
Charles University in Prague, MFF, Department of Software Engineering
Czech Technical University in Prague, FEL, Dept. of Computer Science

VŠB–TU Ostrava, FEECS, Department of Computer Science
Czech Society for Cybernetics and Informatics

Czech ACM Chapter

Proceedings of the Dateso 2017 Workshop

Databases, Texts

Specifications, and Objects

2017
http://www.cs.vsb.cz/dateso/2017/

April 10 – 12, 2016
Ranč́ı̌rov u Jihlavy, Czech Republic

http://www.cs.vsb.cz/dateso/2017/

DATESO 2017
c© K. Richta, P. Moravec, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Technical editor:
Pavel Moravec, pavel.moravec@vsb.cz
VŠB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science
Department of Computer Science

Page count: 70
Contact: Karel Richta
Tel. : 224357319, 604751846
Edition: 1st

First published: 2017
ISBN 978-80-01-06138-1
Electronic proceedings: http://www.cs.vsb.cz/dateso/2017/

This proceedings was typeset by PDFLATEX.

Published by Czech Technical University in Prague

FEL, Department of Software Engineering

Karlovo nám. 13, 121 35 Pague 2, Czech Republic

http://www.cs.vsb.cz/dateso/2017/

Steering Committee

Jaroslav Pokorný Charles University, Prague
Karel Richta Czech Technical University, Prague
Václav Snášel VŠB-Technical University of Ostrava, Ostrava

Program Committee

Karel Richta (chair) Czech Technical University, Prague
Mária Bieliková Slovak University of Technology, Bratislava
Přemysl Brada University of West Bohemia, Plzeň
Alena Buchalcevová University of Economics, Prague
Miroslav Bureš Czech Technical University, Prague
Karel Čemus Czech Technical University, Prague
Jǐŕı Dvorský VSB-Technical University of Ostrava, Ostrava
Jan Genči Technical University of Košice, Kosice
Irena Holubová Charles University, Prague
Karel Ježek University of West Bohemia, Pilsen
Radek Koč́ı Brno University of Technology, Brno
Michal Krátký VSB-Technical University of Ostrava, Ostrava
Marek Musil College of Polytechnics Jihlava, Jihlava
Martin Nečaský Charles University, Prague
Robert Pergl Czech Technical University, Prague
Jaroslav Pokorný Charles University, Prague
Václav Řepa University of Economics, Prague
Václav Snášel VSB-Technical University of Ostrava, Ostrava
Jǐŕı Sochor Masaryk University, Brno
Jan Staudek Masaryk University, Brno
Pavel Strnad Czech Technical University, Prague
Petr Šaloun VSB-Technical University of Ostrava, Ostrava
Michal Valenta Czech Technical University, Prague
Peter Vojtáš Charles University, Prague

Organizing Committee

Karel Richta Czech Technical University, Czech ACM Chapter, Prague
Božena Mannová Czech Technical University, Czech ACM Chapter, Prague
Pavel Moravec VŠB-Technical University of Ostrava, Ostrava

Preface

DATESO 2017 is the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming
and was held on April 10 – 12, 2016 in Ranč́ı̌rov u Jihlavy, Czech Republic.

The 17th year was organized by Department of Computer Science, FEL
ČVUT Praha with the cooperation of Department of Software Engineering MFF
UK Praha, Department of Computer Science VŠB-Technical University Ostrava,
Working group on Computer Science and Society of Czech Society for Cyber-
netics and Informatics, and Czech ACM Chapter.

The DATESO workshops aim for strengthening connections between these
various areas of informatics.

The proceedings of DATESO 2017 are also available at DATESO Web site:
http://www.cs.vsb.cz/dateso/2017/. The Program Committee selected 6 pa-
pers from 9 submissions, based on three independent reviews.

We wish to express our sincere thanks to all the authors who submitted
papers, the members of the Program Committee, who reviewed them on the basis
of originality, technical quality, and presentation. We are also thankful to the
Organizing Committee. Special thanks belong to Czech Society for Cybernetics
and Informatics, and to Czech ACM Chapter.

Our thanks go also to Pavel Moravec who, as copy editor of DATESO Pro-
ceedings, helped to prepare this volume and provided technical support for the
conference preparation portal.

April, 2017 K. Richta, J. Pokorný,V. Snášel (steering committee)

http://www.cs.vsb.cz/dateso/2017/

Table of Contents

Impact of User’s Emotion on Software Adaptation . 1
Jiř́ı Šebek, Karel Richta

Experiences with Data Lineage Metadata Storing in Relational and
Graph Database . 14
Karel Quast, Michal Valenta

Parallel Itemset Mining Algorithms – an Overview . 21
Adam Kaspar, Vojtech Kotik, Jan Platos

Framework and Automated Prioritization Procedure for Model-Based
Testing of Automotive Distributed Systems . 31
Lukáš Krejč́ı, Jiř́ı Novák

Model Transformations via XSLT . 43
Jakub Pavlát, Karel Richta, Tomáš Richta, Vladimı́r Janoušek

Analysing Musical Pieces Using harmony-analyser.org Tools 55
Ladislav Marš́ık

Author Index . 64

Impact of User’s Emotion on Software

Adaptation1

Jǐŕı Šebek and Karel Richta

Department of Computer Science and Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague

Karlovo nám. 13, 121 35 Praha 2, Czech Republic
{sebekji1,richta}@fel.cvut.cz

Abstract. The Adaptive Application Structure (AAS) software design resolves
the problem with different users needs. It changes its structure based on the

current context. Every user has different needs so it is quite challenging
problem because the structure of application can be created with quite large
number of options. The AAS-approach advantages are clear in form of flexible
software design. Developer does not have to create different types of
application based on users needs. This approach removes the problem of user
modeling (e.g. Personas) for UI developers. As a resource of information about
user we can use not only filled information or information about his behavior.
We can use also context that will focus on his emotions while he uses the
application. This paper considers emotions as a valid and important part of
context-aware design.

Keywords adaptive application structure, context-aware design, reduced main-
tenance and development efforts, user´s emotion

1 Introduction

In the last century mankind has entered a new stage of development of science,
where manual work began to be replaced by intelligent mechanisms. Machines are
becoming more self-sufficient because these machines are more equiped with
electronics these days. Since then all devices only stronger links with our lives and
now they aim not only to help man at work, but also provide convenience, comfort
and facilitate daily routine. At the same time communications equipment becomes a
part of everyday life. It is hard to imagine ourselves without helpers such as computer
and mobile phone. Now it is standard attributes of life such as clothing and shoes. A
large percentage of mobile usage falls under smartphones. When such tools that sim-

1 This work has been partially supported by the Grant Agency of CTU No.
SGS15/210/OHK3/3T/13 and partially also by the AVAST Foundation

c© K. Richta, P. Moravec (Eds.): Dateso 2017, pp. 1–13, ISBN 978-80-01-06138-1.
Czech Technical University in Prague, FEL, Department of Software Engineering, 2017.

2 Jǐŕı Šebek, Karel Richta

plify life are invented, we can improve them to be easier to use, attractive, more spe-
cified to user needs. We can also aim to improve not only the device itself, but also
the applications that run on it. Nowadays there are a lots of applications. User expects
not only a working application, the actual efficiency is no longer enough. User wants
more in form of a nicely decorated product that is able to understand its owner and
adapt to user´s needs (visually and functionally).

This survey does not seek to cover every technique and research project in the area
of software adaptation, context-aware design. Instead, it hopes to serve as an
introduction to this rapidly evolving field, bringing up interesting ideas.

This paper is organized as follows. Section 2 describes the background and
terminology of this paper. Related work is included into Section 3. Sections 4 contains
analysis of emotions as source of information, goals, general information,
measurement, error detection, consistency of color binded with emotions. Section 5
describes structure adaptation and introduces design of new framework. Section 6
presents conclusion and future work.

2 Background

Software applications provide User Interface (UI) for the interaction with users. These
days UI’s are very important and their primary goal is to offer the best possible com-
fort service. There arises a problem with increasing number of different users with
special requirements and abilities. The number of different electronic devices and the
number of different environments with different types of users grows. It is necessary
to create specific UIs that can adapt to the particular user or more generally a context.
The context characterizes the situation where the application is used. It may include
the current environment, device properties, by which user controls the application and
the capabilities and preferences of the user. Dey defines context as [1]:

Context is any information that can be used to characterize the situation of an en-

tity. An entity is a person, place, or object that is considered relevant to the inter -

action between a user and an application, including the user and applications

themselves.

Also there are another definitions. The definition that Dey provided [1] is the most
general one. The first definition of context that were made by Schmidt [2] is:

Context awareness as knowledge about the user’s and IT device’s state, including

surroundings, situation, and to a less extent, location.

The software structure is equally important as UI. Not only that user wants to see
the concrete information for him but also he wants to find it fast. In general it is im-
possible to predict what user wants to do or gets from application and render that in-
formation in the first screen of application. One user can use the application as whole
unit. So all functions are used by user. The other user wants to use only some of the

Impact of User’s Emotion on Software Adaptation 3

application functions. Here the application structure should be more user-friendly for
functions that user wants.

The applications that are using context information (e. g. adaptation) is called con-
text-aware. In Figure 1 you can see the example of context-aware application. The
AAS has similar problems as Adaptive User Interface (AUI). Both uses context to ad-
apt structure or in AUI case UI part of application. For a context dependent applica-
tion it is necessary to expend a lot of resources to the development and maintenance of
the AAS or AUI descriptions. The main problems are the complexity, content volume
and the number of interactive elements. An example of this problem is the construc-
tion of a multiple platform application. We often have to create several separate ap-
plications or subsystems, because there are different technologies or different interac-
tion with a particular device. This results in increased costs, low flexibility to contex-
tual situations and complex adaptation to changes of the underlying application. These
changes must be done separately for each platform.

Fig 1. Context-aware mobility

As we defined the term context in the paragraph above, it can be divided into four
parts [3]. Classification is divided into two categories according to the type of changes
to static and dynamic. If the parameter, that application gets into context, is changed
during the session (time that application is used), it is assigned a dynamic parameter,
otherwise as static. The next level of classification is divided into functional and
presentation. The functional category contains parameters that change functionality of
backend. The second category contains parameters that change the frontend. Table 1
shows an example.

4 Jǐŕı Šebek, Karel Richta

Table 1. Placement of context parameters into categories

Static Dynamic
Functional Role,

identity,
platform,
preferences

Connection to the internet,
time, location

Presentation Platform,
preferences

Lighting, activity of user,
orientation of device

3 Related work

Approach in the articles [4][5] is not the only way how to generate User Interfaces
(UI) from the model. The topic of UI generated from domain objects is mentioned in
[6][7]. The framework is called Meta-widget and it is based on Model-Driven Devel-
opment (MDD). The user just creates objects and puts them to Meta-widget's frame-
work. The UI is generated according to the model. Meta-widget supports a lot of tech-
nologies from Android, Google Web Toolkit (GWT), HTML 5 (POH5), JavaScript to
JSF and JSP. Meta-widget works in three basic steps. First, Meta-widget comes with a
UI component native to your existing frontend. Second, Meta-widget inspects, either
statically or in the run-time, your existing back-end architecture. Third, Meta-widget
creates native UI subcomponents matched to the back-end. In articles [6][7], the other
aspects were added based on annotations. Meta-widget adds this information to UI
based on existing back-end of any applications. Aspect-oriented User Interface Design
for Android Applications MDD is based on the idea that the model should be primary
centralized place for all information. This model is then compiled or transformed to a
source code that is determined the application. The benefits are reduction of informa-
tion in application and concentration of the structure of information into one place.
The disadvantages can be adaptation and evolution management [8]. This approach
does not deal well with OOP, because we need to maintain the interconnection
between multiple models with the back-end of the application. There exist other ap-
proaches, how to describe information, such as through the Domain-Specific Lan-
guages (DSL). Sometimes, they are informally called mini-languages, because they
describe the additional information inside the other language. There are a wide variety
of DSL.

Generative Programming (GP) is a specific type of a programming that generates
the source code from domain specific code. The goal is to improve productivity of de-
velopment, put together the advantages from multiple approaches, such as integrating
application code and domain model. Furthermore, it support reuse, adaptation, and
simplify management of components [9].

Impact of User’s Emotion on Software Adaptation 5

Currently there is only a single framework for Android [10], which is aimed at cre-
ating adaptive style of user interface in AOP. Android framework [10] does not use
the context of the sensors, so its integration brings multiple challenges.

Various implementations of self-adaptation exists [11][12][13]. They use different
approaches.

The Rainbow framework [11] uses software architectures and a reusable infrastruc-
ture to support self-adaptation of software systems. The use of external adaptation
mechanisms allows the explicit specification of adaptation strategies for multiple sys-
tem concerns.

Another paper [12] suggests to use Petri nets for modeling the behaviors that
change at run-time in response to environmental changes. It is an extension of hybrid
Petri nets by embedding a neural network algorithm into them at some special trans-
itions.

Another framework [13] is focused on Service-oriented enterprise systems. They
propose a model-driven approach for the dynamic adaptation of Web services based
on ontology-aware service templates. Service templates are based on OWL-S descrip-
tions.

All of these approaches [11][12][13] are focused on back-end systems and none of
them deal with UIs. UIs of applications are also very important and we cannot omit
it. The front-end development is quite different from back-end and needs the re
from users point of view.

LILOLE framework [14] is focusing on concept for lifelong learning from sensor
data streams for predictive user modelling that is applicable in scenarios where sim-
pler mechanisms that rely on pre-trained general models fall short. It gains informa-
tion from senzor data. This framework is helping with aspects between user and
device in some situations. It uses machine-learning proccess to learn from user. The
evaluation application is focused on Instant Messaging and users status.

4 Emotions

According to Paul Ekman [15] There are seven basic emotions: Disgust, Anger,
fear, Sadness, Happiness, Surprise, Contempt. We can use these emotions in order to
adapt software. The applications can adapt their UI based on users emotion. UI can
adapt smoothly and rarely, the likelihood of concern or failing color palette customer
is a minor than if the UI was fixed or adapt with rapid speed. A design that matches
the normal emotions do not causes disagreements with internal state man. Consciously
person can ignore the present disharmony, but subconsciously perception of colors
associated with pleasure is not pleasant when someone is sad, and vice versa. One of
the most important factor is when negative emotions occur regularly and always in the
same place. It will hardly be considered as a coincidence. Found results could provide
signal to developers that are likely to be some problems in functionality of application.
The advantage is that we immediately known that part of the application where these
problems occur.

6 Jǐŕı Šebek, Karel Richta

4.1 measurement of emotions

There are a number of APIs that lead with a camera to capture the emotions. One of
them is Affectiva Emotion SDK It is supported on Android devices, moreover does
not need a connection to the Internet (the analysis will take place directly on the
device). Affective 7 can reveal emotions [4].

Fig 2. Affectiva emotions [4]

Metrics that uses the SDK show when a user demonstrates a certain emotion or
expression faces (e.g., smile), along with the degree of expression of: from 0 to 100
according to how strongly the expressed concerned expression.

Fig 3. The output data from the labor Affective [4]

Impact of User’s Emotion on Software Adaptation 7

4.2 Error detection emotions

Emotions can not detect absolutely right. It is working with the human factor and,
therefore, deviations are necessary. So maybe some people have specific facial
expressions for any expression feeling, which according to the "template" shows often
the opposite thing. For this reason we say emotion likelihood and impact of facial
expression on this probability, which can be either positive or negative.

4.3 Consistency of color and emotion of man

Alexander Etkind (1979, 1980-1985) conducted series of studies colored emotional
connected among adults. In the first trial, in 1979, it was examined the connection 8
colors of the test M. Luscher with 9 the fundamental emotions by K. Izard (1980). The
following table shows the percentage of frequency color associations with emotional
factors Izard [8].

Table 2. Percentage of frequency color associations with emotional factors [8]

Color In-
terest

happin
ess

Surprise Sadness Anger Disgust Sha
me

Fear Tired-
ness

Gray 6 4 2 27 1 15 18 12 53

Blue 27 4 2 27 5 7 13 15 8
Green 26 10 26 13 8 7 19 8 7
Red 16 52 23 4 55 4 4 17 2
Yellow 20 24 56 1 9 19 12 15 1
Purple 5 12 14 12 6 22 16 7 12
Brown 10 8 3 14 4 28 17 3 23
Black 10 2 2 22 38 18 13 43 24

5 Structure adaptation

In the most cases the application structure is static. In order to create adaptation for
the structure it is natural to save it in some meta-model. For this approach we can use
AOP. It will reduce our effort to develop such application. When we have set some
application structure we save it in meta-model (in the most cases it is some type of
cache). Now how to display it in the way user wants. Information grouping is term
which specifies the process of information gathering into groups. The simple applica-
tions can have structure that can be represented by simple list. The more complex ones
can be represented by:

 Menu
 Tab folders

8 Jǐŕı Šebek, Karel Richta

 Collapsible blocks
 Different dialogs with navigation
 Wizard based UI
 Tree view

From the list above we can see that this list is primarily targeting desktop applications.
In Android mobile application there is structure called Fragments instead of Tab
folders. Collapsible blocks are very unacceptable in mobile platform. There is small
space for layout, UI elements and it should not move to disturb or confuse the end-
user. Different dialogs with navigation has same problem on mobile platform also.
The contexts are different. In the web applications we can get some information from
browser cache. Mobile devices can give us more information (e. g. from sensors,
devices hardware). The most used tool to represent structure is menu. In the list below
there is classification based on end-device:

 Desktop (Web) application
 Mobile application

The meta-model of application structure can be represented by graph. A graph is
made by two sets called Vertices and Edges. It may look like tree but tree is undirec-
ted graph and as we can see in Figure 3 on the left side it is directed graph. We can
see the similarity between menu structure and tree structure. In Figure 4 on the right
side we can see the menu we will not considering as structure of menu. The main reas-
on is fact, why should developer make a loop in menu like this. It is redundant link
and user will just be confused why there is same item placed in two spots. We have to
take a note the structure we are presenting in this paper is navigation structure. If there
is a link inside the node in menu (program screen) it is alright but do not need to visu-
alize this information in navigation structure.

Fig 4. Graph representations of application structure

Vertices are represented by nodes. Nodes is divided into: root, inner and leaf. Root is
only one per menu. Inner node can represent just group information or clickable link
to page. Leafs are always links.

Impact of User’s Emotion on Software Adaptation 9

5.1 Mobile platform - Android

In the chapter above it was mentioned types of nodes. We can divide this into more
detailed by platform classification:

 Desktop (Web) application
◦ Inner node can represent just group information or clickable link to

page.
 Mobile application

◦ Inner node can represent just group information not clickable link to
page.

Another limit comes up on Android platform. The depth of menus that can be created
is only 3 (if we count root as well).

For dealing with adaptive structure we can use framework from [16]. We can
extend his meta-model by structure that will save application structure as you can see
in Figure 5. The new package in design is called structure in this UML diagram. This
is just a part of UML diagram from [16].

10 Jǐŕı Šebek, Karel Richta

Fig 5. Meta-model used in extended framework

In this paragraph we can define two instances of this structure adaptation:

 User that uses only specific branch of nodes
 User that uses all nodes

User from the first category needs to reach the used nodes fast as possible. So if it is
possible we need to move them up in our structure. Also there is subproblem. If there
is a lots of leaf nodes in one place. This long list is hard to list and time consuming
specially on mobile devies. The question is if solution should divide this leaf nodes
from one parent into two parts and create another parent node for the second part. The
problem will come up in naming the second parent. Also how should user recognize in

Impact of User’s Emotion on Software Adaptation 11

which of these two parent nodes will he find his leaf node. User from the second
category needs to reach all nodes in the same average time. So if it is possible we need
to adjust structure to be as ballanced as possible. In figure 5 there are two ideal
structures. The gray filled nodes are ones that user is using. On the left side of figure 5
there is structure for user that is using only one node. As we can see this node is as
much on the top of the structure. The rest of structure can remain same. On the right
side of figure 6 there is ideal structure for user that is using all nodes. This show just
basic concept. If there will be more nodes it will represents list and it is not ideal. For
more nodes it is required to let some part of original structure there and create more
complex structure that will be balanced.

Fig 6. Ideal structure for specific type of users

The same priority as solving the problem itself has also how should work the
algorithm in lifetime of application. If the structure will change every time user will
start application it will confuse him and user will refuse to use it. It is needed to set
number of application starts and then finds out how adjust application structure. Or it
is needed to set period in which will framework gather information. The first choice
seems like to be the better one, because we can be sure that user used application. In
the second choice we do not know if user use it or how much. As a result algorithm
will have two phases:

 Learning phase
 Production phase

This princip of two phases is used in distributed algorithm specially in Leader

election. In second phase there will be also short period of users learning phase. User
will have to adapt for the better structure because he will be adapted to the old
structure.
Learning phase has some difficulties too. We do not know how find out if users
behavior was exception and when it is users ordinary behavior pattern. The boundary
is not known for now.
 In figure 7 we can see model that is based on information above. First section is
divivded by data we can get (filled by user, sensors, other devices, behavior,
emotions). The second part represents how we represent these data and how we save
them. In other words what does data mean. The last part is focused on which part of
software we can adapt to help user in using the application.

12 Jǐŕı Šebek, Karel Richta

Fig 7. Adaptive model design

6 Conclusion and Future Work

In this paper, we have presented ways how to handle AAS and possible extension of
AOP-based framework from [16]. There are lots of classifications of this problem. We
demontrate the main ideas of this methodology. We classified emotions as a important
information. Based on that we can adapt software to users needs. The future work will
have two important steps. The first one will be to implement extension for desktop
applications and then for mobile applications. The second importnat step will be to
test it with real users. The expectation is that applications with AAS will be more
user-friendly and users will have better feeling while using it.

