
what criteria to consider – from such comparison.

On Indexing in Native XML Database Systems 129

Into the list of investigated systems we have selected those that we consider as
potential competitors to our systems (CellStore, ExDB), i.e. open-source prod-
ucts grown-up in academic environment that are in active development and have
a certain track of public releases. Hence, we have picked BaseX, eXist and Sedna.

To select the criteria most relevant to indexing is a more difficult problem
with respect to the complexity of database management systems (in general).
For our purposes we focus mainly on the following areas: supported types of
indices along with their configuration options, utilized numbering schemas, in-
volvement of available indices in query processing and space consumption (either
by database or index). If any additional and beneficial properties have been iden-
tified then they are naturally included in this section, too.

BaseX [4] claims to be a light-weight, high-performance and scalable NXD. It is
written completely in Java and shall be thus available on all supported platforms.
The system supports XPath and XQuery query languages with almost complete
coverage of the XQuery Test Suite (99.9 %). For client applications, provides the
most of the APIs utilized nowadays – REST, WebDAV, XML:DB and XQJ.

The product package contains both server part and GUI client. There are
two ways how to utilize the suite – either in client/server architecture (the most
common deployment scenario) or (locally) as an embedded database. Undoubt-
edly, the supplied GUI client is the best one from all systems mentioned in this
paper. It is user-friendly and offers many ways how to look on data stored at
the server. Moreover, it provides also valuable statistical reports exposing inter-
esting internals such as index configuration parameters, index size or detailed
query execution plans.

Internally, the system supports a (1) structural index (Path Summary Index)
and (2) value indices (text and attribute indices) and a (3) full-text index. All of
these can be independently turned on/off and (3) can be moreover configured in
detail. Particular employment of these indices can be tracked in execution plans
for queries executed within the GUI client.

eXist [9] is another Java-based NXD that, in contrast to other products, de-
pends heavily on several external components, e.g. from the Apache Foundation,
such as Xerces and Xalan. The system supports almost all relevant query lan-
guages – XPath 2.0, XQuery 1.0 and XSLT (1.0 + 2.0). The XQuery compliance
is slightly lower than for BaseX (99.4 %).

Although the documentation of the system’s internals is very sparse we can
observe that the vast majority of work has been done (at least in the recent time)
in the field of numbering schemas and indexing concepts. According to [8] there
are two node ID identification schemes implemented – Level-Order Numbering
(LON) and preferred Dynamic Level Numbering (DLN). The LON uses a simple
arithmetic computation to determine the relationship between two given nodes,
therefore the algorithm works well for all XPath axes (on the contrary, such
algorithm is not update friendly and there exists a document size limit due to

130 Pavel Loupal, Aleš Kantor, Ondřej Macek, Pavel Strnad

existing number of available IDs). The DLN is based on decimal classification
and removes thus the disadvantages of the former one.

Using these schemas there are various (built-in or optional) indices available.
The modularized design of the indexing subsystem easily allows to plug in a
new index and attach it to the indexing pipeline. Supported built-in indices are
basically a B+-Tree based Structural Index that is created by default for each
element or attribute in a document and a Range Index (able to directly select
nodes based on their typed values and applied when comparing nodes by way
of standard XPath operators and functions, e.g. =, >,<). Pre-packaged optional
indices are the Spatial Index, N-Gram Index and a Full-text Index (realized by
the Apache Lucene engine).

Configuration of indices in eXist is accomplished by collection-specific con-
figuration files (stored in special path with .xconf extension). The system does
not index any element or attribute values by default therefore the configuration
is needed. Subsequently all indices are automatically maintained and updated
as necessary (according to all modification operations performed).

Sedna [1] is an NXD written in C++ aiming to provide ”schema-based clus-
tering storage efficient for querying and updating”. This motto has been only
partially confirmed by our benchmark (will be published in detail at the con-
ference) as the storage size grew too steeply and the execution times did not
overcome its competitors considerably. Such results might even re-swirl a dis-
cussion on C++ vs. Java environment efficiency.

The system is available on all major operating systems (Windows, Linux,
FreeBSD, MacOS) and comprises of several command-line programs. This ap-
proach differs from all the other systems and makes the use of provided tools a
bit more difficult (at least at the first glance). On the other side, there are API
drivers available for a really wide variety of languages (Java, C, PHP, Python,
Ruby, Perl, Delphi, C#) and XQJ and XML:DB drivers for Java. According to
documentation provided the only query language supported is XQuery 1.0 (with
the coverage confirmed by the XQuery Test Suite to 98.8 %).

Sedna provides two kinds of indices – value (to index XML element content
and attribute values) and full-text index. In the current version, however, the
query executor does not use these indices automatically, but it is necessary to ex-
plicitly use the respective XQuery functions index-scan, index-scan-between,
and ftindex-scan. Value indices can be stored is either B+-tree or Block String
Trie (BST). The latter option is an experimental feature that should provide
more space-efficient alternative to B+-tree with the same search speed.

CellStore The main goal of the CellStore project [11] is to develop an NXD for
both educational and research purposes. It is meant rather as an experimental
platform than an in-box and ready-to-use database engine. We planned such
an engine because the students can easily look inside it, understand and create
new components for this engine as, e.g., a built-in XSLT engine, a query opti-

On Indexing in Native XML Database Systems 131

mizer, an index engine or an event-condition-action (ECA) processing. CellStore
is developed in Smalltalk/X.

System’s architecture is depicted in Figure 1. It can be approached through
several interfaces at different levels of services. The lowest layer, low level storage,
consists of several cooperating modules. Modules depicted in solid boxes are
already implemented, whereas modules in dotted boxes are not ready yet.

Fig. 1. CellStore Architecture

The system currently uses only the Path Summary Index (particular design
and benchmarking depicted in [2]), which is a structural index very similar to
the C–Tree index structure. As the CellStore has a specific internal structure
based on the Self Model [12] the common indexing structures are not directly
applicable. It is an issue to be addressed by future developments.

3 ExDB

ExDB [7] is an NXD being developed as a student research project at our uni-
versity. Its primary goal is to prototype a working database environment in Java
based upon the XML-λ Framework, a functional framework for XML, and thus
confirm its suitability for such use case. The framework and related research
activities are described in detail in [6].

