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I. The IE task

< Identification of words or phrases
of interest in texts

« Kind of semantic (pragmatic)
annotation with:
— labels
— database / ontology instances

e Good for:
— database / knowledge base population
— ... and then for querying over the texts

IE Applications
* Local semantic search
— job offerings, advertisements
— FAQ for judges (—10K questions & answers)
— news servers, e.g. PlanetOnto:
= ontology (people, projects, events etc. + inference rules)
= automatic annotation of new texts (sent by email)
= instances from text fed into ontology’s knowledge base
= structured querying using OCML or forms
* Global semantic search
— Internet-scale annotation
— annotation “bureaus”

= structured querying
= augmented search using the TAP ontology (=)
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* R.V.Guha, Rob McCool: TAP (WWW Conference 2003)

IE types

Is the city Washington named after George
Washington? l instance-of

(named entity recognition, NER)

<p align="left" class="prodbold">MODEL NAME</p>
<p class="prodmain">TREK 850X</p>

<span class="grey">£249.99</span>

<a href="offers.php">0N OFFER FOR</a> £225.00
<span class=tiny><br»*€306 approx</spa

(template IE)
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Il. Methods used for IE

 Symbolic
—assigning the most common sense
(Washington=city)
—induction of context-based rules
(LP2, Rapier, Stalker)
e Probabilistic
—hidden markov models (HMMs)
—maximum entropy models (MEMs)

KIM plugin

http://www.ontotext.com

e Semantic annotation of named entities
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LP2

= Bottom-up induction of context-based rules
by sequential covering of training examples
— positive examples = annotated instances in text
— negative examples = the rest of the text
— rules are generalized using lemmatization, upper/lower
case letters, POS tags, and other categories (p.m. ->
time etc.)
= Types of the induced rules
— tagging (context trigger => “insert tag”)
— correction (context trigger => “move tag”)
= Sequential covering of positive examples
— positive examples covered by a newly induced rule are
removed
— induction continues untill all positive examples are
covered

LP2 - seminar announcements

= 250 annotated announcements (F. Ciravegna, SSSW 2003)
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LP2- seminar results
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. Using HMMs for IE

= HMM - Probabilistic finite state machine
— generative model of text
— model goes from state to state, each time generates 1 word
— for each state we have:
= transition distribution (probabilities of the next state)
= word generation (emission) distribution (word probabilities)
— probabilities of where to start
= Efficient algorithms for determining:
— P(w;..w,|M) = probability of text being generated by model M
— S,..S,, = the most probable state sequence generating that text
— model parameters from training data

Wy, Wy, Wg, Wy, Ws , W
B B P T T S

Simple HMM structure for IE

= 4 state types:
— Background (generates words not of interest),
— Target (generates words to be extracted),
— Prefix (generates typical words preceding target)
— Suffix (words typically following target)

= properties:
— extracts one type of target (e.g. target = bike name),
need to build one model for each extracted type
— one target state cannot model the inner structure of
extracted phrases
— model parameters can all be computed using counts from

labeled training data 1%

Part of an example HMM

« for the CMU seminar task

\_/ 'y

3 prefix states

8 target states

“in the Adamson Hall”
P P T T

From: Freitag, D., McCallum, A.:

HMMs for IE - training

IE with HMM Structures Learned by Stochastic Optimization

= Counts from labeled training data

— paramaters computed directly from counts
(e.g. how many times “hall” is marked as target)

— only if there is always a unique way in the
model that explains the labeling (e.g. cannot
compute parameters for the 8 target states from the
last slide)

» Iterative reestimation (Baum-Welch)

— if there are multiple paths in the model
explaining the labeling of training data

— iterative improvement of parameters,
maximizing the probability of training data




HMMs for IE - variations

= emitting arcs instead of states
= null emissions

= using POS tags (certain states can emit only some
POS tags) [5]

= emitting chunks of words instead of words [5]

= model structure learning [2]
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ke Product IE using HMMs

* Goal

— semantic search application over English
bikeshops in Google directory

— e.g. “which Giant bikes are sold below 200 Euros?”, “where
can | by the cheapest RockMachine Tsunami?”

- Training data
— 100 labeled pages of HTML “product
catalogues”
— from English bike shops in Google directory
— very diverse
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Preprocess

e HTML elements translated into
generalized symbols using an element
hierarchy (constructed ad-hoc)

— e.g. elements <b>, <i>, <em>, <span>, <tt>,
<font>,<strong=>... are grouped and treated as
<styleChange>

e Common HTML constructs translated into
dedicated symbols
— “add to basket”, “submit form”, “choose amount”

* Using only contents of block elements
containing words or images

= Optionally unifying all numbers etc.
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Extracted sl

< Bike model

— name OfteredProduct
— price ::‘:e‘ ‘S‘;‘\;\;
— picture name | Sting
_ category, make, picture | String
— weight, size, color, year iza
« Bike Part

_ fOrk BikeProduct
— frame

— rear derailleur
— front derailleur
— brakes
- ...[12]

BikePart BikeModel




HMM structures used

- Single HMM for all extracted types:
— 1 Background state

—1 Target, 1 Prefix and 1 Suffix state type
for each extracted slot

— =1+3*N states

e 3 variants:
— A. simple model > m
(no internal target structure)
— B. some target states are augmented with

word ngram distributions

— C. some target states are split into several
states 25

Use of word n-grams

= Modification of the generative process

— if the process stays in a target state T for several time
intervals, the next words generated at T are made
dependent on the previously generated words at T

— E.g. the present state is T:

« then, if previous state was also T,
= use P(w;|T,w,;_,) instead of P(w;|T) 6

< Word n-grams used

— smoothed word bigrams and trigrams were tried for
chosen target states

— linear interpolation smoothing used

Splitting target states (1)

= Chosen target states were substituted
with HMM sub-models modelling internal
structure of the extracted type

— sub-models were iteratively re-estimated using the
to-be-extracted word sequences from training data
(via the Baum Welch algorithm)

— number of sub-model states determined empirically
during experiments

— sub-models used for model name and price
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Splitting target states (2)
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-,/ , Butlor, NRS, )m:, nsum, 5, F, Sugar,” .,
ROCKHOPPER, GSR, Track, Comfort, STUMPJUMPER, 26

Splitting target states (3)

= trained 4-state sub-model for bike name

2, Disc, 1, Towr, 3, LE, Z2, 4500,
Rigid, Expert, MENS, 8000,

04, Marin, TREK, Trak, Specialized, A TRAIL, Suspension, 26, 5200,
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Results

= Results were obtained using 10-fold cross-validation
on the labeled set of 100 product catalogues

= Recall and precision are calculated on a per-word
basis

= Bracketed numbers are with word trigram models
enabled for that particular state

= Results for multiple target states will be available

soon
Tag recall precision instances
name |77.9 (75.6) 63.5 [65.6) 927
price |98.9 (00.1) 80.5 (88.9) 071
picture 69.0 20.6 350
speed 86.8 93.6 186
s1ze =3.2 93.7 173

year 98.1 70.0 160
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