References

1. G. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, and P. Steggles, “Towards a better
understanding of context and context-awareness,” in Handheld and Ubiquitous Comput-

ing, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1999, vol. 1707,
pp. 304–307.

2. Schmidt, A., Aidoo, ,K.A., Takaluoma, A., Tuomela, U.: Advanced Interaction in Context.
In: Handheld and Ubiquitous Computing, series Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1999, vol. 1707, pp. 89-101. ISBN 9783540481577.

3. erný, T., emus, K., Donahoo, M. J., and Song, E.: Aspect-driven, Data-reflective andČ Č
Context-aware User Interfaces Design. In: Applied Computing Review, Vol. 13, Issue 4,
ACM, New York, NY, USA, 53-65. ISSN 559-6915,

4. Černý, T., Donahoo, M. J., and Song, E.: Towards effective adaptive user interfaces de-
sign. In Proceedings of the 2013 Research in Adaptive and Convergent Systems (RACS ?
13). ACM, New York, NY, USA, 373-380. DOI=10.1145/2513228.2513278,
http://doi.acm.org/10.1145/2513228.2513278 (2013)

5. Černý, T., Čemus, K., Donahoo, M. J., and Song, E.: Aspect-driven, Data-reflective and
Context-aware User Interfaces Design. In: Applied ComputingReview, Vol. 13, Issue 4,
ACM, New York, NY, USA, 53-65. ISSN 559-6915,
http://www.sigapp.org/acr/Issues/V13.4/ACR-13-4-2013.pdf (2013)

6. Kennard, R. and Leaney, J.: Towards general purpose architecture for UI generation.
Journal of Systems and Software, 83(10) http: / / metawidget . sourceforge . net / media /
downloads / Towards a General Purpose Architecture for UI Generation. Pdf (2010) 1896-
1906

Get
data

Context
informat

ion

Adaptati
on

Impact of User’s Emotion on Software Adaptation 13

7. Kennard, R. and Robert, S.: Application of software mining to automatic user interface
generation. In SoMeT?08. http: / / metawidget . sourceforge . net / media / downloads /
Application of Software Mining to Automatic User Interface Generation.pdf (2008) 244 -
254

8. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F. and Solberg. A.: Models@run.time to
support dynamic adaptation. Computer, 42(10) (Oct. 2009) 44-51

9. K. Czarnecki, “Overview of generative software development,” in Unconventional Pro-
gramming Paradigms, ser. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2005, vol. 3566, pp. 326–341. [Online]. Available: urlfhttp://dx.doi.org/10.1007/
11527800n 25g

10. Šebek, J.: Aspect-oriented user interface design for Android applications, diploma thesis.
Department of Computer Science, CTU FEE, Prague (2014)

11. D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl and P. Steenkiste, "Rainbow:
architecture-based self-adaptation with reusable infrastructure," in Computer, vol. 37, no.
10, pp. 46-54, Oct. 2004. doi: 10.1109/MC.2004.175,
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1350726&isnumber=29695

12. Ding, Z.; Zhou, Y.; Zhou, M. "Modeling Self-Adaptive Software Systems With Learning
Petri Nets", Systems, Man, and Cybernetics: Systems, IEEE Transactions on, On page(s):
483 - 498 Volume: 46, Issue: 4, April 2016

13. Staikopoulos, Athanasios; Cli#e, Owen; Popescu, Razvan; Padget, Julian; Clarke, Siobhan
"Template-Based Adaptation of Semantic Web Services with Model-Driven Engineering",
Services Computing, IEEE Transactions on, On page(s): 116 - 130 Volume: 3, Issue: 2,
April-June 2010

14. Fetter, M. and Gross, T.: LiLoLe-A Framework for Lifelong Learning from Sensor Data
Streams for Predictive User Modelling. In: Human-Centered Software Engineering: 5th
IFIP WG 13.2 International Conference, HCSE 2014, Paderborn, Germany, September
16-18, 2014. Proceedings, p. 126-143. DOI=10.1007/978-3-662-44811-3 8,
http://dx.doi.org/10.1007/978-3-662-44811-3 8 (2014)

15. HODAKOV, Viktor. Adaptive User Interface: -задачиисследованияи построения
- 2, 2004. – . 20-29.Восточно Европейский журналпередовыхтехнологий№ С

16. Šebek, J. - Richta, K.: Aspect-oriented User Interface Design for Android Applications. In
DATESO 2015. Prague: MATFYSPRESS, 2015, p. 121-130. ISSN 1613-0073. ISBN
9788073782856

Experiences with Data Lineage Metadata

Storing in Relational and Graph Database

Karel Quast and Michal Valenta

Faculty of Information Technology
Czech Technical University in Prague

Thákurova 9, 160 00 Prague 6, Czech Republic
{karel.quast, michal.valenta}@fit.cvut.cz

❊①♣❡r✐❡♥❝❡s ✇✐t❤ ❞❛t❛ ❧✐♥❡❛❣❡ ♠❡t❛❞❛t❛ st♦r✐♥❣

✐♥ r❡❧❛t✐♦♥❛❧ ❛♥❞ ❣r❛♣❤ ❞❛t❛❜❛s❡

❑❛r❡❧ ◗✉❛st ❛♥❞ ▼✐❝❤❛❧ ❱❛❧❡♥t❛

❋❛❝✉❧t② ♦❢ ■♥❢♦r♠❛t✐♦♥ ❚❡❝❤♥♦❧♦❣②
❈③❡❝❤ ❚❡❝❤♥✐❝❛❧ ❯♥✐✈❡rs✐t② ✐♥ Pr❛❣✉❡

❚❤á❦✉r♦✈❛ ✾✱ ✶✻✵ ✵✵ Pr❛❣✉❡ ✻✱ ❈③❡❝❤ ❘❡♣✉❜❧✐❝
④❦❛r❡❧✳q✉❛st✱ ♠✐❝❤❛❧✳✈❛❧❡♥t❛⑥❅❢✐t✳❝✈✉t✳❝③

❆❜str❛❝t✳ ❲❡✬✈❡ s♣❡♥t ❢❡✇ ❧❛st ②❡❛rs r❡s❡❛r❝❤✐♥❣ ♣♦ss✐❜✐❧✐t✐❡s ♦❢ st♦r✲
✐♥❣ ❛♥❞ ♠❛♥❛❣✐♥❣ ♠❡t❛❞❛t❛ ❢♦r ❞❛t❛ ❧✐♥❡❛❣❡✳ ❲❡ tr✐❡❞ ✉s✐♥❣ r❡❧❛t✐♦♥❛❧
❞❛t❛❜❛s❡ ❛♥❞ s♣❡❝✐❛❧ ❝❛t❡❣♦r② ♦❢ ◆♦❙◗▲ ❞❛t❛❜❛s❡s ✲ ❣r❛♣❤ ❞❛t❛❜❛s❡✳
❚❤✐s ♣❛♣❡r ❞❡s❝r✐❜❡s ♦✉r ❡①♣❡r✐❡♥❝❡s ✇✐t❤ t✇♦ ❝♦♠♣❡t✐♥❣ ♣r♦❞✉❝ts ❢♦r
❞❛t❛ ❧✐♥❡❛❣❡ ❛♥❞ ♣♦ss✐❜✐❧✐t✐❡s t♦ st♦r❡ ❛♥❞ r❡❢r❡s❤ ❞❛t❛ ❧✐♥❡❛❣❡ ♠❡t❛✲
❞❛t❛✳ ❲❡ ♣r❡s❡♥t r❡s❡❛r❝❤ ✐♥ ♣r♦❣r❡ss✱ ✐♥❝❧✉❞✐♥❣ ❜❡♥❝❤♠❛r❦s ❛♥❞ ✇❡✬r❡
❝✉rr❡♥t❧② ✇♦r❦✐♥❣ ♦♥ s❡✈❡r❛❧ ❝❤❛❧❧❡♥❣❡s✱ t❤❛t ❝✉st♦♠❡rs r❡q✉❡st❡❞✱ ✐✳❡✳
❛❞❞✐♥❣ t❡♠♣♦r❛❧ ❞✐♠❡♥s✐♦♥ ❛♥❞ ♠✉❧t✐♣❧❡ ❤✐❡r❛r❝❤✐❝❛❧ ✈✐❡✇s✱ s✉❝❤ ❛s ❧♦❣✲
✐❝❛❧✴♣❤②s✐❝❛❧✳

❑❡②✇♦r❞s✿ ❣r❛♣❤ ❞❛t❛❜❛s❡✱ r❡❧❛t✐♦♥❛❧ ❞❛t❛❜❛s❡✱ ❞❛t❛ ❧✐♥❡❛❣❡✱ ♠❡t❛❞❛t❛ st♦r✐♥❣

✶ ■♥tr♦❞✉❝t✐♦♥

❚❤✐s ♣❛♣❡r ❝♦♠❡s ♦✉t ♦❢ ♦✉r r❡s❡❛r❝❤✱ r❡❣❛r❞✐♥❣ st♦r✐♥❣ ♠❡t❛❞❛t❛ ❢♦r ❞❛t❛❜❛s❡
❞❛t❛ ❧✐♥❡❛❣❡ ❣r❛♣❤✐❝❛❧ r❡♣r❡s❡♥t❛t✐♦♥✳ ❚❤✐s ♦♣❡r❛t✐♦♥ ✐s ✉s✉❛❧❧② ✉s❡❞ ✐♥ ❉❛t❛
❲❛r❡❤♦✉s❡s✱ ✇❤❡r❡✬s ❡①♣❡❝t❡❞ t♦ ❤❛✈❡ ✈❡r② ❧❛r❣❡ ❞❛t❛❜❛s❡s ❛♥❞ r❛✐s❡s ♥❡❡❞ ❢♦r
❣r❛♣❤✐❝❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❞❛t❛❜❛s❡ ♠❡t❛❞❛t❛✳

❚❡r♠ ✏❞❛t❛ ❧✐♥❡❛❣❡✑ ❬✶❪ r❡❢❡rs t♦ ✏❉❛t❛ Pr♦✈❡♥❛♥❝❡✑✱ ✇❤✐❝❤ ✐s r❡❢❡rr❡❞ ❛s
✏❘❡❝♦r❞ tr❛✐❧ t❤❛t ❛❝❝♦✉♥ts ❢♦r t❤❡ ♦r✐❣✐♥ ♦❢ ❛ ♣✐❡❝❡ ♦❢ ❞❛t❛ ✭✐♥ ❛ ❞❛t❛❜❛s❡✱ ❞♦❝✲
✉♠❡♥t ♦r r❡♣♦s✐t♦r②✮ t♦❣❡t❤❡r ✇✐t❤ ❛♥ ❡①♣❧❛♥❛t✐♦♥ ♦❢ ❤♦✇ ❛♥❞ ✇❤② ✐t ❣♦t t♦ t❤❡
♣r❡s❡♥t ♣❧❛❝❡✑✳ ■♥ ❧❛r❣❡ ❞❛t❛❜❛s❡ ✇✐t❤ t❤♦✉s❛♥❞s ♦❢ ❊❚▲ ✭✏❊①tr❛❝t ❚r❛♥s❢♦r♠
▲♦❛❞ ✑✮ ♦♣❡r❛t✐♦♥s✱ ✐t t❛❦❡s ❛ ❧♦t ♦❢ t✐♠❡ t♦ ❞✐s❝♦✈❡r✱ ❤♦✇ s♣❡❝✐✜❝ ✈❛❧✉❡ ❛t s♣❡❝✐✜❝
t❛❜❧❡ ✐s ✜❧❧❡❞✴❝❛❧❝✉❧❛t❡❞✳ ▼♦❞❡r♥ ❞❛t❛ ❧✐♥❡❛❣❡ ✈✐s✉❛❧✐③❛t✐♦♥ t♦♦❧s ❝❛♥ s❤♦✇ ❡①❛❝t
♣❛t❤ ♦❢ ❞❛t❛ ✢♦✇ ❢r♦♠ s♦✉r❝❡ t❛❜❧❡s t♦ t❛r❣❡t t❛❜❧❡s✱ ✇❤✐❝❤ s❛✈❡s ❧❛r❣❡ ❛♠♦✉♥t
♦❢ t✐♠❡ ❡①❛♠✐♥✐♥❣ ❛❧❧ ♣❛t❤ r❡❧❛t❡❞ ❊❚▲s✳

❋♦r♠❛❧❧②✱ ❞❛t❛ ❧✐♥❡❛❣❡ ❝❛♥ ❜❡ ✐♥tr♦❞✉❝❡❞ ❬✷❪ ❛s ✐♥♣✉t s❡t ♦❢ s♦✉r❝❡ ❞❛t❛
■✶✱✳ ✳ ✳ ✱■❦✱ ✇❤✐❝❤ ❡♥t❡rs tr❛♥s❢♦r♠❛t✐♦♥ ❣r❛♣❤ ❚✶✱✳ ✳ ✳ ✱❚♥✱ ✇❤✐❝❤ r❡s✉❧ts ✐♥t♦
♦✉t♣✉t s❡t ♦❢ ❞❛t❛ ❖✶✱✳ ✳ ✳ ✱❖♠✳ ■♥ t❤✐s ❝♦♥t❡①t✱ ✐♥❞✐✈✐❞✉❛❧ tr❛♥s❢♦r♠❛t✐♦♥s ❛r❡
❡①❛♠✐♥❡❞ ❛s ❞❛t❛ ❧✐♥❡❛❣❡✳

❚❤❡r❡ ❛r❡ s❡✈❡r❛❧ ❝♦♠♠❡r❝✐❛❧ ♣r♦❞✉❝ts s♣❡❝✐❛❧✐③❡❞ ❢♦r ✈✐s✉❛❧✐③❛t✐♦♥ ♦❢ ❞❛t❛
❧✐♥❡❛❣❡✱ s♦♠❡ s♦❧❞ ❛s s♣❡❝✐❛❧✐③❡❞ s♦❢t✇❛r❡ ✭✐✳❡✳ ▼❛♥t❛✶✱ ❙◗▲❞❡♣✷✱ ❊✴❘ st✉❞✐♦✮✱
✶ ❤tt♣s✿✴✴❣❡t♠❛♥t❛✳❝♦♠✴
✷ ❤tt♣s✿✴✴sq❧❞❡♣✳❝♦♠✴

c© K. Richta, P. Moravec (Eds.): Dateso 2017, pp. 14–20, ISBN 978-80-01-06138-1.
Czech Technical University in Prague, FEL, Department of Software Engineering, 2017.

Experiences with data lineage metadata storing. . . 15

♦t❤❡rs ❛s ♣❛rt ♦❢ ❜✐❣❣❡r ♣❛❝❦❛❣❡ ✭✐✳❡✳ ■♥❢♦r♠❛t✐❝❛✮✳ ❖✉r ♣❛♣❡r ❢♦❝✉s❡s ♦♥ ✜rst
t✇♦ ♠❡♥t✐♦♥❡❞✱ s✐♥❝❡ ✇❡ ❤❛✈❡ ❡st❛❜❧✐s❤❡❞ ❞❡❡♣❡r ❝♦♥♥❡❝t✐♦♥s ✇✐t❤ ❞❡✈❡❧♦♣❡rs
❛♥❞ ❛r❡ ❛❜❧❡ t♦ r❡s❡❛r❝❤ ✇❛②s t♦ ♠❛❦❡ st♦r✐♥❣ ♠❡t❛❞❛t❛ ❢♦r ❞❛t❛ ❧✐♥❡❛❣❡ ♠♦r❡
❡✛❡❝t✐✈❡ ❛♥❞ ♠♦r❡ ❝❛♣❛❜❧❡✳

❲❡✬r❡ ❝✉rr❡♥t❧② r❡s❡❛r❝❤✐♥❣ ❛♥❞ ❜❡♥❝❤♠❛r❦✐♥❣ st♦r✐♥❣ ❞❛t❛ ❧✐♥❡❛❣❡ ♠❡t❛❞❛t❛
✐♥ ❣r❛♣❤ ❞❛t❛❜❛s❡✱ ✇❤✐❝❤ s❡❡♠s ♥❛t✉r❛❧✱ s✐♥❝❡ ❞❛t❛ st♦r❡❞ ❛r❡ ♥❛t✉r❛❧ ❣r❛♣❤✳ ❯♥✲
❢♦rt✉♥❛t❡❧② ❣r❛♣❤ ❞❛t❛❜❛s❡s ❛r❡ ✈❡r② ②♦✉♥❣ t♦♦❧s ❛♥❞ ❛r❡ st✐❧❧ ❜❡✐♥❣ ❞❡✈❡❧♦♣❡❞✱
✇❤✐❝❤ ❜r✐♥❣s ♠❛♥② ❝❤❛❧❧❡♥❣❡s t♦ ♦✉r ✇♦r❦✳
■♥ t❤✐s ♣❛♣❡r✱ ✇❡ s❤❛r❡ s♦♠❡ r❡s✉❧ts ♦❢ r✉♥♥✐♥❣ r❡s❡❛r❝❤ ♦♥ t❤✐s t♦♣✐❝✱ ✐✳❡✳ ❘❡❧❛✲
t✐♦♥❛❧ ❞❛t❛❜❛s❡ ① ●r❛♣❤ ❞❛t❛❜❛s❡ ❜❡♥❝❤♠❛r❦s✱ ♠✉❧t✐♣❧❡ ✈✐❡✇s ✐♥ ♦♥❡ ❞❛t❛❜❛s❡✱
t❡♠♣♦r❛❧ ❞✐♠❡♥s✐♦♥ ❛♥❞ ✇❡ ❞❡s❝r✐❜❡ ♦✉r ❢♦❝✉s ♦♥ ♦t❤❡r ✐ss✉❡s✴❢❡❛t✉r❡s✳

❚❤❡ r❡st ♦❢ t❤✐s ♣❛♣❡r ✐s ♦r❣❛♥✐③❡❞ ❛s ❢♦❧❧♦✇s✿ ❝♦♠♣❛r✐s♦♥ ♦❢ t✇♦ ❞✐✛❡r❡♥t
❛♣♣r♦❛❝❤❡s ✐♥ t✇♦ ❞✐✛❡r❡♥t ♣r♦❞✉❝ts ✭▼❛♥t❛ ❛♥❞ ❙◗▲❞❡♣✮✱ ❞❡t❛✐❧s ♦❢ ✐♠♣❧❡✲
♠❡♥t❛t✐♦♥ ♠❡t❛❞❛t❛ r❡♣♦s✐t♦r② ✐♥ ❛ ❣r❛♣❤ ❞❛t❛❜❛s❡ ❛♥❞ ❞❡t❛✐❧❡❞ ❞❡s❝r✐♣t✐♦♥ ♦❢
❝✉rr❡♥t ❛♥❞ ❢✉t✉r❡ r❡s❡❛r❝❤ ✇❡✬r❡ ✇♦r❦✐♥❣ ♦♥✳

✷ ❇❛s✐❝ ❝❤❛r❛❝t❡r✐st✐❝s ♦❢ ▼❛♥t❛ ❛♥❞ ❙◗▲❞❡♣ s♦❢t✇❛r❡

❇♦t❤ t♦♦❧s✱ ✇❡ ❤❛❞ t❤❡ ❝❤❛♥❝❡ t♦ ❡①❛♠✐♥❡ ❝❧♦s❡r s❤❛r❡ t❤❡ s❛♠❡ ❣♦❛❧ ✕ ✈✐s✉❛❧✐③❡
❞❛t❛ ❧✐♥❡❛❣❡✳ ❚♦ r❡❛❝❤ t❤✐s ❣♦❛❧✱ ❜♦t❤ t♦♦❧s ❤❛✈❡ t♦ ♣❡r❢♦r♠ s❡✈❡r❛❧ st❡♣s✿

✶✳ ❛❝q✉✐r❡ ♠❡t❛❞❛t❛ ❢r♦♠ s♦✉r❝❡ ❞❛t❛❜❛s❡✭s✮ ❝♦♥s✐st✐♥❣ ❛t ❧❡❛st ♦❢ t❛❜❧❡s✱ ✈✐❡✇s✱
s②♥♦♥②♠s✱ ❞❡s❝r✐♣t✐♦♥s✱ sq❧ s❝r✐♣t ❛♥❞ ♣❛❝❦❛❣❡s✱

✷✳ ♣❛rs❡ ❡①tr❛❝t❡❞ ♠❡t❛❞❛t❛ ❛♥❞ ✏✉♥❞❡rst❛♥❞✑ ❞❛t❛ ✢♦✇s✱
✸✳ st♦r❡ ♣❛rs❡❞ ♠❡t❛❞❛t❛ ✐♥t♦ ♦✇♥ ❞❛t❛❜❛s❡✱
✹✳ ✈✐s✉❛❧✐③❡ ❞❛t❛ ❧✐♥❡❛❣❡ ♦♥ ✉s❡r r❡q✉❡st✳