Currently, it allows to persist data in either filesystem-based or native stor-
age. XML data can be queried by XPath, XQuery and XML-λ languages. The
weak point of the present solution is the non-existence of any indexing facility.
Although we have investigated some potential options and proposed a solution
([5]) yet there is no indexing support available. Such shortcoming naturally pre-
vents the system from performing efficiently for any query-based workload.

132 Pavel Loupal, Aleš Kantor, Ondřej Macek, Pavel Strnad

3.1 Indexing-related Requirements

The overall goal of our effort is to design and develop a configurable and exten-
sible indexing module for the ExDB system. This module should be in charge of
all documents indices and should provide access to them.

According to the previous survey we have identified fundamental require-
ments listed in short as follows. The design proposal should be

– configurable in various directions
• enabling general setup of the indexing subsystem
• supporting database, collection or document level configuration
• allowing alternative physical storage structure approach – either clus-

tered by index type or by collection hierarchy
– extensible for future improvements and modifications
– supporting multiple index types, generally both value, structure and full-text
– offering automatic index update
– open to multiple query languages – actually for XQuery and XML-λ
– helping with query cost estimation

Moreover, with respect to the nature of the ExDB project, we need to be able
to select some of these requirements and build an prototype within a few months
(till the end of current term). The remaining part is to be done subsequently.

3.2 Analysis

The requirements stated in the previous section cover a very wide range of par-
ticular sub-items that shall be analyzed in detail. In order to cover the most
important ones and due to limited space available we focus here only on the
major issues. Basically, with all these requirements in mind we propose a de-
sign addressing the key areas and furthermore attempt to take into account also
those that remain for the future work. There are three important parts that need
to be examined at first – module configuration, its storage strategy and query
interface.

The configuration of the indexing module will obviously control its behavior
and the scope of features available. Technically, there already is a configuration
facility within the system and thus no additional extension is necessary. So far,
we have identified about 20 parameters that could be used for setting up the
module and its activities. For its length we do not publish it here in depth.

For persisting indices we need to extend current Storage module. Principally,
retrieving and storing does not differ much from working with XML data and
is thus not too complicated. The only doubt is the physical structure of the
data – there are a few different approaches that might affect the efficiency of
read/write operations – particular indices (of distinct types) can be stored in
separate operating system files according to database collection hierarchy or in
one ”big” file all-together. One might consider also a hybrid approach when, for
example, the full-text index for all documents in database is stored in one file

On Indexing in Native XML Database Systems 133

and all the remaining indices are stored separately and organized in collection-
like directory hierarchy. Each approach has its pros and cons (chiefly clashing
memory consumption with disk look-up time overhead) and we are not aware of
any study with general and clear results. Thus, presuming the first approach –
an individual per-document, per-index file – to be sufficiently suitable (i.e. still
efficient and easily implementable) for our prototype.

Regarding the index-lookup interface we are confronted with a problem of us-
ing two implementations of distinct query language (XPath/XQuery and XML-λ)
using different internal data model. There is a planned work on transforming
XQuery queries into their XML-λ equivalent but a working transformation li-
brary seems to be still too distant. There are two alternatives how to face this
problem – we can either speed up the development of the transformation tool
or create a more general interface with adapters to both implementations. From
our programmers experience we prefer to invest the time in the later option and
put some additional effort into developing an adapter layer between indexing
and querying modules.

3.3 Design Proposal

From the requirements and analytical notes stated above we have derived an
outline of module design as shown in Figure 2. The diagram depicts the separa-
tion of the functionality into two logical parts, the first is the manager aiming
to administer particular document indices. Its task is the creation, modification,
deletion, storage and loading of indices. This component is connected to the sys-
tem core from where the commands arrive. Moreover, upon its configuration, the
component may automatically reindex or drop obsolete indices when necessary.

«module»
Query Module

«module»
ExDB Core

«module»
Indexing Module

Query part evaluator

«module»
Storage Module

Index Manager

Index Management Commands

Query (XPath/XQuery..)

Parser

Executor

«module»
Configuration

Query

Optimizer

Fig. 2. Indexing Module Component Diagram

Parsing the query and consequent preparation of execution plans will be
naturally the task for particular implementation of the query language. These
plans are sent to the indexing module for estimating their costs. The query
module then chooses the most convenient execution plan and starts to evaluate
its steps it accessing either the storage or the indexing module.

134 Pavel Loupal, Aleš Kantor, Ondřej Macek, Pavel Strnad

«module»
ExDB Core

«module»

Indexing Module

«module»

Query Module

«module»

Storage Module

loop Query Plan Evaluation

Evaluate(Query q)

parse(q)

createExecutionPlans(AST)

costEstimation(plans)

bestPlanSelection()

step_evaluation()

partial_result()

step evaluation()

partial result()

partial result()

Fig. 3. Query Evaluation Process Model

4 Conclusion and Future Work

The aim of this paper was to provide an overview of existing approaches for
indexing XML data available in open-source NXDs and to describe a particular
design proposal for a configurable indexing module inside the ExDB system.
Although we have not dipped into the problem in full detail we suppose that the
text sufficiently covers the judgment of our proposal.

Our future work will include the implementation and benchmarking of the
indexing module. These activities are scheduled for the following months along
with implementation of a new transaction module.

References

1. K. Antipin. Sedna project homepage. http://www.sedna.org, 2012.
2. K. Beyr. Index implementation in CellStore project. Master’s thesis, Dept. of

Computer Science and Engineering, FEE CTU, Prague, 2008.
3. C. J. Date. An Introduction to Database Systems. Addison-Wesley, 1995.
4. C. Grün. BaseX project homepage. http://www.basex.org, 2012.
5. M. Janek. Indexing techniques for native XML database systems. Master’s thesis,

Dept. of Computer Science and Engineering, FEE CTU, Prague, 2011.
6. P. Loupal. XML-λ : A functional framework for XML. PhD thesis, Department

of Computer Science and Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague, February 2010.

7. P. Loupal. ExDB project homepage. http://exdb.fit.cvut.cz, 2012.
8. W. Meier. Index-Driven XQuery Processing in the eXist XML Database. http:

//www.xmlprague.cz/2006/slides06/meier.pdf, 2006.
9. W. Meier. eXist project homepage. http://exist.sourceforge.net, 2012.

10. R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill
Science/Engineering/Math, 3rd edition, 2002.

11. M. Valenta. CellStore project homepage. http://swing.fit.cvut.cz/projects/

cellstore, 2012.
12. J. Vraný. CellStore - the vision of pure object database. In DATESO, 2006.
13. XML:DB. What is a XML database? http://xmldb-org.sourceforge.net, 2003.

