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1. Introduction 
The development of information systems (IS) in the last two decades has been often 

characterised as the „information backlog“. The users keep complaining: „We never get what 
we want. And if we eventually get it, it is always too late“. And the designers of IS answer: 
„They (the users) never know what they want. They keep changing their demands and they 
never express them exactly“. As a way out from this crisis many CASE products have been 
offered and available in the market, declaring the ability of „miraculously“ fast creation of an 
indubitably „correct“ information system. As a matter of fact, these products make it possible 
to rapidly create a prototype of the system, which in itself does not solve the problem. CASE 
products are good tools for the rapid design and coding of the IS, but as an every tool they can 
be useful only when we know how and why to use them. Actually, theoretical approaches to 
conceptual modelling are not applied in the CASE tools available, and the work of 
practitioners is mostly driven by intuition. However, using CASE products properly and 
building a „correct“ IS require a deep understanding of data semantics, i.e. a thorough 
conceptual analysis of IS.  

The creation of IS can be characterised as passing through the following phases (which 
is often called the ‘life cycle’ of the IS): 

• Conceptual analysis (conceptual level) 
In this phase we aim at conceptual understanding and rendering the modelled part of 
reality (the Universe of Discourse; UoD). We try to find out which information about 
which objects of interest the IS should keep and provide, and in which way should the IS 
manipulate the data. The result of this phase is the conceptual schema (model) of the 
organisation together with the specification of the functions that the system should 
perform. Conceptual schema should be totally independent of the intended DBMS 
(database management system) and intelligible for users. 

• The design of IS (logical level) 
In this phase we design a (logical) database schema of the system that should still be 
independent of the concrete DBMS  in which it will be implemented. However, the logical 
database schema is partly determined by a data model (nowadays actually exclusively a 
relational one) that the desired DBMS is supposed to be a kind of. The specification of the 
functions is made more detailed with respect to the designed database schema, but we still 
concentrate on the problems of what the given program shall perform without saying how 
will it be performed. 

• Implementation and debugging (physical level) 
The designed database schema is implemented in the chosen DBMS and the specified 
programs are coded. After debugging the resulting product is ready to be installed in the 
organisation.  

• Usage and maintenance 
This is the concluding phase of the system life cycle. If the previous phases were not 
performed correctly and their results were not thoroughly documented, fatal problems 
appear in this phase that may depreciate the efforts of the whole work. 

The phase of the conceptual analysis of the system has been traditionally neglected or 
underestimated, though it is just this stage that is crucial for the development of the whole 
system. The majority of errors have their origin in wrong conceptual decisions and they are 
just these errors the correction of which is very difficult not to say impossible. Another 
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consequence of underestimating a thorough conceptual analysis is the fact that the resulting 
system is „stiff“, not adaptable to permanently changing user requirements. 

Yet in the last few years a shift of research interests is observable: from the „classical“ 
record-oriented database models, the typical representative of which is the relational data 
model [Codd 1970] with its rich mathematical-logical theory, to the semantic data models 
[Chen 1976], [Abiteboul 1987], [Hull 1987], [Hammer 1981], [Becker 1998a, b, c] and 
object-oriented data models [Alagic 1999], [Cattell 1997], [Halpin 1998], and we can even 
say that generally a formal work on conceptual modelling is gradually becoming a hot topic 
nowadays. This work can be characterised as a contribution to this topic. To summarise our 
goals we now quote from [Halpin 1998] (emphasises MD): 

Conceptual modelling language criteria  
A modelling method comprises a language and also a procedure for using the language 

to construct models. Written languages may be graphical (diagrams) and/or textual. 
Conceptual models portray applications at a fundamental level, using terms and concepts 
familiar to the application users. In contrast, logical and physical models specify underlying 
database structures to be used for implementation, and external models specify user 
interaction details (e.g. design of screen forms and reports). The following criteria provide a 
useful basis for evaluating conceptual modelling methods. 

• Expressibility 
• Clarity 
• Semantic stability 
• Semantic relevance 
• Validation mechanisms 
• Abstraction mechanisms 
• Formal foundation 

The expressibility of a language is a measure of what it can be used to say. Ideally, a 
conceptual language should be able to model all conceptually relevant details about the 
application domain. This is called the 100% Principle [ISO 1982]. HIT (see Chapters 3 − 5) 
and ORM (see Chapter 2) are primarily methods for modelling and querying an information 
system at the conceptual level, and for mapping between conceptual and logical levels. The 
focus is on data modelling, since the data perspective is more stable and it provides a formal 
foundation on which operations can be defined. 

The clarity of a language is a measure of how easy it is to understand and use. To begin 
with, the language should be unambiguous. Ideally, the meaning of diagrams or textual 
expressions in the language should be intuitively obvious. The language notations should be 
easily learnt and remembered. 

Semantic stability  is a measure of how well models or queries expressed in the 
language retain their original intent in the face of changes to the application. 

Semantic relevance requires that only conceptually relevant details need to be modelled. 
Any aspect irrelevant to the meaning (e.g. implementation choices, machine efficiency) 
should be avoided. This is called the Conceptualisation Principle [ISO 1982]. 

Validation mechanisms are ways in which domain experts can check whether the model 
matches the application. For example, static features may be checked by verbalisation and 
multiple instantiation, and dynamic features may be checked by simulation. 
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Abstraction mechanisms are ways in which unwanted details may be removed from 
immediate consideration. This is especially important with large models.  

A formal foundation  ensures that models are unambiguous and executable. One 
particular benefit is to allow formal proofs of equivalence and implication between alternative 
models for the same application. 

The core of this work can be characterised as describing the HIT data model which, in 
our opinion, meets all the above criteria. 

A possible objection to the presented work could be formulated as follows: It is not 
quite clear how to classify it within the system of mathematical/logical disciplines. It does not 
concern pure (philosophical) logic nor the theory of databases as commonly conceived. From 
this point of view it is rather an interdisciplinary work. I would like to show that this 
interdisciplinary character, though being apparently a negative feature, actually corresponds 
well with current trends in logic as well as in the database theory. Moreover, applying these 
new modern trends from both disciplines brings some promising assets.  

The study is organised as follows: First, after a brief survey of current semantic 
(conceptual) data models in Section 2, Section 3 provides a critical description, comparison 
and in a way integration of two approaches to the problem of conceptual modelling: the 
‘Finnish school’ represented by the COMIC system [Kangassalo 1993] for conceptual 
modelling and the ‘Czech school’ represented by the HIT data model [Zlatuška 1986], [Duží 
1986, 1992, 1997, 1999]. Both the approaches have much in common. They can be 
characterised as a contribution to the theory of conceptual modelling. They both stress the 
importance of users involvement in the conceptual analysis of the system based on the careful 
analysis of natural language expressions describing the objects of interest. They both 
concentrate on the relatively stable and in a way basic part of the system, namely the concepts 
of the objects the data of which will be recorded (data analysis), leaving the description of the 
permanently changing „behaviour“ of the system (functional analysis) as a secondary problem 
prior to which is the conceptual description of data structures. Afterwards, Section 4 deals 
with the problem of semantic information connected with data. This section is partly taken 
over the [Duží 1991]. Nevertheless, many ideas have since 1991 ‘gurgled out‘ and some 
results and proofs have been corrected. In our opinion a solid theoretical background is still a 
lacking point of the majority of conceptual data models, and since the HIT data model is the 
(only ?) one that does not suffer from this theoretical / logical disregard, we did not hesitate to 
partly repeat this part of [Duží 1991], not only for the completeness. We introduce and use 
rigorous theoretical tools for studying the semantics of general data structures in the context 
of conceptual modelling. Using just one modelling construct ⎯ HIT attribute ⎯ that via 
generalisation of usual functional constructs covers all the ‘classical’ constructs, makes it 
possible to use functional approach to data modelling based on a unique formal apparatus, 
namely the ‘language of TIL (Transparent Intensional Logic) constructions’ throughout the 
whole study. We develop a solid logical foundation and integrating base upon which a 
theoretical investigation of relative informational capability of general schemata can be based. 
Last but not least, we define a minimum data structure informationally equivalent with a 
general database conceptual system that can serve as a stable ‘kernel’ of the whole system. 
Finally, in Section 5, the methodology of transforming the HIT conceptual schema via the 
Chen’s like E-R schema [Chen 1976] into the relational schema [Codd 1970] in the 4th normal 
form is provided, thus giving a practical means for the database design and implementation. 
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2. Semantic data models 

As stated in Chapter 1, we need to be able to first design a conceptual schema, one that 
accurately and completely defines business rules in a way that our users can understand. This 
conceptual layer is free of implementation details such as database vendor and schema 
implementation (Relational vs. Object-Relational vs. Object-Oriented, etc.). We can then 
express that conceptual knowledge in a somewhat implementation-biased and less abstract 
logical notation. Finally, we express the model in a physical notation. In this fashion, the 
logical and physical schemas are nothing more than an abstraction of the conceptual schema, 
which contains all of the information we need to accurately express the business rules and 
data requirements. We also need to communicate better with the users. For example, say you 
are validating your model with your users using terms like entities, attributes, and 
relationships, or even worse, foreign keys, referential integrity, and tuples, it may happen that 
your users are vigorously nodding while giving you a blank look. Odds are, they don’t have a 
complete understanding of what you are talking about. Most of the time, they won’t even ask 
for clarification. The reason for this is simple: we often use a very obscure language that most 
people don’t understand (or even want to understand). 

What follows is a brief overview of semantic, or better conceptual data models that 
less or more overcome the above described difficulties. We do not intend to give an 
exhausting list of them; there are so many models which are called semantic, that such a task 
would be completely out of the scope of this work. We just want to illustrate the typical 
principles, constructs and building blocks of such models, so as to be able to make a 
comparison and summary. 

2.1. Entity-Relationship model 
The Entity-Relationship (E-R) model, developed by P. Chen [Chen 1976], is perhaps 

the best known of the conceptual and view approaches that has become a standard nowadays, 
and nearly all the available CASE products are based on the E-R methodology with its 
graphical support. Though it is a familiar ground to almost everybody dealing with the 
problems of database modelling, let us very briefly recapitulate the principles of this model. It 
employs only three basic modelling constructs, namely entities, relationships and attributes. 
These are (in E-R) described as follows: 

• An entity is a „thing“ of interest in a database and something that can be clearly defined. In 
other words, it is an object of the real world that can independently exist and that is 
uniquely distinguishable from the others. In the case of an university, examples of entities 
might be a ‘student’, a ‘professor’, a ‘course’, etc. 

• A relationship is an association among two or more entities. For example, ‘a student takes 
courses’, ‘a professor lectures courses’ are associations between student and courses, 
professor and courses, respectively.  

• Attribute is a function assigning to an entity or to a relationship a value that expresses 
some important property or characteristics that can be identified for both an entity and a 
relationship. For example, an id-number of a student could be an attribute of the entity 
‘student’, and the obtained grade an attribute of the relationship ‘student has enrolled in a 
course’. 



 7

These constructs are described in a rather intuitive way, as it is, after all, in almost all 
the current data models. Precise explication and definition will be provided in Section 3.2. 
Semantics are captured by the E-R model in several ways [Storey 1988]. First, each entity 
plays a certain role in a relationship. For instance, a student has enrolled in a course, a course 
is taken by students. Semantics are captured another way through the concepts of an entity set 
(sometimes type) and a relationship set (type). Members of an entity set or a relationship set 
satisfy certain conditions characteristic of that set. In other words, each member of a set has 
certain property by means of which the set is defined. There are, however, situations where 
the E-R model fails to capture semantics. The model does not allow for the representation of 
relationships between two relationships or between an entity and a relationship. When using 
the E-R model, clear identification and distinction of the main constructs is required at the 
very beginning of the design process, which may be sometimes a stumbling block of the 
analysis. Especially determining relationship sets may become difficult; for instance, is a loan 
an entity or a relationship between a person and a thing that has been loaned?  

Each entity has to be uniquely identifiable; to this end an attribute (or a group of 
attributes) has to be assigned to the entity, namely its identification key. There may be several 
candidates for the role of an identification key. For instance, an employee can be identified 
by: 

• first name, surname and the date of birth 
• employee number (in a given organisation) 
• identity card number 
• social security number 

Relationships can be of different types, which is recorded by cardinality ratio (or 
relationship degree), namely 1:1, 1:N and M:N. Our examples are of the type M:N (a student 
can be enrolled in more than one courses, a course is taken by more than one student). The 
cardinality of a relationship is sometimes expressed by statements like ‘an entity of one type 
uniquely determines an entity of another type’ [Howe 1989] in case of the N:1 cardinality (or 
that the former entity is a ‘determiner’ for the latter). The terminology, however, is not 
unique. Some authors use the term ‘functional dependency’, e.g. [Elmasri 1989].  

There are some variants of this basic proposal, increasing the modelling power of the 
model; there may be some participation constraints specified for entities being members of 
relationships. They are partial participation  and total participation. The former expresses the 
fact that the membership of an entity in the relationship is optional, the latter expresses an 
obligatory (mandatory) membership. For instance, the reality in an organisation may be such 
that a department can exist without employees, but an employee has to be taken on a 
department, he cannot be independent. In such a case it is often said that  employees are 
existentially dependent on departments. 

Besides ‘normal’ entity types, as they have been described above, there may also be 
such entity types that are not identified only by their own attributes but also by attributes of 
some other entity. In that case we speak about a weak entity type in contradistinction to the 
strong (regular) entity type. An instance of a weak entity type is identified by being in an 
obligatory relation to the instance of a strong entity type which is called its owner. In other 
words, a weak entity type has always an obligatory membership in the (identifying) relation to 
the strong entity type (its owner), hence it is existentially dependent on its owner. Imagine, 
for instance, an information system in which the data of several companies are recorded and 
each company has its own numbering of employees. In that case employee number is not a 
unique identification of an employee; it has to be identified also by the company. Employee 
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becomes a weak entity and it has an obligatory membership in the relationship ‘employee is 
employed in a company’. 

In some modifications of the model there are possibilities to record the so-called ISA 
hierarchies (or subtypes) of entity types. These relations will be precisely explicated and 
defined in section 3.2.5. Since in E-R literature they are defined only intuitively, let us be 
content for the moment with an informal description. Consider an entity type PERSON with 
attributes identity card number, name, date of birth, address, and so on. But if a person is a 
teacher, it is reasonable (and only in case of a teacher) to consider some other attributes like 
academic degree, or it is reasonable to bind a teacher in relationships like ‘a teacher is 
lecturing a subject’, ‘subjects that a teacher can lecture’, ‘a teacher is a tutor of a student’, etc. 
Students can also have their own special attributes like an average grade, number of credits, 
etc. Hence we introduce new entity types STUDENT and TEACHER into the schema, and 
claim that these types are subtypes of the type PERSON. Such a relation is called the ISA 
relation (from ‘is a’: each professor is a person, each student is a person) and it is reflexive, 
transitive and anti-symmetric. We can also speak about ISA hierarchy of entities ordered by 
this relation. Obviously, entities that are ‘lower’ in the hierarchy inherit attributes of the 
‘higher’ entities. 

Attributes of the basic model proposal are considered to be only atomic, i.e. attributes 
assigning to each entity (relationship) at most one (indivisible) value. Later versions allow to 
use more complex structured attributes composed of atomic ones. They are either aggregated 
attributes or multivalued attributes. A typical example of an aggregated attribute is the address 
of ... which consists of the state, town, ZIP code, street and street number. Such attributes may 
generally form a hierarchical structure (typical for COBOL records). Multivalued attributes 
assign a set of values to an entity (relationship). For instance ‘names of authors of a title’ is a 
multivalued attribute. Both the types of structured attributes may be combined. For instance, 
in a library IS we might have a structure (recorded in a linear way (used in many E-R 
models)): TITLE(...,AUTHORS(FIRST-NAME, SURNAME, NATIONALITY):Multi). 
However, such a modelling structure would not be probably designed in the best way, for it 
breaks the principles of the 3rd (4th) normal form [Ullman 1988], see also Section 5 below. 
The data on authors are hidden under the titles, which may cause difficulties when 
manipulating authors (accessing via authors, updating, etc.). Nevertheless, such structures 
may be in some cases very useful and efficient. 

2.2. IFO model 
The IFO model is a formal semantic database model that has been proposed by S. 

Abiteboul and R. Hull as a formally defined database model that combines fundamental 
principles of semantic database modelling in a coherent fashion.1 Indeed, all the classical 
modelling constructs can be found here, though named in a rather different way. We are going 
to show the correspondence between IFO constructs and classical constructs. Moreover, IFO 
gives a mathematically formal definition of update propagation, and it is shown here that 
(under certain conditions) a correct update always exists. 

The modelling building blocks of an IFO schema are called (object) types and 
fragments. Types model various objects structures of the application domain. Fragments 
represent functional relationships between types. ISA relationships are defined in fragments 
by either generalisation or specialisation. IFO schemas are directed graphs that are built by 

                                                           
1 See [Abiteboul 1987] 
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combining fragments. Now we briefly describe these particular building blocks, and 
afterwards mention the update semantics in the IFO model. 

2.2.1 Object types 

The basis of any IFO schema is the representation of the various object structures, 
called types. There are three kinds of atomic types and two constructs for recursively building 
derived types. 

One of the three atomic types is called printable, and it basically corresponds to a value 
type of the E-R model or a descriptive sort of the HIT model. In an IFO schema this type is 
indicated using a square node with the name of the type in it. The types that can be considered 
depend, of course, on the application (e.g. STRING, INTEGER, REAL, BOOLEAN, ...). The 
node is also provided with a name or label, like NAME, NUMBER, ... 

The second atomic type is called abstract, and corresponds to an entity type or entity 
sort of the E-R model, HIT model, respectively. Informally it can be described as a set of 
objects in the real world that have no underlying structure (at least from the point of view of a 
designer or user). For instance the type PERSON is typically viewed as having no underlying 
structure though it may have many attributes and subtypes. This kind of object structure is 
represented in the schema by a diamond with an associated name. A domain of this type is a 
finite set of abstract symbols corresponding to particular instances, i.e. objects of the real 
world (people in our example). 

The third (and last) atomic type is called free, and corresponds to the set of entities 
obtained via ISA relationship. Free atomic types can gain their actual type through the ISA 
relationship from other types. For instance the type STUDENT will inherit its structure from 
the type PERSON. Free types are represented in the IFO schema by using an empty circle. 

The first of the two mechanism of building nonatomic derived types consists in forming 
finite sets of objects of a given structure. It corresponds to collection in the Hull, Yap’s 
Format model [Hull 1984] or to grouping clauses in the Hammer, McLeod’s SDM model 
[Hammer 1981]. In the HIT data model set construct is modelled by a type of characteristic 
function in the range of multivalued attributes. For instance a finite set of students enrolled in 
a course (called CLASS) is an ‘object’ having that particular structure. In the schema, this 
type is represented by a ‘star vertex’ (a circle provided with a star inside). 

The other mechanism for constructing new types out of existing ones is Cartesian 
product. This has been called the tuple construct in the HIT model or aggregation, 
composition in the Format model and others. For instance a MOTOR-BOAT is an ordered 
pair of a HULL and a MOTOR. This type is represented by a ‘cross-vertex’ (a circle provided 
with a cross inside). 

2.2.2. Fragments 

The second main structural component of the IFO model is fragment which is the direct 
representation of functional relationships. It basically corresponds to HIT (unary) attributes. 
This representation of functions is closely related to the representation of functions in the 
Functional Data Model [Shipman 1981], with one key difference: In the IFO model a 
distinction is made between vertices serving the role of domain and vertices serving the role 
of range. This permits nested functions to be modelled in the IFO schema and a modular view 
of the IFO schema. Some integrity constraints on functions can be attached to the edge 
connecting two vertices of a fragment, namely total and singular. An example of a fragment is 
‘a class (a set of students) is enrolled in a course’. 
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2.2.3. ISA Relationships 

The final structural component of the IFO model is the representation of ISA 
relationships. Intuitively, an ISA relationship from a type SUB to a type SUPER indicates 
that each object associated with SUB is associated with the type SUPER. This immediately 
implies that each function defined on the type SUPER is automatically defined on SUB, that 
is, functions of SUPER are inherited by SUB. Similarly as in other semantic models, ISA 
relationships are acquired by specialisation and generalisation. Specialisation can be used to 
define possible roles of members of a given type (e.g. a person might be a student, a person 
might be an employee). Specialisation can be overlapping: a person might be both a student 
and an employee. In contrast, using generalisation, distinct, pre-existing types are combined 
to form a new type. It is typical to require that a generalised supertype be covered by its 
subtypes that are disjoint. An IFO graph is a directed acyclic graph, where types are vertices 
and ISA relations are represented by arrow edges; arrow-head points at a supertype and 
arrow-tail at a subtype.  Specialisation is marked by an ‘empty arrow’ and generalisation by a 
‘full arrow’. In specialisation, the type of the vertex is inherited ‘top-down’, from supertype 
to subtype. To prevent a type conflict, the tail (SUB) must be of free type. On the other hand, 
in generalisation, the type of the vertex is inherited ‘bottom-up’. Hence the head must be of 
free type. 

2.2.4. IFO Schemas 

An IFO graph is defined as a directed graph S = (V, E) such that 

(1) E is the disjoint union of three sets EO (object edges), EG (generalisation edges) and ES 
(specialisation edges) 

(2) (V, EO) is a ‘forest’ of fragments called the fragment of S. The roots of the fragments of 
S are called primary vertices. 

Note that the primary vertices of a schema S will identify the types of the entity sets of 
prime interest that are represented by S, and also the top-level functions defined on these 
types. There are some conditions imposed on the specialisation and generalisation edges. To 
express them a concept of a ‘reversal’ graph must be defined first: 

The ‘reversal’ graph of the graph S is the graph (V, ρ(EO) ∪ ρ(EG) ∪ ρ(ES)), where 
ρ(E) is the set {(q,p) | (p,q) ∈ E}. There are five ISA rules defined on this graph: 

ISA1: Each free vertex is either the tail of at least one specialisation edge, or the head of at 
least one generalisation edge, but not both. 

ISA2: For each specialisation edge, the tail is free and the head is primary. 

ISA3: For each generalisation edge, the tail is primary and the head is both primary and free. 

ISA4: There is no cycle in the object definition graph. 

ISA5: Two directed paths of specialisation edges sharing the same origin can be extended to 
a common vertex. 

An IFO schema is an IFO graph that satisfies the five rules ISA1 to ISA5. 
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The following figure (taken from [Abiteboul 1987]) gives a sample IFO schema of a 
vehicle: 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2.5. Update semantics in the IFO model 

Since IFO is one of the first formally defined database models that incorporates 
essentially arbitrary ISA relationships, functions, and object constructions, it provides a 
unique framework in which to study updates. In particular, it allows us to carefully examine 
different ways of update propagation,  i.e. ways in which a modification of the data in one 
part of a database can affect data associated with other parts of a database. Generally 
speaking, IFO provides a strong basis for mathematical analysis of update operations.  

An update on an object is defined as follows: Let R be a type, p a vertex of R, O, O’ 
objects of type R. An update of R at p is one of the following triples: 

(p, O, O’);  a modification (replace object O by O’ at a node p) 

(p, ⊥, O’); an insertion (insert O’ at p) 

(p, O, ⊥); a deletion (delete O at p) 

Some update operations lead to propagational effects, i.e. they change instances residing 
in some other vertices. All of the above specified updates are permitted at the root of a type, 
in which case it has the obvious effect. Second, the update might result from updates 
elsewhere in the schema, and propagate to one or more leaves of the type. We now consider 
how updates directed at the leaves of types might arise. Suppose, e.g., that there are two types 
defined, namely PHONES (a set of valid phone numbers) and CORPORATION (an 
aggregation of CNAME (printable), OWNER (abstract) and PHONES (a set)). If the phone 
number 362-0726 is discontinued, which is specified as (PHONE, 362-0726, ⊥), then it 
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should also be deleted from the instance I of CORPORATION. (According to the IFO 
convention, an instance of a type S is a finite set of dom(S), rather than a single element of 
(S).) Thus if the previous instance contained a tuple [Energy Inc., John, {339-3035, 362-
0726}], the new instance will contain [Energy Inc., John, {339-3035}]. On the other hand, a 
deletion of We-Fix Inc., requested by (CNAME, We-Fix Inc., ⊥) would result in the complete 
removal of the whole We-Fix tuple from I.   