❆s ❛❞❞✐t✐♦♥✱ ♠♦r❡ t❤❛♥ ♦♥❡ ❞❛t❛❜❛s❡ ❝❛♥ ❜❡ ♣r♦❝❡ss❡❞ ❛♥❞ ✈✐s✉❛❧✐③❛t✐♦♥
❝❛♥ ❝♦✈❡r ❞❛t❛ ❧✐♥❡❛❣❡ ❢r♦♠ ♣r✐♠❛r② s♦✉r❝❡ ♦❢ ❞❛t❛ t❤r♦✉❣❤ ♠✉❧t✐♣❧❡ ♣❤②s✐❝❛❧
❞❛t❛❜❛s❡s t♦ ✜♥❛❧ ❞❛t❛ ❝♦♥s✉♠❡r✳
▲❡✈❡❧ ♦❢ ✈✐s✉❛❧✐③❡❞ ❞❡t❛✐❧s ❝❛♥ ❜❡ ❢r♦♠ t♦♣ ❧❡✈❡❧ ✭t❡❝❤♥♦❧♦❣②✮ t♦ t❤❡ ❜♦tt♦♠
✭❝♦❧✉♠♥ ♥❛♠❡✮ ❝r❡❛t✐♥❣ ❤✐❡r❛r❝❤② ✏t❡❝❤♥♦❧♦❣② ✕ ❞❛t❛❜❛s❡ ✕ s❝❤❡♠❛ ✕ t❛❜❧❡ ✕
❝♦❧✉♠♥✑✳ ■♥ ❝❡rt❛✐♥ ❝❛s❡s✱ ✇❤❡r❡ t❛r❣❡t ❞❛t❛ ❛r❡ ✉s❡❞ ✐♥ st♦r❡❞ ♣r♦❝❡❞✉r❡s ❛s
♦✉t♣✉t r♦✇s✱ ❤✐❡r❛r❝❤② ✇♦✉❧❞ ❜❡ ✏t❡❝❤♥♦❧♦❣② ✕ ❞❛t❛❜❛s❡ ✕ s❝❤❡♠❛ ✕ ♣❛❝❦❛❣❡ ✕
♣r♦❝❡❞✉r❡ ✕ ♣❛r❛♠❡t❡r ✑✳

❘❡❣❛r❞❧❡ss ♦❢ ✈✐s✉❛❧✐③❡❞ ❤✐❡r❛r❝❤②✱ t❤❡ ✐♥♥❡r st♦r❛❣❡ ♦❢ ❞❛t❛ ❧✐♥❡❛❣❡ s♦❢t✲
✇❛r❡ ❤❛✈❡ t♦ ✉s❡ ✉♥✐✈❡rs❛❧ str✉❝t✉r❡ t♦ ❝♦✈❡r ❛♥② ♣♦ss✐❜❧❡ ♦✉t♣✉t ❝♦♠❜✐♥❛t✐♦♥✳
❉❛t❛❜❛s❡ ❞❡s✐❣♥ ❤❛s t♦ ❜❡ ❛❜❧❡ t♦ q✉✐❝❦❧② r❡s♣♦♥❞ ❢♦r ✉s❡r r❡q✉❡sts ❛♥❞ ♣r♦✈✐❞❡
❛❧❧ ✐♥❢♦r♠❛t✐♦♥ ❢♦r ✈✐s✉❛❧✐③❡r t♦ ❝♦♠♣❧❡t❡ ✜♥❛❧ ❞❛t❛ ❧✐♥❡❛❣❡ ❣r❛♣❤ ❢♦r ✉s❡r✳ ❆t
t❤✐s ♣♦✐♥t✱ ▼❛♥t❛ ❛♥❞ ❙◗▲❞❡♣ ❞✐✛❡rs✳

■♥ t❤❡ t❡①t ❜❡❧❧♦✇✱ ✇❡ ✇♦r❦ ✇✐t❤ t❡r♠s ✏❜❛s✐❝ ❣r❛♣❤✑✱ ✏❡①♣❛♥❞✐♥❣ ♣❛t❤✑ ❛♥❞
✏❜❛s❡ ✈✐❡✇ ✑✳ ❲❤❡♥ t❛❧❦✐♥❣ ❛❜♦✉t ❜❛s✐❝ ❣r❛♣❤✱ ✇❡ ♠❡❛♥ ❣r❛♣❤ ❜✉✐❧❞ ❞✐r❡❝t❧② ❜②
❝✉rr❡♥t ✜❧t❡rs✳ ❯s❡r ✉s✉❛❧❧② st❛rts ❛t s♦♠❡ ♣♦✐♥t ✐♥ ❣r❛♣❤ ❛♥❞ ✉s❡ s♦♠❡ r❡str✐❝✲
t✐♦♥s ❢♦r ❞✐s♣❧❛②✐♥❣ ❞❛t❛ ❧✐♥❡❛❣❡✳ ❚❤✐s st❛rt✐♥❣ ♣♦✐♥t ❛♥❞ ✜❧t❡rs ❛r❡ ❛♣♣❧✐❡❞ ❛♥❞
❜❛s✐❝ ❣r❛♣❤ ✭❛ s✉❜❣r❛♣❤ ♦❢ ♠❡t❛❞❛t❛ ❞❛t❛❜❛s❡✮ ✐s ❝❛❧❝✉❧❛t❡❞✳ ❆❢t❡r✇❛r❞s✱ ✉s❡r
❝❛♥ ❞❡❝✐❞❡ t♦ ❢♦❧❧♦✇ s♦♠❡ ❧✐♥❡❛❣❡✴♣❛t❤ ♦✉ts✐❞❡ ❜♦✉♥❞❛r✐❡s ♦❢ ❜❛s✐❝ ❣r❛♣❤✱ ✇❤✐❝❤

16 Karel Quast, Michal Valenta

✇❡ r❡❢❡r ❛s ❡①♣❛♥❞✐♥❣ ♣❛t❤✳ ❇❛s❡ ✈✐❡✇ ✐s ❜❛s✐❝ ❣r❛♣❤ s✐♠♣❧✐✜❡❞ ❢♦r ✈✐s✉❛❧✐③❛t✐♦♥
♣✉r♣♦s❡s✳ ❆♣♣❧✐❝❛t✐♦♥ ❝❛❧❝✉❧❛t❡s ❜❛s✐❝ ❣r❛♣❤ ❛♥❞ s❤♦✇s ♦♥❧② s♦♠❡ ♣❛rts ♦❢ ✐t t♦
✜t ❛♣♣❧✐❝❛t✐♦♥ s❝r❡❡♥✳ ■❢ ✉s❡r ❝❤♦♦s❡ t♦ s❡❡ ♠♦r❡ ❞❡t❛✐❧s✱ ❛♣♣❧✐❝❛t✐♦♥ ✉s❡s ❜❛s❡
❣r❛♣❤ ❛♥❞ ❝❛❧❝✉❧❛t❡s ❛♥♦t❤❡r ❝✉st♦♠✐③❡❞ ✈✐❡✇ ♦❢ ❜❛s✐❝ ❣r❛♣❤✳
❙◗▲❞❡♣ ✉s❡s r❡❧❛t✐♦♥❛❧ ❞❛t❛❜❛s❡ st♦r❡❞ ✐♥ ❝❧♦✉❞ t♦ ❤❛✈❡ s✉✣❝✐❡♥t ♣❡r❢♦r♠❛♥❝❡
✐♥ ❝❛s❡ ♦❢ ❝♦♠♣✐❧✐♥❣ ❝♦♠♣❧✐❝❛t❡❞ ❣r❛♣❤s✳ ❖♥ ❡❛❝❤ r❡q✉❡st✱ ❜❛s✐❝ ❣r❛♣❤ ✐s ❜✉✐❧t
❢r♦♠ s❝r❛t❝❤✱ s♦ ❡①♣❛♥❞✐♥❣ ♣❛t❤ t❤r♦✉❣❤ ✈✐s✉❛❧✐③❡❞ ❣r❛♣❤ r❡q✉❡sts s❛♠❡ ❞❛t❛
❢r♦♠ ❞❛t❛❜❛s❡ ❡♥r✐❝❤❡❞ ♦❢ ❡①♣❛♥❞✐♥❣ ♣❛t❤ ✭♦r✐❣✐♥❛❧ ✜❧t❡rs ❛r❡ ❡①♣❛♥❞❡❞✮✳ ❚❤❡
♠❛✐♥ ❛❞✈❛♥t❛❣❡ ♦❢ t❤✐s ❛♣♣r♦❛❝❤ ✐s ❢❛st❡r ❜❛s✐❝ ❣r❛♣❤ r❡s♣♦♥s❡✱ ❜✉t s❧♦✇❡r ♣❛t❤
❡①♣❛♥s✐♦♥✱ ✇❤❡♥ ✉s❡r ❞❡❝✐❞❡s t♦ ❢♦❧❧♦✇ s♦♠❡ s♣❡❝✐✜❝ ♣❛t❤✳

▼❛♥t❛ ✉s❡❞ r❡❧❛t✐♦♥❛❧ ❞❛t❛❜❛s❡ ✐♥ ❡❛r❧✐❡r ✈❡rs✐♦♥s✱ ♥♦✇❛❞❛②s ❣r❛♣❤ ❞❛t❛❜❛s❡
✐s ❜❡✐♥❣ ✉s❡❞ ❛♥❞ st♦r❡s ❞❛t❛ ❛s ❡♠❜❡❞❞❡❞ ❞❛t❛❜❛s❡ ♦♥ ❝✉st♦♠❡r✬s s❡r✈❡r✳ ❚❤✐s
❡✈♦❧✉t✐♦♥ ✐s t✐❣❤t❧② ❝♦♥♥❡❝t❡❞ t♦ ♦✉r r❡s❡❛r❝❤ ✇♦r❦✳ ❆❧♦♥❣ ✇✐t❤ ✉s✐♥❣ ❞✐✛❡r❡♥t
❛r❝❤✐t❡❝t✉r❡ ♦♥ ♠❡t❛❞❛t❛ st♦r✐♥❣✱ ✈✐s✉❛❧✐③❛t✐♦♥ ❛♣♣r♦❛❝❤ ✐s ❞✐✛❡r❡♥t t♦♦✳ ❖♥ ✉s❡r
r❡q✉❡st ❜❛s❡ ✈✐❡✇ ✐s ❜✉✐❧t✳ ❋r♦♠ t❤✐s ❜❛s❡ ✈✐❡✇✱ ✜♥❛❧ ✈✐s✉❛❧✐③❛t✐♦♥ ✐s ❝❛❧❝✉❧❛t❡❞
❛♥❞ s✐♠♣❧✐✜❡❞ ❞❛t❛ ❧✐♥❡❛❣❡ ✐s s❤♦✇♥ t♦ ✉s❡r✳ ■❢ ✉s❡r ❞❡❝✐❞❡s t♦ ❡①♣❛♥❞ s♦♠❡ ♣❛t❤
✐♥ ❣r❛♣❤ ❛♥❞ t❤✐s ❡①♣❛♥s✐♦♥ ✐s ✐♥s✐❞❡ ❜❛s❡ ✈✐❡✇ ❜♦✉♥❞❛r✐❡s✱ ❝❛❧❝✉❧❛t✐♦♥s ❛r❡
❞♦♥❡ ✇✐t❤♦✉t r❡q✉❡st✐♥❣ ❞❛t❛ ❢r♦♠ ▼❛♥t❛ ❞❛t❛❜❛s❡✳ ❆❞✈❛♥t❛❣❡ ♦❢ t❤✐s ❛♣♣r♦❛❝❤
✐s ❢❛st❡r ♣❛t❤ ❡①♣❛♥❞✐♥❣✱ ❜✉t s❧♦✇❡r ✐♥✐t✐❛❧ r❡s♣♦♥s❡✱ ❜❡❝❛✉s❡ ❜❛s❡ ✈✐❡✇ ❤❛s t♦
❜❡ r❡q✉❡st❡❞ ❛♥❞ ❝❛❧❝✉❧❛t❡❞✳

❇♦t❤ ❛♣♣r♦❛❝❤❡s ❛r❡ t✐❣❤t ✇✐t❤ ❞❛t❛❜❛s❡ t❡❝❤♥♦❧♦❣② ✉s❡❞✱ ❜❡❝❛✉s❡ ❜✉✐❧❞✐♥❣
❜❛s❡ ✈✐❡✇ ♦♥ r❡❧❛t✐♦♥❛❧ ❞❛t❛❜❛s❡ ♣r♦✈❡❞ t♦ ❜❡ ✈❡r② s❧♦✇ ❛♥❞ ❢r♦♠ ✉s❡r ♣♦✐♥t
♦❢ ✈✐❡✇ ❡✈❡♥ ✉♥❛❝❝❡♣t❛❜❧❡✳ ■♠♣❧❡♠❡♥t✐♥❣ ❣r❛♣❤ ❞❛t❛❜❛s❡ ❛s ♠❛✐♥ ▼❛♥t❛ st♦r✲
❛❣❡ ❡♥❛❜❧❡❞ ✉s✐♥❣ ❜❛s❡ ✈✐❡✇ t❡❝❤♥♦❧♦❣② ♦♥ ❧❛r❣❡r ❞❛t❛❜❛s❡s ✇✐t❤✐♥ ❛❝❝❡♣t❛❜❧❡
r❡s♣♦♥s❡ t✐♠❡✳

✸ ■♠♣❧❡♠❡♥t✐♥❣ ❣r❛♣❤ ❞❛t❛❜❛s❡

❆s ✇❡ ♠❡♥t✐♦♥❡❞ ❜❡❢♦r❡✱ ✐♥ ❡❛r❧✐❡r ✈❡rs✐♦♥s✱ ▼❛♥t❛ ✉s❡❞ ❝❧❛ss✐❝❛❧ r❡❧❛t✐♦♥❛❧
❞❛t❛❜❛s❡ ✭s♣❡❝✐✜❝❛❧❧② P♦st❣r❡❙◗▲✮✱ ✇❤✐❝❤ ✇❛s ❡❛s② t♦ ✐♠♣❧❡♠❡♥t ❛♥❞ ♠♦r❡
♣r♦✈❡♥ ♠❡t❤♦❞✳ ❖♥ ❧❛r❣❡r ❞❛t❛❜❛s❡s✱ ❜✉✐❧❞✐♥❣ ❜❛s❡ ✈✐❡✇ t♦♦❦ s❡✈❡r❛❧ s❡❝♦♥❞s✱
✇❤✐❝❤ ❜❡❝❛♠❡ ✉♥❛❝❝❡♣t❛❜❧❡✳ ❯s✐♥❣ ♠♦r❡ ♣❡r❢♦r♠✐♥❣ ❤❛r❞✇❛r❡ ✇❛s ♥♦t ❝♦♥s✐❞✲
❡r❡❞ ❛s ❛ s♦❧✉t✐♦♥✱ ♠❛✐♥❧② ❢r♦♠ t✇♦ r❡❛s♦♥s✿ ❝❧✐❡♥ts ❛r❡ ♥♦t ✇✐❧❧✐♥❣ t♦ ✐♥✈❡st ✐♥t♦
❞❛t❛ ❧✐♥❡❛❣❡ t♦♦❧s ❧❛r❣❡ s✉♠s ♦❢ ♠♦♥❡② ❛♥❞ ✐t ✇♦✉❧❞ ❜❡ ✈❡r② s❤♦rt✲t❡r♠ s♦❧✉✲
t✐♦♥✱ s✐♥❝❡ ❞❛t❛❜❛s❡s ❛r❡ ❣r♦✇✐♥❣ ❧❛r❣❡r ❡✈❡r② ❞❛②✳ ❚❤✐s ✐ss✉❡ ❧❡❞ ✉s t♦ st❛rt ♦✉r
r❡s❡❛r❝❤ ♦♥ ✉s✐♥❣ ❣r❛♣❤ ❞❛t❛❜❛s❡s ❛♥❞ ♣r♦✈❡♥ t♦ ❜❡ ♣r♦♠✐s✐♥❣✳

●r❛♣❤ ❞❛t❛❜❛s❡s ✐♥ ❣❡♥❡r❛❧ ❛r❡ ✈❡r② ②♦✉♥❣ ❛♥❞ r❛♣✐❞❧② ❞❡✈❡❧♦♣✐♥❣✳ ❆t t❤❡
❜❡❣✐♥♥✐♥❣ ♦❢ ♦✉r r❡s❡❛r❝❤✱ t❤❡r❡ ✇❛s♥✬t ❡✈❡♥ st❛♥❞❛r❞✐③❡❞ ❆P■ t♦ ❛❝❝❡ss ❣r❛♣❤
❞❛t❛❜❛s❡✳ ❖✉r ❡①♣❡r✐♠❡♥ts st❛rt❡❞ ✇✐t❤ ◆❡♦✹❏✳ ❲❡ ✉s❡❞ ❛♥♦♥②♠✐③❡❞ ❝❧✐❡♥t
❞❛t❛❜❛s❡ ❝♦♥s✐st✐♥❣ ♦❢ ∼ ✶ ♠✐❧❧✐♦♥ ♥♦❞❡s ❛♥❞ ✸ ♠✐❧❧✐♦♥ ❡❞❣❡s✳ ❙♣❛❝❡ r❡q✉✐r❡❞
❜② ◆❡♦✹❏ ✇❛s ∼ ✷✺ % ❣r❡❛t❡r t❤❛♥ ♦r✐❣✐♥❛❧ P♦st❣r❡❙◗▲✱ ❜✉t ✇✐t❤ ❣r♦✇✐♥❣ ❞❛t❛
❛♠♦✉♥t ✇❛s ❣r♦✇✐♥❣ ❧✐♥❡❛r✳ ■♥✐t✐❛❧ ❞❛t❛ ✐♠♣♦rt t♦♦❦ ∼ s❛♠❡ t✐♠❡ ✭✇✐t❤✐♥ ✶✵ %

♦❢ ❞✐✛❡r❡♥❝❡ ✐♥ ❜❡❤❛❧❢ ♦❢ P♦st❣r❡❙◗▲✮✳
▼❛✐♥ ❞✐✛❡r❡♥❝❡ ❝❛♠❡ ✇✐t❤ q✉❡r✐❡s✳ ❆s ❡①♣❡❝t❡❞✱ ◆❡♦✹❏ ✇❛s ♠✉❝❤ ❢❛st❡r ♦♥

❝♦♠♣❧✐❝❛t❡❞ q✉❡r✐❡s ✭✐✳❡✳ q✉❡r✐❡s r❡t✉r♥✐♥❣ ❧♦♥❣❡r ♣❛t❤s✮ t❤❛♥ P♦st❣r❡❙◗▲✳ ❯s✐♥❣

Experiences with data lineage metadata storing. . . 17

♦❢ ♥❛t✐✈❡ ❏❛✈❛ ❆P■ ✇❛s ♥❡❡❞❡❞✱ s✐♥❝❡ ◆❡♦✹❏ ❧❛♥❣✉❛❣❡ ❈②♣❤❡r ❣❡♥❡r❛t❡❞ s✐❣♥✐✜✲
❝❛♥t❧② ❧♦♥❣❡r r❡s♣♦♥s❡ t✐♠❡s✳ ▼♦r❡ ♦♥ t❤✐s t♦♣✐❝ ✐s ❞❡s❝r✐❜❡❞ ✐♥ ❝❤❛♣t❡r ✹ ♦❢ t❤✐s
♣❛♣❡r✳

◆❡①t ✇❛✈❡ ♦❢ ❡①♣❡r✐♠❡♥ts ✉s❡❞ ❣r❛♣❤ ❞❛t❛❜❛s❡ ❚✐t❛♥✳ ❙♣❡❝✐❛❧t② ♦❢ t❤✐s s♦✲
❧✉t✐♦♥ ❧✐❡s ✐♥ ♣♦ss✐❜✐❧✐t② ♦❢ ❜✐♥❛r② st♦r❛❣❡ s❡❧❡❝t✐♦♥✳ ❚✐t❛♥ ✇♦r❦s ✇✐t❤ P❡rs✐st■t✱
❇❡r❦❡❧❡②❉❇ ❛♥❞ ❈❛ss❛♥❞r❛✱ ❛❢t❡r ❝♦♥s✐❞❡r❛t✐♦♥s P❡rs✐st■t ✇❛s ✉s❡❞✳ ❚✐t❛♥ ♣❡r✲
❢♦r♠❡❞ ✇✐t❤ s✐♠✐❧❛r r❡s♣♦♥s❡ t✐♠❡s ❛s ◆❡♦✹❏ ❛♥❞ ✇❛s ❝❤♦s❡♥ ❛s ♠♦st ❢❡❛s✐❜❧❡
❢♦r ✐♠♣❧❡♠❡♥t❛t✐♦♥ ❢♦r ❢✉t✉r❡ ✈❡rs✐♦♥s ♦❢ ▼❛♥t❛✳

✹ ■♠♣❧❡♠❡♥t❡❞ ❛♥❞ ❢✉t✉r❡ r❡s❡❛r❝❤ ❢❡❛t✉r❡s

❇❛s❡❞ ♦♥ ❝✉st♦♠❡r ❞❡♠❛♥❞s✱ s❡✈❡r❛❧ ❢❡❛t✉r❡s ♥❡❡❞❡❞ t♦ ❜❡ ✐♠♣❧❡♠❡♥t❡❞ ✐♥t♦
▼❛♥t❛ ❞❛t❛❜❛s❡✳ ❋✐rst ❝❤❛❧❧❡♥❣❡ ✇❛s ✐♠♣❧❡♠❡♥t✐♥❣ t❡♠♣♦r❛❧ ❞✐♠❡♥s✐♦♥✱ ❢♦❧❧♦✇❡❞
❜② ♠✉❧t✐♣❧❡ ✈✐❡✇s ♦♥ ❞❛t❛ ✭♠✉❧t✐♣❧❡ ❤✐❡r❛r❝❤✐❡s✮✳ ❇♦t❤ t♦♣✐❝s ❜❡❝❛♠❡ ❢♦✉♥❞❛t✐♦♥
❢♦r st✉❞❡♥t✬s t❤❡s✐s ✭s❡❡ ❬✹❪ ❛♥❞ ❬✺❪✮✳ ◆♦t ②❡t ✐♠♣❧❡♠❡♥t❡❞✱ ❜✉t ❞❡♠❛♥❞❡❞ ❢❡❛t✉r❡s
❛r❡ ✐✳❡✳ ✐♥❝r❡♠❡♥t❛❧ ❞❛t❛ ❧♦❛❞✱ ♣❛r❛❧❧❡❧ ❧♦❛❞✱ tr❛♥s❛❝t✐♦♥s ❞✉r✐♥❣ ❞❛t❛ ❧♦❛❞ ♦r
✉♥✐t❡❞ ❆P■ ❢♦r ✐♥t❡r♥❛❧ ❞❛t❛❜❛s❡ ❛❝❝❡ss✳