Inter-Project Dependencies
in Java Software Ecosystems

Antońın Procházka1, Mircea Lungu2, Karel Richta3

1Czech Technical University in Prague, 2University of Bern,3Charles University in
Prague

Inter-Project Dependencies

in Java Software Ecosystems

Antonín Procházka1, Mircea Lungu2, Karel Richta3

1Czech Technical University in Prague, 2University of Bern,3Charles University in
Prague

Abstract Understanding the legacy of code in a software ecosystem
is critical for the organization that is the owner of the ecosystem as
well as for individual developers that work on particular systems in
the ecosystem. Model driven development (MDD) and model driven
architecture (MDA) techniques for describing inter-project dependencies
are rarely used or they're not updated by anyone during software evolution
process. Describing the dependencies by hand can be painful and error
prone process. Another solution is recovering the dependencies using
some reverse-engineering process. There are some existing technologies
today. One of them is an Ecco model of inter-project dependencies with
a set of methods for recovering the dependencies from Smalltalk based
software ecosystems developed by Lungu et al. Aim of our research is
applying this model with its methods on Java based software ecosystem.

Keywords

Model Driven Development, Software Ecosystems, Inter-Project Dependencies,
Java, Reverse Engineering

1 Introduction

Software engineering is concentrated mostly on individual projects nowadays.
We've got sophisticated methods and tools for project management, version
management, refactoring, testing, deployment and so on. But projects are rarely
developed individually. They coexist together, evolve together and bene�t from
each other. We call these systems of projects software ecosystems. Like other
terms connected to computers, the term ecosystem comes from biology. In nature
we de�ne an ecosystem as the complex of a community of organisms and its
environment functioning as an ecological unit1. In the context of software engineering
the ecosystem is de�ned as a collection of software projects which are developed
and co-evolve in the same environment [2]. Example of such software ecosystem
can be a company developing software, an open-source community or a research
group. As every project is located in its version control repository, we de�ne

1 Webster's Dictionary de�nition.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 135–142, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

136 Antońın Procházka, Mircea Lungu, Karel Richta

a super-repositories as a collection of all the version. control repositories for
multiple software projects [3].

Looking at the software from a point of view of software ecosystems uncovers
wide range of important information which help managers to manage their
teams and projects and also help individual developers to better understand
their work. Analysis of software at the abstraction level of software ecosystems
can be either focused on the projects or on the developers in the ecosystem. Our
work is currently focused on projects and their relationships inside a software
ecosystem. We extend previous work of Lungu et al. [4] focused on recovering
inter-project dependencies in Smalltalk ecosystems. In their work they argued for
importance of raising abstraction of view on software products from individual
projects to whole software ecosystems. They presented several viewpoints at
this abstraction level including the inter-project dependency viewpoint. Each
viewpoint, including this one, provides two areas of research. One is own visualization.
Having an interesting information is not enough - we also need to know how to
present it to the user. The second area is information retrieval. Before we can
present some information, we need to get it by some technique from some source.
At �rst we focus on inter-project information retrieval from java based software
ecosystems.

Structure of this paper is following: In section 2 we describe a model used
to store retrieved information. Section 3 summarizes information speci�c about
inter-project dependencies speci�c for Java base software ecosystems. Evaluation
of di�erent methods for dependency information retrieval is described in section
4. In section 5 we discuss contribution of this work and outline our further
research to be performed on this topic.

2 Ecco model

Lungu et. al presented in their work a lightweight model describing inter-project
dependencies called Ecco. They de�ned the model and �lled it up with information
about inter-project dependencies present in selected Smalltalk based software
ecosystems.

The Ecco model consist of four main elements.

Ecosystem. In relation to the Ecco model the ecosystem means a set of software
projects and dependencies between them.

Project. Every software ecosystem consists of one or more projects. Modules
of each project call some methods and de�ne another. A project can call
a method which is de�ned in another project. Methods like this are called
requirements.

Dependency. When one project require some method and another de�nes
it, we call this relationship a dependency. The dependency consists of a
client project, which requires the methods, and of a provider project, which
provides the required methods. The methods making the dependency between
two projects are called elements of dependency.

Inter-Project Dependencies in Java Software Ecosystems 137

Fig. 1. Ecco is a very lightweight model aimed at extracting dependencies between
projects in an ecosystem [4]

DependencyExtraction Strategy. There are several existing techniques for
gathering information about inter-project dependencies and others can be
de�ned in future. Techniques like this are called dependency extraction
strategies. We include them in the model to be able to compare them during
our research process.

3 Java Dependencies

In general we have two types of dependency extraction strategies. The �rst
type reuses information existing explicitly in software super-repositories. The
disadvantages of such sources are limited availability in di�erent ecosystems and
error-prone and time-wasting maintenance. On the other hand, this source is
very important during research because it tells us what results to expect during
evolution of the second type of dependency extraction strategies.

The second type is base on reverse-engineering of source code. In contrast to
the �rst type, this one can be used on any kind of super-repository and doesn't
need any maintenance at all. However it is harder to retrieve the information
this way.

138 Antońın Procházka, Mircea Lungu, Karel Richta

3.1 Project Object Model

If we'd like to �nd some reverse-engineering strategy for recovering inter-project
dependencies in Java based software ecosystems, we �rst need to �nd proper
source of data. We need to have a super-repository which will provide us both
the explicit data and source code which we'll reverse-engineer.

