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Some questions …
What is Web data clustering ?
Why clustering on the Web ?
What do we mean by “Web data” ?
What type of clustering to apply ?
What are the benefits ?
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Web data clustering - Basics
Organize data circulated over the Web into 
groups / collections in order to facilitate data 
availability & accessing, and at the same time  
meet user preferences
The initial idea was to define the correlation 
distance / similarity measure between any two 
“elements”

Euclidean distance, Manhattan distance, 
cosine distance etc.
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What is Web Data Clustering?

Grouping Web objects into “classes” so 
that similar objects are in the same class 
and dissimilar Web objects are in 
different classes
Discover distribution patterns and 
relationships between data attributes
Employ Unsupervised learning
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Why Clustering on the Web?
some benefits ..

Increasing Web information accessibility
Decreasing lengths in Web navigation pathways 
Improving Web users requests servicing
Improving information retrieval
Improving content delivery on the Web
Understanding users’ navigation behavior
Integrating various data representation standards 
Extending current Web information organizational 
practices
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Types of Clustering on the Web
Hierarchical clustering
Partitional clustering
Probabilistic clustering
Graph-based clustering
Fuzzy clustering
Neural Network based clustering
Hybrid approaches
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Clustering practices

Web server Log files
Sessions identification

Users clustering/grouping
Pages clustering/grouping
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What do we consider as “Web data” ?
Web documents

A collection of Web Pages (set of related Web resources, such 
as HTML files, XML files, images, applets, multimedia 
resources etc.) 

Users’ navigation sessions
The group of activities performed by a user from the moment 
the user enters a  Web site to the moment the same user 
leaves it
The records of users’ actions within a Web site are stored in a 
log file (each record in the log file contains the client’s IP 
address, the date and time the request is received, the 
requested object and some additional information -such as 
protocol of request, size of the object etc.)
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Users Session Identification

Identification of unique users
Users with the same client IP are identical

Identification of sessions
A new session is created when a new IP
address is encountered or if the visiting 
page time exceeds a time threshold (i.e. 30 
minutes) for the same IP-address
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Web logs and definition of  users’ navigation sessions
Web Server Log File: A Web log file is a collection 
of records of user requests for documents on a 
Web site, an example:

216.239.46.60 - - [04/Jan/2003:14:56:50 +0200] "GET 
/~lpis/curriculum/C+Unix/Ergastiria/Week-7/filetype.c.txt HTTP/1.0" 304 -
216.239.46.100 - - [04/Jan/2003:14:57:33 +0200] "GET /~oswinds/top.html
HTTP/1.0" 200 869
64.68.82.70 - - [04/Jan/2003:14:58:25 +0200] "GET /~lpis/systems/r-
device/r_device_examples.html HTTP/1.0" 200 16792
216.239.46.133 - - [04/Jan/2003:14:58:27 +0200] "GET /~lpis/publications/crc-
chapter1.html HTTP/1.0" 304 -
209.237.238.161 - - [04/Jan/2003:14:59:11 +0200] "GET /robots.txt HTTP/1.0" 404 
276
209.237.238.161 - - [04/Jan/2003:14:59:12 +0200] "GET /teachers/pitas1.html 
HTTP/1.0" 404 286
216.239.46.43 - - [04/Jan/2003:14:59:45 +0200] "GET /~oswinds/publication

http://www.csd.auth.gr
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Problems with the Web logs processing

not adequate/detailed info is provided
there is no info about the content of the 
pages visited
too many log records due to the visiting 
of image files, etc
incomplete log recording due to the 
request servicing by proxies
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Some Practices (I) : Data Cleaning
Data Cleaning: removes log entries that are not 
needed for the mining process

e.g. Images, css files etc

Typically, log entries are filtered: 
Log entries with filename suffixes such as gif, jpeg,
jpg
The page requests made by the automated agents 
and spider programs
The log entries that have a status code of 400 and 
500 series
POST data (i.e. CGI request)
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Some Practices (II) : Page Visiting Time Evaluation

Why evaluating visiting page time?
The time spent on a page is a good measure 
of the user's interest in that page, 
providing an implicit rating for that page

Page Visiting Duration : Time difference 
between consecutive page requests
Drawback : some users are left to a page 
because they have completed a search and 
they no longer wish to navigate
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Some Practices (II) : Heuristics
Session Identification: groups users’ page references 
into user sessions based on some heuristics :