Insertions are not permitted at types leaves. This is because in general there is no way of 
knowing which particular objects in the underlying instance should be modified to reflect the 
requested change. (For instance, which tuples of the overall instance should be affected by an 
insertion of 724-2115 at the PHONE node?) This assumption implies a fundamental 
difference between a replacement on the one hand, and a deletion followed by an insertion on 
the other. 

A single update at one part of a schema may result in several simultaneous updates 
directed at the leaves of some type. For this reason it is important to understand how the 
updates interact with one another. A formal, recursive definition which captures the intuition 
of updates ‘bubbling’ up through a type is given in [Abiteboul 1987]. We conclude this 
discussion by a fundamental result from this work. It states that updates can be applied to 
each leaf of a type separately in any order, or that they can be applied all at once: 

Let S be a non-atomic type and L = {p1,...,pn} be the set of leaves of S. Also,  

let Mi = {(pi, O, O’) for some O, O’} be updates of pi, for 1 ≤ i ≤ n, and let σ be a permutation 
of {1,...,n}. Then for each IFO instance I of S it holds: 

Mσ(n) [Mσ(n-1) [...[Mσ(1) [I]]...]] = ( ∪i=1
n Mi ) [I]. 

 

2.3. SDM Model 

Semantic Database Model (SDM, see [Hammer 1981]) is a high-level semantics based 
database description and structuring formalism for databases. The authors, viz. Michael 
Hammer and Dennis Mc Leod, intended to develop a database model that would enable a 
designer to naturally capture much more of the meaning of a database than it is possible with 
other contemporary (in early 80-ties) database models. SDM has been designed with a 
number of specific kinds of uses in mind. First, SDM is meant to serve as a formal 
specification mechanism for describing the semantics of a database; an SDM schema provides 
a precise documentation  and communication medium for database users. Second, SDM 
provides the basis for a variety of high-level semantics-based users interfaces to a database. 
Finally, SDM provides a foundation for supporting the effective and structured design of 
databases and database-intensive applications systems. Having in mind the above criteria, 
which, in fact, every conceptual schema should meet, the authors stated the following 
essential principles of a database description and structuring formalism: 

(1) The constructs of the database model should provide for the explicit specification of a 
large portion of the meaning  of a database. The semantic expressiveness of classical record-
oriented models is limited; their simple record-like constructs are too close to computer 
viewing the database and too far from users viewing application environment. There is a need 
for structural constructs that are highly user oriented and expressive of the application 
environment.  
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(2) A database model should support a relativist view of the meaning of a database, and allow 
the structure of a database to support alternative ways of looking at the same information. In 
order to accommodate multiple views of the same data and to make the evolution of new 
perspectives on the data possible, a database model must support schemata that are flexible, 
potentially logically redundant, and integrated. For example, an association between two 
entities can legitimately be viewed as an attribute of the first entity, as an attribute of the 
second entity, or as an entity itself. (In the HIT data model we can view it also in a probably 
most natural way as an n-ary attribute; attributes of SDM are, however, only unary.) A 
schema should make all three of these interpretations equally natural and direct. Therefore, 
the conceptual database model must provide a specification mechanism that simultaneously 
accommodates and integrates these three ways of looking at an assignment. A consequence of 
this principle of relativism is that, in general, the database model should not make rigid 
distinctions between such concepts as entity, association and attribute. (Note that this is quite 
a new, revolutionary principle which is not met by most of the other higher-level database 
models, with the exception of HIT, ORM and COMIC, perhaps, see below. Using the E-R 
model, e.g., requires the database schema designer to sharply distinguish among these 
concepts at the very beginning of the design work, and changing the view is very difficult.)  

(3) A database model must support the definition of a schema that is based on abstract 
entities. Specifically, this means that a database model must facilitate the description of 
relevant entities in the application environment, collections of such entities, relationships 
(associations) among entities, and structural interconnections among the collections. 
Moreover, the entities themselves must be distinguished from their syntactic identifiers 
(names); the user-level view of a database should be based on actual entities rather than on 
artificial entity names. 

Following the above described principles the specification of an SDM schema can be 
characterised as follows: 
1) A database is to be viewed as a collection of entities that correspond to the actual objects 

in the application environment. 
2) The entities in a database are organised into classes (types, sorts in other models) that are 

meaningful collections of entities. 
3) The classes of a database are not in general independent, but rather are logically related by 

means of interclass connections (ISA hierarchies and grouping). 
4) Database entities and classes have attributes that describe their characteristics and relate 

them to other database entities. An attribute value may be derived from other values in the 
database. 

5) There are several primitive ways of defining interclass connections and derived attributes, 
corresponding to the most common types of information redundancy appearing in 
database applications. These facilities integrate multiple ways of viewing the same basic 
information, and provide building blocks for describing complex attributes and interclass 
relationships. 

2.3.1. SDM classes 

An SDM database is a collection of entities that are organised into classes which are 
specified by an SDM schema. Classes essentially correspond to types or sorts of other 
database models, but in contradistinction to most of them SDM does not distinguish between 
„entity classes“, „value classes“ and „relationship classes“. Each class in an SDM schema has 
the following features. 
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(1) A class is identified by its class name. Multiple synonymous names are allowed. Each 
name must be unique with respect to all the class names used in a schema. 
(2) The class is a homogeneous collection of its members: the entities of one particular type 
that constitute it. These entities may be: 
• Concrete objects, such as books, readers, authors, etc. 
• Events, such as a loan 
• higher-level entities such as categorisations (e.g. BOOK_TYPES) and aggregations (e.g. 

DEPARTMENTS) of entities 
• values that are syntactic identifiers (strings), such as the class of all the possible names 

(NAMES) and the class of all the possible calendar dates (DATES). 
Following the principle of relativism, an SDM schema does not label a class as containing 
„concrete objects“ or „events“ or „strings“. No such fixed specification is included in the 
schema. 
(3) An optional textual class description describes the meaning and contents of the class.  
(4) A class has a collection of attributes that describe members of that class or the class as a 
whole. Hence SDM, similarly as the other models (with the HIT exception, see Section 3.2.3), 
allows only for unary attributes. There are two types of attributes, classified according to their 
applicability: Member attributes which describe some aspects of each member of a class, and 
class attributes which describe a property of a class taken as a whole. 
(5) The class is either a base class or a nonbase class. A base class is one that is defined 
independently of all other classes in the schema; it can be thought of as modelling a primitive 
entity in the application environment, for example, BOOKS. Base classes are mutually 
disjoint. A nonbase class is one that does not have an independent existence; rather it is 
defined in terms of one or more other classes. In SDM classes are structurally related by 
means of interclass connections. Each nonbase class has associated with it one interclass 
connection. If no interclass connection is present with a class in the schema, the class is a 
base class. There are two main types of interclass connections in SDM: the subclass 
connection and the grouping connection, see below. 
(6)  If the class is a base class, it has an associated list of groups of member attributes; each of 
these groups serves as a logical key (identifier) to uniquely identify the members of the class.  
(7) If the class is a base class, it is specified as either containing duplicates or not containing 
duplicates. The default is duplicates not allowed; in this case all of the member attributes of 
the class taken together can serve as a unique identifier. 

The interclass connections in SDM are specified in very details. They are the subclass 
connections and the grouping connections. The subclass connection specifies that the 
members of a nonbase class S are of the same basic entity type as those in the class C to 
which S is related via the interclass connection. Thus S becomes a subclass of the given class 
C. The very same entity can thus be a member of many classes. In SDM a subclass S is 
defined by specifying a class C and a predicate P on the members of C; S consists of just 
those members of C that satisfy P. Several types of predicate are permissible: 
• A predicate on the member attribute of C can be used: we get an attribute-defined 

subclass. For example we can define a subclass UNIVERSITY-EDUCATED of the class 
PERSON by specifying the member attribute predicate „where Education = ‘university’“. 

• The predicate „where specified“ can be used to define S as a user-controllable subclass of 
C. In this case the definition of S does not identify which members of C are in S; rather the 
membership of S is directly and explicitly controlled by users. Taking an example from 
[Hammer 1981] we can define BANNED-SHIPS as a subclass of SHIPS by a predicate 
„where specified“ which allows some authority to ban a ship from U.S waters, e.g. Of 
course, this case might be handled as the previous one, namely by introducing a dummy 
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member attribute of the parent class whose sole purpose would be to specify whether or 
not the entity is in the subclass. But this would be a confusing method of capturing 
semantics of the application environment.  

• Another possibility to define a subclass is called a set-operator-defined subclass. That is 
using the intersection, union and difference subclass definition primitives. A class 
intersection capability consists in claiming that members of S are just those members of C 
that also belong to two other specified subclasses C1 and C2 of C. For instance the class 
BANNED-OIL-TANKERS can be defined as the subclass of SHIPS that contains 
members common to the subclasses OIL-TANKERS and BANNED-SHIPS. A union 
subclass S contains those members of C that are either in the subclass C1 or in the subclass 
C2. For instance class SHIPS-TO-BE-MONITORED can be defined as a subclass of 
SHIPS with the predicate „where is in BANNED-SHIPS or is in OIL-TANKERS-
REQUIRING-INSPECTION“. A difference subclass contains those members of C that are 
not in C1. For example SAFE-SHIPS can be defined as those ships which are not in 
BANNED-SHIPS.  

• The final type of defining a subclass is called an existence subclass. In this case the 
subclass S consists of those members of C that are currently values of some attribute A of 
another class C1.   

The grouping connection allows for the definition of a nonbase class, called a 
grouping class G, whose members are of a higher-order entity type than those in the 
underlying class U. A grouping class is second order, in the sense that its members can 
themselves be viewed as classes whose members are taken from U. There are again several 
possibilities of defining a grouping class: 
• The grouping class G is defined as consisting of all classes formed by collecting the 

members of U that have a common value of one or more designated member attributes of 
U (an expression defined grouping class). For example, BOOKS-CATEGORIES can be 
defined as a grouping type of BOOKS with the grouping expression “on common value of 
type”. Note that particular members of the grouping class are subclasses of the class U that 
are attribute defined. Some of them can be actually specified in the schema as subclasses. 
We might, for instance, specify a subclass BOOKS-ON-PHILOSOPHY of the class 
BOOKS. 

• The second way of defining a grouping class G is to provide a list of classes (C1, C2, ..., 
Cn) that are defined in the schema; these classes are the members of the grouping class G; 
an enumerated grouping class.  

• A grouping class G can be defined as a collection of user-controllable subclasses of some 
underlying class: a user-controllable grouping class. For example, class CONVOYS is 
defined as a grouping of SHIPS ‘as specified’. In this case, no attribute exists to allow the 
grouping of ships into convoys and particular convoys are not themselves defined as 
classes in the schema; rather, each member of CONVOYS is a user-controllable group of 
ships that users may add or delete from. 

Entities are application constructs that are directly modelled in an SDM schema. 
However, there must also be some mechanism to represent these entities ⎯ objects of the real 
world ⎯ in the computer database. One cannot enter or display a real entity on a computer 
terminal, for instance. These representations of entities are called SDM names, and a name 
class in SDM is a collection of strings, namely a subclass of the built-in class STRINGS. 
Every SDM name class is defined by means of the subclass connection by the predicates 
specified above. For convenience, particular name classes NUMBERS, INTEGERS, REALS 
and YES/NO (Boolean) are also built in SDM. 
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2.3.2. SDM attributes 

As stated above, each class has an associated collection of attributes. Hence attributes 
in SDM are, similarly as in other models (with the HIT exception), unary functions. Each 
attribute of a schema has the following characteristics: 
• An attribute name identifies the attribute. An attribute name must be unique within a 

„family“ of classes to which it applies. (This is necessary to support the attribute 
inheritance.) 

• The attribute has a value which is either an entity in the database (a member of some class) 
or a collection of entities. Any class in a schema may be specified to be the value class of 
an attribute. 

• The applicability of an attribute is specified, i.e. stating that the attribute is either a 
member attribute or a class attribute. A member attribute applies to each member of a 
class, whereas a class attribute applies to a class as a whole, and has only one value for the 
class (for instance number of elements). 

• An (optional) attribute description is a text which specifies the meaning of the attribute. 
• The attribute is specified to be either a single valued or a multivalued. The value of a single 

valued attribute is a member of the value class, whereas the value of a multivalued 
attribute is a subclass of the value class.  

• An attribute can be specified to be mandatory, i.e. a null value is not allowed for it. 
Identification attributes have to be specified mandatory. 

• An attribute can be specified to be not changeable, i.e. its value when once set cannot be 
changed except of an error correction. Identification attributes are usually specified as not 
changeable. 

• A member attribute can be specified to be exhaustive of its value class. This means that 
each member of the value class of the attribute, say A, must be the A value of some entity. 

• A multivalued member attribute can be specified to be non-overlapping, which means that 
the values of the attribute for two different entities have no entities in common; that is each 
member of the value class of the attribute is used at most ones. 

• An attribute may be related to other attributes, and/or defined in terms of the values of 
other attributes in the schema. In both these cases the attribute is informationally 
redundant. 

The last point needs some explanation. Member attribute interrelationships are 
inversion and matching. They are mechanisms for establishing the equivalence of different 
ways of viewing the same essential relationship among entities. Binary relationship is 
characterised by a pair of inverse attributes. For instance to express the relationship ‘in what 
country a ship is registered’ we use two inverse attributes: Ships-registered-here of 
COUNTRY and Country-of-registry of SHIPS. Another way of relating an attribute to the 
other attributes is matching which enables us to specify higher degree relationships among 
entities. Instead of a complicated definition we again provide an example from [Hammer 
1981]. Suppose it is necessary to establish a ternary association among oil tankers, countries 
and dates, to indicate that a given tanker was inspected in a specified country on a particular 
date. (Note that in other models this situation would be handled as a binary relationship 
between entities tanker and country with the attribute date of an inspection.) In SDM we 
define a class COUNTRY-INSPECTIONS with three attributes: Tanker-inspected, Country-
of-inspection, Date-inspected. These attributes would then be matched with the appropriate 
attributes of OIL-TANKERS, COUNTRIES and DATES that also express this information. 
The combined use of matching and inversion allows an SDM schema to accommodate 
relative viewpoints of an association. For instance, one may view the ternary relationship in 
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the above example as an inspection entity (a member of the class COUNTRY-
INSPECTIONS), or as a collection of attributes of the entities that participate in the 
association. Similarly, a binary relationship defined as a pair of inverse attributes could also 
be view as an association entity, with matching used to relate that entity to the relevant 
attributes of the associated entities. We can see that viewing relationships in SDM is much 
more flexible than that of the, e.g., E-R model, though at the costs of storing much redundant 
information in the schema. 

Another way in which attributes may be related to the other attributes is the so called 
derivation: an attribute is defined whose values are calculated from other information in the 
database. Such an attribute is called derived and the specification of its computation is its 
derivation. There is a small vocabulary of attribute derivation primitives that directly model 
the most common types of derived information. They are, e.g., ordering, existence attribute, 
recursive tracing, contents, subvalue, intersection, union, difference, arithmetic expressions, 
maximum, minimum, average, sum, etc. Analogous primitives can be defined for class 
attribute derivations. 

The last notable feature of SDM is automatic attribute inheritance. Generally 
speaking, a subclass S of a class C inherits all the member attributes of C. Class attributes 
describe properties of a class taken as a whole and so are not inherited by a subclass. In order 
for an attribute to be inherited from class C by class S, both its meaning and its value must be 
the same for C and S. This is not true for class attributes. Although a subclass may have a 
similar class attribute to that defined for its parents class, for example ‘An-average-age-of-
members’, their values will in general not be equal. Two special cases must be mentioned: 
When a subclass S is defined as an intersection of classes C1 and C2, it inherits all the member 
attributes of C1 and all the member attributes of C2. On the other hand, a class S defined as the 
union of classes C1 and C2 inherits all the member attributes shared by C1 and C2. The rules of 
inheritance need not be explicitly applied by an SDM user; they are integral part of SDM and 
are automatically applied wherever appropriate. 

Concluding this section we can state that SDM is in many ways analogous to a number 
of other contemporary semantic database models, to name at least [Chen 1976], [Codd 1979], 
[Mylopoulos 1978], [Shipman 1981], [Smith 1979], [Su 1979]. Where SDM differs from 
these is in its emphasis on relativism, flexibility and redundancy. SDM schema supports 
multiple ways of viewing the same information, since different users may have different 
slants on the database and even a single user’s perspective may evolve in time. Consequently, 
redundant information plays an important role in an SDM schema. Yet another aspect is 
connected with this fact: data manipulation facilities were not mentioned, since SDM is based 
on the duality principle between schema and procedure. From this perspective, any query 
against the database can be seen as a reference to a particular virtual data item. Whether that 
item can easily be accessed in the database, or whether it can only be obtained by means of 
the application of a number of complicated manipulation operations, depends on what 
information has been included into the schema by a designer. Frequently retrieved data items 
would most likely be present in the schema, often as derived data, while less commonly 
requested information would have to be dynamically computed. Anyway, taking into account 
these features of SDM, we would say that SDM schema is from a general point of view rather 
an external schema (or view) than a conceptual schema. In our opinion, redundant 
information should not be included into a conceptual schema unless there are some special 
reasons for that (efficiency, reliability). 
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2.4. ORM modelling 

ORM originated in the mid-1970s as a semantic modelling method, one of the early 
versions being NIAM (Natural language information analysis method), and has since been 
extensively revised by many researchers. According to the ORM methodology, designing a 
database requires a complete understanding of the subject area, or universe of discourse 
(UoD), to be implemented. Thus a good database model is one that specifies the Uod in a 
clear and unambiguous way. ORM uses a natural language and easy to understand diagrams 
that are populated with example data to accomplish this goal. Another notable aspect of ORM 
is that, since it is based on a natural language, it can be completely expressed in either 
graphical or textual format. We shall see that these features are shared by the HIT data model 
as well. But unlike the HIT data model which is well theoretically founded, we miss in ORM 
precise theoretical-logical background. It is said [Becker 1998a] that ORM is vastly superior 
to the Chen’s E-R model. Below we try to examine whether such a claim is justified. 

The root of ORM is an elementary fact. You express the UoD in terms of objects (such 
as person, department, project, etc.) playing roles (works for, manages, reports to, etc.), and 
traditionally express all information in terms of elementary facts, constraints and derivation 
rules. In contradistinction to the E-R model, you make no distinctions whether an object is an 
attribute or an entity. ORM uses a natural language and easy to understand diagrams that may 
be populated with example data. Further, similarly as in the HIT data model (see Chapter 3.), 
a natural language is much easier for your users to understand, express, and verify, than a 
technical jargon that is often tended to use. 

Using ORM, the designer just expresses the UoD in simple, easy to understand facts 
such as: „Person works for Department“, „Person works on Project“, „Person manages 
Department“, „Department manages Project“, „Person reports to Person“, „Person has 
Parking Space“, „Person receives parking reimbursement in Amount“, „Person drives Car“, 
„Person owns Car“. Using this fact based approach, ORM makes reengineering and schema 
evolution quite simple. Further, this approach simplifies normalisation worries: the 
elementary nature of the facts ensures that the schema is in an optimal (usually 4th) normal 
form. This approach allows to make (in E-R terms) attribute level constraints. What follows is 
an example of an ORM schema [Becker 1998c] (sample data omitted) illustrating the above 
facts and the following constraints: 
• Subset constraint: Ä Person can manage a Department only if that Person works for that 

Department“. 
• Equality constraint: „If a Person owns a Car she must also drive that Car, and if a Person 

drives a Car she must also own that Car“. 
• Exclusionary constraint: „A Person can either have a Parking Space or receive a parking 

reimbursement, not both“. 
• Mandatory disjunction: „A Person must either have a Parking Space or receive a parking 

reimbursement“. 
• Frequency: „Person may own a maximum of two Cars“. 
• Ring constraint: Given a fact in the form of ‘Person plays a role with a Person’, specify if 

the relationship is reflexive, symmetric, transitive, irreflexive, asymmetric, antisymmetric, 
and/or intransitive,  such as: “A Person cannot report to themselves (irreflexive)”. 

• Or any combination of the above constraints such as: “A Person can only work on a 
Project if that Person’s Department manages that Project”. 
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ORM also allows you to have facts with an arity (number of roles in the fact) greater 
than two. For example, let’s say you have fact like „Movie receives Rating in Country“. ORM 
allows you to model this fact naturally or via nesting, which allows you to add other 
(potentially optional) roles to the nested fact. This situation is illustrated by the following 
figure[Becker 1998c]: 

 

 

 

 

 

 

ORM also uses an accurate, complete definition of subtyping and inheritance, derived 
fields (including a distinction between merely derived and derived-and-stored), and schema 
transformation and evolution. Finally, mapping the conceptual schema into a logical schema, 
a physical schema, and implementing the constraints are often trivial (with the use of CASE 
tools). However, mapping issues and CASE tool implementation are beyond the scope of this 
work. 

A quick explanation of the ORM symbols used.  

Objects are shown as ellipses. The object name is denoted inside of the ellipse. 
Sometimes, an additional information is included in parenthesis below the object name. This 
is the so called reference mode, and serves to identify an object. For example, Person object 
has a reference mode of ‘name’, Car object has a reference mode VIN. Reference mode can 
be attached only to entity objects (denoted with a solid ellipse). Entity objects are conceptual 
things like Person, Car, Department. Value objects (shown as a dashed ellipse) are merely 
values (instances of data) such as a string, a date, or a number. 

Movie 
(title) 

Country 
(Name) Rating 

… received … … received … 

Rating 

Movie 
(title) 

Country 
(name) 

… received in … 

“release” 

…
 m

anages …
 

Person 
(name) 

Car 
(VIN) 

Money 

Parking 
Space 

(stallNr) 

Department
(deptNr) 

Project 
(projNr) 

… reports to … 

… owns … 

… drives … 

… receives parking 
reimbursemen in … 

… has … … works on … 

… works for … 

… manages … 

0-2 



 20

Predicates, or the connections between objects, are shown as boxes connected to the 
objects with an additional text information (such as ‘owns’, ‘drives’, ‘manages’, etc.) denoted 
below the boxes. The dots shown on the connection between an object and a predicate mean 
that the role is mandatory (for example, every Person must work for a Department, every 
Project must be managed by a Department). Bold arrows pointing between objects (which are 
not shown in our figures, but their semantics is intuitively clear) denote supertypes and 
subtypes. The arrow always points from subtype to supertype. The tipped arrows (or bars) 
above the predicate boxes show („internal“) uniqueness. To explain the role of bars, we show 
the sixteen possible patterns of uniqueness and mandatory role constraints in the well-known 
Oracle E-R notation and ORM notation: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B A Bn:1 
both roles optional 

A B A B1:n 
both roles optional 

A B A B1:1 
both roles optional 

A B A Bm:n 
both roles optional 

A B A Bn:1 
first role mandatory ● 

A B A B1:n 
first role mandatory ● 

A B A B1:1 
first role mandatory ● 

A B A Bm:n 
first role mandatory ● 

A B A Bn:1 
second role 

d t

● 

A B A B1:n 
second role 

d t

● 

A B A B1:1 
second role mandatory ● 

A B A Bm:n 
second role mandatory ● 

A B A Bn:1 
both roles mandatory ● ● 

A B A B1:n 
both roles mandatory ● ● 

A B A B1:1 
both roles mandatory ● ● 

A B A Bm:n 
both roles mandatory ● ● 
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Advantages of using Object Role Modelling 

E-R’s conceptual model allows you to view objects and relationships (and a few 
constraints) at a high level in a compact notation. However, E-R’s use of (descriptive only) 
attributes makes the model inherently unstable with regard to schema changes. Further, E-R 
schemas make it difficult to apply a population check (with real data) and are missing many 
important constraints, particularly at the attribute level. E-R relationships also tend to be 
binary (in Oracle notation only binary ones are allowed, while ORM allows relationships of 
any arity), which forces you to use unnatural intersection entities and other conceptual 
falsehoods. ORM allows you to speak to business experts in their own language, without 
having to use such artificial constructs. 