Looking for such super-repository we found Apache Maven best suits our
needs. Maven is a project-centric tool for software development. Its data structures
contain di�erent information about each project enabling to manage project's
build, reporting and documentation. Whole Maven stands on technology called
Project Object Model (POM) [1]. Every project has its own so-called POM-
�le, which is an XML �le containing all the information relevant to this project
like the developers working on it, the path of its sources, required binaries,
the builder, the documentation manager, the bug tracking system and much
more. It includes the explicit information about the inter-project dependencies.
This information has to be compounded from four inter-project relationships
described in the POM: dependencies, exclusions, inheritance and aggregation.
There's also a �le called Super-POM which de�nes value common for all project
in the Maven repository unless they are rede�ned. A simple POM with one
dependency can look like this:

<pro j e c t>
<modelVersion >4.0.0</modelVersion>
<groupId>cz . cvut . f i t . swing</groupId>
<a r t i f a c t I d >my−pro j e c t </a r t i f a c t I d >
<vers ion >1.0</vers ion>
<dependencies>

<dependency>
<groupId>jun i t </groupId>
<a r t i f a c t I d >jun i t </a r t i f a c t I d >
<vers ion >4.0</vers ion>
<type>jar </type>
<scope>te s t </scope>
<opt iona l>true</opt iona l>

</dependency>
</dependencies>

</pro j e c t>

Dependencies. If one project depends directly on another then the information
is described in a dependencies section. This section is located in POM �le of the
project which requires these dependencies - the Client Project from the Ecco's
point of view. These dependencies can also be transitive. Transitive dependency
means that if a client project A requires a project B which requires a provider
project C, C becomes common requirement for both A and B. Dependencies
here are divided into 5 scopes:

Inter-Project Dependencies in Java Software Ecosystems 139

A Compile Scope is a default scope representing group of regular projects
which are available with their source code and are necessary for successful build
of a Client Project. The Compile Scope dependencies are transitive.

A Provided Scope represents a group of precompiled projects expected to be
given at compile time by Software Development Kit (SDK), container or another
way. The Provided Scope dependencies are not transitive.

A Runtime Scope is much like the Provided Scope but represents projects
expected to be given at runtime. The Runtime Scope dependencies are not
transitive as well.

A Test Scope is like the Compile Scope but represents projects needed for
testing purposes. The Test Scope dependencies are transitive as well as the
Runtime Scope.

A System Scope is similar to the Provided Scope but requires a developer
to provide its dependencies explicitly. The System Scope dependencies are not
transitive as well as the Provided Scope.

As we'll be examining only projects contained in a given ecosystem, we are
interested only in the Compile Scope dependencies. Possibly we can be also
interested in the Test Scope dependencies if we'll extend our analysis to project's
used for testing purposes.

Exclusions. Transitive dependencies can produce unwanted behavior. If a developer
needs to exclude some project from the dependency list she includes it into the
exclusions section of the dependency which causes the problem. The meaning of
the exclusions during populating the Ecco model is obvious. We should respect
these exclusions and throw away dependencies excluded by them.

Inheritance. The Project Object Model brings a feature which enables us to
make an inheritance tree of projects. From the view of POM this means that
if we de�ne something in an ancestor project's POM �le, all its child project
inherit these de�nitions unless they are rede�ned in a child project's POM �les.
There are two points important for us. First, the inheritance relationship itself
represents a dependency and we have to to think about it this way. Second,
dependencies of ancestor client projects become dependencies of child client
projects since these two projects are in inheritance relationship.

Aggregation. If a project is made of a modules, Maven thinks about the modules
as about separated projects which are aggregated into another project called
multi-module project. This relationship is described in the multi-module project's
POM �le in a modules section. As the modules are expected to belong to the
same group as their multi-module project, they are de�ned only by their project
names. From our point of view, the aggregation relationship represents another
way to express the inter-project dependencies between the modules and the
multi-module project.

140 Antońın Procházka, Mircea Lungu, Karel Richta

3.2 Java Bytecode

When we think about a reverse-engineering of a Java software, we are not limited
only to a Java language. We can think of any language which can be compiled to
a Java Bytecode. The original information can be simply disassembled from the
byte-code [6]. Consider this simple class de�nition written in the Java language:

import java . awt . ∗ ;
import java . app le t . ∗ ;

pub l i c c l a s s DocFooter extends Applet {
St r ing date ;
S t r ing emai l ;

pub l i c void i n i t () {
r e s i z e (500 , 100) ;
date = getParameter ("LAST_UPDATED") ;
emai l = getParameter ("EMAIL") ;

}

pub l i c void pa int (Graphics g) {
g . drawString (date + " by " ,100 , 1 5) ;
g . drawString (email , 2 9 0 , 1 5) ;

}
}

If we call javap DocFooter to disassemble a DocFooter.class, we get this
output:

Compiled from DocFooter . java
pub l i c c l a s s DocFooter

extends java . app le t . Applet {
java . lang . S t r ing date ;
java . lang . S t r ing emai l ;
pub l i c DocFooter () ;
pub l i c void i n i t () ;
pub l i c void pa int (java . awt . Graphics) ;

}

Passing some arguments will give us also a disassembly of a behavior, but
this interface declaration is all what we need. We've got fully quali�ed name of
every class and method used in the compiled code.

This is how our reverse-engineering dependency extraction strategies will
look like. At �rst we take a Java Archive. Every java project is distributed as
a Java Archive. The archive is a regular compressed package of data containing
a Class Files. Every Class File contains a byte-code of one Java class. We open
the archive, disassemble every class �le and see which methods are called and
which are de�ned. We �ll this information into the Ecco model. Information

Inter-Project Dependencies in Java Software Ecosystems 141

gathered this way needs some more processing before we'll get reliable result.
This post-processing is topic of our further research.

4 Evaluation of Results

To let us compare di�erent inter-project dependency retrieval techniques we need
to have a measuring method to let us assign a value to each technique. For this
purpose we'll use well-known information retrieval metrics - a precision, a recall
and an F-measure [5] adopted for our case by Lungu et al. [4]. To use them we
�rst need a �golden standard� or an oracle. This is the information we retrieve
from Maven's POM. Thanks to this information we are able to distinguish a
Relevant dependencies which are present in the oracle and a Nonrelevant which
are not present in the oracle. Besides this we can divide the dependencies to
those which have or have not been retrieved by a concrete reverse-engineering
technique. In common we get four di�erent statistical sets of dependencies which
can be seen in table 1.

Table 1. Statistical sets of retrieved inter-project dependencies
[5]

Relevant Nonrelevant
(TP ∪ FN) (FP ∪ TN)

Retrieved True Positives False Positives
(TP ∪ FP) (TP) (FP)

Not Retrieved False Negatives True Negatives
(FN ∪ TN) (FN) (TN)

The metrics are then de�ned as follows. The Precision (P) is a fraction of
retrieved dependencies that are relevant. The Recall (R) is a fraction of relevant
documents that are retrieved. The F-measure (F) is the weighted harmonic mean
of precision and recall. The F-measure represents a single measure that trades
o� the precision versus the recall and thus indicates an overall accuracy of the
measured technique.

P = |TP |
|TP∪FP | R = |TP |

|TP∪FN | F1 = 2PR
P+R

We use a default balance F-measure (F1) which equally weights the precision
and the recall because we don't want to emphasize the recall nor the precision.