Heuristics based on IP, and session time-outs  (i.e. 30 
minutes) used to identify unique user sessions 
Intra-session transactions can be obtained based on a model 
of user behavior (involves classifying references as “content”
or “navigational” for each user)
Weights are assigned to each Web page based on some 
measures of user interest (e.g., duration of viewing a Web 
page)
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Why clustering users navigation sessions ?
Clustering users’ navigation sessions : Groups together a set 

of users’ navigation sessions having similar 
characteristics

User Grouping
•Discover  groups of users 
exhibiting similar browsing 
patterns

Web Page Grouping
•Discover groups of pages 
having related content
•based on how often URL 
references occur together 
across user sessions

benefits
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Clustering users’ navigation sessions – benefits (1)
Users grouping helps to discover groups of 
users with similar navigation patterns 

Provide personalized Web content
Web personalization

Any action that adapts the information or services provided by 
a Web site to the needs of a particular user (or a set of users)

Benefits
discover the preference and needs of individual Web users in 
order to provide personalized Web site for certain types of 
users
examine general user navigation patterns in order to 
understand how general users use the site

Web clustering, by A. Vakali, Prague, May 13th 2004 21

Clustering users’ navigation sessions – benefits (2)

Provide information about :
What are the set of pages frequently accessed together 
by Web users?   (frequent itemsets)
What page will be fetched next? (association rules)
What are the paths frequently traversed by Web users?  
(sequential patterns)

Clustering Web users’ sessions are useful:
To improve Web site design
To develop prefetching and Web caching policies
To recommend related pages
To collect business info about Web users behavior 

Applications : e-commerce, e-learning, e-Gov
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A generic Clustering approach for users’ navigation sessions

1. Determine the attributes to be used to 
estimate similarity between users’ sessions, or 
determine the users’ session representation

2. Determine the “strength” of the relationships 
between the attributes, or a similarity 
measure (correlation distance)

3. Apply  clustering algorithms to determine the 
classes/clusters to which each user session 
will be assigned
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Clustering users’ navigation sessions : An overview

Server Logs & Other
Click-Stream Data

Site Files

Users’ Navigation Sessions

Frequent Itemsets

Usage Communities
Usage Profiles

Data Cleaning
Session Identification

Data Cleaning
Session Identification

Data Preparation

Sessions ClusteringSessions Clustering

Association-Rule
Discovery

Association-Rule
Discovery

Usage Mining

Domain Knowledge
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Algorithms for Sessions Clustering
Similarity-based clustering

• Parameters: distance functions, number k of 
clusters

• Approaches
– Hierarchical – e.g. determine a hierarchy of 

clustering, merging always the most similar 
clusters 

– Partitional - Determine a “flat” clustering 
into k clusters (with minimal costs)

Model-based or Probabilistic clustering
• Parameters: number k of clusters
• Determine a probability model for each cluster
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Similarity-based session Clustering (I)
Originally, sessions clustering efforts considered sessions as un-
ordered sets of “clicks”, where the number of common pages 
visited was a similarity indication between sessions (measures 
used : Euclidean dist., cosine measure, Jaccard coefficient etc).
Later on, it was recognized that the order of visiting pages is 
important, since for example visiting a page A after a page B is
not the same information as knowing that both A and B belong to 
the same session.  In this context, we have the : 
Sequence Alignment Method (SAM) [Hay01, Wan02], where 
sessions are chronologically ordered sequences of page accesses.

• SAM measures similarities between sessions, taking into 
account the sequential order of elements in a session.  

• Define : Web pages similarity (based on the URL “token”) and 
then, sessions similarity (dynamic programming method to 
match related sessions – scoring function). SAM distance 
measure between two sessions is defined as the number of 
operations that are required in order to equalize the 
sessions. 
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Similarity-based session Clustering (II)
Clickstream analysis (recent work in [Kot03]) – how to evaluate 
similarities between two clickstreams ? 

• edit (or Levenhstein) distance : cost of transformations that 
result in two clickstreams to be identical

• LCS (Largest Common Subsequence) : length of the largest 
subsequence common between two clickstreams

• Similarity between 2 clickstreams requires finding 
similarity/distance between 2 page views. Since semantic 
analysis is not possible, the degree of similarity between two 
page views is proportional to their relative frequency of 
cooccurrence. 