Other benefits of ORM include: 

• The fact-based approach of ORM is a simpler and more accurate approach as it is easier to 
get one fact correct than many facts simultaneously. 

• E-R tends to set a level of importance (is it an entity or an attribute?) early in the modelling 
process. If you do not perform those initial steps correctly the first time, you will end up 
changing your model later (and possibly correcting the data itself). ORM sets no initial 
importance to objects at all. Rather, importance of a particular fact will reveal itself much 
later on (by discovering, e.g., that you have many roles attached to an object). 

• In ORM, semantic domains (i.e. units or ranges such as ‘name’, ‘SSN’, ‘age’, ‘date’) are 
automatically included. This allows for stronger typing and is less error prone.  

• ORM has a less implicit duplication of attributes than E-R does. For example, in E-R, you 
could have an athlete entity with two attributes, the country they represent and their 
birthplace (experienced modellers would point out that this is bad E-R modelling but 
nothing prevents you in E-R from doing so). For the sake of argument, say the initial 
model only had country the athlete represents and the birthplace was added later. Making 
this change is not so easy once the model is implemented. In ORM, you would have only 
two objects, Athlete and Country which play two roles with each other: ‘... represents ...’ 
and ‘...born in ...’. Again, ORM is less prone to errors (the previous mistake is impossible). 
Less error prone means your model (and therefore, your database) is much more stable and 
the magnitude of problems caused by a change to the model is lessened. 

• ORM has many more constructs inherent to the language, and is therefore, more expressive 
of the actual UoD. 

• In ORM, you get a normalised database at no extra charge. ORM’s use of the elementary 
fact insures no functional dependencies will violate normalisation (1NF, 2NF, 3NF, BCNF, 
EKNF, and 4NF, see Section 5.3). And ORM’s rich constraint implementation will allow 
you to capture many constraints typically considered to be 5NF considerations (semantic 
rules) by E-R modellers. 

• Since business requirements are subject to ungoing change, it is critical that the underlying 
data model be crafted in a way that minimises the impact of these changes. The ORM 
framework is more stable under business changes than E-R model, and facilitates the 
remaining changes that need to be made. This stability applies not only to the model itself, 
but also to conceptual queries based on the model. 

We devoted much attention to the ORM modelling, maybe rather neglecting other 
semantic data models, for, in our opinion, all the above advantages of ORM make the model 
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in a way superior to the others. Moreover, as it will be shown in the following chapters, all 
these advantages are shared by the HIT data model as well (the description of which is a core 
of this work). Why then do we advocate for another (HIT) data model? The reason is that one 
of the goals of this work is to submit theoretical-logical background of conceptual modelling, 
to provide precise definitions and explication of all the constructs used, particular constraints, 
etc. And it is just the HIT data model (and probably the only one, as far as we know) that 
provides such a precise underlying logical apparatus. 

2.5. UML data model 

In this work we actually do not deal with the object-oriented (O-O) approach that has 
become very popular in the last decades, for, in our opinion, there is no such thing as object-
oriented conceptual analysis. There is only O-O design and implementation. The only benefit 
that could be regarded as being brought to the conceptual analysis phase from the O-O 
approach is the change of  system decomposition criteria. System decomposition has been 
traditionally considered as creating a great problem. When the system in question is large and 
complicated, it cannot be analysed and handled in its whole. We have to decompose it first 
into subsystems of a reasonable size which can be afterwards analysed in details. But then 
there is a question: which criterion of decomposition to choose? A „functional one“ or a „data 
one“? A long time ago, before the O-O approach appeared and became popular, functional 
criterion had been preferred. The consequences had often been nearly fatal: there were so 
many links, relationships between particular subsystems (since one and the same object could 
have been mirrored in many subsystems) that the whole system could actually not be handled. 
Moreover, the system was not adaptable to changes because any change of functions (which 
are very frequent) could cause a change of decomposition, the system was unstable.  

The above problem has been probably definitely solved by the O-O approach: when 
decomposing a system, concentrate on the main objects of interest and assign the respective 
functions to them. The main objects of interest are stable unlike the functions that the system 
should perform (above these objects). Moreover, when decomposing according to objects, the 
resulting subsystems are relatively independent and the whole system is easy to operate. 

So much for the O-O approach. Nevertheless, we now briefly describe the family of 
UML (Universal Modelling Language) that has been considered to be an O-O design tool. It 
can be shown [Schewe 2000] that in many respects UML is far from being new: With respect 
to syntax it just re-invents many of the old ISOTEC (Integrated Software Technology [EDV 
1983]) constructs and introduces new names for them. With respect to semantics it does not 
present precise semantic definitions. If these are added, the limitations of the expressiveness 
of the UML become apparent. Quoting from [Schewe 2000]: the UML is the modern winner 
in terms of its lack of precise definitions, lack of clear semantics, lack of clarity with respect 
to abstraction levels, and lack of pragmatic methodology. Referring for details to [Booch 
1999], [Rumbaugh 1999], we will concentrate on UML data modelling capabilities and 
describe it from an ORM perspective [Halpin 1998]. 

UML includes diagrams for use cases, static structures (class and object diagrams), 
behaviour (state-chart, activity, sequence and collaboration diagrams) and implementation 
(component and deployment diagrams). For data modelling purposes UML uses class 
diagrams, to which constraints in a textual language may be added. Although class diagrams 
may include implementation detail (e.g. navigation and visibility indicators), it is possible to 
use them for analysis by omitting such detail. When used in this way, class diagrams 
essentially provide an extended Entity Relationship notation. 
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UML’s object-oriented approach facilitates the transition to object-oriented code, but 
can make it awkward to capture and validate business rules with domain experts. This 
problem can be remedied by using an ORM’s fact-oriented approach where communication 
takes place in simple sentences, and each sentence type can easily be populated with multiple 
instances. ORM harmonises well with UML, since both approaches provide direct support for 
roles, n-ary associations and objectified associations. To better exploit the benefits of UML, 
or E-R for that matter, ORM can be used for the conceptual analysis of business rules, and the 
resulting ORM model can be easily transformed into a UML class diagram or E-R diagram. 

UML classifies instances into objects and data values. UML objects basically 
correspond to ORM entities, but are assumed to be identified by oids (hidden, system 
generated object identifiers). For analysis purposes however, we need to ensure that humans 
have a way of identifying objects in their normal communication. UML data values basically 
correspond to ORM values: they are constants (e.g. character strings or numbers) and hence 
require no oids to establish their identity. Entity types in UML are called classes, and value 
types are called data types. Note that „object“ means „object instance“, not „object type“. A 
relationship instance in UML is called a link, and a relationship type is called an association. 

Because of reliance on oids, UML does not require entities to have a value-based 
reference scheme. This can make it impossible to communicate naturally at the instance level, 
and ignores the real world database application requirement that humans have a verbal way of 
identifying objects. It is important therefore to include value-based reference in any UML 
class diagram intended to capture all the conceptual semantics about a class.  

Like other E-R notations, UML allows relationships to be modelled as (descriptive) 
attributes. For instance, in the following figure (a) [Halpin 1998] the Employee class has 
eight attributes. Classes in UML are depicted as a named rectangle, optionally including other 
compartments for attributes and operations. The corresponding ORM diagram is shown in the 
following figure (b). True to its name, ORM models the world in terms of just objects and 
roles, and hence has only one data structure - the relationship type. This is one of the 
fundamental differences between ORM and UML (and E-R for that matter). Wherever an 
attribute is used in UML, OML uses a relationship instead. As a consequence, ORM diagrams 
typically take up more room than corresponding UML or E-R diagrams. But this is a small 
price to pay for the resulting benefits.  

Here is an example illustrating the difference between a description of an employee using an 
E-R schema ⎯ Fig (a) and UML diagram ⎯ Fig (b): 
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(a)                                                                      (b)    
 
Employee 

empNr  
empName 
title 
sex 
isSmoker: 
birthplace 
socialSecNr 
passportNr 

{PK} 
 
 
 
Boolean 
[0..1] 
[0..1] {U1} 
[0..1] {U2} 

 
 

 
 
 
 
 
 
 
E-R schema      UML diagram 

As stated above, the ORM model indicates that employees are identified by their 
employee numbers. The top three mandatory constraints indicate that every employee in the 
database must have a name, title and sex. The other black dot where two roles connect is a 
disjunctive mandatory role constraint, indicating that the disjunction of these roles is 
mandatory (each employee has a social security number or a passport number, or both). 
Although each of these two roles is individually optional, at least one of them must be played.  

In UML, attributes are mandatory by default. In the ORM model, the unary predicate 
‘smokes’ is optional (not everybody has to smoke, of course). UML does not support unary 
relationships, so it models this instead as the Boolean attribute ‘isSmoker’. In UML the 
domain of any attribute may optionally be displayed after it (preceded by a colon). In this 
example, we showed the domain only for the isSmoker attribute. The ORM model also 
indicates that Sex and Country are identified by codes (rather than names, say). We could 
convey some of this detail in the UML diagram by appending domain names (e.g. ‘Sexcode’, 
‘Countrycode’) after ‘sex’ and ‘birthplace’, but these are essentially rather syntactic than 
semantic domains. 

In the ORM model it is optional whether we record birthplace, social security number 
or passport number. This is captured in UML by appending [0..1] after the attribute name. 
This is an example of an attribute multiplicity constraint. UML does not have a graphic 
notation for disjunctive mandatory roles, so this kind of constraint needs to be expressed 
textually in an attached note. Such textual constraints may be expressed informally, or in 
some formal language interpretable by a tool. In the latter case, the constraint is placed in 
braces. Although UML provides the Object Constraint Language (OCL) for this purpose, it 
does not mandate its use, allowing users to pick their own language (even programming 

{Employee.socialSecNr is not null 
or 
Employee.passportNr is not null} 

Employee 
(empNr) smokes 

has 

has 

Is of 

 

has 

has 

EmpName 

Title 

Sex 
(code) 

Country 
(code) 

SocialSecNr

PassportNr 
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code). This of course weakens the portability of the model. Moreover, the readability of the 
constraint is typically poor compared with the ORM verbalisation (each Employee has a 
SocialSecNr or has a PassportNr).  

The uniqueness constraints over the left-hand roles in the ORM model (including the 
empNr reference scheme shown explicitly earlier) indicate that each employee has at most 
one employee number, employee name, title, sex, country of birth, social security number and 
passport number. Unary predicates have an implicit uniqueness constraint; so each employee 
instantiates the smokers role at most once (for any given state of the database, or, as we would 
say, for any state of the world). All these uniqueness constraints are implicitly captured in the 
UML model, where attributes are single-valued by default. 

The uniqueness constraints on the right-hand roles indicate that each employee 
number, social security number and passport number refers to at most one employee. UML 
does not have a standard notation for these attribute uniqueness constraints. We have chosen 
here our own notation for this, appending textual constraints in braces after the attribute 
names (PK = primary key, U = unique, with numbers appended to disambiguate cases where 
the same constraint might apply to a combination of attributes). The use of ‘PK’ does not 
imply the model must be implemented in a relational database using value-based keys; it 
merely indicates a primary identification scheme that may be used in human communication. 
Because UML does not provide standard notation for such constraints, and it leaves it up to 
the modeller whether such constraints are specified, it is perhaps not surprising that many 
UML models one encounters in practice simply leave such constraints out. 

Now that we have seen how single-valued (descriptive) attributes are modelled in 
UML (and E-R, as the case may be), let’s briefly see why ORM refuses to use them in its base 
modelling, expressing them as (functional) relationships between basic objects (in an 
analogous way as the HIT data model does, see Ch. 3.2). The reasons can be summarised as 
follows: modelling stability, easier verbalisation in natural language sentences, highlighting 
connectedness through semantic domains, easier specification of constraints. Let’s illustrate 
the main one, namely semantic stability. ORM models and queries are more stable, because 
they are free of changes caused by data types evolving into entity types or relationship types, 
or vice versa. Consider the ORM fact type (discussed above): Employee was born in Country. 
In E-R and O-O approaches we might model this using a birthplace attribute. If we later 
decide to record, e.g., the population of a country, then we need to introduce Country as an 
entity type. In UML, the connection between birthplace and Country is now unclear. Partly to 
clarify this connection, we would probably reformulate our birthplace attribute as an 
association between Employee and Country. This is a significant change to our model. 
Moreover, any object-based queries or code that referenced the birthplace attribute would also 
need to be reformulated. A typical counter-argument is this: “Good E-R or O-O modellers 
would declare country as an object type in the first place, anticipating the need to later record 
something about it; on the other hand, features such as the title and sex of a person clearly are 
things that will never have other properties, and hence are best modelled by (descriptive) 
attributes”. This attempted rebuttal is flawed. There is nothing in the E-R or O-O models that 
would prevent the designer from such mistakes that can be in more complicated systems quite 
frequent, and, in general, you can’t be sure about what kinds of information you might want 
to record later. Moreover, formulation and reformulation of constraints and queries is much 
easier in ORM than in E-R and UML. Elementary ORM facts are the fundamental conceptual 
units of information, are uniformly represented as relationships, and how they are grouped 
into structures is not a conceptual issue. Though outrunning our exposition, we have to state 
in this place that all the above features of ORM are fully captured by the HIT data model, 
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where ORM facts are mirrored by HIT-attributes (empirical functional relationships between 
basic types), which are uniform basic modelling structures, not distinguishing between 
(descriptive) attributes and relationships as the E-R and other models do. 

Multi-valued attributes are in UML recorded by specifying a [0..*] constraint, as 
shown in the following example. Suppose that we are interested in recording the names of 
employees, as well as the sports they play (if any). In ORM, this is shown by making the 
uniqueness constraint span both roles. Since an employee may play many sports, and a sport 
may be played by many employees, Plays is a many to many (m:n) relationship type. One 
way of modelling the same situation in UML is shown in the following figure: 

 
 
 
Employee 

empNr  
empName 
sports 

{PK} 
 
[0..*] 

 
 

 

Here the information about who plays what sport is modelled as the multi-valued 
attribute ‘sports’. The [0..*] appended to this attribute is a multiplicity constraint indicating 
how many sports may be entered for each employee. The sign ‘0’ indicates that it is possible 
that no sports might be entered for some employee. Unfortunately, the UML standard uses a 
null value  for this case, just like the relational model. The sign ‘*’ indicates that there is no 
upper bound on the number of sports of a single employee.  

UML gives us the choice of modelling a feature as an attribute or an association 
(similar to an ORM relationship type). At least for conceptual analysis and querying, explicit 
associations usually have many advantages over attributes, especially multi-valued attributes. 
(However, do not confuse the notion of a ‘normal’ descriptive attribute, as known from 
current data models with the notion of HIT-attribute that models associations as functional 
relationships between basic types. See Ch. 3.2). The choice of associations helps us verbalise, 
visualise and populate associations. It also enables us to express various constraints involving 
the role played by the attribute in standard notation, rather than resorting to some non-
standard extension (as it was done in the above example with braced comments). Another 
reason for favouring associations over attributes is stability. If we ever want to talk about a 
relationship, we have to make an object out of it first to attach the new details to it. If we 
modelled the feature as an attribute, we would not be able to add the details without first 
changing the original schema: in effect we would need to first replace the attribute by an 
association. For example consider an ORM fact (association) Employee plays Sport. If we 
now want to record a skill level for this play, we can simply objectify this association as Play, 
and attach the fact type: Play has SkillLevel. A similar move can be made in UML if the play 
feature has been modelled as an association. In the above example, however, this feature has 
been modelled as the sports attribute; so this attribute needs to be removed and replaced by 
the equivalent association before we can add the new details about skill level. Hence we have 
to discuss the notion of ORM objectified relationship types or UML association classes now. 

Employee 
(empNr) 

has 

plays 

EmpName 

Sport 
(name) 
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Before discussing UML associations, we review the basic ideas discussed previously. 
Attributes in UML are depicted as relationship types in ORM. A relationship instance in 
ORM is called a link in UML (e.g. Employee 101 works for Company ‘Visio’). A relationship 
type in ORM is called an association in UML (e.g. Employee works for Company). In both 
UML and ORM, a role is a part played in a relationship. The number of roles in a relationship 
is its arity. ORM allows relationships of any arity. Each relationship type has at least one 
reading or predicate name. An n-ary relationship may have up to n readings (predicate names) 
to provide natural verbalisation of constraints and navigation paths in any direction. UML 
uses Boolean attributes instead of unary relationships, but allows relationships of all other 
arities. Each association may be given at most one name, and this is optional. Association 
names are normally shown in italics, starting with a capital letter. Binary associations are 
depicted as lines between classes. Association lines may include elbows to assist with layout 
or when needed (e.g. for ring relationships). Association roles appear simply as line ends 
instead of boxes, but may optionally be given role names. Once added, role names may not be 
suppressed. Verbalisation into sentences is possible only for infix binaries, and then only by 
naming the association with a predicate name (e.g. ‘Employs’) and using an optional marker 
‘>’ to denote the direction. The following figure [Halpin1998] depicts binary associations in 
both UML and ORM. 

 
a) UML 

 

 

 

 

b) ORM 

 

 

 

 

 

 

 

The uniqueness and mandatory role constraints are written beside the relevant roles in 
a similar way as on attributes. The sign ‘*’ abbreviates ‘0..*’, meaning zero or more; ‘1’ 
abbreviates ‘1..1’, meaning exactly one, and ‘0..1’ means at most one. Unlike some E-R 
notations, UML places each constraint on the ‘far role’, in the direction in which the 
association is read. Hence the constraints in this example mean: Each company employs zero 
or more employees; each employee is employed by exactly one company; each company 
acquired zero or more companies; and each company was acquired by at most one company. 

Ternary and higher arity associations in UML are depicted as a diamond connected by 
lines to classes. Because many lines are used to denote the association, directional 
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verbalisation is ruled out, so the diagram cannot be used to communicate in terms of 
sentences. The following figure illustrates a ternary relationship expressed both in UML and 
ORM (constraints omitted).  

 

(a)  UML 

 

 

 

 

 

 

 

(b)  ORM 

 

 

 

 

 

 

Unlike many E-R versions, both UML and ORM allow associations to be objectified as class 
object types, called associations classes in UML and nested object types (or objectified 
relationship types) in ORM. UML requires the same name to be used for the original 
association and the association class, impeding natural verbalisation of at least one of these 
constructs. In contrast, ORM nesting is based on linguistic nominalisation (a verb phrase is 
objectified by a noun phrase), thus allowing both to be verbalised naturally, with different 
names for each. The following figure depicts an objectified association in UML and ORM: 
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Each person may write many papers, and each paper is written by at least one person. In the 
UML depiction, we have used ‘{P}’ to indicate the primary reference attributes used for 
human communication about persons and papers. Since autorship is m:n, the association class 
Writing has a primary reference scheme based on the combination of person and paper. The 
optional period attribute stores how long that person took to write that paper. Instead of 
distancing the objectified association from its underlying association, ORM intuitively 
envelops the association with an object type frame. Writing is marked independent (displayed 
with ‘!’) to indicate that a writing object may exist, independently of whether we record its 
period. ORM displays Period as an object type, not an attribute, and includes its unit. 

We are not going to discuss other modelling possibilities, like, e.g., constraints. Just 
briefly: qualified associations and or−associations. Simple cases where ORM uses an external 
uniqueness constraint for co-referencing can also be modelled in UML using qualified 
associations. Qualifier in UML is a set of one or more attributes, whose values can be used to 
partition the class, and is depicted as a rectangular box enclosing its attributes. For instance 
the attribute accountNr can be used as a qualifier on the association Bank – Person, 
effectively partitioning each bank into different accounts. The term or−association is used by 
UML for one of many associations stemming from a class, where at any given time each class 
member may participate in at most one of these associations. To indicate this, UML uses what 
it calls an or−constraint between the associations, attaching the constraint string ‘{or}’ to a 
dotted line connecting the relevant associations. For instance an account is used by a person 
or by a corporation. UML’s use of ‘or’ for this constraint is confusing because it is used in an 
exclusive instead of inclusive sense (in contrast to virtually all computer languages). Now we 
covered all the high level data structures that can be specified in graphic notation of ORM 
data models and UML class diagrams. We will not discuss more advanced graphic constraints 
in ORM and UML, such as subtyping, derivation rules and queries, since they are essentially 
the same as in other semantic data models, and the technical issues are not interesting. The 
following table summarises the differences between the two modelling methods with respect 
to terms and graphic notations for data instances and structures. 

 

 
ORM UML 
Entity Object 
Value Data value 
Object Object or Data value 
Entity type Class 
Value type Data type 
Object type Class or Data type 
use relationship type Attribute 
Unary relationship type use Boolean attribute 
n-ary relationship type Association 
n-ary relationship instance Link 
Nested object type Association class 
Co-reference Qualified association 
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3. Conceptual Modelling.  

In this chapter we are going to introduce to approaches to conceptual modelling: 
Finnish and Czech schools. Finnish school is revolutionary in its approach to data modelling. 
It repudiates all the classical modelling constructs, such as an ‘entity set’, a ‘value set’, a 
‘relationship set’, an ‘attribute’, considering this classification to be a “superimposed 
structural scheme into which knowledge is often forced” (see [Kangassalo 1993]). It is an 
interesting attempt to model a given part of reality only in terms of concepts and the relation 
of the intensional containment between them. Nevertheless, some traditional constructs are 
hidden here in the form of the so-called definitions, such as generalisation, specialisation, 
aggregation, attribute. From the theoretical point of view, it is based on Kauppi’s concept 
theory [Kauppi 1967] which can be characterised as a modern elaboration of the traditional 
set-theoretical doctrine. Surprisingly ignoring the category of possible worlds, it has no tool 
for the distinction between empirical and analytical notions. 

On the other hand, Czech school with its HIT data model (HIT is an acronym for 
Homogeneous, Integrated, Type-oriented [Zlatuška 1986]) is inspired by classical semantic 
data models (a good survey can be found, e.g., in [Hull 1987]), to name at least Chen’s E-R 
model [Chen 1976] or an object-function model [Scholl 1990]. It is based on the concept of 
the ‘HIT attribute’ which is a generalisation and an exact explication of the traditional 
modelling construct. Being conceived as an n-ary empirical function, it makes it possible to 
use a functional approach and to exploit the apparatus of a modified version of the typed λ-
calculus. From the logical point of view, it is based on the transparent intensional logic - TIL 
[Tichý 1988], making use of its possible world semantics (the distinction between empirical 
and analytical notions is of a key importance here), and of its theory of constructions. Last but 
not least, a new non-traditional theory of concepts (viewed as some abstract procedures) 
[Materna 1998] is exploited here. 

3.1. The Finnish school: COMIC model 

We first briefly reproduce the basic works of H. Kangassalo [Kangassalo 1993], 
[Kangassalo 1998], and only afterwards, the results of the related works [Niemi 1998], [Niemi 
1999], [Junkkari 1999], [Palomäki 1997], [Niinimäki 1999] and [Nilsson 1998] are 
summarised. When reproducing the ideas of H. Kangassalo and his followers, we 
simultaneously ask questions and state problems connected with them without great ambitions 
to answer them. The following text is not a smooth text. It is rather a summary and depicting 
of the main ideas and claims, with our emphasising the probably problematic places. Our 
comments are included in curly brackets. We hope that the answers are provided in the 
Section 3.3 and concluding Section 3.4.  