✹✳✶ ❚❡♠♣♦r❛❧ ❞✐♠❡♥s✐♦♥

■♠♣❧❡♠❡♥t✐♥❣ ❣r❛♣❤ ❞❛t❛❜❛s❡ ❛s ♠❛✐♥ ❞❛t❛ st♦r❛❣❡ ❛❧❧♦✇❡❞ ❛❞❞✐♥❣ t❡♠♣♦r❛❧
❞✐♠❡♥s✐♦♥ t♦ tr❛❝❦ str✉❝t✉r❛❧ ❛♥❞ ❞❛t❛ ✢♦✇ ❝❤❛♥❣❡s ✐♥ t✐♠❡✳

❈✉rr❡♥t ✐♠♣❧❡♠❡♥t❛t✐♦♥ ❤♦❧❞s t❡♠♣♦r❛✻❧ ❞❛t❛ ♦♥ ❡❞❣❡s ✭❢♦r ❜♦t❤ str✉❝t✉r❛❧
❛♥❞ ❞❛t❛ ✢♦✇ ♣❛t❤s✮ ❛♥❞ ❛r❡ ✐♥❞❡①❡❞ ✇✐t❤ r❛♥❣❡ ✐♥❞❡① t②♣❡✳ ❊❛❝❤ ❡❞❣❡ st♦r❡s ❛
t✇♦✲t✉♣❧❡ ❚❘❆◆ ❴ ❙❚❆❘❚✱ ❚❘❆◆ ❴ ❊◆❉✳ ❚❤❡ ✜rst ♣r♦♣❡rt② ❤♦❧❞s ❛ r❡✈✐s✐♦♥
✐❞ ❛ss♦❝✐❛t❡❞ ✇✐t❤ ✐♥tr♦❞✉❝t✐♦♥ ♦❢ t❤❡ ❡❞❣❡✱ t❤❡ s❡❝♦♥❞ ♦♥❡ ❤♦❧❞s r❡✈✐s✐♦♥ ✐❞ r❡✲
❢❡rr✐♥❣ t♦ t❤❡ ♠♦♠❡♥t t❤❡ ❡❞❣❡ ✭❛♥❞ ❛♣♣r♦♣r✐❛t❡ ♥♦❞❡✮ ✇❛s ❞❡❧❡t❡❞ ♦r ✐t ❝♦♥t❛✐♥s
t❤❡ ❝✉rr❡♥t r❡✈✐s✐♦♥ ✐❞ ✐♥ t❤❡ ❝❛s❡ ✐t st✐❧❧ ❡①✐sts✳ ❘❡✈✐s✐♦♥ ✐❞s ❛r❡ r❡♣r❡s❡♥t❡❞ ❜②
✐♥t❡❣❡r t♦ ❛❧❧♦✇ ✐♥t❡r✈❛❧ ✐♥❞❡① t♦ ❜❡ ✉s❡❞✳

❘❡✈✐s✐♦♥s t❤❡♠s❡❧✈❡s ❛r❡ r❡♣r❡s❡♥t❡❞ ❜② ✐♥❞✐✈✐❞✉❛❧ ♥♦❞❡ ❢♦r ❡❛❝❤ r❡✈✐s✐♦♥ ❝♦♥✲
♥❡❝t❡❞ t♦ r❡✈✐s✐♦♥ r♦♦t ♥♦❞❡ ✭✇✐t❤ s♣❡❝✐❛❧ ❛ttr✐❜✉t❡ ❢♦r ✐❞❡♥t✐✜❝❛t✐♦♥✮✱ ❜✉t ✇✐t❤
♥♦ ♦t❤❡r ❝♦♥♥❡❝t✐♦♥s t♦ ♦r✐❣✐♥❛❧ ❣r❛♣❤✳ ❚❤❡s❡ r❡✈✐s✐♦♥ ♥♦❞❡s ❝r❡❛t❡s s❡♣❛r❛t❡❞
❣r❛♣❤ ❛♥❞ st♦r❡s ❛❞❞✐t✐♦♥❛❧ ♠❡t❛❞❛t❛ ❢♦r ❡❛❝❤ r❡✈✐s✐♦♥ ✭✐✳❡✳ r❡✈✐s✐♦♥ ♥✉♠❜❡r✱
r❡✈✐s✐♦♥ t✐♠❡st❛♠♣✱ ❡t❝✳✮✳

❈✉rr❡♥t ✐♠♣❧❡♠❡♥t❛t✐♦♥ ❜r✐♥❣s ♦♥❡ ✐♠♣♦rt❛♥t r❡str✐❝t✐♦♥✱ ❡♥❢♦r❝✐♥❣ ❢✉❧❧ ❞❛t❛
r❡❢r❡s❤ ❛♥❞ ❞✐s❛❧❧♦✇✐♥❣ ✐♥❝r❡♠❡♥t❛❧ ❧♦❛❞s✱ s✐♥❝❡ ✇❤♦❧❡ ♣r✐♥❝✐♣❧❡ ✇♦✉❧❞ st♦♣ ✇♦r❦✲
✐♥❣✳ ❙❡❡ ❬✹❪ ❢♦r ❞❡t❛✐❧ ❞✐s❝✉ss✐♦♥✳

✹✳✷ ▼✉❧t✐♣❧❡ ✈✐❡✇✴❤✐❡r❛r❝❤✐❡s

❉❛t❛ ❧✐♥❡❛❣❡ s♦❢t✇❛r❡ s♦❧✉t✐♦♥s ✭✐♥❝❧✉❞✐♥❣ ▼❛♥t❛ ♦r ❙◗▲❞❡♣✮ ✉s✉❛❧❧② s✉♣♣♦rts
✈✐s✉❛❧✐③❛t✐♦♥ ♦❢ ♣❤②s✐❝❛❧ ❧❛②❡r ♦♥❧②✳ ❙♦♠❡ ❝✉st♦♠❡rs ❛r❡ r❡q✉❡st✐♥❣ ♣♦ss✐❜✐❧✐t②
❢♦r ✐♠♣❧❡♠❡♥t✐♥❣ ♠♦r❡ t❤❛♥ ♣❤②s✐❝❛❧ ❞❛t❛ ✈✐❡✇✳ ❯s✐♥❣ ♦t❤❡r ♠♦❞❡❧❡rs✱ ♠❛♥②
❝✉st♦♠❡rs ❞r❛✇♥ ❡①t❡♥s✐✈❡ ❞✐❛❣r❛♠s ❞❡s❝r✐❜✐♥❣ t❤❡✐r ❜✉s✐♥❡ss ♣r♦❝❡ss❡s✳ ❚❤✐s
❞✐❛❣r❛♠s ❝❛♥ ❜❡ ❧✐♥❦❡❞ t♦ ♣❤②s✐❝❛❧ ❞❛t❛ r❡♣r❡s❡♥t❛t✐♦♥ ✐♥ t❤❡✐r ❞❛t❛❜❛s❡s✳ ❚❤✐s

18 Karel Quast, Michal Valenta

❝✉st♦♠❡rs r❡q✉❡st ❧❡❛❞s t♦ ♠♦r❡ ❝♦♠♣❧❡① ❛♣♣r♦❛❝❤ ❢♦r ✐♥t❡r♥❛❧ ♠❡t❛❞❛t❛ str✉❝✲
t✉r❡✳

❙✐♥❝❡ ▼❛♥t❛ ✐♠♣❧❡♠❡♥t❡❞ ❣r❛♣❤ ❞❛t❛❜❛s❡✱ s♦❧✉t✐♦♥ ❢♦r t❤✐s ❞❡♠❛♥❞ ✇❛s r❡✲
s❡❛r❝❤❡❞✳ ❆ ♣r♦t♦t②♣❡ s♦❧✉t✐♦♥ ✇❛s ❛♥❛❧②③❡❞ ❛♥❞ ❞✐s❝✉ss❡❞ ✐♥ ❬✺❪✳ ❚❤❡ ♣r✐♥❝✐♣❧❡
✐s ✐❧❧✉str❛t❡❞ ✐♥ ❋✐❣✉r❡ ✶✳

■t ♣r❡s❡♥ts t✇♦ ❞✐✛❡r❡♥t ♠♦❞❡❧s ✭✈✐❡✇s✮ ❛♥❞ t❤❡✐r ♠✉t✉❛❧ r❡❧❛t✐♦♥s❤✐♣s✿ ▼♦❞❡❧
❆ r❡♣r❡s❡♥ts ♣❤②s✐❝❛❧ ❞❛t❛ str✉❝t✉r❡ ✐♥ ❛ ♣❛rt✐❝✉❧❛r t❡❝❤♥♦❧♦❣② ✭r❡❧❛t✐♦♥❛❧ ❞❛t❛❜❛s❡
✐♥ ♦✉r ❡①❛♠♣❧❡✮✱ ✇❤✐❧❡ ▼♦❞❡❧ ❇ r❡♣r❡s❡♥ts ❛ ❜✉s✐♥❡ss ✈✐❡✇ ♦♥ t❤❡ s❛♠❡ ♠❡t❛❞❛t❛✳

❋✐❣✳ ✶✳ Pr♦♣♦s❡❞ s♦❧✉t✐♦♥ ❢♦r ♠✉❧t✐♣❧❡ ❤✐❡r❛r❝❤✐❡s ❬✺❪

✹✳✸ ❯♥✐t❡❞ ❆P■ ❢♦r ✐♥t❡r♥❛❧ ❞❛t❛❜❛s❡ ❛❝❝❡ss

❙✐♥❝❡ ❣r❛♣❤ ❞❛t❛❜❛s❡s ❛r❡ st✐❧❧ ✏②♦✉♥❣✑ ❞✐s❝✐♣❧✐♥❡✱ ❤❡❛❞❧♦♥❣ ❞❡✈❡❧♦♣♠❡♥t ✐s ♦❜✲
✈✐♦✉s✳ ❚❤✐s s✐t✉❛t✐♦♥ ❝♦♠♣❧✐❝❛t❡s ♦✉r r❡s❡❛r❝❤ ❛♥❞ ❜r✐♥❣s ♠♦r❡ ❝♦❞❡ r❡✇r✐t✐♥❣
t❤❛♥ ✇❡✬r❡ ✉s❡❞ t♦ ✇✐t❤ r❡❧❛t✐♦♥❛❧ ❞❛t❛❜❛s❡s✳ ❋♦r ❡①❛♠♣❧❡✱ ❛t t❤❡ ❜❡❣✐♥♥✐♥❣ ♦❢
♦✉r r❡s❡❛r❝❤✱ t❤❡r❡ ✇❡r❡ ♥♦ ✉♥✐✜❡❞ ❣r❛♣❤ ❞❛t❛❜❛s❡ ❛❝❝❡ss ❆P■ ❛♥❞ s✇✐t❝❤✐♥❣ t♦
❛♥♦t❤❡r ❣r❛♣❤ ❞❛t❛❜❛s❡ ✐♥❞✉❝❡❞ ♠❛♥② ❝♦❞❡ r❡✇r✐t❡s✳

Experiences with data lineage metadata storing. . . 19

■♥ ❧❛st ②❡❛rs✱ ✏❇❧✉❡♣r✐♥ts✑ ❢♦r ❣r❛♣❤ ❞❛t❛❜❛s❡s ❡♠❡r❣❡❞ ❛♥❞ ❛❧❧♦✇s t♦ ✉s❡
✉♥✐✜❡❞ ❆P■ t♦ ❛❧❧ ❣r❛♣❤ ❞❛t❛❜❛s❡s ✇❤✐❝❤ s✉♣♣♦rt ✐t✳ ❨❡t ✇❡ ❞❡❝✐❞❡❞ t♦ ❞❡s✐❣♥
❛♥❞ ✐♠♣❧❡♠❡♥t❡❞ ♦✉r ♦✇♥ ❆P■ ❧❛②❡r✱ ✇❤✐❝❤✱ ✐s ❜❛s❡❞ ♦♥ ❇❧✉❡♣r✐♥t✳ ❖✉r s♣❡❝✐✜❝
❆P■ ❧❛②❡r ❜❡tt❡r r❡✢❡❝ts t❤❡ s♣❡❝✐✜❝ q✉❡r② ♥❡❡❞s ❢♦r ❞❛t❛ ❧✐♥❡❛❣❡ ♣r♦❝❡ss✐♥❣ t❤❡♥
✉♥✐✈❡rs❛❧ ❇❧✉❡♣r✐♥t ❆P■✳ ❖♥ t❤❡ ♦t❤❡r ❤❛♥❞ ✉t✐❧✐③✐♥❣ ♦❢ ❇❧✉❡♣r✐♥t ❣✉❛r❛♥t❡❡s
❡❛s✐❡r ❝❤❛♥❣❡ ♦❢ ✐♥t❡r♥❛❧ ❣r❛♣❤ ❞❛t❛❜❛s❡ ✉s❡❞ ✐♥ t❤❡ ♣r♦❥❡❝t✳

■♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ t❤✐s ❆P■ ❧❛②❡r ✐s ❝✉rr❡♥t❧② t❤❡♠❡ ❢♦r ❖♥❞r❡❥ ❇❡r♥át✬s
t❤❡s✐s✳

✹✳✹ ❚r❛♥s❛❝tr✐♦♥s ❞✉r✐♥❣ ❞❛t❛ ❧♦❛❞

❈✉rr❡♥t❧②✱ ✇❡✬r❡ ♥♦t ✉s✐♥❣ tr❛♥s❛❝t✐♦♥s ❞✉r✐♥❣ ❞❛t❛ ❧♦❛❞ ♣r♦❝❡ss✳ ●r❛♣❤ ❞❛t❛❜❛s❡s
s♦♠❡t✐♠❡s ♦✛❡r tr❛♥s❛❝t✐♦♥s✱ ❜✉t ✐♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ t❤✐s ❢❡❛t✉r❡ ✐s ♥♦t ❡✈❡♥ ♥❡❛r
♦♣t✐♠❛❧ ②❡t✳ ❲✐t❤♦✉t tr❛♥s❛❝t✐♦♥s✱ ❡rr♦r ❞✉r✐♥❣ ❞❛t❛ ❧♦❛❞ ❝❛♥ ❝❛✉s❡ ❞✐sr✉♣t✐♦♥
✐♥ t❡♠♣♦r❛❧ ♠♦❞❡❧ ❛♥❞ ❝♦✉❧❞ r❡s✉❧t ✐♥t♦ ✇r♦♥❣ ❞❛t❛ ❧✐♥❡❛❣❡ ✈✐s✉❛❧✐③❛t✐♦♥✳

❋♦r ❢✉t✉r❡ ✐♥t❡r♥❛❧ ❞❛t❛❜❛s❡ ❡✈♦❧✈✐♥❣✱ t❤✐s ✐ss✉❡ ♥❡❡❞s t♦ ❜❡ s♦❧✈❡❞✱ ❡✐t❤❡r ❜②
✜♥❞✐♥❣ ❣r❛♣❤ ❞❛t❛❜❛s❡ t❤❛t ❝♦rr❡❝t❧② ❛♥❞ ❡✛❡❝t✐✈❡❧② ✐♠♣❧❡♠❡♥ts tr❛♥s❛❝t✐♦♥s ♦r
✇❡ ❤❛✈❡ t♦ ✐♠♣❧❡♠❡♥t tr❛♥s❛❝t✐♦♥s ♦✉rs❡❧✈❡s✳

✹✳✺ P❛r❛❧❧❡❧ ❛♥❞ ✐♥❝r❡♠❡♥t❛❧ ❞❛t❛ ❧♦❛❞

❆s ♠❡♥t✐♦♥❡❞ ❜❡❢♦r❡✱ t❤❡r❡ ❛r❡ s❡✈❡r❛❧ ❧✐♠✐t❛t✐♦♥s ✐♥ ❝✉rr❡♥t s♦❧✉t✐♦♥✱ s✉❝❤ ❛s
❢✉❧❧ ❞❛t❛ ❧♦❛❞✴❢✉❧❧ r❡❢r❡s❤✳ ❙✐♥❝❡ t❡♠♣♦r❛❧ ❞✐♠❡♥s✐♦♥ ✐s ✐♠♣❧❡♠❡♥t❡❞ ❜❛s❡❞ ♦♥
❬✺❪✱ t❤✐s ❝♦♥❝❡♣t ♥❡❡❞s t♦ ❜❡ r❡✈✐s✐t❡❞ ❛♥❞ ✉♣❞❛t❡❞ t♦ ❛❧❧♦✇ ✐♥❝r❡♠❡♥t❛❧ ❞❛t❛
❧♦❛❞✳ ❆❢t❡r ❡❧✐♠✐♥❛t✐♥❣ t❤✐s ❧✐♠✐t❛t✐♦♥✱ ♥❡①t st❡♣ ✇✐❧❧ ❡♠❡r❣❡✱ ♣❛r❛❧❧❡❧ ❧♦❛❞✐♥❣✳

❈✉st♦♠❡r ❞❛t❛❜❛s❡s ❛r❡ ❣r♦✇✐♥❣ ❛♥❞ ❡✈❡♥ ♥♦✇✱ ❢✉❧❧ ❞❛t❛ ❞✐❝t✐♦♥❛r② r❡❢r❡s❤
❜② ❧❛r❣❡r ❝✉st♦♠❡r ❝❛♥ t❛❦❡ ♠♦r❡ t❤❛♥ ✶✺❤✳ ❙✐♥❝❡ ❝✉st♦♠❡rs s♦♠❡t✐♠❡s r❡q✉✐r❡s
❞❛✐❧② ✉♣❞❛t❡s✱ ✐♥❝r❡♠❡♥t❛❧ ❛♥❞ ♣❛r❛❧❧❡❧ ❧♦❛❞✐♥❣s ♥❡❡❞s t♦ ❜❡ s♦❧✈❡❞✳ ❲❡✬✈❡ ♠❛♥✲
❛❣❡❞ t♦ ❣❡t ❣r❛♥t ❢♦r t❤✐s r❡s❡❛r❝❤ ✭❚❆❷❘ ❚❍✵✷✵✶✵✷✽✼✮ ❢♦r t✐♠❡ ♣❡r✐♦❞ ✷✵✶✼✲
✷✵✷✵ ❛♥❞ s♦❧✈✐♥❣ t❤✐s ✐ss✉❡ ❜❡❝❛♠❡ ♠❛✐♥ ♣❛rt ♦❢ ❑❛r❡❧ ◗✉❛st✬s ❞✐ss❡rt❛t✐♦♥ ✇♦r❦✳

❆❝❦♥♦✇❧❡❞❣♠❡♥t

❚❤✐s ✇♦r❦ ✐s ♣❛rt✐❛❧❧② s✉♣♣♦rt❡❞ ❜② ❣r❛♥ts ❚❆❷❘ ❚❍✵✷✵✶✵✷✽✼ ✏❚♦♦❧s ❢♦r ❣♦✈✲
❡r♥❛♥❝❡ ♦❢ ❞②♥❛♠✐❝ ❛s♣❡❝ts ♦❢ ❇✐❣ ❉❛t❛ ❡♥✈✐r♦♥♠❡♥t✑ ❛♥❞ ✐♥t❡r♥❛❧ ❙●❙ ❣r❛♥t
♥✉♠❜❡r ❙●❙✶✼✴✷✶✶✴❖❍❑✸✴✸❚✴✶ ❆❞✈❛♥❝❡❞ r❡s❡❛r❝❤ ✐♥ s♦❢t✇❛r❡ ❡♥❣✐♥❡❡r✐♥❣✳

❘❡❢❡r❡♥❝❡s

✶✳ ▲✐♥❣ ▲✐✉✱ ▼✳ ❚❛✇❡r ❖s③✉ ✭❡❞✐t♦rs✮✿ ❊♥❝②❝❧♦♣❡❞✐❛ ♦❢ ❉❛t❛❜❛s❡ ❙②st❡♠s✳ ■❙❇◆✿ ✾✼✽✲
✵✲✸✽✼✲✸✺✺✹✹✲✸ ✭Pr✐♥t✮ ✾✼✽✲✵✲✸✽✼✲✸✾✾✹✵✲✾ ✭❖♥❧✐♥❡✮✳

✷✳ ❘♦❜❡rt ■❦❡❞❛ ❛♥❞ ❏❡♥♥✐❢❡r ❲✐❞♦♠✳ ❉❛t❛ ❧✐♥❡❛❣❡✿ ❆ s✉r✈❡②✳ ❚❡❝❤♥✐❝❛❧ r❡♣♦rt✱ ❙t❛♥✲
❢♦r❞ ❯♥✐✈❡rs✐t②✱ ✷✵✵✾✳