During evaluation of our reverse-engineering techniques we'll calculate these
values for each technique and compare them. This comparison will give us the
required information about the technique's e�ectivity.

142 Antońın Procházka, Mircea Lungu, Karel Richta

5 Conclusion

The information summarized in this paper gives us excellent base for our further
research aimed on di�erent reverse-engineering techniques for retrieval of inter-
project dependencies in the Java based software ecosystems. We have an excellent
source of data which will help us with a development of the techniques. Using
the explicitly given information about the dependencies and using the mentioned
metrics we are able to compare every techniques and tell which one better suits
our needs. We found a way which lets us to retrieve the dependencies from any
language which can be compiled to the Java byte-code. In connection with the
work done by Lungu et al. on the Smalltalk based software ecosystem we'll be
also able to summarize di�erences between a dependency retrieval from statically
and dynamically typed languages.

6 Acknowledgments

We would like to thank for �nancial support of Student Grant Competition of
CTU in Prague, grant number SGS12/093/OHK3/1T/18.

References

1. Apache. Maven project, 2002.
2. Lungu, M. Reverse Engineering Software Ecosystems. PhD thesis, University of

Lugano, 2009.
3. Lungu, M., Lanza, M., Girba, T., and Heeck, R. Reverse engineering super-

repositories. In Proceedings of the 14th Working Conference on Reverse Engineering
(Washington, DC, USA, 2007), IEEE Computer Society, pp. 120�129.

4. Lungu, M., Robbes, R., and Lanza, M. Recovering inter-project dependencies
in software ecosystems. In Proceedings of the IEEE/ACM international conference
on Automated software engineering (New York, NY, USA, 2010), ASE '10, ACM,
pp. 309�312. ACM ID: 1859058.

5. Manning, C., Raghavan, P., and Schtze, H. Introduction to Information
Retrieval. Cambridge University Press New York, NY, USA, 2008.

6. Oracle. Java se documentation, February 2010.

On Distributed Querying of Linked Data?

Martin Svoboda, Jakub Stárka, and Irena Mlýnková

XML and Web Engineering Research Group
Faculty of Mathematics and Physics, Charles University in Prague

Malostranske namesti 25, 118 00 Prague 1, Czech Republic
{svoboda,starka,mlynkova}@ksi.mff.cuni.cz

On Distributed Querying of Linked Data⋆

Martin Svoboda, Jakub Stárka, and Irena Mlýnková

XML and Web Engineering Research Group
Faculty of Mathematics and Physics, Charles University in Prague

Malostranske namesti 25, 118 00 Prague 1, Czech Republic
Contact e-mail: {svoboda,starka,mlynkova}@ksi.mff.cuni.cz

Abstract. The concept of Linked Data has appeared recently in order
to allow publishing data on the Web in a more suitable form enabling
automated processing by programs and not only by human users. Linked
Data are based primarily on RDF triples, which are also modeled as
graph data. Despite the research effort in recent years, several questions
in the area of Linked Data indexing and querying remain open, not only
since the amount of Linked Data globally available significantly increases
each year. Our ongoing research effort should result in a proposal of a
new querying system dealing with several disadvantages of the existing
approaches identified in our previous work. They are especially related
to data scaling, dynamicity and distribution.

Keywords: Linked Data, RDF, indexing, querying, SPARQL.

1 Introduction

The concept of Linked Data [3] appeared in order to extend the Web of Docu-
ments towards the Web of Data. And the reason is simple – it is often not feasible
to retrieve potentially structured information from traditional documents based
on HTML [12] formats tailored for users and not programs.

Linked Data do not represent any particular standard; we only talk about
a set of recommended principles and techniques, which lead to the publication
of data in a way more suitable for their automated processing. First, each real-
world entity should be described by a unique URL identifier. These identifiers
can be dereferenced by HTTP to obtain information about the given entities.
And, finally, these entity representations should be interlinked together to form
a global open data cloud – the Web of Data.

A particular way to follow these principles is to use the RDF (Resource
Description Framework) [7] standard, where data are modeled as triples con-
forming to the concept of subject-predicate-object. An alternative means to view
these triples are graphs, where vertices correspond to subjects and objects, edges
represent the triples themselves and are labeled by predicates. At the implemen-
tation level, we can publish RDF triples in a form of RDF/XML [2] syntax and

⋆ This work was supported by the Charles University Grant Agency grant 4105/2011
and the Czech Science Foundation grant P202/10/0573.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 143–150, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

144 Martin Svoboda, Jakub Stárka, Irena Mlýnková

along the data we can also publish RDFS [4] schemata or OWL [8] ontologies
restraining the allowed content of such RDF data.

In recent years, a significant effort appeared not only in a theoretical research,
but also in the amount of Linked Data globally available. However, we can still
identify several open problems to which attention should be paid. The goal of our
ongoing research effort is to propose a new querying system for Linked Data. In
particular, we want to focus on indexing structures and techniques with respect
to SPARQL [10], probably the most used querying language for RDF data.

The aim of this paper is to provide a description of the system we are at-
tempting to propose. However, in order to understand our motivation, we also
need to discuss the existing approaches from the area of Linked Data indexing
and querying. Their thorough overview was presented in our previous work [15].
Although these approaches represent efficient systems (or at least promising in-
teresting proposals), when we focus on large amounts of dynamic and distributed
data concurrently, these approaches start showing their bottlenecks.

Preliminary ideas of our querying system were first introduced in [14]. Now,
we will discuss main aspects and issues of the architecture in more detail. They
are especially related to components for managing sources, distributed databases,
storages for data triples and auxiliary indexing structures. Index structures in
fact represent one of the crucial parts of our work, since the majority of existing
methods does not assume dynamic data. When processing queries, we need to
find suitable query evaluation plans, which involves the source selection and a
set of optimization strategies.

Outline. In Section 2 we present a basic overview of the existing approaches.
Section 3 provides the description of the architecture of system we are working
on. Finally, Section 4 concludes.

2 Related Work

The existing approaches can probably be divided into three main categories: local
querying systems, distributed querying systems and global searching engines. It
is worth noting that even though we want to focus on distributed querying,
its models and algorithms, wide range of relevant ideas can be found between
approaches for local querying. For simplification, we will use abbreviations S, P ,
O and C for subject, predicate, object and context respectively.