3.1.1. COMIC system 

The first and basic claim is the following [Kangassalo 1993]: The design of an IS 
consists in the definition of the borders of an initial Universe of Discourse (UoD), and the 
development of a conceptual schema of the UoD. In the later work [Kangassalo 1998] this 
thesis is even strengthened: We should replace the whole information system with the 
conceptual schema of the UoD, supported with the facilities of manipulating data 
corresponding to the conceptual schema. A conceptual schema defines a systematic ‘theory’ 
of the Uod. The concepts are constructed on the basis of goals and business rules of the user 
organisation. 
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{The question arises here: How are the concepts constructed? And even more 
fundamental question: What are the concepts?} The answer provided here is: A concept is 
defined to be an independently identifiable structured construct composed of knowledge 
primitives and/or other concepts. {Well, but what are the knowledge primitives, and in what 
way do they differ from concepts?} We can read that: knowledge primitives are the smallest 
structural units of knowledge. The following are some of the most common knowledge 
primitives: 

• Name of the concept 
• Intensional relationship is a relationship between two concept. The most important 

intensional relationship is that of intensional containment. 
• Extensional relationship is a relationship between occurrences of concepts. 
• Identifying property is a property of concept B intensionally contained in concept A that 

enables an occurrence of concept B to be used to identify an occurrence of concept A. 
• Condition is a truth-valued proposition that can be either true or false for a given 

occurrence of a concept. 
• Constraint is a truth-valued proposition that must be true for the occurrence of a concept if 

the constraint appears in the intension of that concept. 
• Conditional constraint is a truth-valued proposition built up of a set of conditions and a set 

of constraints. For the occurrence of a concept containing a conditional constraint all 
constraints must be true when the conditions are true. 

• Value set is a set of other concepts and their representations associated with a given 
concept. A value set of atomic values can be associated only with a basic concept or a 
magnitude concept. Values in the value set of other concepts, i.e. derived concepts, are 
composed from other values in a way reflecting the structure of the derived concept. 

• Function is a mapping from a value set to another. It specifies how values in one value set 
are derived from values in another value set. 

• Semantic rule is a text explaining the concept (usually in a natural language). 

{These seem to be rather a mixture not concerning only knowledge, but also the objects 
identified by particular concepts, linguistic expressions representing concepts, and some 
relationships between concepts. Nevertheless, knowledge concerning particular concepts is 
probably covered by these ‘primitives’. The last remark: An entity is identified by a 
(descriptive) attribute; an occurrence of a concept thus cannot identify an occurrence of 
another concept unless it is a concept of an attribute. For instance „the identity card number 
of a person“ identifies a person but the number itself does not identify anything unless it is a 
value of the above descriptive attribute.} 

The fundamental notion, concept, is regarded as a central epistemological unit of human 
knowledge. The knowledge content of a concept is its intension. The concepts, knowledge 
primitives, and the structure they form in the intension of a concept are called its 
characteristics. {The key question here is: What is it ‘the structure they form in the 
intension’? Isn’t it the concept itself? We would consider characteristics to be only the 
concepts and knowledge primitives (letting aside the peculiar character of knowledge 
primitives) contained in the intension of the concept. Another question: Are two concepts 
with the same intension one and the same concept? Maybe, that unlike Kauppi, Kangassalo 
intends to express here the fact observed already by Bolzano, illustrated by his well-known 
example [Bolzano 1837] which shows that two concepts with the same intension (content) do 
not have to be the same concepts: THE UNLEARNED SON OF A LEARNED FATHER and 
THE LEARNED SON OF AN UNLEARNED FATHER.} A set of objects (as well as data 
representing objects in the database) to which a concept applies is called its extension. {Well, 
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the set of objects, to which a concept applies differs dependently on possible worlds and time 
points. It is probably understood as the set of objects to which the concept applies in the 
actual possible world. Still this set is time-dependent. Similarly, the data corresponding to 
particular objects differ with respect to the database state. And, moreover, the data 
corresponding to the particular objects are actually given by other concepts than the objects 
themselves.} The elements of the extension are called occurrences of that concept. A 
knowledge unit is either a knowledge primitive or a concept. Basic concept cannot be 
analysed using other concepts of the same conceptual system. It can contain one or more 
knowledge primitives. In its most primitive form a basic concept consists of its name and 
value set. {A name of a concept is a linguistic expression representing the given concept. The 
value set concerns mostly the case of analytic concepts. Thus basic concepts can be compared 
with ‘printable types’ of other semantic data models.} Some knowledge primitives can be 
attached to it (e.g. semantic rules and constraints). A derived concept is a concept the 
characteristics of which have been derived from the characteristics of other concepts in the 
way described in the definition of that concept. 

The basic epistemological relation between concepts is the relation of intensional 
containment. The methodology and notations used in conceptual modelling are based on this 
relation. {Unfortunately, this relation is not precisely defined. Kauppi [Kauppi 1967] 
considers it to be a primitive pre-theoretical notion. An attempt to explicate this relation can 
be found in [Kangassalo 1993]}: Concept A contains intensionally a concept B if the 
knowledge that forms concept A contains the knowledge that forms concept B. Note that we 
are talking about the knowledge required to recognise phenomena A and B in the UoD, not 
how the definitions of these concepts are constructed. {But isn’t it just this definition that 
forms the knowledge about concept? Example given here does not reveal too much}: 
DOCTOR contains PERSON,  DOCTOR contains SPECIAL MEDICAL EDUCATION. 
{But wouldn’t we define a doctor as a person with a special medical education?} A rather 
more precise definition is provided in [Kangassalo 1998]: Concept A contains intensionally  
knowledge unit P (A ≥ P) iff P is one of the characteristics of concept A. The relation of 
intensional containment (IC) is reflexive, transitive and anti-symmetric. {This claim seems to 
be rather strong, especially with respect to anti-symmetry. We will return to this question later 
after reproducing the types of IC}: 

1. ‘is-a’,  
a driver is a person, a student is a person, etc.  
{This is a classical ISA relation; a necessary one.} 
It may be that in two concepts describing the same object there is not a single common 
characteristic recognised. {It may happen that particular expressions are not connected 
with derived concepts yet: man ≥ person ≥ living-thing ≥ entity. It is a subject of further 
analysis to reveal that a man, e.g., is a person with the property of being a male, and so 
on.} 

2. ‘Contains’, ‘has a component’ 
a car has an engine, a car has tires, ... 
car ≥ engine ≥ ignition system ≥ distributor. 
{This is the ‘classical’ part-whole relation that is thoroughly discussed in [Junkkari 1999]. 
We have to distinguish whether the relation is necessary or contingent. In the latter case it 
is dubious to consider it to establish the IC relation.} 
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3. ‘is...’, ‘has’ 
a person has a name, an address, an age, ..., an employee is engaged in a work-phase,... 
{This is the ‘classical’ database construct: the attribute. The question arises here: Does it 
have to be a necessary relation? Certainly not: A person can have an address but does not 
have to. But if it is a contingent relation, how can it be that a concept of person 
intensionally contains the concept of address? This is solved in COMIC by a 
supplementary condition. Moreover, if the relation of IC is enriched in this way, then it is 
certainly not anti-symmetric: A republic is represented by its president, a president is a 
representative of a republic. Hence REPUBLIC ≥ PRESIDENT and PRESIDENT ≥ 
REPUBLIC, but these are certainly not the same concepts. This situation is handled in 
COMIC by introducing another concept that contains both the previous concepts: A 
representative in this case.} 

Now we come to the important notion of the whole theory, viz. the notion of definition. 
A definition of the concept is a rule or a linguistic instruction which specifies how the 
knowledge forming the defined concept (definiendum) is to be constructed from the 
knowledge given in the defining concepts and in the definition itself. In order to find out the 
intension of the defined concept a definition must in some cases be evaluated, i.e. the 
definiendum must actually be constructed. Several different definitions may all evaluate to 
the same concept. Basic concept is undefined: it cannot have other concepts as its 
characteristics (but it can contain knowledge primitives). Intensionally contained concepts are 
defining concepts, but all the defining concepts shall not necessarily be contained concepts. 
{Evaluating the definition in order to construct the intension of the defined concept concerns 
mainly analytic concepts when the rule specifying the algorithm of calculating derived values 
from defining values is provided. It may also be used in case of generalisation. The last claim 
is not in a full accordance with our intuition. The example, namely ‘penguin is a bird without 
feather’, that should reveal the fact that the concept of feather is used in the definition but is 
not contained in the concept of penguin does not reveal that. We would rather say that the 
concept of feather is contained in the concept of penguin: To find out whether a given bird is 
a penguin we have to use the concept of feather to test whether a given individual is a bird 
and does not have feather. (By the way, the definition is in a way improper, because penguin 
has special kind of feather, namely down.) Another example: „an identifying property may 
not be derivable from the defining concept but it introduces new knowledge into the defined 
concept“. But in another place it is affirmed that name of a person (which may serve as an 
identification) is intensionally contained in the concept of person.} 

The following are the types of definitions that are commonly used: 

1. Aggregation, in which a concept is defined as a collection of its characteristics (usually 
connected by AND). 
Example: PERSONNEL is a set of EMPLOYEEs. Each EMPLOYEE has a NUMBER and 
an AGE and an ADDRESS and a SALARY. Hence PERSONNEL ≥ EMPLOYEE, 
EMPLOYEE ≥ NUMBER, EMPLOYEE ≥ AGE, EMPLOYEE ≥ ADDRESS, 
EMPLOYEE ≥ SALARY 
{This type of definition covers a ‘classical’ (unary) attribute, as well as a part-whole 
relation and grouping which are usually also mapped by an attribute.} 

2. Generalisation, in which a concept is defined as a collection of those characteristics that 
all its defining concepts have in common. 
Example: PERSON is a generalisation of an EMPLOYEE, SENIOR-CITIZEN, 
POLICEMAN that shares NAME, ADDRESS and AGE. Hence EMPLOYEE ≥ PERSON, 
SENIOR-CITIZEN ≥ PERSON, POLICEMAN ≥ PERSON. 
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In [Kangassalo 1993] specialisation is also mentioned: a concept is defined from a 
defining concept by specifying some characteristics which the definiendum does not have 
or by specifying some constraints on the characteristics of the defining concepts that have 
to be true for the definiendum. 
{These are usual constructs used to define the ‘ISA’ relation.} 

3. Value transformation, in which a concept is ‘defined’ by specifying how the values 
representing it can be derived from values representing the defining concepts. The 
intension of the definiendum is not constructed; it must be evaluated separately. 
{In this case we define derived data (definable attribute in the HIT method), i.e. a 
redundant attribute; the respective function by means of which values of the redundant 
attribute are calculated should be specified as an integrity constraint.} 

A concept structure is a diagram which represents a definition of the concept. A 
conceptual schema (CS) is a definition (concept structure) of the single concept describing the 
whole UoD. It consists of the defined concept referring to the UoD, and of its definition 
hierarchy which ultimately derives the characteristics of the definiendum from the 
characteristics of basic concepts. Structurally it is a directed acyclic graph based on the 
relation of intensional containment. {A special role in the schema is played by identifiers, 
constraints  and conditions. Since these roles are quite analogous to those known from 
‘classical’ data models, we will not deal with them any more here.} 

In the Section 2.3.3 Collection of concept structures of [Kangassalo 1993] the problem 
of unifying particular users knowledge is discussed. We quote here the first paragraph (with 
our emphases): 

Each user describes the meaning he or she assigns to each concept by giving it a concept 
structure in terms of more concrete or lower level concepts, until the level of observable 
or otherwise generally known concepts has been reached. In general, the level of 
observable concepts should be reached because there is no guarantee that ‘generally 
known concepts’ are identical for all people. One of the goals of this analysis is to find out 
what is really meant by a concept. For example, in one project we found out that the 
concept ‘signature’ had more than 10 different definitions used by different people. 
Because that concept is extremely important in some legal contexts, it was very useful that 
the definitions went down to the concrete level so that the differences could be clearly 
recognised. 

{A few comments on this important passage: First, the meaning is assigned to 
expressions not to concepts. A concept is just the meaning of an expression. Hence, in our 
opinion, the problem with ‘signature’ did concern the meaning of this expression not of the 
concept of signature. So those ten definitions expressed different concepts and the problem 
consisted in deciding which of these concepts should be assigned to this expression. The 
approach accepted by Kangassalo is influenced by Kauppi and she might perhaps agree that 
the definitions „determining the intension of signature“ determine different extensions of this 
concept. Yet we still feel that the problem concerned the meaning of the expression 
‘signature’. The notion of observable concepts is understood intuitively as those concepts that 
are in a way comprehensible without a definition. Unlike ‘basic concepts’ (which might 
correspond to ‘printable types’ of semantic data models) they may be provided with a 
definition in further analysis.} 

Concluding this section we have to state that COMIC is a very interesting and useful 
tool for conceptual modelling fully exploiting Kauppi’s concept theory. There is also an 
interesting attempt to explicate the relation of intensional containment which is a primitive 
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notion for Kauppi. Though there are many problems connected with it (which have been 
formulated above), its seemingly simple idea ⎯ using only the relation of IC as a basic 
modelling construct ⎯ which might seem to be insufficient in practice is balanced by using 
different types of ‘definitions’ and by the fact that conceptual schema is in fact a definition of 
the UoD. Thus the traditional modelling constructs, such as a generalisation, specialisation, 
aggregation and attribute are as if ‘hidden’ from the user, which may be an asset of this 
approach. Yet some questions (that will be answered mainly in Section 3.3) remain.   

First, we miss the distinction between empirical and analytical notions. Thus the 
definition of an extension of a concept seems to be peculiar. If it is an empirical concept, then 
the extension of this concept, i.e. “a set of objects (as well as data representing objects in the 
database) to which a concept applies” is probably meant to be the set of objects in the actual 
possible world, but there are many such sets in different time points. The data representing the 
objects in the database are something completely different from the objects themselves and 
they can hardly be considered to belong to the same set, the extension. Moreover, there is no 
means to distinguish between an ‘empirical function’ (such as a ‘name of a given person’) and 
an ‘analytical function’ which is used in the ‘definition’ by value transformation. There is 
also no means to distinguish between traditional ‘entity sets’ and ‘value sets’ which is 
considered to be an advantage of the approach. 

Second, it is not clear, how to model such complex concepts as the concepts of n-ary 
empirical functions (n ≥ 2) without introducing some equivalent of the concept of Chen’s 
relationship set, which may be a stumbling block of the analysis. Consider, for instance, the 
concept of HIT-attribute expressed by ‘periods (determined by the day of a week and an hour) 
when a given subject is lectured by a given professor in a given room for a given group of 
students’ of the ‘type’  
(SUBJECT, PROFESSOR, ROOM, STUDENT-GROUP) → ((DAY, HOUR) → BOOL). 
Which concepts are intensionally contained in which concept here? Without introducing the 
concept of LECTURING which in fact corresponds to the concept of relationship set we can 
hardly determine particular IC relations. But then we have only the possibility to map unary 
empirical functions at our disposal and the user is forced to recognise the concepts of 
relationship sets at the very beginning of the design work. But it is just this feature which is 
promised to be avoided by this methodology. 

Third, there are some special ‘descriptive‘ concepts like ADDRESS, DATE, and so on, 
which are ‘contained in’ many other concepts. According to this methodology we have to 
actually introduce new concepts like the ADDRESS OF A PERSON, the ADDRESS OF AN 
ORGANIZATION, ... But how to solve then the situation when the user finds out that he/she 
would often like to ask questions like ‘what is located on a given address’? ADDRESS thus 
becomes an independent object of interest (‘similar’ to our entity set, ‘marked’ descriptive 
type [Duží 1999]) with its own identifier, but it is ‘hidden under’ other concepts in which 
those particular concepts of address are contained. In this case we have to introduce a concept 
of ADDRESS into the schema, and the other concepts of address will be contained in it, 
which is at the best peculiar. 

Fourth, it is not clear how to model the situation when there are two different kinds of 
IC relation between two concepts. For instance, in the definition of the concept PRODUCT 
([Kangassalo 1993] Fig. 9, p. 299) aggregation is used to define product. Well, according to 
this definition a product is assembled from components and raw materials, hence a component 
is contained in product and a raw material is contained in product. But a component is a 
product as well, hence there is another IC relation between COMPONENT and PRODUCT, 
which is not recorded here. Moreover, the distinction between a raw material and a 
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component is thus not recorded as well. Actually, these two objects have exactly the same 
attributes (contain the same concepts). Why then using two different concepts for them? 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Last but not least, there is an essential objection to this conception: Contingent relations 
should not be considered to establish the IC relation. Affirming, e.g., that the concept of a 
person intensionally contains the concept of a name, address, identity card number, etc. 
(person ≥ name, person ≥ address, person ≥ identity card number), we actually claim that it 
does ‘follow from the concept’ of a person the he/she has a name, address, identity card 
number, etc., which is certainly not true. A person can have a name, address, identity card 
number, but does not have to. This is solved in COMIC by assuming that the expression 
‘person’ is connected with such a concept of a person that is suitable from the ‘IS point of 
view’. The fact that the above relation may be a contingent relation is recorded as a condition. 
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3.1.2. Related works of Finnish researches  

In this section we briefly recapitulate the main results of some of the Kangassalo’s 
followers, namely M. Junkkari, T. Niemi, J. Palomäki, M. Niinimäki and J.F. Nilsson. A 
common feature of these works can be characterised as exploiting Kauppi’s concept theory 
for various functional and algebraic representations of concept relationships or operations that 
associate concepts. 

In [Niinimäki 1999] an algebraic approach to Kauppi’s concept theory is applied. A 
large part of Kauppi’s theory is described and an abstract implementation of it is formed. 
Some extensions of the concept theory are presented, thus obtaining, e.g., the result that a set 
of traced concepts instead of a unique concept can be returned as a value of the specified 
function. Thus the structure of the concept system proposed does not fully comply with the 
strict axiomatisation of the original theory. By means of the relation of the intensional 
containment four association relations between two concepts are defined. They are: 
‘Homogen-compatibility’ (comparable, compatible), ‘Heterogen-compatibility’  
(Incomparable, compatible), ‘Opposition’ (comparable, incomparable) and ‘Isolation’ 
(Incomparable, incompatible). The paper presents interesting theoretical results, unfortunately 
without any reference to the semantics of the intensional containment (IC) relation. This 
relation is neither defined, nor even intuitively explicated and none reasonable examples are 
presented. Nevertheless, the authors claim that „It is suggested that intensional containment 
relation covers the ISA relation, aggregation and the component relation. Whatever view is 
taken towards the semantics of the IC, the representation we employ here gives powerful tools 
for analysing different kinds of knowledge structures“. It need not be true in case of the 
aggregation, because in that case the IC relation does not have to be a partial ordering. 

Nilsson and Palomäki discuss in [Nilsson 1998] handling intensional aspects of 
concepts with computational concerns. Concept net is here based on binary relation between 
concepts, namely the ‘is-a’ relation. The concept net formalism is reformulated into relational 
algebra which is next embedded in predicate logic and to the possible extent even in definite 
clauses of logic programming. Quoting the basic presumptions:  

“The fundamental concept relationship is the ISA relationship, giving rise to a 
distinction between extension and intension. The intension and extension of a concept 
can be defined as follows:  
The intension of a concept is the information content inherent in the concept, which 
enables us to recognise the individuals falling under the concept. 
The extension of a concept is the set of all those individuals which fall under the 
concept. An individual falls under the concept if the concept applies to it.“ 

Ignoring the category of possible worlds, the authors have no means to distinguish between a 
contingent and necessary ‘is-a’ relation. Yet a concept intensionally contains another concept 
only in case of a necessary ‘is-a’ relation, i.e. the ISA relation. Thus, e.g., necessarily each 
student is a person, i.e., in all possible worlds and time points (the concept of a student 
contains the concept of a person), whereas the fact that Plato is a philosopher is a contingent 
fact: It is possible that Plato were something else and there are time points (even in the actual 
possible world) when he was not a philosopher, for instance in his childhood. Thus the 
concept of Plato does not contain the concept of a philosopher. Moreover, the extension is not 
well defined, because there is not one set of individuals which fall under the given concept 
but infinitely many of them dependently on possible worlds and time points. Thus claiming 
that the extension is determined uniquely by the intension of a concept is not correct. 
Irrespective of the above flaws the paper brings very promising results for computer 
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scientists. Building a concept complete distributive lattice first (with its rather peculiar 
universal (upper) and bottom concepts), via algebraisation of concept nets and embedding it 
in predicate logic, the authors propose a concept logic which could be probably easily 
understood as a logic programming tool.  

T. Niemi in [Niemi 1998] presents a good survey of Kauppi’s concept theory. He 
presents definitions of intensional product and sum, of comparable and compatible concepts, 
intensional negation of a concept, and intensional difference and quotient of concepts. 
Intensional approach in the information modelling area is stressed in contradistinction to the 
extensional approach. The author correctly states that the extensional approach is insufficient, 
for if extensionality is strictly followed, an extensionally defined concept (as a set of 
individuals) changes every time a new instance is added. Another problem is that two 
different concepts can have the same extension. Following Kangassalo, he defines the 
intension of a concept as the information content of the concept, i.e. all information contained 
in it, while the extension of a concept is the set of all individuals actualising the definition of 
the concept (this extension can change according to possible worlds and time points). The 
main contribution of the paper consists in algebraic presentation of the complete distributive 
concept lattice. The fundamental relation between concepts is, of course, the intensional 
containment relation (IC). All the results presented here are valuable, but unfortunately valid 
only when the IC relation is taken to be the ISA relation. The author’s ambitions fail in his 
effort to enrich the IC relation (in accordance with Kangassalo) to cover also the ‘part-whole’ 
relation and ‘being an attribute of ... ‘ relation. As we have stated above, in case of ‘being an 
attribute of ...’ the relation is not anti-symmetric (hence it cannot be considered to be a partial 
ordering), and in case of the ‘part-whole’ and ‘being an attribute of ...’ relations the inverse 
inclusion relation between the extensions of concepts does not hold. Thus it is certainly not 
true that the set of universities is a subset of the set of professors. Similarly, it is certainly not 
true that the set of cars is a subset of the set of motors (as author claims). The trivial error 
consists here in not distinguishing the property of ‘being a motor’ from the property ‘having a 
motor’ (as a proper part). Thus the set of cars is (in all the states-of-affairs) a subset of all the 
individuals that have a motor (as a proper part), similarly a set of motors is a subset of the set 
of all the individuals that have a motor (as an improper part), but the above claim is obviously 
not valid. The inverse inclusion relation between the extensions of concepts and the contents 
of concepts holds only in case of the conjunctive composing particular components of the 
concept (as it was shown  already by B. Bolzano [Bolzano 1837], see [Palomäki 1997]). Well, 
Kauppi claimed that this relation holds, but (as J. Palomäki told me in a private discussion) 
she admitted that the best interpretation of the IC relation is the ISA relation and she never 
offered any other. 

3.2. HIT data model 

The Czech school is represented by the HIT data model [Duží 1986, 1992, 1997, 1999], 
[Zlatuška 1986, 1990]. HIT is an acronym for Homogeneous, Integrated, Type-oriented. It is 
essentially an object-function model [Scholl 1990], the specification and manipulation tool of 
which is not an object algebra but the ‘language of constructions’ that can be viewed as a 
modified version of the transparently understood typed λ-calculus with tuples. HIT 
conceptual schema is defined as a couple <AS, CA>, where AS is the set of concepts 
(constructions) of HIT-attributes over a base of ‘sorts’ S, and CA is the set of constructions of 
consistency constraints connected with attributes of AS. From the theoretical point of view, 
HIT data model is based on the Transparent Intensional Logic (TIL), see [Tichý 1988], and to 
explicate these notions precisely, we are going to briefly summarise basic principles of TIL. 
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3.2.1. Transparent Intensional Logic. 