20 Karel Quast, Michal Valenta

✸✳ ▼✐❝❤❛❧ ❱❛❧❡♥t❛✿ ◆á✈r❤ ❞❛t♦✈é❤♦ ú❧♦➸✐➨t➙ ♣r♦❥❡❦t✉ ◆ástr♦❥❡ ♣r♦ ❛✉t♦♠❛t✐③❛❝✐ ◗✉❛❧✲
✐t② ❆ss✉r❛♥❝❡ r♦③sá❤❧ý❝❤ ❇✉s✐♥❡ss ■♥t❡❧❧✐❣❡♥❝❡ s②sté♠➲ ❛ ❞❛t♦✈ý❝❤ s❦❧❛❞➲✳ Pr✈♥í
✈ýr♦↔♥í ③♣rá✈❛ ♣r♦❥❡❦t✉ ❚❆❷❘✳ ✷✵✶✹✳

✹✳ P❡tr ❍♦❧❡↔❡❦✿ ❚❡♠♣♦rá❧♥í ❞❛t❛ ✈ ❣r❛❢♦✈é ❞❛t❛❜á③✐ ✈ ♣r♦❥❡❦t✉ ▼❛♥t❛✳ ❉✐♣❧♦♠♦✈á
♣rá❝❡✳ ❷❡s❦é ✈②s♦❦é ✉↔❡♥í t❡❝❤♥✐❝❦é ✈ Pr❛③❡✱ ❋❛❦✉❧t❛ ✐♥❢♦r♠❛↔♥í❝❤ t❡❝❤♥♦❧♦❣✐í✱
Pr❛❤❛✱ ✷✵✶✺✳

✺✳ ▼✐❝❤❛❧ P❡r♦✉t❦❛✿ ❖♣t✐♠á❧♥í str✉❦t✉r❛ ❛ ✐♥❞❡①② ♠♦❞❡❧✉ ♠❡t❛❞❛t♦✈é❤♦ ú❧♦➸✐➨t➙ ✈
❣r❛❢♦✈é ❞❛t❛❜á③✐✳ ❉✐♣❧♦♠♦✈á ♣rá❝❡✳ ❷❡s❦é ✈②s♦❦é ✉↔❡♥í t❡❝❤♥✐❝❦é ✈ Pr❛③❡✱ ❋❛❦✉❧t❛
✐♥❢♦r♠❛↔♥í❝❤ t❡❝❤♥♦❧♦❣✐í✱ Pr❛❤❛✱ ✷✵✶✻✳

✻✳ ▼ár✐❛ ❇✐❡❧✐❦♦✈á✱ ■✈❛♥ ❙r❜❛ ✭❡❞✐t♦rs✮✿ ✶✶t❤ ❲♦r❦s❤♦♣ ♦♥ ■♥t❡❧❧✐❣❡♥t ❛♥❞ ❑♥♦✇❧❡❞❣❡
❖r✐❡♥t❡❞ ❚❡❝❤♥♦❧♦❣✐❡s ✸✺t❤ ❈♦♥❢❡r❡♥❝❡ ♦♥ ❉❛t❛ ❛♥❞ ❑♥♦✇❧❡❞❣❡✳ ■❙❇◆✿ ✾✼✽✲✽✵✲
✷✷✼✲✹✻✶✾✲✾✳

✼✳ ❘♦❜❡rt ■❦❡❞❛✱ ❍②✉♥❥✉♥❣ P❛r❦✱ ❛♥❞ ❏❡♥♥✐❢❡r ❲✐❞♦♠✳ Pr♦✈❡♥❛♥❝❡ ❢♦r ❣❡♥❡r❛❧✐③❡❞
♠❛♣ ❛♥❞ r❡❞✉❝❡ ✇♦r❦✢♦✇s✳ ■♥ Pr♦❝✳ ♦❢ ❈■❉❘✱ ❏❛♥✉❛r② ✷✵✶✶✳

✽✳ ❉✐♦♥②s✐♦s ▲♦❣♦t❤❡t✐s✱ ❙♦✉♠②❛r✉♣❛ ❉❡✱ ❛♥❞ ❑❡♥♥❡t❤ ❨♦❝✉♠✳ ✷✵✶✸✳ ❙❝❛❧❛❜❧❡ ❧✐♥❡❛❣❡
❝❛♣t✉r❡ ❢♦r ❞❡❜✉❣❣✐♥❣ ❉■❙❈ ❛♥❛❧②t✐❝s✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✹t❤ ❛♥♥✉❛❧ ❙②♠♣♦s✐✉♠
♦♥ ❈❧♦✉❞ ❈♦♠♣✉t✐♥❣ ✭❙❖❈❈ ✬✶✸✮✳ ❆❈▼✱ ◆❡✇ ❨♦r❦✱ ◆❨✱ ❯❙❆✱ ❆rt✐❝❧❡ ✶✼✱ ✶✺ ♣❛❣❡s✳

Parallel Itemset Mining

Algorithms – an Overview

Adam Kaspar, Vojtech Kotik, and Jan Platos

Department of Computer Science, Faculty of Electrical Engineering and Computer
Science, VSB – Technical University of Ostrava

17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
{adam.kaspar, vojtech.kotik, jan.platos}@vsb.cz

Abstract. This paper is an overview of itemset mining algorithms and
the published parallel approaches. Besides the state of the art in this
area, we present also our results with the optimized Apriori variant im-
plemented using OpenMP approach. Our implementation is discussed in
detail with all used aspects.

Keywords: data mining, apriori, big data, algorithm, computations, parallelization

1 Introduction

Big data is a term that describes the large volume of data both structured and
unstructured that inundates a business on a day-to-day basis. But its not the
amount of data thats important. Its what organizations do with the data that
matters. Big data can be analyzed for insights that lead to better decisions and
strategic business moves.

Currently, we have a lot of computational algorithms. Most of them are
based on Apriori algorithm. Data mining algorithms are divided into two based
branches - string mining and itemset mining.

String mining typically works with a closed alphabet for elements that occurs
in a sequence. String sequence could have various length. A typical use case of
string mining could be found in conjunction with DNA research. String mining
is here used for examination of known patterns of DNA sequences[1].

Itemset mining is useful for problems, related to sequence mining. A typical
use of itemset mining is in marketing applications for discovering regularities
between items on shopping lists.

Among commonly used algorithms for string mining belongs PrefixSpan,
FreeSpan and for itemset data mining belongs FP-Growth, FP-Tree, Eclat, Max-
Miner. Some of them I will describe in this paper.

2 Association rule mining

Association rule learning is a rule-based machine learning method for discover-
ing interesting relations between variables in large databases. It is intended to

c© K. Richta, P. Moravec (Eds.): Dateso 2017, pp. 21–30, ISBN 978-80-01-06138-1.
Czech Technical University in Prague, FEL, Department of Software Engineering, 2017.

22 Adam Kaspar, Vojtech Kotik, Jan Platos

identify strong rules discovered in databases using some measures of interest-
ingness[2]. An example of these strong rules is association rules for discovering
regularities between products that appears on the receipt. For example, let’s
have rule {apple, orange} ⇒ {strawberry}. This rule indicates, that if the cus-
tomer buys apple and orange together in one purchase than the most likely the
customer will also have strawberry in his shopping cart.

2.1 Apriori algorithm

Apriori is a base algorithm, belonging into frequent item set algorithms. The
main idea is based on searching of larger and larger sets of items as those item
sets occurs sufficiently often in the database[3].

The algorithm was designed by Agrawal and Srikant in 1994. Apriori works
over databases, with transactions. These transactions could be for example col-
lections of shopping cart items, bought by customers.

Basic functionality. Apriori works with ”bottom-up” approach, it means, that
at each step of the algorithm are frequent subsets extended about the new item.
This step is called as candidate generation. After the candidate generation, re-
sulted groups of candidates are tested against the data in the database. The al-
gorithm ends, when no extension of frequent subsets is found. The entire scheme
of the apriori algorithm is visible on the figure 1.

Fig. 1. Apriori algorithm scheme.

Let’s have the database that is depicted in Table 1.
Each row in this database represents one transaction at the supermarket and

intersection of the row and column represents one item of each transaction.
As we can see, each transaction contains a pair of apple and orange, it means,

that 100% transactions contain this pair. One-half of all transactions contain
items { apple, orange, strawberry } or { apple, orange, lemon }.

The transactions may be stored in a database using the binary matrix as is
depicted at Table 2.

Parallel Itemset Mining Algorithms – an Overview 23

tid content

1 apple, orange, strawberry

2 apple, orange, lemon

3 apple, orange, strawberry

4 apple, orange, lemon

Table 1. An example dataset

tid apple orange strawberry lemon

1 1 1 1 0

2 1 1 0 1

3 1 1 1 0

4 1 1 0 1

Table 2. An example dataset represented using binary matrix

The name of the items will be from know denoted using its first letter (a, o,
s, l).

Definition 1. The support of an itemset I, sup(I), is defined as the fraction of

the transactions in the database T = T1, . . . Tn that contain I as a subset.

Definition 2. An itemset I is called a Frequent Itemset when the support of an

itemset is at least minsup.

In our example, we define the minsup to 50%.
At the next step, Apriori algorithm has to count support value for each item

in the database. To achieve this result, Apriori has to scan entire database.
The itemsets are generated incrementally from single items to tuples, triples,
etc. when possible. Only when all subsets of itemset are frequent an itemset is
investigated. The list of all tested and found frequent itemsets are depicted in
Table 3.

As we can see, the minimal support for each single itemset is equal to 2. The
Itemset { s, l }, doesn’t meet minimal support, it means, that this combination
won’t be contained in any future items.

Triplets, which passed minimal support are { a, o, s } and { a, o, l }. The
algorithm ends at this moment because there is no any other items in the next
generation of k-itemset.

2.2 Parallel implementation of Apriori

Basically, from performance point-of-view, when support is less, then more time
is taken to run the program. This slowdown is caused mainly with multiple scans
of the database. On the other hand, when the value of support is increasing, then
time to run the Apriori will be less.

24 Adam Kaspar, Vojtech Kotik, Jan Platos

Item Support

a 100%

o 100%

s 50%

l 50%

a, o 100%

a, s 50%

a, l 50%

o, s 50%

o, l 50%

s, l 0%

a, o, s 50%

a, o, l 50%

Table 3. Frequent itemsets found by an Apriori algorithm

One of the possible solutions, how to accelerate the Apriori is to parallelize
the algorithm, for example with Open MPI library. Key factors of Apriori par-
allelization are:

– Divide the datasets.

– Each processor Pi will have its data set subset Di.

– Each processor Pi reads the values of the data set from a large flat file.

– Each processor do a calculation of count of item sets in its particular pro-
cessing unit.

Basic functionality. In the beginning, support is delivered to the first pro-
cessor. This processor then distributes the value of the support to the other
processors. Each processor is also responsible for initial item sets generation
from the input data. The data is then divided between different processors. Is
up to each processor to make decisions, when to terminate or continue with
computation.

Then, each processor Pi develops the complete Ck, using itemset, created
at the end of pass k-1. Processor Pi computes local support for candidates in
Ck. After that, each processor sends local support to master processor to create
global Ck support counts. After that, each processor computes Lk from generated
Ck.

Parallel implementation of Apriori has been tested against the different count
of processors and with different levels of support[4].

As you can see on the figure 2, for smaller support, the time for computa-
tion is longer than time for higher value of support. Also, with higher count of
processors, the time for computation is shorter.

Parallel Itemset Mining Algorithms – an Overview 25

1 2 4 8 16 32 64 100

0

50

100

150

200

Number of processors

T
im

e(
m
s)

40
45
50
55
60
65
70

Fig. 2. Parallel Apriori performance comparison graph with different levels of sup-
port[4].

2.3 Eclat

Eclat (Equivalence Class Transformation) algorithm belongs among frequent
itemset mining algorithms. This algorithm was first introduced by Mohammed
J. Zaki, Srinivasan Parthasarathy, Wei Li and Mitsunori Ogihara in 1997 [6].

Basic functionality. The basic idea is based on depth-first search mining using
the set intersection. The algorithm is suitable for sequential and also parallel
execution. In the beginning, algorithm expects vertical database as his input.
After that, Eclat works with tid-set of each item and verifies, that each itemset-
tidset pair 〈X, t(x)〉 with all the others pairs 〈Y, t(Y)〉 to generate new candidates
Nxy. If the candidate Nxy is frequent, then this candidate is added to the set
Px. Then, recursively, it finds all the frequent itemsets in the X branch[9], see
an pseudo-implementation on listing 14.

Main advantage of Eclat is, that this algorithm have very fast support count-
ing. On the other hand, among main disadvantage of this approach is that in-
termediate tid-lists may become too large for memory[10].

2.4 FP-Growth algorithm

The Frequent Pattern Growth (FP-Growth) algorithm was firstly proposed by
J.Han in 2000[5]. In his work, Han proved, that FP-Growth is more efficient
than other frequent pattern methods, like for example well-known Apriori[3]
algorithm or Eclat[6].

26 Adam Kaspar, Vojtech Kotik, Jan Platos

Algorithm 1: Eclat(Transactions: T , Minimum support: minsup)

1 begin

2 Initialize set ET to single tuple (Null, T) ;
3 while any node in ET has not been examined do

4 Select an unexamined tuple (P, T (P)) from ET for examination;
5 Generate candidates extensions C(P) of each tuple (P, T (P));
6 Determine frequent extension F (P) ⊆ C(P) by support counting of

individual items in smaller projected database T (P);
7 Remove infrequent items in T (P);
8 foreach each frequent item extension i ∈ F (P) do
9 Generate T (P ∪ {i}) from T (P);

10 Add (P ∪ {i}, T (P ∪ {i})) into ET ;

11 end

12 end

13 return set of tuples ET

14 end

FP-Growth algorithm is one of the possible ways, how to find frequent item-
sets. Concretely, it uses a divide-and-conquer strategy. As a base algorithm is
used a special data structure, named as the frequent-pattern tree (FP-tree). The
algorithm works as follows: first of all, it creates FP-Tree. This tree structure
represents frequent items. After this step, the FP-Tree is divided into a set of
conditional databases. Each database is then mined separately.

The main advantage of this algorithm against Apriori is that FP-Growth
reduces the search costs looking for short patterns recursively and then concate-
nating them in the long, frequent patterns, offering good selectivity.

From performance reasons, for large databases, it isn’t possible to hold entire
FP-Tree in the main memory. The solution is to divide the database into a set of
smaller databases and then construct an FP-Tree from each smaller database[7].

FP-Tree structure. The structure of FP-Tree consists of following elements.
The tree contains root node, which is labeled as a null element. This element
references child elements, named as item-prefix subtrees[5].

Each node in item-prefix subtree consists of these fields:

– Item ID

– Count: the number of transactions represented by the portion of the path
reaching the node.

– Node-link: links to the next node in the FP-tree carrying the same item-
name, or null if there is none.

After the FP-Tree is constructed, then FP-Growth algorithm is called. See fig-
ure 3, where the entire FP-Tree structure is sufficiently explained.

Parallel Itemset Mining Algorithms – an Overview 27

Fig. 3. FP-Tree structure[7].

FP-Growth performace comparison. FP-Growth algorithm was mined against
2-itemsets with different levels of support. There are also represented other min-
ing algorithms, like Apriori, HI-Apriori, DHP.

1 1.5 2 2.5 3 3.5 4

0

500

1,000

1,500

Minimum support(%)

T
im

e(
m
s)

Apriori

HI-Apriori

DHP

FP-Growth

Fig. 4. FP-Growth performance comparison graph[8].

As we can see on the figure 4, there is a significant deviation for Apriori
algorithm, when the level of minimal support is less than 2%. On higher levels
of support, the performance of algorithms is almost the same[8].

28 Adam Kaspar, Vojtech Kotik, Jan Platos

3 Parallel implementation of Apriori algorithm

This section contains a description of our preliminary results in Apriori algo-
rithms that were parallelized using OpenMP technology. Our implementation
is an adaptation of the Eclat approach with the vertical organization of trans-
actions. As was mentioned earlier, the Eclat algorithm works in iterations, and
three phases are processed in each iteration.

1. Candidate generation phase where a list of candidates of length k is generated
from the frequent itemsets of length k − 1.

2. Computation of the support phase where support is computed for each gen-
erated candidate.

3. Pruning phase where the candidates with support lower than a min-support
are removed.

The experiments show that he bottle-neck of the algorithm is the second phase,
where the support is computed. We used parallelization of this phase using the
OpenMP.

3.1 Results

In our experiments, we used a Windows based system with 2x Intel Xeon E5-
2680 v2 @ 2.8GHz 10 core, 768 GB RAM. The dataset used in our experiments
is Supermarket dataset from the Weka software. We tested our algorithm on two
version of a dataset. One has 925,400 transactions, and the second has 4,627,000
transactions and 216 features. The results are depicted in Figure 5.

As may be seen, the second phase is the most important, because when the
number of threads is increased by factor two, the time decreases with the same
factor. This preliminary result shows that the parallelization is possible, but it
is limited by the amount of memory. The tested dataset is small even in its
full variant. We set the minimum support to 0.1 and the maximum speed-up of
90.3%.

4 Conclusion and future work

The itemset mining and associative rule mining algorithm is very useful tool in
data analysis. More exactly, this tools may discover the hidden relations between
a set of items, such as shopping carts, medical results, weblogs, etc. In these
days, where such data volume is growing and becomes millions, and billions of
transactions with thousands feature it is necessary to design efficient parallel
version of the algorithm. In this paper, we presented a review of the published
parallel version of the classical algorithm as well as preliminary results of our
applications. The algorithm is efficiently parallelized, but it has to be modified
to maintain reasonable memory requirements. That will be the future work in
this task.

Parallel Itemset Mining Algorithms – an Overview 29

0 5 10 15 20

0

1,000

2,000

Number of threads(%)

T
im

e(
s)

Small dataset

Large dataset

Fig. 5. Processing time of parallel version of Eclat algorithm on small (S) and large
(L) dataset with different number of threads used.

Acknowledgment

This work was supported by the project SP2017/100 “Parallel processing of Big
Data IV”, of the Student Grant System, VŠB-Technical University of Ostrava.

References

1. Mohamed Abouelhoda, Moustafa Ghanem: String Mining in Bioinformatics.
Springer Berlin Heidelberg, Berlin (2010)

2. Gregory Piatetsky-Shapiro, William J. Frawley: Discovery, Analysis and Presenta-
tion of Strong Rules. AAAI/MIT Press, Cambridge, MA (1991)

3. Rakesh Agrawal, Ramakrishnan Srikant: Fast Algorithms for Mining Association
Rules. IBM Almaden Research Center, San Jose, CA (1991)

4. Sujith Mohan Velliyattikuzhi: Parallel implementation of Apriori algorithm and
association of mining rules using MPI. Fall, Washington (2012)

5. J. Han, H. Pei, and Y. Yin: Mining Frequent Patterns without Candidate Genera-
tion. ACM Press, New York, NY, USA (2000)

6. M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li: New Algorithms for Fast Dis-
covery of Association Rules. AAAI Press, Menlo Park, CA, USA (1997)

7. Jiawei Han and Micheline Kamber: Data Mining: Concepts and Techniques. Morgan
Kaufmann (2006)

8. Shankai Yan and Pingjian Zhang: A Fast Association Rule Mining Algorithm
for Corpus. Conference: 2013 International Conference on Intelligent Systems and
Knowledge Engineering, At Shenzhen, Guangdong, Volume: 279 (2014)

9. Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li:
New Algorithms for Fast Discovery of Association Rules. University of Rochester,
Rochester NY (1997)

30 Adam Kaspar, Vojtech Kotik, Jan Platos

10. Jiawei Han, Vipin Kumar: CIS527: Data Warehousing, Filtering, and Mining Lec-
ture. CIS, Temple University (2004)

Framework and Automated Prioritization

Procedure for Model-Based Testing of

Automotive Distributed Systems

Lukáš Krejč́ı and Jǐŕı Novák

Czech Technical University in Prague, Faculty of Electrical Engineering, Techická 2,
166 27 Prague 6 - Dejvice, Czech Republic

{krejclu6, jnovak}@fel.cvut.cz

Lukáš Krejčí Jiří Novák

Techická 2

Abstract. The paper presents an optimized framework for model-based testing

of automotive distributed system and a method of automatic assignment of test-

ing priorities used within the framework. The proposed method, envisioned for

integration into existing, currently developed model-based testing tool, utilizes

classifiers in order to assign testing priorities automatically to specific parts of

the tested system. The paper also introduces a set of supplemental data enriching

the modeling language that are exploited by the proposed method during the clas-

sification process. It is shown, that advantages of the presented approach, such

as low requirements for the testing operators’ insight, are valuable for the auto-
motive distributed systems testing process.

1 Introduction

The Model-Based Testing (MBT) is a popular approach to automated testing, which

utilizes an abstract model of a System-Under-Test (SUT) in order to generate a testing

sequence (i.e. test case). Alternatively, the testing procedure can be driven in real time

using the MBT approach. The MBT can be applied even to complex software or hard-

ware SUTs, such as automotive distributed systems.

Typically, the automotive industry uses a testing process composed of three distinct

parts: the mandatory standard assessments, the specific test cases, and integration test-

ing. The mandatory standard assessments are given by various international, national

or organization safety standards and are thus unavoidable. The prearranged specific test

cases are often based on the organization know-how and are therefore desirable, as they

can uncover specific corner-case faults. The purpose of integration testing is to evaluate

the automotive system as a whole since such testing can discover possible failures

caused by distributed systems interconnection. Such failures characteristically originate

from the inconsistent interpretation of the system specification among the subsystems

suppliers, which may result in incorrect implementation and consequently in malfunc-

tion of multiple subsystems. The integration testing is performed regularly during entire

vehicle lifecycle, usually during development and after every subsystem change.