We start our overview of existing approaches by local querying systems. Index
structures proposed by Harth and Decker [5] enable querying of local data quads
with context. These structures involve Lexicon (an inverted list for keywords
and two-way translation maps for term identifiers based on B+-trees) and Quad
indices (B+-trees for SPOC, POC, OCS, CSP , CP , OS orderings) allowing to
query in all possible 16 access patterns. Despite data quads themselves, these
indices also contain statistics about data.

The core of the stream processor RDF-X by Neumann and Weikum [9] is
based on six B+-tree indices for all SPO, SOP , OSP , OPS, PSO and POS
access patterns. Additionally, they also use indices with statistics (S, P , O, SP ,

On Distributed Querying of Linked Data 145

PS, PO, OP , SO and OS projections) and selectivity histograms and statistics
for pre-computed path or star patterns. Next, the idea of HexaStore approach
by Weiss et al. [18] is based on similar SPO, SOP , OSP , OPS, PSO and POS
index structures, however, these are implemented as ordered nested lists. All
these lists contain only identifiers instead of strings, again.

BitMat is an approach proposed by Atre et al. [1]. Its index model is based
on a matrix with three dimensions for S, P and O values (terms are translated
to identifiers, which are used as matrix indices). Each cell contains a bit value
equal to 1 if and only if the given triple is stored in the database, otherwise value
0. The index is organized as an ordinary file with all SO, OS, PO and PS slices
stored using a bit run compression over individual slice rows.

Udrea et al. [17] introduced a model based on splitting data graphs into
subgraph areas that are described by conditions limiting their content. The idea
is derived from a metric defined on URIs and literals (e.g. a minimal number of
edges in a data graph between a given pair of values). The index structure itself
is a balanced binary tree, where internal nodes represent mentioned areas and
leaf nodes store data triples conforming to these areas.

The last presented local approach is a parameterized index introduced by
Tran and Ladwig [16]. Their model is based on bisimilarity relations, putting in
a relation such two vertices of the data graph that share the same outgoing and
ingoing edges (reflecting only predicates). Vertices from the same equivalence
class have the same characteristics and, therefore, prompted queries can first be
evaluated over these classes to prune required data.

Now, we move to distributed approaches. Quilitz and Leser [11] proposed a
system for integrated querying over distributed and autonomous sources. The
core of this approach is a language for description of distributed sources, in
particular, data triples they contain, together with other source characteristics.

The purpose of a data summary index by Harth et al. [6] is to enable the
source selection over distributed data sources. Data triples are modeled as points
in a 3-dimensional space (S, P , and O coordinates are derived by hash functions).
The index structure is a QTree based on standard R-Trees. Internal nodes act
as minimal bounding boxes for nested nodes, leaf nodes contain statistics about
data sources, not data triples themselves.

3 Framework

The system should provide transparent querying of distributed data – not in
the context of the entire Web of Data, but only within a distributed database
over which we have a full control. Linked Data are the subject of nontrivial
changes in time and, thus, the aspect of the data volatility cannot be ignored
in the framework architecture and index structures especially. Many existing
approaches bring interesting ideas, but their indexing models only assume envi-
ronments with static data. Therefore, the core part of our work is to propose an
appropriate dynamic index structure.

146 Martin Svoboda, Jakub Stárka, Irena Mlýnková

3.1 Sources and Databases

The nature of Linked Data assumes that data are distributed within the entire
global cloud of the Web of Data. Since completely centralized solutions seem
not to precisely follow this idea, we want to find a suitable compromise between
centralized and totally distributed approaches. For this purpose we can accept
an idea that a distributed database is spread across a set of sources, as we can
see in Figure 1 with a sample distributed infrastructure. Each source provides
two main features – it is able to store data triples inside its local storages and
provides interfaces for querying.

These sources can be viewed only as ordinary services, but we have the full
control over sources we want to use in our database – either we own them com-
pletely (and decide what data they should store), or, at least, we can decide
what independent sources we would like to use (and we accept data they pro-
vide). Anyway, submitting a query to a public interface of a particular source,
it should transparently decompose the query into its elementary parts, decide
which sources should be contacted to obtain relevant data, and, finally, to com-
pose the entire query result. In other words, the user should define data to be
used (by building its distributed database), but the query itself should be eval-
uated automatically without his or her explicit help.

For this purpose, we first need to have a technique for describing capabilities
of individual sources. A promising concept was already introduced by Quilitz
and Leser [11], as we already noted in the previous section. Anyway, we must be
able to clearly describe data the given source contains. This can be achieved by a
set of various conditions on triples and their S, P and O components. However,
this is not an easy task, since descriptions must be as accurate as possible. But
on the other hand, too complicated and big descriptions would be useless as well.
Moreover, if we assume data dynamicity and query evaluation, we also need to
publish statistics about given data, their versions or availability. And still we
cannot end, because if we recall the second purpose of each source, we must also
capture other issues of the query evaluation process. For example, if two different
sources contain the same data, it would be worth to know which of them has
better assumptions to execute the evaluation more efficiently.

Having defined the way how sources publish information about data they
contain, we need to manage sources themselves. So, assume that we have the
knowledge of sources we want to use, their locations or other technical details.
Now, we must define, which sources (and, in particular, which data) constitute
our database. This management seems to be easy, but cannot be omitted.

3.2 Storages and Indices

Data triples are stored in physical storages. Their role, however, might be a bit
different comparing to traditional relational databases or others. The model of
RDF triples is so simple that we can store data directly in indices, but as we
will see, this still does not mean that physical storages should not be included
in the architecture of querying systems. Although triples really are easy to grab,

On Distributed Querying of Linked Data 147

Fig. 1. Sample infrastructure with sources and distributed databases

it would be misleading to think that we do not need to handle different data
differently. Relational databases allow users to create schemata and explicitly
declare how their data should be stored in relational tables. However, we are not
offered similar features in existing native approaches for RDF data.

Therefore, we assume that a storage is a component for storing RDF triples,
but we do not have any further assumptions on their internal structure or char-
acteristics. The only important is to comply with an agreed public interface.
As a consequence, we can work with native storages, we can create wrappers
around relational databases, or even to access remote storages via network. In
other words, it would be interesting to access local storages within a particular
source with the same (or at least very similar) interfaces as we would use between
distributed sources during the query evaluation phase. In fact, we indeed need
to achieve this behavior, since if we formulate a query on a given source against
a particular database, apparently, some data may be available locally and other
not – but from the point of the query evaluation process, both these data play
the same role. A sample storages configuration can be seen in Figure 2.