(a) Type system. 

The basic modelling construct of our apparatus is not a relation but a function. This 
choice is sufficiently motivated in [Materna 1998] (functional approach with its operations of 
application and abstraction enables us to create non set-theoretical complexes that are not 
realisable in the relational approach) and there is not much to add to it. Perhaps just one 
remark: Functions and relations are, in a way, equivalent when not considering partiality; but 
our functions can be partial, which enables us to catch even contingent relations between 
concepts. We need to work with functions as with ‘full-right’ objects, which is not possible 
within the first order predicate theories. Therefore we use the type system in which we need 
to have the possibility of giving functions as arguments of other functions, functions that give 
other functions as a result, etc. Hence the classical ADT approach is not sufficient. A slightly 
modified version [Zlatuška 1986] of the simple theory of types [Church 1940] meets this 
demand. (TIL is nowadays based on the ramified theory of types, for when analysing natural 
language expressions, we need to work even with concepts (constructions) as with ‘full-right’ 
objects, which is not possible within the simple theory of types. Nevertheless, for the 
purposes of conceptual modelling the simple theory of types will do.) 

The existence of a base is assumed. The base is a collection of mutually disjoint non-
empty sets which are elementary types. Over these elementary types an infinite hierarchy of 
types is built by means of functional types. Beside the functional type we use a tuple type as 
well. Although a tuple object might be created by means of a function, using the tuple 
construct makes the system easier to use. 

Definition 1. Let B be a base. 

i) Every member of the base B is an (elementary) type over B. 

ii) If T1, T2 are types, then (T1 → T2) is a (functional) type, i.e. the set of all (partial) 
functions from T1 into T2. 

iii) If T1,...,Tn (n > 1) are types, then (T1,...,Tn) is a (tuple) type, i.e. the Cartesian product of 
T1,...,Tn. 

An element O of a type T is called an object of the type T (or a T-object), and denoted O/T. � 

(b) Intensions & extensions. 

Another weakness of generally used predicate logics (even of a higher-order) is the 
fact that they usually do not distinguish between intensions and extensions. This distinction 
plays an important role in the theory of semantic information connected with data (see Ch. 4). 
Actually, when we want to logically define (informationally) redundant data structures, to 
compare data as for their informational capability, etc., we cannot do that without an 
apparatus enabling us to work with intensions and extensions.  

In the database literature intensions and extensions are often understood in the 
following sense: An intension is a rule specifying a function or a relation, whereas an 
extension is a table of actual values of the function or relation [Bell 1988]. In TIL (as well as 
in other logics based on possible-world semantics) an intension is an abstract object ⎯ a 
function ⎯ the domain of which is the so-called logical space, i.e. the set of possible worlds 
(logically consistent states-of-affairs relative to a given language). These two approaches 
have something in common. Imagine, e.g., an expression ‘Age (of a given person)’. The entity 
denoted by this expression shows a quasi-functional behaviour: given a person, you can 
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associate this person with just one value of his/her age. But the age of a person is time-
dependent, and moreover, knowing the notion of age does not suffice for computing the age 
of a person. We have to investigate it, to examine the actual state-of-affairs to find out what 
the actual age of the person is. This is due to the fact that the entity denoted by the expression 
‘Age of ...’ is an intension (in the TIL-sense). In fact, this is the reason why we need to store 
data to a database; we have to pick them up in the reality, for they are values of intensional 
functions in the actual states-of-affairs, and the above mentioned ‘rules specifying functions 
or relations’ usually identify (construct) TIL-intensions. But since such rules could also 
specify „normal“ extensional objects, like e.g., ‘average’, ‘sum’, etc., we shall always 
understand intensions and extensions in the TIL-sense. Another use of the words “intension”, 
“extension” has been introduced in Section 3.1.1: Intension/extension of a concept. These 
notions will be precisely defined in Section 3.3. Referring for details to [Tichý 1988] we 
recapitulate: 

The base in TIL is called an epistemic base, and it is a collection of four elementary 
types {ο, ι, τ, ω}: 

• type ο is the set of truth values {True, False},  

• type ι is the universe of discourse and its members are individuals (ι is really ‘universal’, 
there is only one universe of discourse, the same for all possible worlds; there are no 
‘possible individuals’. Moreover, an individual is understood as a ‘bare’ entity without 
any non-trivial essential properties),  

• type τ is the set of time points or real numbers playing also the role of their surrogates,  

• type ω is the set of possible worlds. Intuitively, a possible world is a logically possible 
state-of-affairs. To explicate this notion more precisely, we need some preliminaries: First 
of all, there is a collection of intuitively, pre-theoretically given traits assigned to objects 
of our interest. The choice of the universe of discourse and of the basic traits depends, of 
course, on the area we want to investigate. In case of objects and traits being empirical, 
the distribution of the traits among the objects is unpredictable and we have to apply an 
empirical procedure to find out which of the logically possible distributions is the actual 
one. But these possible distributions can change in time: Hence possible world is defined 
as the chronology of logically possible distributions of basic traits among objects (facts), 
and the logical space of a language is the set of all possible worlds. 

Over the epistemic base intensions and extensions are inductively defined as follows:  

Definition 2. 

i) A T-object, where T ≠ (ω → T’) for any T’ , is an intension of the 0th order or an 
extension. 

ii) Let a T-object be an intension of the nth order. Then (ω → T)-object is an intension of the 
(n+1)st order.  

iii) Only what satisfies i), ii) is an intension.                                                                                                       

Further we shall use the term intension only for intensions of the nth order, where n > 0.  � 

Natural language expressions usually denote objects (intensions) of a type (ω→(τ→T)), 
for some type T. Whenever we shall not need to work separately with parameters of the types 
ω, τ, time dependent intensions will be handled as if they were of a type ((ω,τ)→T), which 
will be abbreviated by (ωτ→T). The couple (ω,τ) will be called the state-of-affairs.  
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Sets (classes) are in our approach modelled by their characteristic functions. Hence a 
class of T-objects is an object of the type (T → ο), i.e. a function which returns the value True 
for each object belonging to the class, and False for all the other objects, as it is obvious from 
the following example: 

Examples of intensions and extensions 

extension intension 

class of T-objects 

(T → ο) 

property of a T-object 

(ωτ → (T → ο)) 

n-ary relation-in-extension 

((T1,...,Tn) → ο) 

n-ary relation-in-intension

(ωτ → ((T1,...,Tn) → ο)) 

{True, False} 

ο 

proposition 

(ωτ → ο) 

analytical function 

(T1 → T2) 

empirical function 

(ωτ → (T1 → T2)) 

 

(c) Constructions 

Ways in which objects are obtained are called constructions of objects and they can be 
intuitively understood as transparently viewed terms of the typed lambda calculus [Barendregt 
1981], [Zlatuška 1993] which are interpreted in the fixed way. Philosophically, they can be 
characterised as abstract procedures, consisting of some intellectual steps that lead to an 
identification of the constructed object (or in some well defined cases they fail to identify 
anything; this is the case of strictly empty concepts like the greatest number that represents an 
improper construction, see below). Hence constructions consist of parts, but the way of 
composing these parts together is important, not only the parts themselves, thus forming 
complexes that are not reducible to set-theoretical entities (unlike, e.g., Cresswell’s tuples 
[Cresswell 1985]). They are inductively defined as follows: Assuming that for any type there 
are an unlimited number of representatives, variables, and that there is a total function called 
valuation that assigns one object of the given respective type to each variable, we define:  

Definition 3. 

i) Atomic constructions are variables. A T-variable x v-constructs a T-object which the 
valuation v assigns to x. 

ii) If X is an object whatsoever, then 0X is a construction called trivialization. 0X constructs 
simply X without any change. 

iii) Let F be a ((T1,...,Tn) → T)-construction, A1,...,An be T1-,...,Tn-constructions (n > 0), 
respectively. Then [F (A1,...,An)] is a T-construction called application (composition) of F 
to (A1,...,An). If F, A1,...,An v-construct objects F, A1,...,An, respectively, and if the function 
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F is defined on A1,...,An, then [F (A1,...,An)] v-constructs the value of F on the tuple 
(A1,...,An). Otherwise, [F (A1,...,An)] is v-improper, i.e. it does not v-construct anything. 

iv) Let x1,...,xn be pairwise different T1-,...,Tn- variables and A a T-construction. Then λx1...xnA 
is a ((T1,...,Tn) → T)-construction, called λ-abstraction (closure) of A on x1,...,xn. It v-
constructs the following function F: Let A1,...,An be T1-,...,Tn-objects, respectively, and let 
v’ differ from v only by assigning A1,...,An to x1,...,xn, respectively. Then F gives on 
A1,...,An as its value the object v’-constructed by A if A is not v’-improper, otherwise F is 
undefined on A1,...,An. 

v) Let A1,...,An be T1-,...,Tn-constructions, respectively. Then (A1,...,An) is a (T1,...,Tn)-
construction called tuple. If A1,...,An v-construct objects A1,...,An, respectively, then 
(A1,...,An) v-constructs an object (A1,...,An) of the tuple type (T1,...,Tn), otherwise it v-
constructs nothing, it is v-improper.  

vi) Let A be a (T1,...,Tn)-construction, then A(1),...,A(n) are T1-,...,Tn-constructions, respectively, 
called projections. If A v-constructs an object (A1,...,An), then A(1),...,A(n) v-construct 
objects A1,...,An, respectively. 

vii) Nothing is a construction but a T-construction for a type T  due to i) - vi).       � 

Variables are incomplete constructions that construct dependently on valuations. This is 
an objectual version of the Tarskian conception of variables. There is however an essential 
distinction: Whereas not only Tarski but nearly every standard logician consider variables to 
be letters, characters, this conception is untenable in TIL; constructions are language 
independent entities. Hence the letters standardly used for variables like x, y, z, ... are names 
of variables here. 

Trivialization (0) is a special construction that might seem to be dispensable. It is an 
immediate, simplest way of constructing an object. Nevertheless, it is a very important 
construction, enabling us, among others, to distinguish between ‘using’ and ‘mentioning’ 
concepts [Duží 1994] and to distinguish between a concept of an object and the object itself. 

A closed construction, i.e. a construction without any free variables (where variables 
can be either λ-bound ⎯ when being in the scope of a λ-operator and not within a 
trivialisation, or ο-bound ⎯ within the scope of trivialisation) meets all the intuitive demands 
stated for the meaning of a natural language expression: It is an objective, non-linguistic 
structured entity that constructs (identifies) an object. Hence we conceive meanings of 
expressions, i.e. concepts, as closed constructions [Materna 1998]. (For the sake of simplicity 
we identify here particular closed constructions with concepts; they are, in fact, concepts*. 
For details, see [Materna 1998] where concepts are defined as classes of quasi-identical 
constructions, namely classes of such constructions that are indiscernible from the conceptual 
point of view; in particular, in a natural language we cannot express two quasi-identical 
constructions by two different expressions.) See, however, Section 3.3 for details. 

A T-construction, i.e. a construction constructing an object of the type T, will be rather 
non-precisely called a construction of the type T. 

Logical connectives, less than and equal tests, quantifiers, etc., are (analytical) 
functions, i.e. objects of the respective (functional) types. Logical connectives and tests need 
not be defined here. Quantifiers are defined as follows: 

Let x be a variable of a type T, B a construction of the type ο. 
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ΠT/((T → ο) → ο) are general quantifiers; [0ΠT λx B] constructs True if λx B constructs the 
class of all members of T, otherwise False. 

ΣT/((T → ο) → ο) are existential quantifiers; [0ΣT λx B] constructs True if λx B constructs a 
non-empty class, otherwise False. 

IT/((T → ο) → T) are singularizers; If λx B constructs a T-singleton K, then [0IT λx B] 
constructs the only member of K, otherwise IT is undefined on K. 

Notational conventions and abbreviations: 
• Negation [0¬ A] will be abbreviated by ¬A. 
• When applying logical connectives, identities, tests, etc. we use infix notation without    

trivialization. 
• Instead of [0ΠT λx B] we write ∀x B 
• Instead of [0ΣT λx B] we write ∃x B 
• Instead of [0IT λx B] we write ιx B (the only x such that B) 
• We will standardly use variables w, t as ranging over ω, τ, respectively. When applying 

an intension A of a type (ωτ) → α, for some type α, at w, t, we will use an abbreviation 
0Awt instead of [[0A w]t]. 

Note: We shall use the same sign ‘ι’ to denote the type of individuals as well as the 
singularizers, since no confusion can arise. 

3.2.2. Base of sorts 

In data modelling the role of elementary types is played by sorts. This is due to 
practical reasons. When creating a database schema we need to determine ‘nodes’ of the 
schema which stand for some basic classes (sorts) of individuals. Speaking about objects of 
our interest we do not use formulations like „the class of individuals which have the property 
of being an employee“. Instead we simply speak about an employee, student, material, etc. 
These expressions denote various properties (not necessarily of individuals only), and we 
demand that the information system in question should offer information on any object which 
has the selected property. This means among others that the attributes of a schema should 
concern ⎯ and thus be restricted to ⎯ only objects with this property.  

Nearly all the current data models use two kinds of types: entity sorts and descriptive 
sorts. (An entity sort is essentially the same as an ‘abstract’ type, a descriptive sort 
corresponds to a ‘printable’ type of [Hull 1987].) But as we have seen above, these two 
categories are usually defined vaguely, entities as being identifiable objects, things of the real 
world, and descriptions as values, strings, etc. Exact explanation can be given using TIL. 
Referring for details to [Materna 1987], we briefly recapitulate. 

An entity sort P is given solely by a property (of objects of a type α, i.e. an 
(ωτ→(α→ο) − object), say P. It is the union of classes which are selected by this property 
through a relevant time interval, i.e. the set of all objects which possessed, possess and will 
possess the property P. Let S be a time span relevant for the purpose of the given information 
system. Let Ci be classes of objects selected by the property P during S, i.e., each Ci is the 
value of P in the actual possible world and a time point si ∈ S. Entity sort P is then the union 
∪iCi. Classes Ci will be further called populations of the sort P.  

The fact that an entity sort is given solely by a property has an important consequence: 
It is not a recursive set and it is not representable (‘printable’) in the following sense: A class 
C is representable iff there is a recursive injection of C into a set A*, where A* is the set of 
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all finite strings over a finite alphabet A. If an entity sort P were representable, we would 
have to be able to use a recursive function taking the property P as its argument and returning 
the class generated by P in the actual world. But since we can never know which of the 
possible worlds is the actual one, no such function can be found. A descriptive sort is then 
any recursive, i.e. representable class. 

The base in the HIT data model is a collection of entity sorts E, descriptive sorts D, 
time points τ and possible worlds ω: {E, D, τ,ω}. The set of truth values ο is considered to be 
a descriptive sort. There are some problems connected with this conception of the type 
system, namely the base of sorts. We will return to it in the Section 3.3. 

Members of descriptive sorts are encoded by data stored in a database by means of 
which we describe entity sorts, i.e. they are ranges of extensional (analytical) functions 
defined by attributes (empirical functions) in particular states-of-affairs. (By a rather non-
precise term ‘extensional function’ we denote an analytical function, i.e. a (functional) object 
that  is the value of an attribute in a state-of-affairs.) The impossibility of finding a recursive 
function determining the population of an entity sort, as well as the intensional character of 
attributes (which will be discussed in the next chapter) have thus to be compensated by 
cognitive actions (experience, data collection). 

3.2.3. HIT attributes 

Traditionally, philosophy and logic preserved the term ‘attribute’ for properties (and, 
as the case may be, for relations, as properties of tuples). The development of databases and 
data models in seventies was connected with a broader interpretation of the term ‘attribute’: 
‘The address of a person’, ‘the salary of an employee’, ‘the children of a man and woman’, 
are examples of attributes in this broader sense. Indeed, they are not properties (nor relations); 
though it is possible to predicate of a person that he/she has the address of him/herself, we are 
interested in the value of the address. Hence whereas a property selects in every possible 
world a class (i.e. an object of a type T → ο), an attribute (in this broader sense) selects an 
(extensional, analytical) function (i.e. an object of a type T1 → T2). For instance ‘the address 
of a person’ selects a function which associates each person with its address. That attributes 
are intensions (empirical functions) is obvious: A person can move, i.e., the address of a 
person changes in time, and it is not logically necessary that the person has a given address, 
say A. He/she could live anywhere else. 

Attributes determined by concepts of a HIT conceptual schema are restricted to 
empirical functions of the so-called simple types. (This restriction is valid only for the basic 
conceptual schema. Attributes of derived schemata ⎯ views ⎯ are of more complicated 
types [Zlatuška 1986]. Anyway, this restriction will not influence the degree of generality of 
our considerations.) There are two classes of simple types:  

a)     (ωτ → (T1 → T2)) 
b)     (ωτ → (T1 → (T2 → ο))) 

where T1, T2 are types of sorts or tuples of sorts. Hence an attribute selects in every state-of-
affairs a function mapping a sort or a tuple of sorts to a sort or a tuple of sorts (case a)), or to 
their power set (case b)). We will call attributes of the type a) singular attributes, and 
attributes of the type b) multivalued attributes. A singular attribute may also be a property (in 
this case T2 = ο); T1, and T2 in case of a multivalued attribute are not equal to the sort ο. 

Note that our notion of attribute is a broader one than traditionally used. It covers a 
tuple construct as well as a set construct, and, moreover, it also covers relationships between 
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entity sorts. Thus, similarly as in ORM, we model descriptive attributes and relationships 
(associations) between entity sorts in a unique way, which makes the model extremely stable 
(see, however, Section 3.2.5). Attribute names are standardised natural-like language 
expressions. Though their exact syntax will be described in Section 3.2.5, we now use them to 
illustrate how the names are easy to read. 

Example: MATERIAL, SUPPLIER entity sorts, NAME, MONTH, QUANTITY descriptive 
sorts:  

A1:  ‘(NAME) of a (#MATERIAL)’ / 1,1:0,N  
of the type (ωτ → (MATERIAL → NAME)) 

        singular (‘descriptive’) attribute 

A2: ‘(#SUPPLIER)-s who deliver a (#MATERIAL)’ / 0,M:0,N 
                                                 of the type (ωτ → (MATERIAL → (SUPPLIER → ο))) 
        multivalued attribute (‘nested relation’, relationship) 

A3: ‘Accepted (QUANTITY) of a (#MATERIAL) from a (#SUPPLIER) per a (MONTH)’  
        / 0,1:0,N  

of the type (ωτ → (MATERIAL, SUPPLIER, MONTH) → QUANTITY)) 
       singular attribute with tuple (‘relationship’)  

Using just one modelling construct ⎯ attribute ⎯ enables us to formalise and exactly handle 
all the operations on general data structures, i.e. derived data, views, integrity constraints, ISA 
relationship as well as multiple inheritance (with a semilattice of types) [Zlatuška 1986], 
[Duží 1986]. In this work we show that it is possible to formally compare informational 
capability of different data structures, e.g., of a flat relation and a nested relation, etc. (see 
Section 4).  

3.2.4. Consistency constraints 

Consistency constraints are propositions that specify admissible states-of-affairs (and 
consequently admissible database states). There are some states-of-affairs that are ‘a priori’ 
excluded. For instance, such a possible world in which the age of a person would decrease is 
(analytically) impossible. But we have also to exclude such states-of-affairs that are logically 
possible but that contradict some empirical laws or conventions of a given organisation. 
Consistency constraints excluding the former are called analytical constraints (the term 
‘intrinsic’ is also used in some models), constraints excluding the latter are called  empirical 
constraints (‘extrinsic’). This distinction is significant for studying dynamic and static 
constraints [Vianu 1987], since empirical constraints can evolve in time, which may have 
significant consequences for further design and implementation phases. Hence consistency 
constraints help us to check the correctness of the attribute values (the correctness of data 
collection) and consequently the correctness of a database state. The problem is that in the 
majority of data models consistency constraints are formulated only in a natural language, or, 
as the case may be, directly in some programming language, so that their exact conceptual 
specification is neglected. Of course, when consulting the business reality with the user, the 
designer has to use a natural language. But since consistency constraints are the second 
constituent of the HIT conceptual schema, the task of a HIT-designer consists in analysing 
these natural language assertions, i.e. in transforming them into the respective logical 
constructions.  

Example: 

a) Analytical constraint ‘the age of a person never decreases’ connected with attribute 
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A: ‘(AGE) of a (#PERSON)’ is recorded by the following construction:   

∀w t1 t2 pers ((t1 ≥ t2) ⊃ ([0Awt1 pers] ≥ [0Awt2 pers]));  

(variables w, t1, t2 ranging over possible worlds and time points, respectively, pers 
ranging over the sort PERSON.) 

b) Empirical constraint ‘For each material there is always a supplier’ connected with attribute 

B: ‘(#SUPPLIER)-s of a (#MATERIAL)’ is recorded by the following construction:  

λw λt ∀mat ∃sup [[ 0Bwt mat] sup]  

(variables w, t ranging over possible worlds and time point, respectively, mat over the 
sort MATERIAL, sup over the sort SUPPLIER). 

Note the form of the respective constructions: ∀wt … concerns analytical, λwλt … empirical. 
 
3.2.5. The techniques of building up the HIT conceptual schema. 

Having illustrates basic principles and HIT philosophy, we now define HIT conceptual 
schema: 

Definition 4. HIT conceptual schema is a couple <AS, CA>, where AS is the set of concepts 
(constructions) of HIT-attributes over a base of sorts S, and CA is the set of constructions of 
consistency constraints connected with attributes of AS. 

When building up the HIT conceptual schema, we have in mind one of the most 
important principles, viz. the user involvement in the analysis. Being confronted with the 
user’s (expert’s) utterances, the designer has to transform these utterances, if they are meant 
as proposals of attribute names, to the respective constructions (concepts) of attributes. Let us 
follow with some very simple examples: 

Example:  

(User:) We wish to follow “Day, month and year of the birth of an employee” 

‘Day’, ‘month’, ‘year’ are evidently names of sorts (in this phase it is not important whether 
these sorts are descriptive or entity ones) members of which will be returned by the attribute 
when it is applied to a member of the sort ‘employee’. Calling this attribute ‘Day, month, year 
making up the date of birth of an employee’, we can write down the respective construction: 
 
λx               ι  (y, z, u)   ([Date-of-birth x] = (y, z, u) ),  

 
argument        value        attribute ‘body’ 
type                type 
   

where x, y, z, u are of the types EMPLOYEE, DAY, MONTH, YEAR, respectively. (We will 
return to the problem of ‘types’ later in Section 3.3.) This simple example reveals also the 
usefulness of the tuple type and tuple construction (which are not introduced in the ‘standard’ 
TIL) in data modelling: We need functions that return tuples as their values, and using 
singulariser in this example would not be correct without tuples. 

Similarly ‘Children of a given man and woman’ is the name of the attribute constructed by 

λx y λz [[Children-of (x, y)] z]     



 47

where x, y, z are of the types MAN, WOMAN, PERSON, respectively.  

Note that in case of a singular attribute there is a singulariser specifying attribute value and 
identity in the attribute body, whereas in case of a multivalued attribute there is a lambda 
operator and application, respectively. 

Theoretically, the designer has to distinguish three components in the expert’s proposal: 

i) the sorts making up the value type 

ii) the sorts making up the types of argument 

iii) the attribute „body“ 

The designer gradually transforms the expert’s proposals into the ‘language of 
constructions’, following the points i) − iii). It is, however, very important to optimise co-
operation between the designer and the expert (user). Now, verifying whether what is 
recorded as a construction is really that what is meant by the expert, the designer cannot 
discuss this by offering the expert the respective construction; the expert is not bound to know 
the formal apparatus (‘the language of constructions’) used by the HIT methodology. Instead, 
the designer uses a graphical support together with a standardised natural-language like 
names of attributes, which proved to be very intelligible for the users. In practice, the 
designer’s method consists in confronting the user with the respective graphs supplied with 
natural-language like standardised names. The designer need not first write down the 
constructions and then transform them into graphs. The correspondence between the 
constructions and graphs (and natural language names) is unambiguous and it is given by the 
following correspondence rules: 

R1) Sorts are represented by (small) circles; the circles representing the entity sorts have, 
moreover, a cross, in the following way: ⊗; (In the first phase, this distinction is not 
important and need not be represented except in the obvious cases.) 