Presently, the test cases for integration testing have to be designed manually by test-

ing designers. Process of manual design of test cases can be, nevertheless, dubious,

c© K. Richta, P. Moravec (Eds.): Dateso 2017, pp. 31–42, ISBN 978-80-01-06138-1.
Czech Technical University in Prague, FEL, Department of Software Engineering, 2017.

32 Lukáš Krejč́ı, Jǐŕı Novák

since it depends on individual test designers and therefore is vulnerable to subjective

errors. In order to eliminate such disadvantage, design of test cases for integration test-

ing can be automated using the MBT principles. However, as the automotive distributed

systems are reactive, real-time and parallel, it was necessary to develop the appropriate

tool, that would fit such requirements.

Accordingly, the Aim of this paper is to propose a new, optimized framework for

MBT of automotive distributed systems and particularly present its automated testing

priority assignment procedure. This procedure, referred as Automated Pinpointing, is

responsible for assigning priorities to parts of SUT, which allows the proposed frame-

work to generate most appropriate test cases. Thus, the Automated Pinpointing proce-

dure is a Model-Based approach of test prioritization.

2 Background

The developed testing tool, called Taster, is based on diploma thesis [1] and described

in the paper [2]. Since automotive systems are real-time and reactive, a modeling lan-

guage used by this tool is based on the theory of timed automata, developed by

UPPAAL team [3]. This modeling language allows describing modeled system as a

network of Timed Safety Automata (TSA) bound by a set of variables.

The original theory of Timed Automata (TA) is described in [4]. The TSA, described

in [5], differs from TA by usage of local invariant conditions that ensure automaton

progress. Formal definition of a single TSA is following (described in [6]):

• A timed safety automaton ܣ is a tuple ܣ = ሺ�, �, ,ܧ �ሻ, where:

o � is a finite set of locations (i.e. nodes),

o � ∈ � is initial location,

o ܧ ∈ ሻ×Σ×ʹ�×� is the set of edges andܥሺܤ×�

o �: � → .ሻ assigns invariants to locationsܥሺܤ

• We shall write � → ݃, �, �, �′, when ሺ�, ݃, �, �, �′ሻ ∈ .ܧ

• A local invariant is a constraint ݔ < �, ݔ ≤ �, where � ∈ ℕ.

Informally, TSA is an oriented graph containing states (one of them is initial) and

transitions between them. Transitions are labeled by guard condition enabling its exe-

cution.

Each TSA in an SUT model is referred to as template and usually represents a stand-

alone model of some particular SUT subsystem. Since the MBT approach requires a

model of the SUT environment, one TSA usually serves as environment model.

Since it is essentially impossible to perform its complete evaluation due to

significant complexity of a typical automotive distributed SUT, only some parts of its

state space can be tested. Therefore, it is important to generate as most appropriate test

cases as possible. Numerous strategies utilizing various graph algorithms can drive the

test sequence generation to achieve such goal. An example of such strategy is a gener-

ation of pseudorandom test sequences according to priorities manually inscribed in the

model. In presence, this strategy is the only one supported by the Taster tool. While this

strategy may provide valid results in several cases, its major pitfall lies in the manual

Framework and Automated Prioritization Procedure . . . 33

assignment of testing priorities. Since the correct assignment of priorities is affected by

multiple parameters, this approach requires significant insight from testing operators.

Moreover, utilization of pseudorandom sequences can lead to suboptimal results in sev-

eral cases (i.e. SUT with clustered state-space). Consequently, a new optimized testing

framework for this tool was designed to reduce the mean time required for the failure

detection and to lower the amount of insight required from testing operators. Fig. 1

shows its structure.

Fig. 1: The structure of proposed framework.

The framework is defined as a pipeline chain consisting of following blocks:

• The Model Parser, which loads a model from its XML-formatted file and

converts it into an internal representation. Schema of XML file is compati-

ble with the schema defined by UPPAAL and thus the models used by pre-

sented framework can also be formally verified using the UPPAAL model

checker.

• The Automated Pinpointing Analyzer, which encases the procedure of la-

beling the model with testing priorities. This block takes parsed model as

input and enriches it with testing priorities.

• The Line-Up Generator is responsible for generating the testing sequences.

This block takes an enriched model as an input and generates the control

outputs for the Test Engine according to chosen test generation strategy.

• The Test Engine, which directly executes given operations on the SUT us-

ing supported testing backend (i.e. NI VeriStand or Exam).

This paper focuses on the presentation of the labeling procedure encased in the Au-

tomated Pinpointing Analyzer block. This procedure, called Automated Pinpointing,

utilizes classification of extra data stored in the model and is described in section 4.

3 Related Work

The MBT and test generation are still active research topics [7]. Currently, a variety

of different approaches exist. The Model-Based Statistical Testing (MBST) is an MBT

approach utilizing the empirically obtained behavioral models. Authors of [8] describe

34 Lukáš Krejč́ı, Jǐŕı Novák

the usage of MBST principles on embedded systems. Due to the purpose of integration

testing, the MBST approach does not seem to be viable. However, the MBST usage

could be reconsidered in future, e.g. to discover failures caused by unexpected user

behavior.

As the presented approach uses a testing priorities for driving the test sequence gen-

eration process, it can be interpreted as the Risk-Based Testing (RBT). The paper [9]

describe the usage of the MBST and RBT principles for testing of railway control sys-

tem. Authors focus on the feasible method of test sequences generation, and the prob-

lem of marking the critical parts of the system is left to the future research.

Authors of [10] investigate utilization of MBT principles on the testing of graphical

user interface and usage of classifiers for identification of infeasible test cases. Method

presented in this paper utilize classifiers as well, however, for a different purpose.

In all papers described above (and even in commercial tools, such as [11]), the crit-

ical parts of SUT have to be manually marked in the model. As stated in section II, the

manual assignment can be dubious, since it depends on various subjective factors that

test cases designers have to take into account. Consequently, in order to avoid this po-

tentially dubious process, this paper proposes a method that assigns testing priorities

automatically.

Since the proposed approach utilizes automatic assignment of testing priorities, it is

related to the area of test prioritization. Authors of [12] describe a method of automated

coverage-based test prioritization utilizing artificial neural networks. Though method

presented in this paper utilizes artificial neural networks as well, the main difference

between it and method described in [12] lies in the fact that in the case of [12], the

prioritization of test case is performed after the test case is generated. As mentioned in

section III, proposed framework initially assigns priorities to parts of SUT and

afterward generates test case according to assigned priorities. Additionally, prioritiza-

tion used in proposed framework is not coverage-based, but is model-based instead.

4 Automated Pinpointing Procedure

As revealed in section II, the purpose of Automated Pinpointing procedure is to en-

hance the provided system model with testing priorities. In the utilized modeling lan-

guage (i.e. UPPAAL defined networks of TSA), functionalities of an SUT are bound to

the transitions and templates in the model. Consequently, the procedure assigns testing

priorities to them.

The procedure iterates through all transitions and templates in the model and assigns

a priority to each of them. Nevertheless, in order to allocate the priorities in a viable

manner, additional extra data providing further insight to the SUT are required.

The proper allocation of testing priority depends on a plethora of parameters, includ-

ing both objective and subjective factors. Since the automotive systems consist of nu-

merous safety-critical subsystems, the safety-impairment factor of particular function-

ality should be taken into account. Certainly, if some particular SUT functionality is

safety-critical, it should have higher testing priority than a non-critical one. Similarly,

it is vital to allocate higher testing priority to systems that are not necessarily safety-

critical, but significantly impact overall car user experience. Moreover, if a particular

Framework and Automated Prioritization Procedure . . . 35

functionality of the SUT is expected to be a source of a failure, it is desirable to assign

a high testing priority to it. Failure of a certain SUT functionality can be predicted using

several objective factors that reflect its complexity, reliability of its back-end, and the

amount, severity and authors of changes recently made to it. The safety importance and

user experience impairment aspects are vastly subjective, as they depend on an individ-

ual view of manufacturer or user. From the other hand, factors that can be used for

failure prediction are objective.

The Automated Pinpointing procedure utilizes two categories of extra data inscribed

into a model on the transition and template level. The fault indicators are used for pre-

diction of particular transition or template failure. Failure prediction is afterward

combined with the experience aspects to obtain transition or template testing priority,

which is interpreted as an integer in the range from 1 to 10. This workflow is depicted

in Fig. 2.

Fig. 2: Testing priority assignment workflow.

Details about failure prediction and priority assignment procedures follow in sec-

tions 4.1 and 4.2.

4.1 Failure Prediction

As the section IV declares, assignment of testing priority depends on failure predic-

tion. In order to enable prediction of failure of particular functionality, the following

failure indicators have been introduced as additional transition and template extra data:

• The Modification Amount ratio (real number in the range from 0 to 1) repre-

senting the amount of changes made to the particular functionality since the

last evaluation. This value needs to be updated after each update of the func-

tionality.

• The Modification Severity index (integer in the range from 1 to 10) represent-

ing the severity of changes made to the particular functionality since the last

36 Lukáš Krejč́ı, Jǐŕı Novák

evaluation. This value needs to be updated after each update of the function-

ality.

• The Authors ID value (integer) representing the authors of changes made to

the particular functionality since the last evaluation. This value is obtained as

SHA-256 of a textual string containing author’s full name. In the case of mul-

tiple authors, this value is obtained as SHA-256 of a textual string containing

hash codes of authors’ full names separated by a semicolon. This value needs

to be updated after each update of the functionality.

• The Control Units Count value (unsigned integer) representing a total number

of control units involved in the functionality. This value needs to be updated

only when a total number of participating control units is changed in the SUT.

• The Manufacturers Count value (unsigned integer) representing a total

number of manufacturers of control units involved in the functionality. This

value needs to be updated only when a total number of manufacturers of par-

ticipating control units is changed in the SUT.

• The Back-End Reliability ratio (real number in the range from 0 to 1) repre-

senting the reliability of a back-end (i.e. hardware and lower software layers)

of particular functionality obtained from the testing of low-level parts of the

SUT.

The rationale behind the Modification Amount and Modification Severity extra data

is intuitive. Certainly, changes made to the functionality can cause its failure. Both these

values must be updated each time a change to particular functionality is made.

Involvement of certain authors of functionality changes can, when combined with

specific development patterns, indicate possible failure. Therefore, the Authors ID extra

data has been introduced. Similar to the Modification Amount and Modification Sever-

ity, this value must be updated after each change to particular functionality.

The values of the Control Units Count and Manufacturers Count extra data together

reflects the overall complexity of particular functionality since the higher complexity

of functionality may make its failure more likely. Since the numbers of co-operating

control units and their manufacturers characteristically do not change often, these val-

ues will typically be updated only occasionally.

Additionally, the functionality with unreliable back-end is likely to cause a failure.

Thus, the Back-End Reliability extra data has been introduced. Its value directly reflects

the results of back-end testing (i.e. the results of independent control units testing) and

therefore must be updated whenever new back-end testing results are available.

Clearly, the failure prediction can be taken as a classification problem, where the

input vector consists of the failure indicators and output is an indication of possible

failure. More formally:

ܨ • = {Ͳ, ͳ} is the set hidden states,

• �, the features space, is given by introduced extra data,

ܦ • = .the set of possible decisions ,ܨ

Finding the optimal decision strategy for this particular decision problem is prob-

lematic. The failures of SUTs are in case of automotive distributed systems usually very

Framework and Automated Prioritization Procedure . . . 37

rare and strongly depend on a SUT development environment (i.e. specific combination

of manufacturer, programmer, tool or development methods used for the SUT develop-

ment). Therefore, the prior probability of failure �ሺܨሻ cannot be properly obtained em-

pirically. Moreover, the conditional probabilities of observations given the hidden state �ሺ�|ܨሻ have unknown probability distribution, which is also strongly affected by a

SUT development environment and so they cannot be obtained empirically as well.

Because the generative approach, i.e. finding the probability model itself, is problem-

atic, the discriminative approach of Artificial Neural Network (ANN; their overview

described in [13]) has been chosen as a classification method suitable for this task.

Since the actual values of input vectors strongly depend on a specific combination

of manufacturer, programmer, tool or development method used for the functionality

modification or utilized back-end, the feature space is expected to be heavily clustered

and not linearly separable, so a simple solution with a single perceptron neuron is in-

feasible [14]. Therefore, two neural networks have been proposed for this task.

The structure of first proposed ANN is shown in Fig. 3.

Fig. 3: Structure of multilayer perceptron feedforward network.

The first proposed ANN is a multilayer perceptron feedforward network composed

of two hidden layers; the first layer consists of seven neurons and seconds layer consists

of six neurons. All neurons use the sigmoid function as an activation function. The input

weights of all neurons are initialized randomly. The ANN uses supervised learning pro-

cess utilizing standard backward propagation procedure applying the provided input

vector and the actual test result as expected output. The inference process is realized by

the forward propagation.

While this approach’s advantage lies in the relative simplicity of its structure, it may

struggle with adaptation to specific development patterns (i.e. clusters in the feature

space). Therefore, second ANN was proposed. Its structure is depicted in Fig. 4.

38 Lukáš Krejč́ı, Jǐŕı Novák

Fig. 4: Structure of SOM-based network.

The second ANN is, similarly to the first proposed ANN, composed of two hidden

layers. However, this ANN utilizes a Self-Organizing Map (SOM; described in [15])

as the first layer and a single-layer perceptron feedforward network as the second layer.

The SOM layer is used for quantization of input vector and thus contains 4096 neurons

initially uniformly distributed among feature space as a 6-D mesh. Each neuron of SOM

layer uses the Euclidian distance as an output function. The decision layer is designed

as a single-layered ANN composed from 3 neurons with sigmoid activation function

and randomly initialized weights. During the learning process, the weights of SOM and

decision layer are adjusted using standard approaches, i.e. supervised learning of the

decision layer by backward propagation and unsupervised learning of the SOM layer.

During learning process, the structure of SOM layer will be modified according to

the training data structure. Consequently, usage of the SOM layer allows this ANN to

adapt more smoothly to the specific SUT development patterns applied by particular

automotive systems manufacturer. However, the disadvantage of the SOM approach is

a significantly higher number of neurons.

4.2 Priority Assignment

As mentioned in section IV, proper assignment of testing priority also depends on

several subjective factors. Therefore, following experience aspects have been intro-

duced into transition and template extra data:

• The Safety Impairment index (integer in the range from 1 to 10) representing

the impact of the functionality failure on the vehicle safety.

• The User-Comfort Infringement index (integer in the range from 1 to 10) rep-

resenting the impact of the functionality on the comfort of the vehicle users.

The rationale behind these aspects is evident. The higher each index is, the more

severe effect of the failure on the vehicle safety or users comfort are. Therefore, the

higher index together with the possible prediction of failure implies higher testing pri-

ority. Moreover, their values do not need to be updated. As these aspects are subjective,

their appropriate values have to be obtained empirically.

Framework and Automated Prioritization Procedure . . . 39

The process of priority assignment can be, similarly to the process of failure

prediction, interpreted as a process of classification, where the classifier assigns a pri-

ority according to the input feature vector composed of the Safety Impairment index,

User-Comfort Infringement index and the failure prediction. Undoubtedly, from the

perspective of a single priority, such feature space is linearly separable and thus simple

perceptron classifiers can be utilized for this task [14]. Fig. 5 shows a feature space

linearly separated by hyperplanes into diagonal zones corresponding to priorities.

Fig. 5: Priority assignment feature space separation.

Since there are ten possible testing priorities, nine different perceptron classifiers are

utilized, each having a fixed hyperplane associated with it. Fig. 6 depicts schema of the

classification structure.

Fig. 6: Priority assignment classification structure.

The classification function of each perceptron returns 1, if the input vector lies below

its associated hyperplane, and returns 0 otherwise. The output function of classification

structure is defined as following.

�݂௨௧ሺݕଵ, … , 9ሻݕ = ͳͲ −∑ ଵ=�9�ݕ

40 Lukáš Krejč́ı, Jǐŕı Novák

Output of perceptron classifier assigned to �-th priority is denoted as ݕ� . The output

function counts the outputs of separate perceptron classifiers and subtracts this sum

from 10, which is then used as testing priority for given transition or template.

Since the testing priority is not objectively measurable, the priority assignment pro-

cedure does not use learning and utilizes a fixed configuration instead.

5 Conclusions and Future Work

In this paper, a part of the new framework for the model-based testing of an auto-

motive distributed systems is presented. The main focus of the paper lies in the pre-

sented model-based approach of testing priority assignment, called Automated Pin-

pointing procedure. The Automated Pinpointing procedure exploits the SUT model

supplemented with the additional extra data to assign testing priorities to model's

transitions and templates automatically. This process is useful for identifying the SUT

parts that are most worthwhile to be tested.

Additionally, an appropriate set of extra data was introduced. The proposed system

of transition and template extra data contains both subjective factors (i.e. experience

aspects), as well as objective factors (i.e. fault indicators). As supplemental data take

into account various factors influencing the testing priority, the proposed method sig-

nificantly lowers overall testing operators’ insight requirements, as most of the required

model parameters can be obtained repetitively by automatic procedures (the objective

factors) or once by empirical research (the subjective factors).

Last but not least, three classification structures were proposed. Two ANN for failure

prediction and one based on perceptron neurons for priority assignment. Since priority

assignment result cannot be objectively measured, the priority assignment classification

structure has static, preconfigured, structure and parameters.

Presently, the limited version of presented framework is implemented into developed

tool Taster that currently utilizes pseudorandom approach for the generation of the test

sequence. Since this tool uses a modeling language based on networks of timed autom-

ata, the presented framework, Automated Pinpointing procedure and proposed extra

data utilize it as well.

Future research will be focused on the optimization of the classification structures

used within the priority assignment procedure. Since the procedure makes use of

strongly subjective Safety-Impairment and User-Comfort Infringement indexes extra

data, proper values of these parameters will be acquired by empirical research. Also, it

is necessary to gather training data to evaluate proposed failure prediction ANN

structures, select the most promising one and optimize it afterward. Furthermore, other

classification approaches will be assessed, so the most optimal one could be found. For

example, the rule-based methods seem to be promising for this purpose.

Additional research will be oriented on the methods for prediction of possible re-

gression in particular functionality caused by influences originating in other, possibly

similar, SUT functionality. Such information can be obtained using the static analysis

principles from the SUT source code or can be provided by the system modeler.

Afterward, such information can be exploited by the context-sensitive classifiers for

more precise prediction of functionalities failures.

Framework and Automated Prioritization Procedure . . . 41

Finally, since the developed tool currently generates testing sequences pseudo-ran-

domly, more optimal test generation strategies will be explored.

The proposed procedure and complete Taster tool is evaluated, thanks to the co-

operation with Škoda Auto a. s., on the real automotive systems developed and manu-

factured by this company. Moreover, Škoda Auto a. s. supplies data from real automo-

tive systems that are necessary for the procedure optimization. Presented methods are

currently tested on a case study with trunk door control unit. The case study includes

several environment models providing various user stimuli, such as locking and un-

locking the car, opening and closing the trunk door and starting and shutting down the

engine, as well as complex observer model. The observer model describes the correct

behavior of trunk door control unit and its most important parts are the invariant checks.

This case study should help with fine-tuning of used ANN structures, as well as with

evaluation of explored test generation strategies in the future.

Acknowledgement

Research described in the paper was supported by the Grant Agency of the Czech

Technical University in Prague, project Model-Based Testing methods for automotive

electronics systems (grant No. SGS16/171/OHK3/2T/13) and by the support of Tech-

nological Agency, Czech Republic, program Centers of Competence, project No.

TE01020020 Josef Božek Competence Centre for Automotive Industry.

References

[1] Tomáš Grus, “Implementation of Integration Testing Test Cases Generation Tool,”
Master’s Thesis, CTU in Prague, 2014.

[2] Sobotka, J. and Novák, J., “Testing Automotive Reactive Systems using Timed
Automata,” 2016, [unpublished].

[3] Behrmann, G., David and A., Larsen, K. G., “A tutorial on UPPAAL,” In proceedings of
the 4th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems (SFM-RT'04).

[4] Alur, R. and Dill, D., “Automata for modeling real-time systems,” In proceedings of the
Seventeenth International Colloquium on Automata Languages and Programming,
443(443), 322–335. doi:10.1007/BFb0032042, 1990.

[5] Henzinger, T. A., Nicollin, X., Sifakis, J. and Yovine, S., “Symbolic model checking for
real-time systems,” Information and Computation, 111(2), 193–244,
doi:10.1006/inco.1994.1045, 1994.

[6] Bengtsson, J., Bengtsson, J., Yi, W. and Yi, W., “Timed automata: Semantics, algorithms
and tools,” Lecture Notes in Computer Science, 3098(316), 87–124, doi:10.1007/978-3-
540-27755-2_3, 2004.

[7] S. Rösch, S. Ulewicz, J. Provost, and B. Vogel-Heuser, “Review of Model-Based Testing
Approaches in Production Automation and Adjacent Domains—Current Challenges and
Research Gaps,“ J. Softw. Eng. Appl., vol. 08, no. 09, pp. 499–519, 2015.

[8] F. Böhr, “Model Based Statistical Testing of Embedded Systems,” 2011 IEEE Fourth Int.
Conf. Softw. Testing, Verif. Valid. Work., pp. 18–25, 2011.