Generalization-based clustering [Fu99]
• Uses page URLs to construct a hierarchy, for categorizing 

the pages (partial ordering of Web pages, leaf is the Web 
page file, non-leaf nodes are the general pages). 

• Then, the pages in each user session are replaced by the 
corresponding general pages and clustered using the BIRCH 
algorithm.
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Probabilistic session Clustering (I)
Assume a model for each cluster (the number of cluster is pre-
determined) and find best fit of models to data using the 
Expectation-Maximization (EM) algorithm (originally EM 
proposed by [Dem77]
Each cluster is modeled by a finite-state Markov model with a 
number of parameters:

• Markov models popular to characterize probability of 
referencing page i after page j

• e.g. First-order Markov Models or higher order Markov 
Models, HMMs (Hidden Markov Models) etc. [And02, Bal03, 
Cad03, Des01, Sar00, Sen03, Smy99]

The number of clusters is determined by using:
• BIC (Bayesian Information Criterion)
• Bootstrap methods or cross-validated likelihood using re-

sampling ideas
• Bayesian approximations
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Model-based (Probabilistic) Clustering
Model-based (or Probabilistic) Clustering Methods

optimize the “fit” between the given data and a
mathematical model
based on the assumption that the data are generated 
from a probability distribution

Model-based (Probabilistic) clustering problem
Find the model structure
Find the model parameters for the structure that best 
fit the data
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Generative Mixture-Based Cluster Model
Draw an individual i from the overall population.

The individual is assigned to one of K clusters               , 
with probability p(ci=k),                                     where ci
indicates the cluster membership.

Each cluster k,               ,  has a data generating model    
where Θk are the parameters of pk

Di now generated for an individual by                
once cluster membership ci=k is known and given Θk.

( ) Kkkcpk i ≤≤=∑ = 1,1
Kk ≤≤1

( )Θkk Dp

( )Θkik Dp

Kk ≤≤1
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Model-based(Probabilistic) Clustering over Web Log Data

Clustering user sessions according to the amount 
of time spent on common pages
When a user arrives at a Web site, his/her session 
is assigned to one of the clusters with some 
probability
Given that a user’s session is in a cluster, his/her 
next request in that session is generated 
according to a probability distribution specific to 
that cluster
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Web browsing example (I)

Each individual has a set Di={s1,s2,…,sni} where each s is a 
sequence that represent the observed record of page 
requests for individual i and the different sequences 
represent the different sessions.

User 1 Session 1
Session 2

2
3

3
3

2
3

2
1

3
1

3
1

3 1 1 3 1 3 1 3

User 2 Session 1 7 7 7 7 7 7 7 7

User 3 Session 1
Session 2
Session 3

1
5
1

5
1
3

1
1
3

1
5
1

5

5

1

1

1

1

1 1 1 1 1 1 1

Web clustering, by A. Vakali, Prague, May 13th 2004 32

EM-Based Clustering Algorithm for Clustering 
Individuals [Cad03]

Consider N individuals each having a data set Di . Let each Di
consist of ni observations dij. Each dij represents another 
smaller data subset.
According to the generative cluster model each i has a pdf:           
where Θ={Θ1,Θ2 ,…,Θk}

and each ci is the cluster identity of the i th individual
Assuming that the observations are conditionally 
independent, the prob. that i belongs to ci is

( ) ( )Θ=Θ cDpcDp
i

iii ,

( ) ( )∏ Θ=Θ
=

n
cdpcDp

i

ij
ijii

1
,
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Web Browsing example (II)

Given the definition of the likelihood function, the 
EM procedure becomes:
repeat

E step: a straight-forward evaluation of class conditional 
probability for each individual under each of the K 
cluster models using values of parameters Θ. 
M step: update parameters Θ to obtain maximum 
likelihood or maximum a posteriori  parameter (MAP)

until a condition is satisfied 
– // e.g. a convergence criterion like difference between 

two successive values of MAP
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Document-oriented approaches for 
Clustering on the Web  

Clustering of Web documents helps to discover groups of pages 
having related content
Web communities

A set of Web pages that link to more Web pages in the 
community than to pages outside of the community
A web community enables web crawlers to effectively focus on
narrow but topically related subsets of the web.