R2) Let  

A1 be an attribute of the type ωτ → ((T1,...,Tm) → S1) 

A2 be an attribute of the type ωτ → ((T1,...,Tm) → (S1,...,Sn)) 

A3 be an attribute of the type ωτ → ((T1,...,Tm) → (S1 → ο)) 

A4 be an attribute of the type ωτ → ((T1,...,Tm) → ((S1,...,Sn) → ο)). 
 

The (oriented) graphs representing A1, A2, A3, A4 have the forms as defined and illustrated by 
Fig. 1. The graphs of the forms (A1) − (A4) are called A-schemas. 

Gloss: The upper circles represent the sorts T1, ...,Tm and the bottom circles represent the sorts 
S1, ..., Sn.  



 48

Figure 1: A-schemas  

 
R3) A natural standardised attribute name containing the names of components i) − iii) is 

chosen and its particular parts are written down, beside, above or below the parts of the 
A-schema as follows: 
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The names of sorts are written to the respective circles; the edges connecting the upper 
and lower part of the A-schema are provided with expressions (included in ‘bubbles’) 
like ‘of...’, ‘in...’, ‘who works on...’, etc. which together with the names of the sorts 
constituting the value type and argument type make up the attribute name formulated in 
natural language, expressing the concept, i.e. the semantics of the attribute. A ‘bubble’ 
can be ascribed also to the value type and to the n-th argument. Tuple types serving as a 
range of an attribute are also provided with names. The name of attribute is read ‘bottom 
up’, and it has to be a grammatically correct natural language expression, which serves 
as a check of the correctness of the name. 

The names of attributes can also be recorded in a standard ‘linear’ form which is 
construed as follows: Names of sorts (not necessarily written in capitals) are included in 
parentheses. Sort(s) forming the value type are written first (in case of attribute’s being 
multivalued the name of the value type is written in plural, i.e. with ‘-s’, in case of the 
value type being a tuple the name of the tuple is written first followed by ‘=‘ and the 
names of particular components of the tuple in parentheses), followed by the sorts 
forming the arguments. Entity sorts are provided with the sign ‘#’. Between (and as the 
case may be before the first and after the last) particular sort names texts (in lower case 
letters) explaining the semantics of the attribute (the content of „bubbles“) are written. 
The whole name must form a grammatically correct expression of a natural language, 
which serves at the same time as a control of the ‘correctness’ of the name.  

R4) An attribute can be provided with the so-called ratio of the attribute that mirrors the 
appropriate singular and total integrity constraints. The ratio also determines whether an 
attribute can serve as an identifying attribute. The ratio is written in the form  

p,m : q,n  

where  

• p = 0 means that the attribute is a partial function 

• p = 1 means that the attribute is a total function 

• m = 1 means that the attribute is singular 

• m = M means that the attribute is multivalued. 

The values of q and n express these constraints for the ‘inverse’ function.  

(The term total (partial) function is used here rather non precisely: We mean the fact 
that the extensional function which is the value of the attribute is in all the states of 
affairs total (partial). A total function assigns to each element of the argument type just 
one element of the value type (which is in case of a multivalued attribute a non-empty 
set). A partial function assigns at most one value (in case of a multivalued attribute it 
may be an empty set).) 

An identification attribute has the ratio of the form 1,1 : 0,1, i.e. it is a total singular 
function. There may also be a set of identification attributes (identifying the elements of 
the argument type) each of which has the ratio 1,1 : 0,M. Note that elements of the 
argument type are identified by attributes not by values.   

Example: An attribute ‘Schedule’ expressing the schedule of lectures with a standardised 
name: (TIME-PERIOD)-s = (DAY, HOUR) when a given (#SUBJECT) is lectured by a given 
(#PROFESSOR) in a given (#ROOM) for a given (#GROUP-OF-STUDENTS) who have 
enrolled the course / 0,M:0,N 
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is graphically depicted by the following A-schema: 
 

 

 

 

 

 

 

 

 

 

 

 

The respective construction corresponding to this schema and name is as follows: 

λ s p r g λ (d,h) [[0Lecturing (s, p, r, g)] (d, h)]  

(types of variables: s / SUBJECT, p / PROFESSOR, r / ROOM, g / GROUP-OF-
STUDENTS, d / DAY, h / HOUR). 

Note that one of the ‘bubble’ texts expresses the attribute body. 

The goal of the dialogue between a user and a designer is building up a conceptual 
schema describing the universe of discourse. This work consists in the specification of 
attributes that are of user’s interest and consistency constraints connected with these 
attributes. Together with recording attributes we also create the base of sorts. Distinguishing 
entity and descriptive sorts in this early phase is not important yet. Anyway, concerning entity 
sorts we have to keep in mind that each entity sort has to be precisely defined, i.e. the 
property specifying the sort has to be described, and it has to be identified (by an 
identification attribute or by a set of identification attributes). At the same time relations 
subtype−supertype (see the following Section 3.2.6) between entity sorts have to be defined.  

The result of the reality−mapping phase is the first proposal of the HIT-conceptual 
schema. In the successive phase the designer has to perform all the necessary adjustments of 
the schema, which consist in definite description of the base of sorts (see above), and mainly 
in determining the so-called data kernel, i.e. transforming our attributes to the simplest, most 
elementary possible form and specification of informationally redundant attributes. This 
process will be described in detail in Chapter 4. In practice, of course, both the phases do not 
have to be successive, they may go (and often do go, especially in case of a skilful designer) 
in parallel. 

3.2.6. Traditional modelling constructs and the HIT data model 

In this section we sum up particular ‘traditional’ constructs used in semantic database models 
and outline the way they are covered by means of the HIT methodology. At the same time we 
provide a precise logical explication of these constructs. 

SUBJECT PROFESSOR ROOM GROUP-OF-TUDENTS 

0,M : 0,N 

when a 
given 

is 
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by 

in a for a given

who have enrolled 
the course 

DAY HOUR 

TIME - PERIOD 
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I. Sorts (types) 

(Entity and descriptive) sorts have been defined in Section 3.2.2. For the sake of completeness 
we just briefly recapitulate: 

a) Entity sorts (abstract types) 

     This category is usually defined vaguely, the set of entities as being the set of objects of 
the real world the data of which are recorded in the database. In HIT data model an entity 
sort E is defined as the set that is given solely by a property (of objects of a type α), say P 
[Materna 1987]. It is the union of classes which are selected by this property through a 
relevant time interval, i.e. the set of all objects which possessed, possess and will possess 
the property P. Particular classes selected by P are called populations of the entity sort E. 
The fact that an entity sort is given solely by a property, i.e. an intension (mapping from 
possible worlds and time points to the type α) has an important consequence: It is not a 
recursive set and it is not representable (‘printable’); there is no recursive injection of the 
sort E into a set of finite strings over a finite alphabet. If an entity sort E were 
representable, we would have to be able to use a recursive function taking the property P 
as its argument and returning the class generated by P in the actual world (the population 
of E). But since we can never know which of the possible worlds is the actual one, no 
such function can be found. 

b) Descriptive sorts (printable types) 

     A descriptive sort is a ‘normal’ recursive, i.e. representable set. Members of descriptive 
sorts are encoded by data stored in a database by means of which we describe entity sorts, 
i.e. they are ranges of functions defined by (descriptive) attributes in particular states-of-
affairs. The impossibility of finding a recursive function determining the population of an 
entity sort, as well as the intensional character of attributes have thus to be compensated 
by cognitive actions (data collection). 

c) Relationship sorts (relationship sets) 

    A relationship set R is actually an n-tuple (E1,...,En), i.e. the Cartesian product E1 ×...× En of 
the sorts E1, …, En. In practice it often stems from some event (e.g. a loan, returning, 
lecturing, an order, etc.). It is one of the main building blocks of the Entity-Relationship 
(E-R) data model [Chen 1976]. Using E-R model is mostly considered to be an adequate 
tool for business data analysis. But when the business reality is completely unknown to 
the designer or too complex, the design of relationship sets becomes a stumbling block of 
the E-R data modelling, for these sets are in a way ‘unnatural’. Using the HIT method of 
conceptual analysis, the designer is not forced to determine these objects of a ‘higher’, 
more complex type at the very beginning of the design process. He can map them in a 
very natural way as n-ary (n ≥ 1) (relationship) attributes, i.e. as (empirical) functional 
dependencies between more basic types (entity and descriptive sorts). Particular 
relationship sets are then obtained by automated process of transformation of the HIT 
conceptual schema into a ‘flatter’ Chen’s like schema, which consists of representing  
n-ary functions by means of relationship sets (the so-called ‘binarization principle’ is 
applied, see [Duží 1999], Section 5.2), enriching the base of sorts by relationship types 
and reformulation of consistency constraints associated with these complex attributes. 
Transforming a ‘kernel-like’ schema, we obtain a schema in the 4th normal form which is 
informationally equivalent [Duží 1992] with the original HIT schema. The process of 
transformation, i.e. in fact the process of the design phase of the system ‘life-cycle’ is 
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thoroughly described in Section 5 of this study. For example transforming the attribute 
‘Schedule’ from the above example, we obtain a relationship set R = (SUBJECT, 
PROFESSOR, ROOM, STUDENT-GROUP), four (binary relationship) attributes 
expressing the relations of R to the original entity sorts, and a (binary descriptive) 
attribute which could be called „the schedule times of R“. (Note that in such complex 
cases it is difficult to find a natural name for the new relationship set.)  

II. Subtypes, supertypes, inheritance (‘ISA relation’) 

     The relation of ‘being a subtype’ is usually defined extensionally as the set-theoretical 
inclusion. For instance, it is being said that the set of employees is a subset of the set of 
persons. Such a relation can be defined only for descriptive sorts. In case of entity sorts 
the relation is determined by the fact that some properties are not logically independent. 
We say that an entity sort E1 which is determined by a property P1 is a subtype of an 
entity sort E2 which is determined by a property P2 iff the property P1 necessarily implies 
the property P2 in the following sense:  

∀wt ∀x ([0P1wt x] ⊃ [0P2wt x]),  

where w, t, x range over possible worlds, time-points and individuals (or generally objects 
of a type α), respectively. The consequence of this dependency is the fact that in all the 
states-of-affairs the population of E1 is a subset of the population of E2. Hence in data 
modelling the ISA relation is a necessary relation in contradistinction to the approach 
applied in artificial intelligence, where a contingent fact is sometimes also considered to 
be the ISA relation (e.g. Aristotle is a philosopher). 

Generalisation, specialisation: 

The concepts of properties P1 and P2 do not have to be primitive concepts (see Section 3.3 
or [Materna 1998]) in a given database conceptual system. For instance, the concept of an 
employee can be defined as ‘an individual that is a person who is employed’, the concept 
of a student as ‘an individual that is a person who studies in a ...’, the concept of  a 
professor as ‘an individual that is a person who lectures’, and so on. Hence we can say 
that the concept of an employee contains the concept of a person, the concept of a student 
contains the concept of a person, the concept of a professor contains the concept of a 
person (more precise explication of the content of a concept and the relation of 
intensional containment see Section 3.3.). Generalisation and specialisation are two types 
of creating a new entity sort. Having entity sorts E1,...,En defined by properties P1,...,Pn 
the concepts of which contain concepts of some properties Q1,...,Qm, we can define a new 
entity sort E specified by properties Q1,...,Qm as a generalisation of E1,...,En. For example 
generalising entity sorts CAR, MOTOR-CYCLE, POPPER, BICYCLE we obtain a new 
entity sort VEHICLE, generalising further VEHICLE with a PLANE, SHIP, BOAT we 
obtain TRANSPORT-MEANS. It usually holds in case of generalisation that in every 
state-of-affairs the populations of sorts E1,...,En do not overlap and the set-theoretical 
union of these populations covers the population of the new sort E. On the other hand, 
specialisation is an ‘opposite’ way of defining a new entity sort: Having an entity sort E 
specified by a property P, we define new entity sorts E1,...,En by specifying some 
important features, possible roles P1,...,Pn which an individual having the property P may 
present or which it may lack to present. For instance, having the entity sort BIRD, we can 
define PENGUIN as a bird that does not fly (does not have feathers), or WATER-BIRD, 
DOMESTIC-BIRD, etc. Or, from the entity sort PERSON we can specialise sorts 
EMPLOYEE, STUDENT, PROFESSOR, RETIRED-PERSON, etc. These sorts may 
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overlap, and an object may change such roles without changing its underlying or 
fundamental identity (e.g. a student might become an employee or cease to be an 
employee without losing his or her underlying identity as a person). 

Needless to say that in both cases the sorts E1,...,En are subtypes of the sort E. Moreover, 
using Kauppi’s terminology (that we accept), the concepts of properties P1,...,Pn are in 
this case comparable (they have something in common).  

Both these types of definition are used in the HIT conceptual modelling, but unlike the 
COMIC system, their using is not promoted in the resulting HIT conceptual schema by 
special graphical support (besides the ISA relation). 

III. Aggregation (of sorts E1,...,En into a sort E) 

This is actually the part-whole relation. It is either mapped as a tuple (Cartesian product) 
of (entity) sorts or more frequently by HIT attributes. For example a graph consists of 
edges and nodes; or a car consists of (is assembled of) a motor, wheels, tires, a bonnet, 
etc. A typical example is a list of parts (the bill of materials). Each part (production item) 
consists of (is assembled of) a certain amount of other parts (items) which can again be 
assembled of other items until the level of basic items (materials) is obtained. Hence each 
production item is either a final product, or a part (that can be a product as well), or a raw 
material. This situation is in the HIT method mapped by the attribute with the following 
name:  

‘(AMOUNT) of a lower (#ITEM) that is needed for the production of a higher (#ITEM)’ 
with the corresponding A-schema: 

 

 

 

 

 

 
 
 
 

If a given item is a final product, it can never occur in the position of a lower item. On the 
other hand, if a given item is a raw material, it can never occur in the position of a higher 
item (which is an integrity constraint connected with this attribute). 

Transforming this attribute into the E-R schema (see 5.2), we have to introduce a new 
relationship set, let it call a LIST-OF-PARTS-BOND which is a tuple (ITEM, ITEM), 
and we obtain the following structure: 
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IV. Grouping 

This is in fact a set construct. In the HIT methodology it is mapped by a multivalued 
attribute. For instance a department is a set of employees. The corresponding HIT 
attribute is named by  

‘(#EMPLOYEE)-s who are members of a given (#DEPARTMENT)’. 

V. Attributes, relationships 

In traditional semantic data models only attributes which we call descriptive ones, i.e. 
attributes of a type E → D (E an entity sort, D a descriptive sort), are used. Relations 
between entities are expressed by relationships. Our notion of attribute is a broader one 
than traditionally used. Since HIT attributes are of the so-called simple types, see above, 
(which is valid only for the basic conceptual schema; attributes of derived schemata ⎯ 
views ⎯ are even of more complicated types [Zlatuška 1986]), our notion of attribute 
covers a tuple construct (aggregation), a set construct (grouping), and moreover, it covers 
relationships between entity sorts as well. This feature makes the model extremely stable. 
Moreover, our HIT methodology provides us with a logically precise characterisation of 
the notion of attribute. It is an empirical function⎯an intension, i.e. a mapping from 
possible worlds and time points to the set of (analytical) functions of the respective type. 
We also distinguish between the so-called ‘kernel’ attributes and definable (redundant) 
attributes [Duží 1992], see Section 4 below. 

3.3. Hit data model from the conceptual point of view 
In this section we first briefly summarise basic notions of the theory of concepts based 

on the Transparent Intensional Logic (TIL) [Tichý 1988] as they are presented in [Materna 
1998]. Afterwards we make more accurate the theory of HIT database conceptual schema 
from the conceptual point of view; in other words we present a correction of the view 
presented in [Duží 1999], and of the view presented above, namely of the base of sorts and 
the type system. We will make a slight simplification of Materna’s theory: A concept will be 
taken here to be a closed construction, i.e. a concept* of [Materna 1998], where a concept is a 
class of quasi-identical closed constructions, i.e. of such closed constructions that are 
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indiscernible from the conceptual point of view (for instance in a natural language we cannot 
find different expressions for quasi-identical constructions). The important features of our 
conception of concepts are the following: 

• Concepts are objective, independent of a particular language; 

• Concepts are ‘abstract procedures’ ⎯ sequences of some steps that lead to the 
identification of an entity (or sometimes fail to identify any ⎯ in case of strictly empty 
concepts); they are timeless and spaceless; 

• Concepts are structured non set-theoretical entities: complexes; they consist of parts, but 
the way of composing these parts together is important, not only the parts themselves; 

• People do not create concepts, they just discover them; 

• Concepts ‘exist’ independently of our knowledge of them. Concept acquisition is another 
problem that is not dealt with here; 

• ‘The meaning of a concept changes’ is a non-reasonable sentence, since concepts are 
meanings of expressions; only the assignment of certain concepts to particular expressions 
can change.  

We can see that the above criteria are actually met by closed constructions. This is the 
reason for conceiving concepts ⎯ meanings of expressions ⎯ as closed constructions. What 
follows is a summary of main definitions concerning Materna’s concept theory:  

A simple concept is a construction 0X, where X is a variable (of any type) or an object that is 
not a construction.  

The primitive content (intension) of a concept C is the set of simple concepts that are 
subconstructions of C. The primitive content of a simple concept is a singleton.  

The extension of a concept C is the object constructed by C. If the object constructed by C is 
an intension ((ωτ)→α - object), i.e. a mapping from the set of possible worlds and time points 
to a type α, we speak also about an extension of C w.r.t. a world W and a time point T which 
is the value of this intension in W at T.  

Note: The term ‘intension’ is used here with two different senses: either as an intension of a 
concept or an intension as a mapping from possible worlds ...( (ωτ)→α −object, for some type 
α). We will therefore prefer the term ‘content’ of a concept to the term ‘intension’ of a 
concept not to cause any confusion. When analysing natural language expressions in the 
following examples we will, of course, do that over the epistemic base: {ο, ι, τ, ω}. 

Example: The concept of an UNMARRIED MAN is not simple:  

λwλt λx [0∧ [0Manwt x]  [0¬ [0Marriedwt x]]],   

where variables w, t, x range over the set of possible worlds, time points and individuals, 
respectively. The content of this concept is the set {0∧, 0¬, 0Man, 0Married}. The extension of 
this concept is the property of being an unmarried man, i.e. an (ωτ→(ι→ο))−object. The 
extension of this concept w.r.t. a world W and a time point T is the set of men that are 
unmarried (in this W and T). 

Now we need to define the notion of conceptual system: Let C1,...,Cm be simple 
concepts. Let Cm+1,... be all the concepts distinct from C1,...,Cm such that the subconstructions 
of Cm+i, i > 0, are only members of {C1,...,Cm} and variables ranging over those types that are 
composed of types given by C1,...,Cm.  The set {C1,...,Cm} ∪ {Cm+1 ...} is called a conceptual 
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system (CS). The set {C1,...,Cm} is the set of primitive concepts of CS (PCS), the set {Cm+1 ...} 
is the set of derived concepts of CS (DCS).  

The last notion that we will need is the notion of definition. Let CS be a conceptual 
system. Let C be a member of DCS, and let C construct an object A. If A is not constructed 
by a member of PCS, then C defines A. An object A is definable in the conceptual system CS 
iff some member of CS defines A.  

The following claims are obvious: Every non−strictly empty complex concept (i.e. a 
concept that is not simple and it does not fail to construct an object) defines some object in 
some conceptual system. Every not strictly empty complex concept is a definition in some 
conceptual system. Well, this is not a standard use of the term ‘definition’. One of the most 
striking distinctions between the above and the standard one is the fact that there is no 
‘definiendum’ and ‘definiens’ here. But having explicated the semantic character of 
definitions, we can define ‘linguistic definitions’ as expressions of a (sub)language having the 
form Definiendum = Definiens as follows: 

Let CS be a conceptual system based on PCS = {C1,...,Cn}. A language LCS of CS is a 
language satisfying the following conditions: 

a) There are simple expressions in LCS that represent C1,...,Cn. 

b) There is a grammatical rule (or a set of such rules) of LCS that makes it possible to 
create an expression representing composition from expressions representing 
particular „components“ of the composition. 

c) If EX represents a construction X then there is a grammatical rule (or a set of such 
rules) that makes it possible to create an expression Eλ that represents an abstraction 
[λx1...xm X]. 

The language LCS may not contain any ‘linguistic definition’. Now we can build up a 
hierarchy of languages each of which contains some new simple expressions introduced by 
means of a linguistic definition into the previous level. 

i)  Let LCS0 be LCS. 

ii)  Let LCSi (i > 0) result from LCSi-1 by adding a set of simple expressions SEi1, ..., SEik  
(k > 0), together with expressions interpreted as true sentences 
SEi1 = CEi1 
… 
SEik = CEik  
where CEi1, ..., CEik are complex expressions that contain only expressions occurring 
in lower level languages. The expressions of the above form can be called linguistic 
definitions expressed by the language LCSi, SEi1,...,SEik are definienda, CEi1,...,CEik 
are definiens expressed by LCSi.  

Of course, this hierarchy is rather artificial, and natural languages do not develop in such a 
schematic way, yet it illustrates the connection between conceptual systems and expressions. 
It is important to realise that a simple expression does not have to represent a simple concept, 
i.e., a primitive concept of a given CS. It may be an expression in some (sub)language LCSi in 
which it is defined by means of simpler expressions from LCSi-1,... until reaching the level of 
LCS. For instance, a bachelor can be defined as an unmarried man and can thus represent the 
complex concept 

λw λt λx [0∧ [0Manwt x]  [0¬ [0Marriedwt x]]]  
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that contains, among others, the concept 0Man and the concept 0Married; due to this 
convention (a linguistic definition) a ‘bachelor’ and an ‘unmarried man’ are synonymous 
expressions [Duží 1996] (with respect to the given CS), for they represent one and the same 
concept. (In this example we suppose that ‘man’ is connected with a primitive concept of our 
CS: 0Man. In another CS it might happen that the concept of man would be derived from two 
other primitive concepts of human being and of male. Then ‘man’ would be connected with a 
derived concept 

λwλt λx ([0Humanwt x] ∧ [0Malewt x]) the content of which would be {0Human, 0Male, 0∧}.) 

To be able to precisely explicate the relation of intensional containment we have to 
adjust the definition of the intension of a concept, for if such a relation where based on the 
intension of a concept as defined above, it would be neither reflexive, nor transitive, which is 
obviously not a desirable state. Therefore we define: 

Definition:  
The content of a concept C is the set of subconstructions of C that are themselves concepts. 
A concept C intensionally contains a concept C’ (denoted C ≥ C’) iff C’ is a member of the 
concept C. 

The relation of intensional containment (IC) defined in this way is reflexive, 
antisymmetric and transitive, which follows from the definition of a subconstruction: 

Definition: Let C be a construction. 

i) C is a subconstruction of C. 

ii) Let C be 0X. If X is a construction then X is a subconstruction of C. 

iii) Let C be [X X1…Xn]. Then X, X1, …, Xn are subconstructions of C. 

iv) Let C be λx1…xn X. Then X is a subconstruction of C. 

v) If A is a subconstruction of B, and B is a subconstruction of C, then A is a 
subconstruction of C. 

vi) Anything is a subconstruction of C only due to i) – v). 