42 Lukáš Krejč́ı, Jǐŕı Novák

[9] Zimmermann, F., Eschbach, R., Kloos, J. and Bauer, T., “Risk-based Statistical Testing:
A Refinement-based Approach to the Reliability Analysis of Safety-Critical Systems,”
12th European Workshop on Dependable Computing, EWDC 2009, Toulouse, France,
2009.

[10] Gove, R., Faytong, J., “Chapter 4 – Machine Learning and Event-Based Software Testing:
Classifiers for Identifying Infeasible GUI Event Sequences,” Advances in Computers, vol.
86, pp. 109–135, 2012.

[11] MaTeLo, http://www.all4tec.net/MaTeLo/homematelo.html.

[12] Belli, F., Eminov, M., and Gocke, N., “Prioritizing Coverage-Oriented Testing Process -
An Adaptive-Learning-Based Approach and Case Study,” In proceedings of the 31st
Annual International Computer Software and Applications Conference - Volume 02, pp.
197–203, 2007.

[13] Aleksander, I. and Morton, H., “An introduction to neural computing,” International
Thomson Computer Press, 2nd edition, 1995.

[14] Minky, M. and Papert, S., “Perceptrons: An Introduction to Computational Geometry,”
M.I.T. Press, 1969.

[15] Kohonen, T., “Self-Organizing Maps,” New York : Springer-Verlag, 1997.

Model Transformations via XSLT

Jakub Pavlát1, Karel Richta1, Tomáš Richta2, and Vladimı́r Janoušek2

1 1 Czech Technical University in Prague, Faculty of Electrical Engineering, Dept. of
Computer Science,

Karlovo nám. 13, 121 35 Praha 2, Czech Republic
{pavljak, richta}@fel.cvut.cz

http://cs.felk.cvut.cz/en/people/richta
2 2 Brno Institute of Technology, Faculty of Information Technology, Dept. of

Intelligent Systems,
Božetěchova 2, 612 66 Brno, Czech Republic

{irichta, janousek}@fit.vutbr.cz
http://www.fit.vutbr.cz/~irichta/,http://www.fit.vutbr.cz/~janousek/

Jakub Pavlát , Tomáš Richta , Vladimír Janoušek

omputer Science, Karlovo nám.13

nt Systems, Božetěchova 2

Abstract. Many present systems are conceived as a set of autonomous agents

that communicate together in solving problems. Petri nets are commonly used

for a specification of parallel systems. An interesting question is whether we

can implement arbitrary system by a set of Petri nets agents. These agents could

be specified by Petri nets, but such a description is not sufficiently user-

friendly. Our idea is to define these agents by classical workflow models and

then transform them into a set of Petri nets. Such transformation would support

development of software systems, whose specification is based on classical

workflow models, but the implementation is based on Petri nets. Each net of the

resulting system is translated into a specific target representation called Petri

Nets Byte Code (PNBC). These codes are interpreted by the special Petri Nets

Virtual Machines (PNVM), which are installed on all nodes of the system,

under the Petri Nets Operating System (PNOS). This paper deals with the one

step of this process, which is an implementation of required transformations

from workflow model into Petri nets with the help of XSLT.

 Introduction 1.

Many present computer driven systems are considered to be a set of autonomous

agents that communicate together to solve problems. There are a number of systems

that support the provision of such communication on the basis of specifications of the

external behavior of agents and a description of their communication. System

assembly of a set of agents is relatively well developed and orchestration of such set

of agents can be assured and generated from its description by known tools. What is

currently not developed and supported by automation is a creation of agents based on

their specifications. They are usually implemented manually without the assistance of

an adequate environment.

The purpose of our research is to develop methods and tools that can be used for

the creation of autonomous agents from their specification. We investigate the

c© K. Richta, P. Moravec (Eds.): Dateso 2017, pp. 43–54, ISBN 978-80-01-06138-1.
Czech Technical University in Prague, FEL, Department of Software Engineering, 2017.

http://cs.felk.cvut.cz/en/people/richta
http://www.fit.vutbr.cz/~irichta/
http://www.fit.vutbr.cz/~janousek/

44 Jakub Pavlát, Karel Richta, Tomáš Richta, Vladimı́r Janoušek

specification of agents based on Petri nets (see [7,8]), because we suppose, that all

nodes of the distributed system can be equipped by PNVM (Petri Net Virtual Machine

[10]) running under special PNOS (Petri Net Operating System [9]). Thus equipped

nodes can be programmed by uploaded Petri nets, and pose as agents of the whole

orchestrated distributed system.

The definition of an agent behavior can be expressed by a classical workflow

model ([2]). Such definition is user friendly, and relatively simple. There exist tools

supporting a creation of such descriptions. For our purposes these descriptions have to

be converted into Petri nets. Our research deals with such transformations, which

convert classical workflow models into equivalent Petri nets. In this article we will try

to define rules that specify such transformation. These rules can be implemented

using XSLT (eXtensible Stylesheet Language Transformations [14]). For this

purposes, the source, and also resulting model should be expressed in the XML

format. We use EMF (Eclipse Modeling Framework [1,12]) format for source models,

and the PNML language (Petri Net Markup Language [3,13]) for resulting Petri nets.

The resulting net description in PNML can be interpreted by a Petri net virtual

machine. All such particular agents can be joined with the organizational part of a

system, and participate in the implementation of the required behavior.

 The Source Specification Model 2.

Mainstream software processes, like the Unified Process, propose UML class
diagrams for modeling the integration of conceptual data models and activity
diagrams for specifying workflows [1]. Then, these models are used as requirements

specification to drive the subsequent development and integration of applications
through analysis, design, and implementation activities. The alternative approach
consists in the use of the workflow specification as an executable model interpreted
by a workflow management system. In this paper, we will use the input specification
in the form of a workflow.

As an example for an input model consider some autonomous system, e.g. heating

system for a small house, see Fig. 1. This heating system consists of five components

(„Hall and stairway“, „Kitchen and dining room“, „Remote control“, „Boiler room“,

and „Scheduler“). The whole system containing these five components is called

„House 1“. Components have input and output ports, e.g. components „Hall and

stairway“ has among other the input port „schedTemp1“, and the output port „temp1“.

The output port „temp1“ of „Hall and stairway“ is connected to the input port of the

„Scheduler“, etc. Components contain elements like „thermostat“, „knob“, whose

description and structure is already predefined.

Such a description could be created by some CASE tool, and finally exported in

the XML format, e.g. as an application of EMF. Look at the Fig. 2, which shows the

small part of the representation of this heating system in EMF. This XML document

is a valid document according to the XML schema of EMF, here „domotic.ecore“

(see [4]). This schema is designed for so called „Domotic Systems“ - set of

technological components capable of performing functions that can be partially

autonomous, programmed by the user, or even completely autonomous.

Model Transformations via XSLT 45

Fig. 1: Autonomous heating system

Fig. 2: The input model in EMF format

 The Output Model - Petri Nets 3.

Petri nets are widely used for the specification of problems, mostly in the parallel

systems. The following formal definition is loosely based on [7, 8]. Many alternative

definitions exist.

<?xml version="1.0" encoding="UTF-8"?>
 <domotic:Component xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:domotic="but-hib.domotic" xsi:schemaLocation="but-hib.domotic
../domotic.viewpoint/description/domotic.ecore" name="schedTemp1">
 <contains xsi:type="domotic:Component" name="House 1">
 <inputPorts name="response"/>
 <contains xsi:type="domotic:Component" name="Hall and stairway">
 <inputPorts name="schedTemp1"/>
 <contains xsi:type="domotic:Sensor" name="thermostat1">
 <outputPorts name="temp1"/>
 </contains>
 <contains xsi:type="domotic:Valve" name="valve">
 <outputPorts name="status1"/>
 <inputPorts name="signal"/>
 </contains>
 <contains xsi:type="domotic:UserInput" name="knob">
 <outputPorts name="reqTemp1"/>
 </contains>
 <contains xsi:type="domotic:ComputationalUnit" name="cu">
 <expression>signal = temp < request</expression>
 <inputPorts name="temp"/>
 <inputPorts name="request"/>
 <outputPorts name="signal"/>
 </contains>
 <outputPorts name="temp1"/>
 <outputPorts name="status1"/>
 <outputPorts name="request1"/>
 <dataFlows name="df"
ports="//@contains.0/@contains.0/@contains.1/@inputPorts.0"/>
. . .

46 Jakub Pavlát, Karel Richta, Tomáš Richta, Vladimı́r Janoušek

3.1 Syntax

A Petri net graph (called Petri net by some, but see below) is a 3-tuple (P,T,W),

where:

 P = { Pi } is a finite set of places

 T = { Tj } is a finite set of transitions

 P and T are disjoint, i.e. no object can be both a place and a transition

 W: (P T) (T P) N is a multi-set of arcs, i.e. it defines arcs and

assigns to each arc a non-negative integer arc multiplicity; note that no arc

may connect two places or two transitions.

The flow relation is the set of arcs: F = {(x,y) W(x,y) > 0}. In many textbooks, arcs

can only have multiplicity 1, and they often define Petri nets using F instead of W.

A Petri net graph is a bipartite multidigraph (P T, F) with node partitions P and T.

The preset of a transition t is the set of its input places:

t = {p P W(p,t) > 0}; its

postset is the set of its output places: t

 = {p P W(t,p) > 0}.

A marking of a Petri net (graph) is a multiset of its places, i.e., a mapping M: P N .

We say the marking assigns to each place a number of tokens.

A Petri net (called marked Petri net by some, see above) is a 4-tuple (P,T,W,M0),

where:

 (P,T,W) is a Petri net graph;

 M0 is the initial marking, a marking of the Petri net graph.

3.2 Execution semantics

The behavior of a Petri net is defined as a relation on its markings, as follows. Note

that markings can be added like any multiset:

M + M’ =D
 { p M(p) + M’(p) | p P }

The execution of a Petri net graph G = (P,T,W), can be defined as the transition

relation G on its markings, as follows:

 for any t in T:
M G,t M’ D

 M” : P N : M =M” +pPW(p,t) M’=M”++pPW(t,p)
M G M’ D

 tT : M G,t M’

In words:

 firing a transition t in a marking M consumes W(p,t) tokens from each of its

input places p, and produces W(t,p) tokens in each of its output places p

 a transition is enabled (it may fire) in M if there are enough tokens in its

input places for the consumptions to be possible, i.e. iff

p:M(p) W(p,t).

Model Transformations via XSLT 47

We are generally interested in what may happen when transitions may continually fire

in arbitrary order.

We say that a marking M' is reachable from a marking M in one step if M G M’; we

say that it is reachable from M if M *
G M’, where *

G is the transitive closure of

G ; that is, if it is reachable in 0 or more steps.

For a (marked) Petri net N = (P,T,W,M0), we are interested in the firings that can be

performed starting with the initial marking M0. Its set of reachable markings is the set

R(N) =
D

{ M’ | M0 (P,T,W)
*
 M’}.

The reachability graph of N is the transition relation G restricted to its reachable

markings R(N). It is the state space of the net.

A firing sequence for a Petri net with graph G and initial marking M0 is a sequence of

transitions
 = <ti1 … tin> such that M0 G,ti1 M1 … Mn-1G,tin Mn . The set of

firing sequences is denoted as L(N).

Fig. 3: An example of a Petri net (Source: Wikipedia)

 Transformation of EMF Model into Petri Net 4.

The idea of our method is that the input model has to be transformed into a

description of the output as a Petri net. The input model contains components (like

„House 1“ or „Kitchen and dining room“). Any component can contain other

components (like „House“ contains „Kitchen and dining room“), or elements (like

„Boiler room“ contains „Boiler“). Components have input and output ports, which are

connected to each other.

The first rule states that components will be interpreted as Petri net places. For

each component in the input we have to create a place with the same identification in

the output. E.g. the component „Kitchen and dining room“ will be converted into the

place „Kitchen and dining room“ in the output net.

The second rule says, that interconnections between components should be realized

by Petri net transitions. E.g. the connection between the output port „temp1“ of „Hall

and stairway“ and the input port „temp1“ of the „Scheduler“, should be implemented

by the transition „temp1“ in the output net. The transition in the output model will

48 Jakub Pavlát, Karel Richta, Tomáš Richta, Vladimı́r Janoušek

have two arcs in two directions – from „Hall and stairway“ component into

„Scheduler“, which we call „has“, and at the opposite direction, which we call „s“. The

transition will have assigned two predicates, derived from the input description and

attached ports:

has: output(temp1);
s: output(temp1);

The output names „has“ and „s“ are derived from abbreviated names of connected

components (“has“ for „Hall and stairway“, and „s“ for „Scheduler“). The result

should be accomplished with Petri nets of elements like sensors, actuators and so on.

 Transformation of Petri Nets into PNML 5.

To show a high-level implementation of such a transformation, we begin by decom-

posing the EMF format as that is our only input. For this purpose let us say that:

 Let C = { Ci } be a set of all <contains> elements in depth 1, such that they

match the xPath expression: component/contains/contains.

 Let D = { Di } be a set of all <dataflow> elements in depth 1, such that they

match the xPath expression: component/contains/dataflow.

Fig. 4: Resulting infrastructure of the small house

Now the desired mapping from EMF to PNML can be described by the following

algorithm. We suppose that we are able to extract components and dataflows from the

model in EMF.

Model Transformations via XSLT 49

The Algorithm for transformation of EMF to PNML

Input: The EMF document the workflow description of the agent, and let C = { Ci }

and D = { Di } be two sets of all components, resp. dataflows contained in it.

Output: The PNML document containing the Petri net graph G = (P,T,W), which is

behaviorally equivalent to the input.

Process:

1. Set P = , T = , W = .

2. For every Ci from C create a place Pi such that the attribute id of Pi is unique

across the entire document and set P = P { Pi }.

3. For every Dj from D create a transition Tj such that the attribute id of Tj is unique

across the entire document and set T = T { Tj }.

4. For every Dj from D create a pair of arcs A1 and A2, such that the attribute id of A1

and A2 is unique across the entire document, set W = W {<A1 , A2>} and:

a. Attribute from of the element A1 has the value of attribute id of the place Pi

which was created from an element Ci referenced by the first expression in

attribute ports.

b. Attribute to of the element A1 has the value of attribute id of the transition Tj

which was created from dataflow Dj.

c. Attribute from of element A2 has the value of attribute id of the place Pi which

was created from an element Ci referenced by the second expression in attribute

ports of Dj.

d. Attribute to of element A2 has the value of attribute id of the transition Tj which

was created from dataflow Dj.

Sketch of the proof:

Due to the step 2, all components of EMF model C will have appropriate place in the

Petri net graph G. Due to the step 3, all dataflows in D will have appropriate transition

in the Petri net graph G. In the step 4, all transitions created in the step 3 will be

accomplished by input and output arcs according to the source dataflow. In such a

way, when input places of the transition Tj contains sufficient marking, the transition

can fire, and result is the transition of marking from all input places to all output

places.

q.e.d.

The example:

Let us suppose the example of heating system from the Fig: 1. The set C contains

(among others) two components: „Hall and stairway“, and „Scheduler“. So the set P

will contain two places, e.g.: „Hall-and-stairway“, and „Scheduler“. The set D

contains (among others) two dataflows: „temp1“, and „schedTemp1“. So the set T will

contain two transitions, e.g.: „temp1“, and „schedTemp1“. The set W will contain arcs

<Hall-and-stairway.temp1, Scheduler.temp1>, and <Scheduler.schedTemp1, Hall-and-

stairway.schedTemp1>. It means, that the Petri net graph can fire transition M G M’ such

that changes the marking M into the marking M’ according to the definition of this

50 Jakub Pavlát, Karel Richta, Tomáš Richta, Vladimı́r Janoušek

arc. So the signal of the workflow model is correctly simulated by the constructed

Petri net.

Comments to XSLT Implementation of the Algorithm

Step 1 can be achieved with a simple pair of „template“ and „apply-template“

constructs, where „template“ may look like

<xsl:template match="contains">

 <place>

 <xsl:attribute name="id">

 <xsl:value-of select="generate-id()"/>
 </xsl:attribute>

 <name>

 <text>

 <xsl:value-of select="@name"/>

 </text>

 </name>
 </place>

</xsl:template>

It is important to note, that using the XSLT function „generate-id()“ for id

generation will not be enough since the virtual machine relies on numerical-only ids,

while „generate-id()“ generates an alphanumerical string. For the id we will use the

following element:

<xsl:number format="0000000" level="any"/>

that returns the number of preceding elements (for the current element). The number

length has to be chosen with respect to the potential number of unique elements in the

Petri net.

Step 2: Can be achieved in a similar manner.

Step 3: The XSLT limitation becomes obvious with the step 3. Creating a pair of

„arc“ elements would be a trivial problem, not given by conditions. To illustrate why

this point is problematic, please let us consider a significantly simplified structure of

the EMF input:

<house>

 <contains name=”knob”/>
 <contains name=”sensor”/>
 <dataflow ports=”sensor knob”/>
</house>

Now by the algorithm described above, in the first step, we would transform the

elements „knob“ and „sensor“ into elements „place“ with unique ids. Step 2 is also

feasible in the same manner. In step 3 however, we need to make a pair of arcs, that

both specify, which nodes in PNML they connect. Since XSLT is a declarative

programming language which means that we do not describe the control flow, but

rather describe the logic of the computation. This also means that XSLT lacks any

sort of data structures resembling a Key, Value map. This means, that in the time of

Model Transformations via XSLT 51

„arc“ elements creation, we do not know what PNML ids the elements (we cannot

reference elements in the document that is being created) „knob“ and „sensor“ have
and therefore cannot reference them correctly.

An argument could be made that if the „place“ elements would be created at the
time the arcs are, this problem could be omitted, since we could create a

„xsl:variable“ and store these ids temporarily. This would be a viable solution if
every „place“ had only one connection to another place. To demonstrate please

consider the following structure of the EMF input:

<house>

 < contains name=”knob”/>
 < contains name=”sensor”/>
 < contains name=”web-client”/>
 <dataflow ports=”sensor knob”/> ſɨƀ
 <dataflow ports=”sensor web-client”/> ſɩƀ
</house>

In this example, we would indeed correctly reference both „sensor“ and „knob“ from

transforming (1). The XSLT processor would then proceed to process (2) and that is

where we would get to the same problem as before.

A workaround for this issue will be to run 2 consecutive transformations and split

the algorithm into 2 parts. The first transformation will copy every existing element,

but at the same time add „place“ elements as per the description of the step 1.

The second transformation will use this enriched document and process steps 2 and

3. To demonstrate why this solves our problem, please consider the following EMF

input:

<house>

 <contains name=”knob”/>
 <contains name=”sensor”/>
 <dataflow ports=”sensor knob”/>
</house>

2nd transformation input:

<house>

 <contains name=”knob”/>
 <place name=”knob” id=”ɨ”/>
 <contains name=”sensor”/>
 <place name=”sensor” id=”ɩ”/>
 <dataflow ports=”sensor knob”/>
</house>

Please note that the „place“ elements have an additional attribute name. That is

necessary so that when we are processing the „dataflow“ element we can correctly

match „place“ and „contains“.

Creating the „transition“ and „arc“ elements is trivial now – we can retrieve the

„place@id“ attributes by making a simple conditional search over all „place“

52 Jakub Pavlát, Karel Richta, Tomáš Richta, Vladimı́r Janoušek

elements which have the attribute „name“ equal to the first/second part of the „ports“

attribute in the currently processed „dataflow“.

The specific implementation of the XSLT scripts is slightly more technically

demanding. As an example, we should mention that the „dataflow@ports“ attribute

does not use a unique name, like in the example, but rather an expression not

completely un-like xPath. These expressions resemble xPath, but have slightly

different syntax, which makes it impossible to use them for referencing without

proper translation. For example, the following expression:

//@contains.0/@contains.1/@inputPorts.0

is referencing an „inputPorts“ node, which has two ancestors „contains“. The

parent „contains“ is a second child node to the root „contains“ node.

However, even if these were pure xPath, we could not use them for referencing since

XSLT 2.0 (currently newest non-commercial version) does not support dynamic

xPath resolution (without any extensions). Problems such as these however are

solvable on a programming level and do not require a rework of the algorithm.

<pnml xmlns="RefNet">
 <net id="netId1479076635752" type="RefNet">
 <place id="56">
 <name>
 <graphics>
 <offset x="4" y="-26"/>
 </graphics>
 <text>Hall and stairway</text>
 </name>
 <graphics>
 <position x="161" y="117"/>
 <dimension x="20" y="20"/>
 <fill color="rgb(112,219,147)"/>
 <line color="rgb(0,0,0)"/>
 </graphics>
 </place>
 <place id="57">
 <name>
 <graphics>
 <offset x="6" y="-29"/>
 </graphics>
 <text>Kitchen and dininig room</text>
 </name>
 <graphics>
 <position x="493" y="108"/>
 <dimension x="20" y="20"/>
 <fill color="rgb(112,219,147)"/>
 <line color="rgb(0,0,0)"/>
 </graphics>
 </place>
. . .

Fig. 5: Example of a PNML text

Model Transformations via XSLT 53

 PNML and Petri Net correlation 6.

As described in [2] PNML is a sufficiently developed language to describe Petri nets

like these (containing places, transitions and arcs). Suppose, we have some Petri net,

e.g. the infrastructure of our small house, consider Fig. 4. As we can see, places

correspond with components of the input model, transitions correspond to

connections, and names of arcs are generated during the transformation. The position

in a space is supplemented artificially, it is not included in the source model.