Fig. 2. Sample collections and storages composition

The shared idea by the majority of indexing methods is the way of storing
string values of URIs and literals, because there is a high probability that strings

148 Martin Svoboda, Jakub Stárka, Irena Mlýnková

(or substrings) may have multiple occurrences in the database. Therefore, it is
very effective to store these strings only once in a special storage, assign them
unique integer identifiers, and use them in RDF triples instead of the original
terms. As a consequence, frequently executed value equality tests during the
query evaluation may then be executed much faster and the space required for
storages decreases as well.

Having a particular domain of our problem, we should know at least some-
thing about data and even queries, and, thus, to design our database effectively.
We do the same years and years in relational databases, so we should be able to
select appropriate storages and indexing structures directly for our situation in
RDF approaches, too. This functionality should be one of the core parts of our
system. When storing data in a local storage of a source within a given database,
users should be encouraged to choose from a palette of implemented approaches,
best conforming to their situation.

The main disadvantage of the majority of interesting models for indexing
RDF data is the static nature of indexing structures themselves. We do not en-
able working with extremely volatile data, but it is not a good idea to strictly
assume only a static database. Therefore, one of our main goals is to extended
some existing approach [1, 13] towards support for adding, modifying and remov-
ing data from storages and associated indices. Another problem could represent
the necessity to heuristically configure indices. For example, in the index struc-
ture proposed by Tran and Ladwig [16], we need to define sets of predicates
that are used for restricting ingoing and outgoing edges from vertices when con-
structing equivalence classes based on a relation on vertices. Unfortunately, this
configuration may not always be feasible easily.

3.3 Queries

We have chosen SPARQL as a querying language. Having a query statement,
we first need to parse it into an internal representation of a graph pattern. For
simplicity, we can assume that this pattern is built from a set of triples, where
we can use variables instead of only fixed terms. They may serve for joining
individual patterns together, or may only state that we do not care about values
of a corresponding triple particle. The latter purpose in fact corresponds to the
idea of joining – if we first evaluate each pattern separately, then we need to
join intermediate results together – joining only those pairs of triples that have
equal values at positions of corresponding variables.

The problem is that our database is distributed between several sources. We
have descriptions of data these sources provide, thus, we need to decide for each
pattern (or even more complicated subqueries), where relevant data are located.
This problem is referred as a source selection. Whereas data summary index by
Harth et al. [6] works with detected summaries about data, we would like to rely
on discussed descriptions. However, relevant data can be split between sources in
different ways, or they can even partially or fully overlap. Therefore, this source
selection is not always simple and we must take care what sources we want to
access. We can see a sample query evaluation in Figure 3.

On Distributed Querying of Linked Data 149

Fig. 3. Distributed evaluation process of a sample query

When we have decided which sources contain relevant data, we are still not
finished with preparing the query evaluation plan. Data in sources are physically
maintained in storages and these storages may have different capabilities to
return required data. Thus, during the source selection, we also need to consider
these capabilities. And moreover, different indices may be available, too.

If we want to find a suitable query evaluation plan, which is a must, since
the complexity of different plans may be significantly different, we have to con-
sider all the following aspects: different sources, storages, indices and different
algorithms available for executing operations. The theoretical goal could be to
find the optimal plan, but in practice we must settle only for approximations.
Usually, we cannot inspect all possible plans, so we have to use only suitable
heuristics. Another problem is that we are often forced to use incomplete and
only approximate statistics.

The general idea of all optimizations is to avoid processing of irrelevant data
wherever possible and to perform all computations effectively. If the existing
approaches are not able to directly access only the required data, they at least
attempt to prune data using other methods or ideas. For example, we can move
data filtering selections as close as possible to their fetching, or we can perform
data pruning before the phase of joining. Probably the most important position
in query optimization techniques has the join ordering. It is quite interesting that
we can use similar ideas to the nested loop algorithm from relational databases.
However, there are other aspects that need to be considered, too.

4 Conclusion

In this paper we described the architecture of the querying system we are propos-
ing. Issues related to this architecture can be divided into two groups: data and
queries. First, we discussed observations and ideas related to the model of a
distributed database spread across a set of selected sources, motivation and fea-
tures of physical storages for RDF triples and indexing structures supporting the
query evaluation process. Finally, this process must discuss methods for finding

150 Martin Svoboda, Jakub Stárka, Irena Mlýnková

optimal query evaluation plans, selection of relevant distributed sources and a
set of optimization techniques, too.

Although the existing solutions already focus on the same area, these ap-
proaches do not target at all three main open challenges concurrently – data
scaling, distribution and dynamicity.

References

1. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix ”Bit” loaded: A Scalable
Lightweight Join Query Processor for RDF Data. In: Proceedings of the 19th Int.
Conf. on World Wide Web. pp. 41–50. WWW ’10, ACM, NY, USA (2010)

2. Beckett, D.: RDF/XML Syntax Specification (Revised) (2004), http://www.w3.
org/TR/rdf-syntax-grammar/

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

4. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema
(2004), http://www.w3.org/TR/rdf-schema/

5. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the
Web. In: Third Latin American Web Congress, 2005. LA-WEB 2005. IEEE (2005)

6. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data
Summaries for On-demand Queries over Linked Data. In: Proceedings of the 19th
Int. Conf. on World Wide Web. pp. 411–420. WWW ’10, ACM, NY, USA (2010)

7. Manola, F., Miller, E.: RDF Primer (2004), http://www.w3.org/TR/rdf-primer/
8. McGuinness, D.L., Harmelen, F.v.: OWL Web Ontology Language: Overview

(2004), http://www.w3.org/TR/owl-features/
9. Neumann, T., Weikum, G.: RDF-3X: A RISC-style Engine for RDF. Proc. VLDB

Endow. 1, 647–659 (August 2008)
10. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2008),

http://www.w3.org/TR/rdf-sparql-query/
11. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL.