Now considering our simple ‘bachelor example’ with linguistic definitions 

“Bachelor is an unmarried man”, 

“Man is a male human being”, 

we have several possibilities how to analyse them, depending on a chosen conceptual system. 
Imagine that we consider three conceptual systems with primitive concepts as follows: 

PCS1: {0Bachelor, …} 

PCS2: {0Man, 0Mar(ried), …} 

PCS3: {0Male, 0H(uman being), 0Mar(ried), …} 

If we choose, for instance, the system generated by PCS3, the we can define the property of 
being a bachelor as follows: 

 

 
 



 58

λwλt λx  [0¬ [0Marwt x]  ∧  [ [λwλt λy ([0Malewt y] ∧ [0Hwt y])]wt x ] ] 

 
                                                                 MAN 

 
                                         BACHELOR 

It is easy to see that the result is plausible: 

BACHELOR ≥ MARRIED, MAN, MALE, HUMAN, NOT, AND 

MAN ≥ MALE, HUMAN, AND 

After this brief recapitulation of the theory of concepts we are now going to analyse 
HIT database conceptual schema from the theoretical point of view. In [Duží 1992, 1999] we 
have defined the notion of data kernel K of a set of attributes A constructed by a given 
database conceptual system as a minimum set of elementary (undecomposable) attributes 
such that K is informationally equivalent [Duží 1992] with A. This is a very important notion 
because data kernel does not contain any informationally redundant attributes (we deal with 
this notion precisely in Section 4.2), i.e. such attributes that would be definable from a subset 
of K in the following sense:  

Let A, A1, ..., An be attributes of a database conceptual schema. We say that A is definable 
from {A1,...,An} iff  

∃f ∀wt (0Awt = [f (0A1wt,...,0Anwt)])  

where f ranges over (analytical functions) surjections.  

Obviously concepts of attributes definable from the data kernel of our database 
conceptual system are derived concepts in the above defined sense (they contain concepts of 
kernel-like attributes; 0A = λwλt [0F (0A1wt,...,0Anwt)] for some analytical function F) and they 
should not be a part of the conceptual schema unless there are some special important reasons 
(effectiveness, reliability). They are normally included in particular external schemata 
(views). (Moreover, transforming a kernel-like schema into a relational schema we obtain a 
schema in the 4th normal form, as has been proved in [Duží 1992].)  

The problem, however, is whether concepts of kernel-like attributes are primitive 
concepts of our database conceptual system, as has been affirmed in [Duží 1999]. Consider 
again the attribute ‘Schedule’ with the name 

‘(TIME-SCHEDULE)-s = (DAY-IN-WEEK, TEACHING-HOUR) when a 
(#SUBJECT) is lectured by a (#PROFESSOR) in a (#ROOM) for a (#STUDENT-
GROUP)’. 

Here is the corresponding A-schema: 
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Writing down the respective construction over the base of sorts, we get: 

λ s p r g λ (d,h) [[0Lecturing (s,p,r,g)] (d,h)],   

where variables s, p, r, g, d, h are of the types SUBJECT, PROFESSOR, ROOM, STUDENT-
GROUP, DAY-IN-WEEK, TEACHING-HOUR, respectively. We come to the conclusion 
that the content of this concept is a singleton {0Lecturing}, hence it is a primitive concept of 
our conceptual system. (After all, the above construction can be reduced using β-rule to the 
construction 0Lecturing.) Isn’t it rather unnatural? Wouldn’t we say that the concept of this 
attribute contains concepts of a subject, professor, room, etc. as well? The problem consists in 
the fact that our type system with the base of sorts is not correct. It is just an abbreviation 
convenient for users. Speaking about the part of reality that is being analysed the user does 
not employ formulations like „the individuals that have the property of being a professor“, 
„the classes of individuals that have the property of being an organisation“ or „the classes of 
propositions that have the property of being a lecture-course“, etc. Instead he/she simply 
speaks about professors, students, organisations, courses, etc. Indeed, ‘student’, ‘professor’, 
‘organisation, ‘course’, etc. denote various properties (not necessarily of individuals); the user 
obviously wishes to express the idea that the information system that is being analysed should 
offer information about any object that has some of the mentioned properties. This means that 
the attributes which will be of interest with respect to the information system should concern 
⎯ and thus be restricted to ⎯ only objects with the selected properties. Therefore we use an 
abbreviation, a convention, and speak about the base of sorts and claim that attributes are 
functions of simple „types“ (i.e. mappings from possible worlds and time points to the set of 
mappings from n-tuples of sorts to n-tuples of sorts, or to their power set).   

There are two flaws in this convention. First, the base of our type system has to be a 
collection of mutually disjoint non-empty sets ⎯ elementary types. But sorts are not disjoint 
(‘subtypes’ / ‘supertypes’) and are not elementary. Second, natural language expressions 
should be analysed (as has been convincingly shown in [Tichý 1988]) over the epistemic 
base: a collection of four elementary types {ο, ι, τ, ω}, where ο is the set of truth values 
{True, False}, ι is the set of individuals (‘naked’ entities without any essential properties), τ 
is the set of time points (or real numbers as their surrogates) and ω is the set of possible 
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worlds (logically possible states-of-affairs). Indeed, our names of attributes should be 
analysed over the epistemic base and the above restriction to sorts should be expressed as 
another condition in the respective construction. Consider, e.g. a very simple attribute ‘Salary 
of an employee’. Using a classic infix notation for logical connectives and the identity sign, it 
should be precisely analysed over the epistemic base by the following construction: 

λwλt λx ιy ([0Salarywt x] = y ∧ [0Employeewt x]),  

where x ranges over ι and y over τ. 

Thus the concept of this attribute contains, among others, two primitive concepts (of our CS): 
0Salary and 0Employee. (The situation is still not as simple, since the simple expression 
‘employee’ is not connected with a primitive concept of our CS but with a derived one.) The 
above construction constructs an empirical function, namely the attribute that is in all the 
states-of-affairs defined just for those individuals which are employees and undefined for the 
others. So far so good.  

But in case of a multivalued attribute we would get as a value an empty set, which does 
not distinguish whether the set is empty because it is actually empty or because the attribute 
has been applied on a wrong argument(s). Consider, e.g., another very simple attribute 
‘Children of a given man and a given woman’. Applying the same method as above, we get 
the construction (variables x, y, z ranging over ι) 

λwλt λx y λz ([[0Childrenwt (x,y)] z] ∧ [0Manwt x] ∧ [0Womanwt y]),  

which constructs a function that in all the states-of-affairs returns an empty set either for those 
couples (man, woman) that do not have any children, or for those pairs of individuals in 
which the first member is not a man or the second one is not a woman (but we would like to 
construct such a function which would be undefined for such pairs). Hence we have to make 
still another adjustment: 

λwλt λx y ιz ([[0Childrenwt (x,y)] = z] ∧ [0Manwt x] ∧ [0Womanwt y]),  

where x, y range over ι and z ranges over (ι→ο), i.e. sets of individuals. 

Now this construction constructs the empirical function that ‘behaves’ exactly in the way we 
wish. The concept of ‘Children of a given man and a given woman’ contains, among others, 
the concepts 0Children, 0Man, 0Woman. 

This method can be, of course, generalised. The types of empirical functions 
constructed by particular attribute concepts may be much more complex. Concluding, we can 
say that the concept of a kernel-like attribute contains concepts of particular sorts and the 
concept expressing the essence of the attribute, i.e., ‘attribute body’ (represented usually by 
one of the texts written in “bubbles” in the A-schema, namely the main one). On the other 
hand, a concept of a redundant attribute, i.e. attribute definable from the data kernel, contains 
concepts of particular ‘sorts’, the concept of the attribute ‘body’ and the concepts of those 
attributes from which it is definable. 

Now we can discuss the problem that can be characterised as the problem of a 
‘definition of entity sorts’. It is strictly recommended by the HIT method of database design 
that each entity sort has to be provided with an exact definition (written in a natural 
language). For such self-evident sorts like EMPLOYEE, STUDENT, ... it may seem to be 
dispensable. But there are many other sorts the name of which itself does not sufficiently 
express its meaning (take, e.g., the sort PRODUCTION-ITEM: is it only an item of a list of 
parts, or also a final product? may it be also a raw material?); in other words, we use 
linguistic definitions that assign derived concepts (of our database CS) to simple expressions, 
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i.e. to names of sorts. Actually, there are many simple expressions which are not connected 
with primitive concepts of our database CS but with derived ones. Thus, for instance, the sort 
EMPLOYEE is defined as the set of all individuals that are persons which are employed. The 
simple expression ‘employee’ represents a derived concept in the content of which is the 
concept 0Person and the concept 0Employed (the respective property is constructed by λwλt 
λx ([0Personwt x] ∧ [0Employedwt x])). Since particular traits of the concept of an employee are 
connected in the conjunctive way, it holds that the extension of the concept of employee in 
every world W and time point T is a subset of the extension of the concept of person in this W 
and T. We get the “classical” ISA relation. The concept of the attribute ‘Salary of an 
employee’ contains concepts 0Salary, 0Person, 0Employed. Expression ‘person’ is connected 
with a primitive concept of our CS, whereas the expression ‘employee’ with a derived one. 

Concluding this subsection we summarise: The task of conceptual analysis consists in 
analysing particular natural language expressions used in the business reality, i.e. in 
discovering concepts (TIL logical constructions) of entity sorts, descriptive sorts, attributes 
and integrity constraints that are assigned to these expressions, and in determining 
relationships between the respective concepts. When performing this task, we should choose 
as much ‘fine-grained’ conceptual system, as possible, to reveal all the needed IC relations 
over our conceptual base. The result of such an analysis is the HIT conceptual schema. 

3.4. Finnish and Czech approaches compared 

In this section two approaches to conceptual data modelling have been compared: the 
Finnish approach represented by the COMIC data model and the Czech approach represented 
by the HIT data model. The basic ideas of the two approaches can be characterised as using 
theory of concepts in both of them, using just the relation of the intensional containment (IC) 
between concepts as the basic modelling construct by the Finnish school, and using the 
concept of the HIT-attribute as the basic modelling construct by the Czech school.  

The idea of utilising the IC relation in data modelling is revolutionary and promising. In 
Kauppi’s concept theory this relation is considered to be a primitive pre-theoretical notion. 
Using our new non-traditional theory of concepts, we have defined this relation in such a way 
that it fulfils the intuitive criteria stated by Kauppi: it is a reflexive, antisymmetric and 
transitive relation on the set of concepts.  

An attempt to explicate this relation by the COMIC data model is interesting in many 
aspects. Summarising, we can claim that the classical example of the IC relation is the so-
called ISA relation between concepts. Having precisely defined the ISA relation by the HIT 
data model, we can say that only in this case the inverse inclusion relation between extensions 
of related concepts and the contents (intensions) of the concepts holds in all the possible 
worlds and time points (due to the conjunctive way of composing particular components 
‘subconcepts’ of concepts).  

Another example of the IC relation, the so-called part-whole relation, is rather 
problematic: First, we affirm that only concepts of necessary parts of the constructed object 
can be considered to be contained in the given concept. Second, the inverse inclusion relation 
between the extensions of the related concepts does not hold in this case. Third, in our 
opinion, this relation is best modelled again by the concept of a HIT-attribute that can be a 
partial function, which enables us to catch also the case of contingent parts of the constructed 
object.  
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In both the above cases (ISA and part-whole) the IC relation is a partial ordering on the 
set of concepts of our CS, i.e. a reflexive, transitive and anti-symmetric relation and the 
interesting theoretical mathematical results (algebraic properties of the concept lattices, etc.) 
of [Palomäki 1994], [Niemi 1998, 1999], [Nilsson 1998], [Niinimäki 1999], [Junkkari 1999] 
can be applied. This cannot be said, however, in case of COMIC-IC considered to model an 
attribute. In that case problems with contingency of the relation arise, and, moreover, it is not 
anti-symmetric.  

The basic modelling construct is perhaps nevertheless the concept of the HIT-attribute. 
Thus the concept of a person does not contain its name, age, address, etc., but the concepts of 
attributes ‘name of a person’, address of a person’, ‘age of a person’ contain concepts of 
person, name, address, age, etc. The concept of an attribute contains concepts of particular 
sorts, the concept of the attribute ‘body’ and, as the case may be (redundant attributes) 
concepts of other attributes as well. This concept enables us to cover not only classical 
descriptions of entities, but also relationships between entities (n-ary attributes, n ≥ 1), 
aggregation, grouping and the part-whole relation. Last but not least, using just one modelling 
construct, HIT-attribute, enables us to use the functional approach with its exact formal 
apparatus ⎯ ‘the language of constructions’ (modified version of the type lambda calculus 
with tuples), which makes it possible to formally exactly specify not only conceptual schema, 
i.e. concepts of attributes and consistency constraints, but also particular views and 
manipulations with data, queries, etc. [Zlatuška 1986]. 

We have stated above, that from the precise theoretical point of view, attributes should 
be analysed over the epistemic base. But since the convention (abbreviation) consisting in 
using the base of sorts is very convenient and comprehensive for users as well as for 
designers of the schema, we will use this convention in the following text and consider 
attributes as if they were defined over the base of sorts. 
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4. Semantic information connected with data 

4.1. Informational capability of attributes 

4.1.1. Attributes and propositions 

The reason for storing values of attributes is that they are able to code semantic 
information. But data stored in a database are just strings of characters like ‘smith’, ‘eastow’, 
..., ‘3000’, ‘8500’, ..., and these strings alone provide us with no information at all. Only when 
knowing the semantics of this data, i.e. when knowing the semantics of the attributes the 
values of which are encoded in the database, we obtain propositions that, e.g., Mr. Smith’s 
salary is $3000 per month, Mr. Eastow’s salary is $8500 per month, etc. And they are just 
these propositions that are ‘bearers’ of semantic information. Intuitively, semantic 
information is connected with the statements of a natural language. It is clear that some 
statements are less informative than others. Some statements are even not informative at all. 
For example, the statement 

(S1)     It is raining in Prague 

is less informative than the statement 

(S2)     It is raining in Prague and it is foggy weather in Brno 

On the other hand, the statement S1 is more informative than the statement 

(S3)     It is raining in Prague or it is foggy weather in Brno 

And finally, the statement 

(S4)     It is raining in Prague or it is not raining in Prague  

provides us with no information at all. 

The semantic explanation of these intuitions becomes clear when we realise that 
statements of a natural language denote propositions, i.e. objects of the type (ωτ → ο).  

Note: For the sake of simplicity trivialization (0) will be omitted, for in the following 
considerations we won’t need to distinguish concepts of attributes from the attributes 
themselves. We will now standardly use variables w, w1, … as ranging over states-of-
affairs. 

We will say that a proposition p admits states-of-affairs w1,...,wn iff p is true in w1,...,wn. 
The above intuitions could now be theoretically explained as follows: a proposition should be 
the more informative the less probable it is, i.e. the less states-of-affairs it admits [CARN52]. 
But there are two flaws in this explanation. First, following this theory consequently, we 
would come to the conclusion that the proposition FALSE (i.e. the function which takes the 
value False in all the states-of-affairs) which admits no possible worlds, bears the greatest 
information! And, moreover, there is a question whether a proposition which is not true in the 
actual world is informative. For instance, is the proposition that the Earth is flat informative? 
Second, comparison based on cardinality is rather peculiar in case of infinite sets. In contrast 
to Carnap’s notion the set of possible worlds in TIL is not finite (it is even uncountable). To 
solve the first problem, we assume that the set of possible worlds and time points in which 
our propositions are true includes the actual possible world and a reasonable time interval (of 
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the ‘life’ of an information system). In the database world this assumption of true propositions 
can be justified: we take into account only correct data. The second problem is hereby solved 
by means of logical implication, which makes it possible to compare informational capability 
of attribute sets based on the set theoretical inclusion of generated information.  

Now we will examine the connection of data (and attributes) with the statements of a 
natural language. Data code (extensional) functions which are values of (intensional) 
attributes in particular states-of-affairs. Knowing the concept of an attribute and the value of 
this attribute in a particular state-of-affairs W, we can generate a set of propositions. For 
instance, having attribute ‘Salary of an employee’ and its value in W, i.e., the table <tailor, 
3000>, <smith, 8500>, ..., we can generate propositions that Mr. Tailor’s salary is $3000, Mr. 
Smith’s salary is $8500, ..., which are true in W. 

From now on we will use variables and objects of the respective types: 

p / (ωτ → ο)    variable ranging over propositions 
w / (ω,τ)    variable ranging over states-of-affairs 
x / T, y / S    T, S sorts or tuples of sorts 
A / a) (ωτ → (T → S)   singular attribute 
      b) (ωτ → (T → (S → ο)))  multivalued attribute 

Formalising the above considerations we define: 

Definition 5. 

Let A be an attribute of a type ((ωτ) → (T → S)), ((ωτ) → (T → (S → ο)) respectively. The 
set of basic propositions BP(A)W generated by an attribute A in a state-of-affairs W is defined 
as follows: 

BP(A)W = λp ∃x∃y ([[AW]x] = y ∧ p = (λw [[Aw]x] = y)),  

x ranging over T, y ranging over S, (S→ο) respectively.                                        � 

Example: An attribute A (of a type T → S) the extension of which in a state-of-affairs W is 
specified by the table  

   T    S 
   t1    s1 
   t2    s2 
   t3    s3 
  etc.  

generates in W the set of propositions: 

{λw([[0Aw]t1] = s1), λw([[0Aw]t2] = s2), λw([[0Aw]t3] = s3), ...}.  

Trivial as the above definition may seem, it will enable us to exactly prove that the 
definability relation (Definition 10) induces informational redundancy of attribute sets, which 
is one of the main contributions of this work. Because of practical reasons, we want to 
formulate our information about W not only in terms of basic propositions. Yet we also need 
to define propositions that are the consequences of basic propositions. To this end we are 
going to adduce some preliminary definitions. 

Below we shall denote the type of propositions (ωτ → ο) by π. Let P, Q be of type  
(π → ο), i.e., sets of propositions. 
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Definition 6. Logical implication ⇒ of type (((π → ο), (π → ο)) → ο) is defined as follows: 
P implies Q (P ⇒ Q; infix notation will be used) iff in all the states-of-affairs in which all the 
members of P are true, the members of Q are true as well.                                  � 

The ⇒ relation is reflexive and transitive. It is not anti-symmetric because if P ⇒ Q and 
Q ⇒ P then members of P, Q are true in the same states-of-affairs but they do not have to be 
false or undefined (partial functions!) in the same states-of-affairs. We define an abstract class 
SP of semi-identical propositions as the set of propositions that are true in exactly the same 
states-of-affairs and among these states-of-affairs the actual one is included (the assumption 
of correct data). The ⇒ relation now induces a partial ordering on the set of classes SP, and 
we can claim that this is the ordering with decreasing information from left to right. All the 
sequences converge to the class {TRUE} on the right hand side which does not bear any 
information at all. 

Definition 7. Entailment Cn of the type ((π → ο) → (π → ο)) is a function that associates any 
set of propositions P with the set of all the logical consequences of P: 

Cn = λp [ ∪ λq (p ⇒ q)],  

where p, q are variables of the type (π → ο), ∪ is the set theoretical union of sets of 
propositions, i.e., a (((π → ο) → ο) → (π → ο)) - object.                              � 

Note: Obviously, the operation Cn is idempotent, i.e., [Cn[CnP]] = [Cn P]. Moreover, P ⇒ Q 
iff [Cn Q] ⊂ [Cn P]; here ⊂ is the relation of being a subset, i.e., a function of type  
(((π → ο), (π → ο)) → ο). 

Summarising these considerations we can claim that a set of propositions P is more 
informative than a set Q iff P implies Q, and not vice versa, or iff the set of all the logical 
consequences of Q is a proper subset of all the logical consequences of P.  

Definition 8. Informational capability of an attribute A in a state-of-affairs W is the set of 
propositions P(A)W generated by A in W, i.e., the set of all the logical consequences of basic 
propositions generated by A in W: P(A)W = [Cn BP(A)W].   

Informational capability of a set of attributes {A1,...,An} in a state-of-affairs W is the set of 
all the logical consequences of the propositions generated by {A1,...,An}: [Cn ∪i=1

n P(Ai)W].    
� 

Note: Obviously, in case of n = 1 the informational capability of {A} in W equals P(A)W. 

One of the principles to be obeyed when storing data is to avoid redundant data storage 
unless there are some special reasons (like effectiveness or reliability). But what does the 
redundant data storage exactly mean? Now we are prepared to define this notion. 

Definition 9. A set of attributes A = {A1,...,Am} is informationally redundant with respect to a 
set of attributes B = {B1,...,Bn} (A ≤i B) iff in every state-of-affairs W the informational 
capability of A is less than or equal to the informational capability of B, i.e.: 

∀w [Cn ∪i=1
m P(Ai)w] ⊂ [Cn ∪i=1

n P(Bi)w].  

Sets of attributes A = {A1,...,Am}, B = {B1,...,Bn} are informationally equivalent (A =i B) iff 
they have the same informational capability in every state-of-affairs W: 

∀w [Cn ∪i=1
m P(Ai)w] = [Cn ∪i=1

n P(Bi)w].                          � 
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4.1.2. Definability of attributes. 

To be able to determine whether two sets of attributes are informationally comparable 
we will now introduce the relation of definability that has been mentioned in Section 3.3, and 
show that this relation induces informational redundancy of attribute sets. Intuitively, an 
attribute A is definable over an attribute B if there is an algorithm enabling us to compute in 
every state-of-affairs w the extension of A (i.e. [Aw]) from the extension of B (i.e. [Bw]). 
Indeed, we would obviously say that if (and only if) there is a function which allows us to 
compute values of an attribute A on the basis of the values of an attribute B, then what can be 
said (about the world) in terms of A can also be said in terms of B so that the information 
connected with A is a part of the information connected with B, and A is redundant with 
respect to B. To simplify our considerations about algorithms (i.e. effective constructions of 
functions) defined on the extensions of attributes, we will state an assumption that extensions 
of attributes are finite tables. This is justified by our taking into account a finite discrete time 
interval of the „life“ of an information system. 

Note: From now on, we will use variable w as ranging over states-of affairs (ωτ), and 
abbreviate the application [0Aw] as Aw for any attribute A. 

Definition 10. An attribute A is definable over a set of attributes {B1,...,Bn},  

A ←D {B1,...,Bn},   

iff ∃f ∀w (Aw = [f (B1w,...,Bnw)]),  

where f ranges over surjections.  

A set of attributes A is definable from a set of attributes B (A ←D B) iff every member of A is 
definable over a subset of B.  

Finally, sets of attributes are mutually definable (A ↔D B) iff  A ←D B and B ←D A.  

An attribute A is said to be definable from an attribute B (mutually definable) iff  
{A} ←D {B} ({A} ↔D {B}).      � 

Examples: Let PERSON be the entity sort of persons. 

a) Attribute  
A = ‘(NUMBER) of children of a given (#PERSON)’  
  is definable from attribute  
B = ‘(#PERSON)-s who are children of a given (#PERSON)’  
The respective function F is defined as follows:  
  λb ιa (∀p ([ap] = [Cardinality [bp]])).  

Indeed, it holds for all w: [F Bw] = ιa (∀p ([ap] = [Cardinality [Bw p]])) = Aw.  

Gloss: Types of extensions: Aw / (PERSON → τ), Bw / (PERSON → (PERSON → ο)), 
variables a, b, p of types (PERSON→τ), (PERSON→(PERSON→ο)), PERSON, 
respectively. Cardinality is the function that associates a set with the number of its 
elements.  

b) Attributes  
A = ‘(#PERSON) who is a superior of a given (#PERSON)’,  
B = ‘(#PERSON)-s who are subordinates of a given (#PERSON)’ 

  are mutually definable: A ↔D B. 
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Indeed, ∃f ∀w (Aw = [f Bw]) and ∃g ∀w (Bw = [g Aw]).  

The respective functions F, G are defined as follows: 
  F = λb λp ιq ([[bq]p]), G = λa λp λq ([aq]=p). 