Logical document
A set of Web pages with similar content

Benefits
Improves Web information retrieval (e.g. search engines)
Improves content delivery on the Web
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Compound Documents (I) 
Techniques used to recognize and group hypertext nodes 
into cohesive documents can improve information retrieval 
results.

Compound documents: A compound document is a set of 
URLs that contains at least a tree embedded within the 
document. Most compound document hyperlink graphs are 
either strongly connected or nearly so.  
Necessary condition for a set of URLs to form a compound 
document : their link graph should contain a vertex that has 
a path to every other part of the document
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Compound Documents structure
Compound documents are commonly found to contain at least 
one of the following graph structures within their hyperlink 
graph

linear paths: There is a single ordered path through the 
document, and navigation to other parts of the document are 
usually secondary (e.g. news sites with next link at the bottom)
Fully connected: These types of documents have on each 
page, links to all other pages of the document (e.g. short 
technical docs and presentations)
Wheel documents: They contain a table of contents and have 
links from this single table of contents to the individual 
sections of the document (toc is a kind of “hub” for the 
document)
Multi-level documents: Complex documents that may contain 
irregular link structures such as multilevel table of contents  
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Heuristics for compound documents identification

Hierarchical structure of URLs
They reflect the intention of page authors and they 
can lead to potential compound documents
Page contents
This approach analyzes the contents of pages in order 
to detect logical information units
Link structure
Graph theoretic properties can clue to detecting 
strongly related pages
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Logical Info Units on the Web
A set of Web pages with similar content.
Then, a data unit for the Web data retrieval 
should not be a page but a connected subgraph
corresponding to one logical document 
Introduce the concept of route links [Taj99], 
then rank minimal subgraphs under a given 
query and consider distribution of query 
keywords within subgraphs
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The idea of Web Communities

Web communities were proposed [Gre04] on the basis of the evolution
of an initial set of hubs and authorative pages, such that the behavior of  
users is captured with respect to the popularity of existing pages 
for  the topic of interest
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identifying collections of web communities

Hyperlink Induced Topic Search Algorithm 
(HITS - Google's Approach)
Graph cuts and partitions
Maximum Flow and Minimal Cuts
PageRank algorithm
Other methods :

Bibliometric methods: They define a notion of 
similarity for pages that do not directly link to one 
another
Bipartite cores: They consist of pages that have high 
bibliographic metrics with respect to each other
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Clustering web pages – A probabilistic based 
approach (I)

Link Graph 
[Zhu02]:

an example
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Clustering web pages – A probabilistic based 
approach (II)

building Markov Models from Web Log Files
Markov model: <S, Q, L>

S - state space containing all the nodes in link graph
Q - matrix of 1-step transition probabilities between nodes
L - initial probability distribution on the states in S
m-order Markov chain

• the next page is dependent only on the last visited m pages
m-order n-step Markov chain

• the n-th page to be visited in the future is dependent only on 
the last visited m pages
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Clustering web pages – A probabilistic based 
approach (III)

Using Markov Models for Link Prediction
Link prediction is based on a m-order n-
step Markov chain

given visited m pages, calculate the probability 
of visiting page a within the next n steps
the probability: weighted sum of probabilities 
of visiting  page a at 1st to n-th step
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EDBT Workshop Chairs : J. Pokorny – A. Vakali
Contribution (1)

Web sources clustering
Web sources structured under a schema (XML-
oriented)
Schemas define the object domain of a source (e.g., 
Books, Movies) and its query capabilities
Goal: Clustering Web sources by their schemas (e.g.
attributes in query interfaces)

Similarities and clustering framework definition
Tree structural similarities (e.g. tree edit distances)
Contextual similarities of Web pages based on the 
hyperlink structures
Pattern modeling framework definition
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EDBT Workshop Contribution (II)

Web logs - selective clustering &  
dissemination

Selective dissemination of information
Clustering Web query logs for flexible and 
productive query systems
Representing Web sources with feature spaces

Documents-based clustering
Extracting knowledge from the content of the Web 
document (the location and frequency of words 
occurring in a Web document)
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Our Research Group Focus on…

Clustering Web users Sessions
Develop a probabilistic validation algorithm for 
Web users’ clusters
Develop a novel probabilistic clustering 
algorithm for Web users’ sessions

Web prefetching
Identify “Web Page Communities” (using graph-
based clustering algorithms) from a popular 
Web site
Clustering Web documents using XML standard
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