This Petri net could be expressed in the PNML format [13], for the fragment of it, see

Fig. 5.

 Conclusions 7.

In the foregoing text we have shown that any Petri net, which we received from the

input description using the described transformation, we can engage in a full

description of the system and along with him to interpret. So for the description of

any system, we can describe particular agents using classical models. These models

are then transformed into the corresponding Petri nets. The communication between

agents will be described using so-called an infrastructure and a platform layer [11].

For the effective usage of such a method we have to create supporting tools. It will be

the subject of our further research.

We described the basics of model transformation and execution-based

methodology of distributed embedded control system development. Among the main

methods it uses Petri Nets models transformations and target system prototype code

generation. The development process starts with the classical model of the system

specification.

This model of the system describes the functionality from users’ or domain

specialist's point of view. Using our methods, this model is further transformed to the

multi-layered architecture based set of Reference Petri Nets. Each layer of the system

is then translated to the specific target representation called Petri Nets Byte Code

(PNBC), which is interpreted by the Petri Nets Virtual Machine (PNVM), which is a

part of the Petri Nets Operating System (PNOS), which is installed on all nodes of the

system. Targeted system is dynamically reconfigurable by the possibility of PNBC
net templates and instances replacement with its new versions. After the replacement,
PNVM interpretation engine starts to perform a new version of partial functionality of
the system.

Acknowledgments

This research has been partially supported by the Avast Foundation (2017), and also

by the European Regional Development Fund in the IT4Innovations Centre of
Excellence project (CZ.1.05/1.1.00/02.0070), by BUT FIT grant FIT-11-1, and by the
Ministry of Education, Youth and Sports under the contract MSM 0021630528.

54 Jakub Pavlát, Karel Richta, Tomáš Richta, Vladimı́r Janoušek

References

1. Biermann, E. - et al.: Graphical Definition of In-place Transformations in the Eclipse

Modeling Framework. In: International Conference on Model Driven Engineering

Languages and Systems, pp. 425-439. Springer Berlin Heidelberg 2006.

2. van Hee, K.M. – Sidorova, N. - van der Werf, J.M.: Business Process Modeling Using

Petri Nets. In: Jensen, K. - van der Aalst, W.M.P. – Balbo, G. – Koutny, M. - Wolf K.

(eds): Transactions on Petri Nets and Other Models of Concurrency VII. Lecture Notes in

Computer Science, vol. 7480. Springer, Berlin, Heidelberg 2013.

3. Hillah, L.M. - Kindler, E. – Kordon, F. – Petrucci, L. – Trèves, N.: The Petri Net Markup
Language and ISO/IEC 15909-2. CPN Workshop 2009.

4. Miori, V. – Tarrini, L. – Manca, M. – Tolomei, G.: An open standard solution for domotic

interoperability. IEEE Transactions on Consumer Electronics, Year: 2006, Volume: 52,

Issue: 1, pp: 97 - 103, DOI: 10.1109/TCE.2006.1605032.

5. OMG (February 2009). OMG Unified Modeling Language (OMG UML), Superstructure

Version 2.2. URL: http://www.omg.org/spec/UML/2.2/Superstructure/PDF (2009).

6. Peterson, J.: Petri Nets. ACM Computing Surveys 9 (3), doi:10.1145/356698.356702,

(1977) 223–252.

7. Petri, C.A.: Kommunikation mit Automaten. Ph. D. Thesis. University of Bonn (1962).

8. Petri, C.A., Reisig, W.: Petri net. URL: http://www.scholarpedia.org/ (2008), 3(4):6477.

Retrieved 2008-07-13.

9. Richta, T. - Janoušek, V.: 2013. Operating System for Petri Nets-Specified Reconfigurable
Embedded Systems. In: Proceedings of Computer Aided Systems Theory - EUROCAST

2013, published as LNCS 8111, pp.444-451. ISBN 978-3-642-53855-1. Berlin Heidelberg:
Springer Verlag, 2013.

10. Richta, T. - Janoušek, V. – Kočí, R.: Code Generation For Petri Nets-Specified
Reconfigurable Distributed Control Systems. In: Proceedings of 15th International

Conference on Mechatronics - Mechatronika 2012, pp.263-269. ISBN 978-80-01-04985-3.
Prague, 2012.

11. Richta, T. - Janoušek, V. – Kočí, R.: Petri Nets-Based Development of Dynamically

Reconfigurable Embedded Systems. In: Proceedings of PNSE'13 - CEUR Workshop

Proceedings, Vol. 2013, Issue 989, str.203-217. ISSN 1613-0073. Hamburk, 2013.
12. Steinberg, D, - Budinsky, F. - Merks, E. – Paternostro, M.: EMF: Eclipse Modeling

Framework. Pearson Education, 2008.

13. Weber, M. – Kindler, E.: The Petri Net Markup Language. In: Petri Net Technology for

Communication-Based Systems – Advances in Petri Nets, LNCS volume 2472, pp.124-

144, 2003.

14. W3C Standards - XSLT Current Status [Retrieved 2017-03-21], URL:

https://www.w3.org/standards/techs/xslt#w3c_all, 2017.

Analysing Musical Pieces Using

harmony-analyser.org Tools

Ladislav Marš́ık

Dept. of Software Engineering, Faculty of Mathematics and Physics
Charles University, Malostranské nám. 25, 118 00 Prague 1, Czech Republic

marsik@ksi.mff.cuni.cz

Abstract. The tools provided under harmony-analyser.org are capable
of recognizing harmonies, extracting the high-level harmony features,
and plotting the harmony structure of the audio. They focus on the
classical tonal analysis, as well as the distances between the harmonies
to allow for the creation of novel descriptors. In the light of the recent
expansion of the music retrieval techniques, the concepts of chord dis-
tances or chroma vector distances were still not studied to the full extent.
With the presented tools we aim to provide an easy-to-use system for
anyone interested in extracting these features, as well as an open-source
framework written in Java for the developers interested in researching
the concepts further. In this short paper, we offer the walk-trough of
harmony-analyser.org tools with the manual for the correct usage. We
also summarize the results achieved using our system and we set the
focus for the next development and research.

Keywords: harmony-analyser.org, tonal analysis, chord distance, chroma vector

distance, music information retrieval

1 Introduction

The focus in Music Information Retrieval (MIR) is recently shifting to the large-
scale approaches and techniques for a fingerprint extraction in the way that
the most relevant audio features are retained [2]. The research teams are us-
ing fingerprints based on the spectrogram analysis [16], music theory [6], and
most recently also experimenting with deep learning techniques to learn and
distinguish musically relevant features [14].

In the search for the best features and fingerprints, it becomes increasingly
difficult to know what features are already available. There are many proposed
methods of extraction, as we can clearly see on benchmarking challenges such
as MIREX1 with over 15 distinct tasks, each requiring a different set of audio
features, and the features changing every year since the first benchmarking in
2005.

1 http://www.music-ir.org/mirex/wiki/MIREX_HOME

c© K. Richta, P. Moravec (Eds.): Dateso 2017, pp. 55–63, ISBN 978-80-01-06138-1.
Czech Technical University in Prague, FEL, Department of Software Engineering, 2017.

56 Ladislav Marš́ık

On the other hand, MIR is an interdisciplinary field and there are not many
institutions worldwide having their own MIR team or laboratory. Therefore it
can be challenging, especially for the young researchers, to join the common
effort and be a part of the MIR project, unless a similar project is hosted by
the researcher’s academic institution. To fulfil the need of onboarding the new
researchers, popularizing the MIR field, giving an overview of the common tech-
niques, and facilitating an open-source system, we have started the harmony-

analyser.org project in 2016 [9].
Analysing harmonies is the main, but not the only aim of the project. The

analysis output (harmony features) can be used for further retrieval easily, e.g.
by employing Dynamic Time Warping (DTW) techniques [13]. We chose to focus
on harmony to honour the fact that a musical piece usually contains multiple
instruments played simultaneously, and the resulting harmony is one of the main
features used for retrieval [6]. But the project is open for analysing melodies,
rhythm, or beat tracking in the future, as well as using the machine learning
approaches instead of the traditional feature extraction.

We continue by introducing the reader to the concepts and related work in
Section 2. The step-by-step manual for the tools with screenshots is presented
in Section 3. The first results obtained by our techniques are summarized in
Section 4 and our future work is discussed in Section 5.

2 Harmony Features and Related Work

Chroma features is a common name for a series of 12-dimensional vectors of
floating-point numbers, capturing the presence of each tone in a short music
moment. They became popular after the works of Fujishima [5] and Bartsch
and Wakefield [1]. Obtained directly from the Discrete-Time Fourier Transform
output by grouping frequencies that belong together in one frequency bin, the
resulting chroma vector has the form:

< cA, cA#, cB , cC , cC#, cD, cD#, cE , cF , cF#, cG, cG# >

where cA ∈ R represents the presence of the A tone, cA# ∈ R represents the
presence of A# tone, etc. The value distribution of cA, cA#, . . . depends on the
algorithm used, but it is a common practice to normalize to [0, 1] interval, where
the value represents the loudness of the frequency bin. We refer the reader to
Bartsch and Wakefield [1] for a detailed definition. One of the motivations for
our work is, that chroma vectors have not yet been studied in terms of distances,
even though the distances in between the chords have long been proposed by
the works in music cognition [7].

Chord progression (a sequence of chord labels) is a familiar concept for mu-
sicians, who often use it to play together in an unrehearsed situation. The idea
of using chord progression itself as a fingerprint for large-scale music retrieval
was proposed by Khadkevich and Omologo [6], improving the state-of-the-art
cover song identification results in 2013. The progression can be represented as

Analysing Musical Pieces Using harmony-analyser.org Tools 57

a sequence of strings (C, F6, Gmaj7, ...), or boolean vectors similar to chroma
vectors.

Chord distance is a concept based on the acknowledged music cognition find-
ings: the listeners perceive the differences in chords in a way that can be pre-
dicted by a formal tonal harmony model. Fred Lerdahl’s Tonal Pitch Space (TPS)
model [7] was proposed and backed up by the empirical studies. This concept
was further studied by several MIR authors [4] [12] [15], combining the cognitive
and computational chord distances. A thorough review of the available chord dis-
tances was assembled by Rocher et al. [15]. Notably, the TPS distance performed
the best in the studies for the chord estimation or cover song identification tasks
[12] [15].

3 Usage of Harmony Analyser Tools

In harmony-analyser.org project, we provide GUI tools published as executable
JAR archives, to allow for a custom harmony analysis of WAV or MIDI input.
The tools itself are using the JHarmonyAnalyser Java library, which we describe
in details in the more technical report [9]. To achieve a high variety of analysis, we
also incorporated GPL-licensed Vamp plugins2 to the GUI tools. The advanced
users can customize their analysis by downloading additional plugins or creating
their own.

In this section we focus on a simple use case of running the tools to get a
simple analysis of the MIDI keyboard input and WAV files. We also describe the
differences from the other systems and possible usages for the research along the
way.

3.1 Chord Transition Tool

When the application starts, the default tool selected is the Chord Transition

Tool (see Figure 1). The user can either use the MIDI keyboard plugged in
via the USB port, or use a text input field, to specify two chords. The added
value compared to other common MIDI software is a list of functions and chord
distances, based on the tonal analysis (described in more details in [10]). The
fact that the chord can have multiple functions in music is commonly accounted
for in the works on musicology, but less frequently in the MIR works. This is one
of the many examples of a gap between MIR and musicology, which should be
addressed, as pointed out by Lewis [8]. Chord Transition Tool shows the chord
and all of its tonal functions, and the user can observe various chord distances
(Chord Complexity Distance [10], or TPS Distance [7]) as seen on Figure 1,
which gives him a good overview for developing advanced tonal features.

3.2 Visualization Tool

After the user is familiar with chordal analysis described in the previous section,
the next step is to observe the chords, chord distances, or chroma vector distances

2 http://vamp-plugins.org

58 Ladislav Marš́ık

Fig. 1. Chord Transition Tool: capturing the MIDI input and outputting the chord
labels, functions and the chord distances. C major and G major chords are analysed.

Analysing Musical Pieces Using harmony-analyser.org Tools 59

extracted from the real audio. We offer the Visualization Tool (see Figure 2) to
visually understand how the labels and distances can help analysing a musical
piece. In the musical piece analysis on Figure 2 (Hallelujah by Bastian Baker)
we have time in seconds on the x axis, and chord distance values of each pair

of the subsequent chords on the y axis. This is one of the song fingerprints that
we experimentally studied. In the given analysis, the chord distance time series
represents a typical curvature of the harmony movement in the piece. The local
peaks around 30th or 80th second represent the transition between Ami and
F chords. The peaks after the 150th second represent the same transition with
the singer performing vocal ornaments in the last verse, yielding a higher (more
complex) chord distance value, since the voice is accounted for in the chord
estimation.

The same chart visualization can be shown for each plugin that extracts the
values in the form of a time series (e.g. chroma vector distances), or labels with
a timestamp (chord or key detection). Some plugins will output column charts,
such as Average Chord Complexity Distance [11] on Figure 2. We have shown
how these averaged features improve the music genre detection in one of our
previous studies [10].

3.3 Audio Analysis Tool

The last step of the analysis after understanding the harmony features thor-
oughly, is to apply the chosen analysis on a folder with WAV files. This can be
achieved by the Audio Analysis Tool (Figure 3). The plugins are categorized in
the plugin groups (Vamp plugins, Chord analyser, Chroma analyser) and the
details and parameters of the selected plugin are shown. After hitting the Anal-

yse button, the tool creates text files with the analysis results in the selected
folder. These can be used as an input for another analysis plugin, or an input
for a retrieval technique. There is also an additional Post Processing tab that
serves various purposes, such as applying a smoothing filter to a time series. The
additional tabs can also be helpful for importing or exporting other file types,
so that the application can be used for various projects. As an example, The
Million Song Dataset from Bertin-Mahieux et al. [3] uses HDF5 files, and by
providing a conversion to text files the dataset can be used easily with Audio
Analysis Tool.

4 Summary of Results

The tools from harmony-analyser.org have already been tested on various MIR
tasks. We have gathered an average chord complexity distance and used this
average for the genre detection, as one of the features for the neural network
method. The usage of the feature yielded to 4% precision improvement for the
dataset of 100 musical pieces [10].

60 Ladislav Marš́ık

Fig. 2. Visualization Tool: Analysis of Hallelujah by Bastian Baker is shown, containing
results for Chord Complexity Distance, TPS Distance, and three types of averages for
Chord Complexity Distance [11].

Analysing Musical Pieces Using harmony-analyser.org Tools 61

Fig. 3. Audio Analysis Tool: selecting a folder with WAV files and choosing a desired
plugin for analysis.

62 Ladislav Marš́ık

The chord distance time series were tested on both covers80 dataset3 and a
subset of SecondHandSongs dataset4 (999 songs), on a cover song identification
task using DTW method [12]. The results show that TPS distance have outper-
formed Chord Complexity Distance in the MAP (Mean arithmetic of Average
Precision) score. Overall, the usage of a chord distance time series means a loss
in the MAP score compared to more low-level features: from 0.482 (full chroma
features) to 0.198 (TPS distance) for covers80 dataset, but it comes with a more
than a two thousand times faster performance (56s versus 25ms execution time
for DTW matrix calculation of 80 songs).

The chroma vector distances were tested on the same datasets and task. The
results were comparable to the results of a TPS chord distance (0.174 MAP
score), which is promising for a first feature of this type.

These experiments show that the chord or chroma vector distance features
do not provide enough information on their own for the retrieval, but if used
properly in the combination with more low-level features, they can improve the
performance.

5 Conclusion and Future Work

The harmony-analyser.org tools can be used for a musical piece analysis, feature
extraction from audio files, or as a basis for further research and retrieval. They
contain a variety of plugins for analysis, giving a thorough overview of what
harmony features are currently available. The tools are also extensible in the way
that new plugins can be downloaded or developed. We provided an overview of
the usage of the main tools, and the summary of the achieved results, showing
the ways to enhance the algorithms for MIR tasks.

Our latest ideas were to utilize the concepts of chord and chroma vector
distances differently. Rather than a stand-alone time series, we will be experi-
menting with using the distances in DTW calculation (comparison of two vectors
done by the chord or chroma vector distance instead of the Euclidean distance).
We also plan to include more types of chord distances in our tools to get a thor-
ough comparison. Last but not least, we will continue to present the tools in the
open-source community, to get more developers for the project, with the overall
aim to make harmony-analyser.org an all-in-one music retrieval system.

Acknowledgments. The study was supported by the Charles University in
Prague, project GA UK No. 1580317.

Bibliography

1. Bartsch, M.A., Wakefield, G.H.: To Catch a Chorus: Using Chroma-Based Repre-
sentations for Audio Thumbnailing. In: IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics. WASPAA 2001 (2001)

3 https://labrosa.ee.columbia.edu/projects/coversongs/covers80
4 https://labrosa.ee.columbia.edu/millionsong/secondhand

Analysing Musical Pieces Using harmony-analyser.org Tools 63

2. Bertin-Mahieux, T., Ellis, D.P.W.: Large-Scale Cover Song Recognition Using
Hashed Chroma Landmarks. In: IEEE Workshop on the Applications of Signal
Processing to Audio and Acoustics. WASPAA 2011, IEEE (2011)

3. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The Million Song
Dataset. In: Proceedings of the 12th International Society for Music Information
Retrieval Conference. ISMIR 2011 (2011)

4. De Haas, W.B., Veltkamp, R., Wiering, F.: Tonal Pitch Step Distance: A Sim-
ilarity Measure for Chord Progressions. In: Proceedings of the 9th International
Conference on Music Information Retrieval. ISMIR 2008 (2008)

5. Fujishima, T.: Realtime Chord Recognition of Musical Sound: A System Using
Common Lisp Music. In: Proceedings of the International Computer Music Con-
ference. ICMC 1999 (1999)

6. Khadkevich, M., Omologo, M.: Large-Scale Cover Song Identification Using Chord
Profiles. In: Proceedings of the 14th International Society for Music Information
Retrieval Conference. ISMIR 2013 (2013)

7. Lerdahl, F.: Tonal Pitch Space. Oxford University Press, Oxford (2001)
8. Lewis, R.J., Fields, B., Crawford, T.: Addressing the Music Information Needs of

Musicologists. In: Proceedings of the 16th International Society for Music Infor-
mation Retrieval Conference. ISMIR 2015 (2015)

9. Marsik, L.: harmony-analyser.org - Java Library and Tools for Chordal Analysis.
In: Proceedings of 2016 Joint WOCMAT-IRCAM Forum Conference. WOCMAT
2016, Kainan University, Taiwan (2016)

10. Marsik, L., Pokorny, J., Ilcik, M.: Improving Music Classification Using Harmonic
Complexity. In: Procedings of the 14th conference Information Technologies - Ap-
plications and Theory (ITAT 2014). Ústav informatiky AV ČR (2014)

11. Marsik, L., Pokorny, J., Ilcik, M.: Towards a Harmonic Complexity of Musical
Pieces. In: Proceedings of the 14th Annual International Workshop on Databases,
Texts, Specifications and Objects (DATESO ’14). CEUR Workshop Proceedings,
vol. 1139. CEUR-WS.org (2014)

12. Marsik, L., Rusek, M., Slaninova, K., Martinovic, J., Pokorny, J.: Evaluation of
Chord and Chroma Features and Dynamic Time Warping Scores on Cover Song
Identification Task. In: Proceedings of the 16th International Conference on Com-
puter Information Systems and Industrial Management Applications. CISIM 2017,
Springer (2017)

13. Müller, M.: Information Retrieval for Music and Motion. Springer Berlin Heidel-
berg (2007)

14. Pons, J., Lidy, T., Serra, X.: Experimenting with Musically Motivated Convolu-
tional Neural Networks. In: 14th International Workshop on Content-based Multi-
media Indexing. CBMI 2016, IEEE (2016)

15. Rocher, T., Robine, M., Hanna, P., Desainte-Catherine, M.: A Survey of Chord
Distances With Comparison For Chord Analysis. In: Proceedings of the Interna-
tional Computer Music Conference. ICMC 2010 (2010)

16. Wang, A.L.: An Industrial-Strength Audio Search Algorithm. In: Proceedings of
the 4th International Society for Music Information Retrieval Conference. ISMIR
2003 (2003)

Author Index

Janoušek, Vladimı́r, 43

Kaspar, Adam, 21
Kotik, Vojtech, 21
Krejč́ı, Lukáš, 31

Marš́ık, Ladislav, 55

Novák, Jǐŕı, 31

Pavlát, Jakub, 43

Platos, Jan, 21

Quast, Karel, 14

Richta, Karel, 1, 43
Richta, Tomáš, 43

Šebek, Jǐŕı, 1

Valenta, Michal, 14

	Committees
	Preface
	Table of Contents
	Impact of User's Emotion on Software Adaptation
	Jirí Šebek, Karel Richta

	Experiences with Data Lineage Metadata Storing in Relational and Graph Database
	Karel Quast, Michal Valenta

	Parallel Itemset Mining Algorithms – an Overview
	Adam Kaspar, Vojtech Kotik, Jan Platos

	Framework and Automated Prioritization Procedure for Model-Based Testing of Automotive Distributed Systems
	Lukáš Krejcí, Jirí Novák

	Model Transformations via XSLT
	Jakub Pavlát, Karel Richta, Tomáš Richta, Vladimír Janoušek

	Analysing Musical Pieces Using harmony-analyser.org Tools
	Ladislav Maršík

	Author Index