In: The Semantic Web: Research and Applications. Lecture Notes in Computer
Science, vol. 5021, pp. 524–538. Springer Berlin / Heidelberg (2008)

12. Raggett, D., Hors, A.L., Jacobs, I.: HTML 4.01 Specification (1999), http://www.
w3.org/TR/html401/

13. Stuckenschmidt, H., Vdovjak, R., Houben, G.J., Broekstra, J.: Index Structures
and Algorithms for Querying Distributed RDF Repositories. In: Proc. of the 13th
Int. Conf. on World Wide Web. pp. 631–639. WWW ’04, ACM, NY, USA (2004)

14. Svoboda, M., Mlynkova, I.: Efficient Querying of Distributed Linked Data. In:
Proceedings of the 2011 Joint EDBT/ICDT Ph.D. Workshop. pp. 45–50. PhD ’11,
ACM, New York, NY, USA (2011)

15. Svoboda, M., Mlynkova, I.: Linked Data Indexing Methods: A Survey. In: On
the Move to Meaningful Internet Systems: OTM 2011 Workshops. pp. 474–483.
Springer (2011)

16. Tran, T., Ladwig, G.: Structure Index for RDF Data. In: Workshop on Semantic
Data Management (SemData@VLDB) 2010 (2010)

17. Udrea, O., Pugliese, A., Subrahmanian, V.S.: GRIN: A Graph Based RDF Index.
In: Proceedings of the 22nd National Conference on Artificial Intelligence – Volume
2. pp. 1465–1470. AAAI Press (2007)

18. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic
Web Data Management. Proc. VLDB Endow. 1, 1008–1019 (August 2008)

Social Network Analysis: Selected Methods and
Applications

Przemyslaw Kazienko

Instytut Informatyki (I-32), Wydzia l Informatyki i Zarzadzania (W-8), Politechnika
Wroc lawska (PWr)

Przemyslaw.Kazienko@pwr.wroc.pl

Abstract. A social network (SN) is a network containing nodes – so-
cial entities (people or groups of people) and links between these nodes.
Social networks are examples of more general concept of complex net-
works and SNs are usually free-scale and have power distribution of node
degree. Overall, several types of social networks can be enumerated: (i)
simple SNs, (ii) multi-layered SNs (with many links between a pair of
nodes), (iii) bipartite or multi-modal, heterogeneous SNs (with two or
many different types of nodes), (iv) multidimensional SNs (reflecting the
data warehousing multidimensional modelling concept), and some more
specific like (v) temporal SNs, (vi) large scale SNs, and (vii) virtual
SNs. For all these social networks suitable analytical methods may be
applied commonly called social network analysis (SNA). They cover in
particular: appropriate structural measures, efficient algorithms for their
calculation, statistics and data mining methods, e.g. extraction of so-
cial communities (clustering). Some types of social networks have their
own measures and methods developed. Several real application domains
of SNA may be distinguished: classification of nodes for the purpose of
marketing, evaluation of organizational structure versus communication
structures in companies, recommender systems for hidden knowledge ac-
quisition and for user support in web 2.0, analysis of social groups on
web forums and prediction of their evolution. The above SNA methods
and applications will be discussed in some details.

c© J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 151–151, ISBN 978-80-7378-171-2.
Charles University in Prague, MFF, Department of Software Engineering, 2012.

Author Index

Babskova, Alisa, 38

Dráždilová, Pavla, 38, 49
Dvorský, Jǐŕı, 13, 81

El-Qawasmeh, Eyas, 60

Gurský, Peter, 115

Janoška, Zbyněk, 13

Kantor, Aleš, 127
Kazienko, Przemyslaw, 151
Kĺımek, Jakub, 69
Koběrský, Ondřej, 25
Kocyan, Tomáš, 49, 81
Kopka, Martin, 25
Kožusznik, Jan, 25
Kuchař, Štěpán, 81

Lašek, Ivo, 103
Loupal, Pavel, 127
Lungu, Mircea, 135

Macek, Ondřej, 1, 127
Malý, Jakub, 69

Martinovič, Jan, 38, 49, 81
Mazanec, Martin, 1
Minks, Štěpán, 38
Mlýnková, Irena, 69, 143

Nečaský, Martin, 69

Platoš, Jan, 60
Pŕılepok, Michal, 60
Procházka, Antońın, 135

Richta, Karel, 93, 135
Rybola, Zdenek, 93

Slaninová, Kateřina, 38, 49
Snášel, Václav, 25, 49, 60
Stárka, Jakub, 143
Strnad, Pavel, 127
Svoboda, Martin, 143

Štolfa, Jakub, 25
Štolfa, Svatopluk, 25
Šumák, Martin, 115

Vojtáš, Peter, 103

	Committees
	Preface
	Table of Contents
	On General-purpose Textual Modeling Languages
	Martin Mazanec, Ondrej Macek

	P systems: State of the Art with Respect to Representation of Geographical Space
	Zbynek Janoška, Jirí Dvorský

	Methodology for Estimating Working Time Effort of the Software Project
	Jakub Štolfa, Svatopluk Štolfa, Ondrej Koberský, Martin Kopka, Jan Kožuszník, and Václav Snášel

	Developers' Cooperation based on Terms of Project Description
	Štepán Minks, Jan Martinovic, Pavla Dráždilová, Alisa Babskova, Katerina Slaninová

	Dynamic Time Warping in Analysis of Student Behavioral Patterns
	Katerina Slaninová, Tomáš Kocyan, Jan Martinovic, Pavla Dráždilová, Václav Snášel

	The Bayesian Spam Filter with NCD
	Michal Prílepok, Jan Platoš, Václav Snášel, Eyas El-Qawasmeh

	eXolutio: Tool for XML Schema and Data Management
	Jakub Klímek, Jakub Malý, Irena Mlýnková, Martin Necaský

	Unsupervised Algorithm for Post-Processing of Roughly Segmented Categorical Time Series
	Tomáš Kocyan, Jan Martinovic, Štepán Kuchar, and Jirí Dvorský

	Using OCL in Model Validation According to Stereotypes
	Zdenek Rybola and Karel Richta

	Models for Efficient Semantic Data Storage Demonstrated on Concrete Example of DBpedia
	Ivo Lašek, Peter Vojtáš

	Top-k Search Over Grid File
	Martin Šumák, Peter Gurský

	On Indexing in Native XML Database Systems
	Pavel Loupal, Aleš Kantor, Ondrej Macek, Pavel Strnad

	Inter-Project Dependencies in Java Software Ecosystems
	Antonín Procházka, Mircea Lungu, Karel Richta

	On Distributed Querying of Linked Data
	Martin Svoboda, Jakub Stárka, Irena Mlýnková

	Social Network Analysis: Selected Methods and Applications
	Przemyslaw Kazienko

	Author Index