Variables:  
a / (PERSON→PERSON), b / (PERSON→(PERSON→ο)), p / PERSON, q / PERSON  

c) Attributes:  
A = ‘(#PERSON)-s who are parents of a (#PERSON)’,  
B = ‘(AGE) of a (#PERSON)’,  
C = ‘Average (AGE) of parents of a (#PERSON)’;  

C ←D {A, B}.  

Indeed, ∃f ∀w (Cw = [f (Aw, Bw)]), where the respective function F is defined as follows 
(variables a/(PERSON→(PERSON→ο)), b/(PERSON→τ), p/PERSON, q/PERSON, n/τ, 
Ave is the function ‘Average’): 

F = λab λp [Ave λn ∃q (n=[bq] ∧ [[ap]q])]. 

Now we can prove that a set of attributes A is informationally redundant with respect to a set 
of attributes B iff A is definable from B, i.e. A ≤i B iff A ←D B. 

Lemma. An attribute A is definable over a set of attributes B1,...,Bn (A ←D {B1,...,Bn}) iff in 
all the states-of-affairs w it holds that P(A)w ⊂ [Cn ∪i=1

n P(Bi)w], i.e. iff  

∪i=1
n P(Bi)w ⇒ BP(A)w.  

Proof : 

if) Let for every w ∪i=1
n P(Bi)w ⇒ BP(A)w. If there were no analytical function F such that 

Aw=[F(B1w,...,Bnw)] then A and B1,...,Bn would be logically independent. This means that 
there would have to be a pair W1, W2 such that all the members of ∪i=1

n P(Bi)w as well as 
BP(A)w would be true in W1, whereas the members of ∪i=1

n P(Bi)w would be true in W2 and 
some members of BP(A)w would be false in W2, which contradicts the assumption. 

only if) Let there be a function F such that Aw = [F(B1w,...,Bnw)] for every w. Let every 
member of ∪i=1

n P(Bi)w be true in a state W. If there were a proposition generated by A in this 
W which were not true, then it would mean that the function F defining A from B1,...,Bn 
would have to depend on w, which contradicts the assumption. 

Statement 1. Let A, B be sets of attributes. Then A ≤i B iff A ←D B. 

Proof: Follows from the previous lemma and the idempotency and monotony of the operation 
Cn. 

Corollary. Let A, B be sets of attributes. Then A =i B iff A ↔D B.  

Statement 1 explicates the intuition introduced at the outlet of this section. 
Informational comparability of attribute sets is based on the definability relation. Since our 
notion of attribute is a general one, this result makes it possible to compare informational 
capability of different data structures, e.g., of a flat and a nested relation. To adduce an 
example, consider attributes A and B, where A is a nested relation and B is a flat relation: 

A = ‘(#SUPPLIER)-s who deliver a (#MATERIAL)’  

B = ‘DELIVERERS’.   
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Types:  
A/(ωτ → (MATERIAL → (SUPPLIER → ο))); B/(ωτ → ((MATERIAL, SUPPLIER) → ο)). 

It is easy to show that B is informationally weaker than A, since B ←D A but not vice versa: 

B = λw λms [[Aw m]s].  

However, the attribute C constructed by  

λw λm λs [Bw (m,s)]   

is not identical to A, because C does not yield materials connected with the empty set of 
suppliers. Only if there were a consistency constraint connected with the attribute A, namely 
‘For each material there is always a supplier’ (λwλt ∀mat ∃sup [[Awt mat] sup]), then this 
constraint would ensure the informational equivalence of the attribute A with the flat relation 
DELIVERERS. 

4.1.3. Distinguishing capability of attributes 

On the set of attributes that „share their domain“, i.e. that are such empirical functions 
the values of which are in all the state-of-affairs of types (T→S1), (T→S2), ..., where T is a 
sort or a tuple of sorts, S1, S2, ... are sorts or tuples of sorts, or power sets of (tuples) of sorts, 
another relation can be defined, namely the relation of distinguishing capability, which is 
sometimes confused with the relation of definability and (erroneously) connected with the 
informational content of attributes [Vaníček 1988]. Intuitively, the greater the number of 
discernible classes of an attribute A, i.e. subsets of the universe of discourse, the members of 
which A does not distinguish, the greater the „power“ of A. Observing, e.g., an attribute that 
associates every animal with its biological class, we can state that this attribute allows to 
distinguish between, say, mammals and reptiles but it is of no use when we want to 
distinguish between two animals belonging to the same class; hence it does not enable us to 
distinguish, e.g., between two distinct races of a dog. Imagine now two attributes A, B that 
share their domain in the above sense and that distinguish in every state-of-affairs exactly the 
same subsets of the type T. A question arises: Is the information connected with A the same 
as the information connected with B? Or a weaker question: Is the amount of information 
connected with A the same as the amount of information connected with B? Negative answers 
to both these questions are proved in [Duží 1990, 1992]. Briefly recapitulating the main ideas 
of the proofs, we define: 

Definition 11.  
Let A / (ωτ → (T → S1)), B / (ωτ → (T → S2)), where T is a sort or a tuple of sorts, S1, S2 are 
sorts, tuples of sorts, or power sets of (tuples) of sorts, variables w, x, y ranging over types 
(ωτ), T, T, respectively): 

An attribute A has greater distinguishing capability than an attribute B, A ≥dc B, iff 

∀w x y (([Aw x] = [Aw y]) ⊃ ([Bw x] = [Bw y])). 

An attribute A has the same distinguishing capability as an attribute B (A =dc B) iff A ≥dc B 
and B ≥dc A. 

To be able to compare the ≥dc relation with the informational capability of attributes, we 
have to be able to compare the former with the ←D relation (due to Statement 1). The 
following assertions make it possible. 

Claim: B ≥dc A iff ∀w ∃f ∀x ([Aw x] = [f [Bw x]]), where f / (S2 → S1) ranges over surjections. 
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  B =dc A iff ∀w ∃f ∀x ([Aw x] = [f [Bw x]]), where f / (S2 → S1) ranges over bijections. 

Proof: Obvious. 

Note that the claim does not state that there is a ‘universal’ function for all the states-of-
affairs w. Particular functions can be distinct in different states-of-affairs w. 

For attributes A, B such that the extensions of A and B share the same domain, i.e., A / 
(ωτ → (T → S1)), B / (ωτ → (T → S2), a stronger notion of definability can be defined: 

Definition 12. An attribute A is strongly definable from an attribute B, A ⇐D B, iff 

∃f ∀w ∀x ([Aw x] = [f [Bw x]]),  

where f / (S2 → S1) ranges over surjections.  

Attributes A, B are strongly mutually definable, A ⇔D B, iff A ⇐D B and B ⇐D A. 

Claim: Strong definability implies definability, and, consequently, strong mutual definability 
implies mutual definability. 

Proof: Obvious. 

However, the reversal of this claim obviously does not hold. In other words, definability 
does not imply strong definability. 

Example: Let PERSON, EMPLOYEE be entity sorts, SALARY, PERIOD descriptive sorts, 
PERIOD a couple (YEAR, MONTH). 

a) Attribute  
A = ‘(NUMBER) of children of a (#PERSON)’ 

is strongly definable from attribute   
B = ‘(#PERSON)-s who are children of a (#PERSON)’:  

A ⇐D B.   

Types of extensions: Aw / PERSON → τ; Bw / PERSON → (PERSON → ο). 

The respective surjection in question is the function Cardinality / ((PERSON → ο) → τ) 
that associates every set of persons with the number of its elements. Indeed,  

∀wp ([0Cardinality [Bw p]] = [Aw p]), p ranging over PERSON.  

b) Attribute  
A = ‘(NUMBER) that is an average salary of an (#EMPLOYEE) in the year 1999’ 

is definable from attribute  
B = ‘(NUMBER) that is a salary of an (#EMPLOYEE) in a (PERIOD) = (YEAR, 
MONTH)’. 

However, A is not strongly definable from B; Aw = [0F Bw]. The respective (analytical) 
function F is defined as follows: 

F = λb ιa (a = λe[0Ave λs ∃p ((p(1) = 1999) ∧ ([b(e,p)] = s)],  

Types: Aw / EMPLOYEE → τ; Bw / (EMPLOYEE, PERIOD) → τ; variables a, b range 
over (EMPLOYEE → τ), ((EMPLOYEE, PERIOD) → τ), respectively, e ranges over 
EMPLOYEES, p over PERIOD and s over τ. 

c) Attributes  
A = ‘(#PERSON) who is a superior of a (#PERSON)’,  
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B = ‘(#PERSON)-s who are subordinates of a (#PERSON)’  
are informationally equivalent (A ↔D B), but they are not strongly mutually definable. 
Knowing a person [Aw p] ⎯ a boss (p ranging over persons), we cannot compute the set 
of his/her subordinates. We need the whole table [Aw] to compute the table [Bw] and vice 
versa. 

Now we can compare distinguishing capability of attributes with their informational 
capability. 

Claim: If A ⇐D B then A ≤dc B, but not vice versa. 

Proof:  ∃f ∀w ∀x ([Aw x] = [f [Bw x]]) obviously implies ∀w ∃f ∀x ([Aw x] = [f [Bw x]]), but 
not vice versa. 

Example: Let A, B be as follows: A = ‘town name of an address’, B = ‘ZIP code of an 
address’, i.e., Aw / ADDRESS → TOWN, Bw / ADDRESS → ZIP. Then A ≤dc B:  
∀w x y (([Bw x] = [Bw y]) ⊃ ([Aw x] = [Aw y]). But A is not (strongly) definable from B, 
because there is not a universal function that would enable us to compute a town name from 
the ZIP code. The assignment of ZIP codes to towns is a contingent empirical matter. 

Corollary: If A ⇔D B then A =dc B (in this case the respective function F is a bijection), but 
not vice versa. 

Note that the idea of the proof is based on the difference between ∃f ∀w ... and ∀w ∃f 
.... If the intensional character of attributes were not taken into account, these claims could not 
be proved and the two relations, viz. ≤dc and ≤i, might easily be confused as it happened in 
[Vaníček 1988].  

Now we can answer the question on the connection between distinguishing capability of 
attributes and their informational content. We have proved that informational comparability 
of attributes is based on the ←D relation, whereas distinguishing capability is determined by 
the ≤dc relation. These two relations contain ⇐D relation as their common intersection. The 
≤dc relation is based on the existence of a function mapping a range of the extension of one 
attribute to the range of the extension of another one. If this function is a universal one (i.e. 
the same in all the states-of-affairs) then it establishes the strong definability, otherwise the 
two attributes are not informationally comparable. 

4.1.4. Distinguishing capability based on cardinality 

One could raise an intuitive objection against our disconnecting the ≤dc relation and 
information. Imagine two witnesses A and B informing the police in the following situations:  

a) Witness A knows the name of the wanted person (attribute A), whereas witness B 
reproduces the identity card number of the person (attribute B). 

b) Witness A states the identity card number of the person (attribute A), and witness B states 
the birth-date identity number of the person. (The birth-date identity number is a number of 
the form YYMMDD/SSSS, where YY is the year of the birth, MM is the month of the 
birth in case of a male person or the month + 50 in case of a female person, DD is the day 
of the birth and SSSS is the serial number assigned to persons being born on the respective 
day.) 

Ad a) It holds that A ≤dc B and it might seem that the witness B were more informative than 
witness A. We could claim such a fact if A ←D B, which is not the case (name is not 
computable from identity card number). However, are we able to compare the ‘amount of 
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information’ connected with these two attributes? Bearing in mind Carnap’s idea [Carnap 
1952] of comparing informativeness of our assertions, i.e., the more ‘probable’ the 
proposition is the less informative it is (tautology does not provide us with any information), 
we could try to compare cardinalities of possible ranges of the attributes. But this comparison 
is not based on the ≤dc relation as will be shown at the end of this section. 

Ad b) It might seem that two attributes of the same distinguishing capability provide us with 
the same amount of information. But this example illustrates the falseness of this assumption. 
Indeed, the age, the date of birth and the sex of a person can be deduced from the birth-date 
identity number but not from the identity card number. 

Cardinalities of two sets can be, of course, compared even if none of them is a subset of 
the other. To be able to grasp this situation as well, we define: 

Definition 13. A ≤bc B (comparison based on cardinality) iff 
                       [0Cardinality λy ∃wx ([Aw x] = y)] ≤ [0Cardinality λz ∃wx ([Bw x] = z)]. 
Similarly A =bc B iff A ≤bc B and B ≤bc A. 

Example: Compare attributes N1 = ‘First name of a person’ and N2 = ‘Surname of a person’. 
We are again tempted to claim that the former gives less information than the letter. In this 
case this assertion is justified: The greater informativeness of N2 can be explained by the fact 
that cardinality of the set of all the usable surnames is greater than the cardinality of the set of 
all the usable first names, hence N1 ≤bc N2; to be named Charles, e.g., is certainly more 
probable than to be named Eastow. (To ensure the correctness we can restrict our 
considerations to European first names and surnames.) This does not, of course, mean that the 
less than relation holds between the cardinalities of the ranges of the extensions of these 
attributes in all the states of affairs. In an apocalyptic state of affairs, where only the Smith 
family has survived and its members have different first names the proposition  

λw ([0Cardinality λy ∃x ([N1w x] = y)] ≥ [0Cardinality λz ∃x ([N2w x] = z)]) 

takes the value true.  

Comparing (the amount of) informational content of attributes is sometimes confused 
with comparing ‘the value’ of information provided. In case a) of the above example it is 
highly probable that the information obtained from the identity card number will be more 
valuable to the policeman than the information obtained from the name. But being on an 
island where our policeman knows the names of all the inhabitants, and where he does not 
have a file of identity card numbers, we would agree that the name is more valuable 
information for him, which, of course, does not contradict the fact that logically it provides 
less information. 

It might seem that if A ≤dc B then A ≤bc B. But this does not hold. These two relations 
are not comparable. The only fact that can be stated is the following: If A ≤dc B then  

∀w ([0Cardinality λy ∃x ([Bw x] = y)] ≥ [0Cardinality λz ∃x ([Aw x] = z)],  

from which it does not follow that A ≤bc B. (This is a correction of [Duží 1990].) 

Example: Imagine attributes A, B such that A assigns in world W1 values a1, a2, in W2 values 
a3, a4, in W3 values a5, a6, and so on, whereas B assigns in all worlds w only values b1, b2, b3. 
Then A ≤dc B but A ≥bc B. 

In summary, speaking about (informationally) redundant attributes is justified only in 
case of the definability relation. The ≤dc relation is not generally connected with informational 
capability of attributes. Only a subset of this relation ⎯ the strong definability ⎯ specifies 
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(informational) redundancy. The ≤bc relation can be connected only with the amount of 
information generated from attributes, and it is not comparable with the ≤dc relation.  

4.2. Data kernel 
There are two interesting problems connected with building up a HIT conceptual (and 

generally database) schema. The first one can be characterised as the problem of finding the 
so-called data kernel of the set A of attributes of a given schema, i.e. a minimum set K of 
‘elementary’ attributes such that K is informationally equivalent with A. Such a kernel can 
serve as an invariant of the whole database system. The second important problem is a 
problem of polarity described in [Hull 1987], i.e. the problem of ‘dual viewing’ attributes: 
either as (n-ary) empirical functions or as complex (encapsulated) objects. We will show that 
these two philosophical approaches can be interrelated by means of a key notion of the 
transformation of a schema, which will be described in Section 5. 

Having a database schema CS = (A, CA), we will aim to minimise the set A of 
attributes and to simplify particular attributes. The former can be realised by finding a 
minimum subset of A informationally equivalent with A, i.e. by excluding redundant (sets of) 
attributes from A, which is justified by the following Statement 2. The latter is realised by 
‘decomposing’ attributes (Statements 4 and 5). 

Statement 2. Let A = {A1,...,Am}, A’ = {Am+1,...,An} be sets of attributes such that A’ ←D A. 
Then A ∪ A’ =i A. 

Proof: If A’ ←D A then (Statement 1) ∀w ([Cn ∪j=m+1
n P(Aj)w] ⊂ [Cn ∪i=1

m P(Ai)w]), which 
means that (Definitions 6, 7)  
∀w ([∪ λp (∪j=m+1

n P(Aj)w  ⇒ p)] ⊂ [∪ λp (∪i=1
m P(Ai)w  ⇒ p)]), hence 

∀w ([∪ λp (∪i=1
n P(Ai)w  ⇒ p)] = [∪ λp (∪j=1

m P(Aj)w  ⇒ p)]), i.e., 
∀w ([Cn ∪i=1

n P(Ai)w] = [Cn ∪j=1
m P(Aj)w]). 

Thus by excluding subsets of the set of attributes A which are definable from A we 
obtain an informationally equivalent set of attributes, we do not lose any information. This 
process can be repeated as long as a set of attributes K’ is obtained such that no subset of K’ is 
informationally redundant. 

To obtain ‘elementary’ attributes we decompose complex attributes into simpler 
‘subattributes’ in such a way that informational capability of the database conceptual schema 
is preserved. This process will now be formally described. 

Definition 14. Let A be an attribute of a type 
a)     (ωτ → ((S1, S2) → T))       or 
b)     (ωτ → ((S1, S2) → (T → ο))), 
where S1,  S2, T are sorts or tuples of sorts,  variables x/S1, y/S2, z/T (case a), or z/(T → ο) 
(case b). 
We will call a plural subattribute of A such an attribute A1 which is constructed from A as 
follows: 
A1 = λw λx λy ∃z ([Aw (x,y)] = z) 
A singular subattribute of the attribute A is an attribute A2 constructed as follows: 
A2 = λw λx ιz ∃y ([Aw (x,y)] = z)                                                                              � 

Note: Obviously, a (singular, plural) subattribute of an attribute A is definable from A. 

Definition 15. An attribute A is decomposable if there are subattributes A1, A2 of A such that 
{A} =i {A1, A2}.                                                                                                                  � 
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Lemma: Let A = λwλxλy C (C/ο), A’ = λwλxλy C’ (C’/ο) be attributes which are either 
identical or A and A’ differ only in the following way: 
∀wx ( [Aw x] = [A’w x] ∨ ([Aw x] = {} ∧ [A’w x] = {⊥}) ),  
where {} is an empty class (C constructs False) whereas {⊥} is such a class U that no member 
of the given type can be said to belong to U owing to the fact that C’ is improper.  
Then A =i A’. 

Proof: Follows obviously from Definition 5. The sets of basic propositions generated from A 
and A’ are identical. 

Note: Attributes A, A’ which differ only in the way described in the above lemma will be 
called semi-identical. 

Definition 16. Let A be an attribute of a type 
a)   ωτ → ((S1,...,Sk) → (Sk+1,...,Sn))     or 
b)   ωτ → ((S1,...,Sk) → ((Sk+1,...,Sn) → ο)), 
where S1,...,Sn are sorts. Let x1,...,xn be variables of the types S1,...,Sn, respectively, (i1,...,in) a 
permutation of (1,...,n). 

An attribute A’ is an lambda rotation of the attribute A if A’ is constructed as follows: 
case a):  λw λxi1...xij λxij+1...xin ([Aw (x1,...,xk)] = (xk+1,...,xn)) 
case b):  λw λxi1...xij λxij+1...xin ([[Aw (x1,...,xk)] (xk+1,...,xn)]). 

An attribute A’’ is a singular rotation of the attribute A if A’’ is constructed as follows: 
case a):  λw λxi1...xij ι(xij+1...xin) ([Aw (x1,...,xk)] = (xk+1,...,xn)) 
case b):  λw λxi1...xij ι(xij+1...xin) ([[Aw (x1,...,xk)] (xk+1,...,xn)]). 

A singular rotation A’’ of the attribute A is called admissible singular rotation (ASR) if in all 
the states-of-affairs w the extension A’’w is undefined just on those arguments xi1,...,xij for 
which the respective extension A’w of the lambda rotation A’ constructs an empty class.     � 

Now there is a question whether and when a rotation of an attribute is informationally 
equivalent with the original attribute. Obviously a singular rotation does not have to be 
equivalent, but it might seem that a lambda rotation is always equivalent. We are going to 
adduce a counter-example showing that it is not so. Consider an attribute 

S = ‘(#STUDENT)-s taking lectures of a given (#COURSE) for which a given 
(#PREREQUISITE) is prescribed’, 

and its rotation 

S’ = ‘(#PREREQUISITE)-s of a given (#COURSE) lectures of which are taken by a given 
(#STUDENT)’. 

In case that the attribute S is a partial function in the sense that the value of S at some 
arguments is an empty set of students, we can record by means of S also such courses and 
their prerequisites which are not endorsed by any student. On the other hand, if the attribute 
S’ returns an empty set of prerequisites at some arguments, then we can record by S’ all the 
endorsed courses, i.e., also such courses which do not have any prerequisite. From this fact 
we can deduce that equivalent rotations can be constructed only for such attributes that are 
total, i.e., the first number p of attribute’s ratio is equal to 1. Thus we formulate the following 
statement: 

Statement 3. 

i) Let A’ be a lambda rotation of a total attribute A. Then A’ =i A. 
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ii) Let A’’ be a singular rotation of an attribute A. Then A’’ =i A iff A’’ is admissible. 

Proof: ad i): Obviously A’ ↔D A. 

           ad ii): Denoting 

C = ([Aw (x1,...,xk)] = (xk+1,...,xn)) in case a) or 

C = ([[Aw (x1,...,xk)] (xk+1,...,xn)]) in case b),  

x = (xi1,...,xij), y = (xij+1,...,xin), we get:  

A’ = λwλxλy C, A’’ = λwλx ιy C.  

It is now sufficient to prove that A’ =i A’’.  

Obviously A’’ ←D A’: A’’ = λwλx ιy ([[A’w x]y]).  

To prove that A’ ←D A’’ we show that the attribute B = λw λxλy ([A’’w x] = y) is 
semi-identical with A’ just in case that A’’ is an admissible singular rotation (ASR) of 
A. Let A’’ be not an ASR of A. Then there is a state-of-affairs W such that at least one 
value x of the variable x exists for which the following holds:  

[A’’W x] = ιy C = ⊥ (undefined),  

[A’W x] = λy C is a non-empty (at least two elements’) class,  

while [BW x] = λy ([A’’W x] = y) constructs the class U = {⊥} and B is not semi-
identical with A’.  

If A’’ is an ASR of A then [A’w x] = λy C is either a singleton or an empty class for all 
the states-of-affairs w. Hence B is semi-identical with A’. 

Now we shall define a condition to be fulfilled in order that an attribute A is 
decomposable. Intuitively speaking, we will show that an attribute A is decomposable if in all 
the states-of-affairs w the values of the extensional function defined by A in w do not depend 
on some of the arguments of this function Aw. In such a case we will say that the attribute A 
satisfies the condition of proper singularity. We will first define such a condition for a 
singular attribute (Statement 4) and then generalise the condition for a multivalued attribute 
(Statement 5).  

Statement 4. Let A be an attribute of a type (ωτ → ((S1, S2) → T), where S1, S2, T are sorts or 
tuples of sorts. Let x, y, z be variables of the types S1, S2, T, respectively. We construct a 
lambda rotation A’ of A:  

A’ = λw λx λyz ([Aw (x,y) = z).  

Let a singular subattribute 

A1 = λw λx ιz ∃y ([Aw (x,y)] = z)  

exist such that in all the states-of-affairs w the extension A1w is defined just for those 
arguments x for which [A’w x] = λyz ([Aw (x,y)] = z) constructs a non-empty class. (In such a 
case the attribute A satisfies the condition of proper singularity.) Then the attribute A is 
decomposable into subattributes 

A1 = λw λx ιz ∃y ([Aw (x,y)] = z)  and 
A2 = λw λx λy ∃z ([Aw (x,y)] = z).  
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Proof: We have to prove that {A} =i {A1, A2}. Obviously, {A1, A2} ←D {A}. To prove that 
{A} ←D {A1, A2} we shall define an attribute B constructed from attributes A1, A2 as follows: 
B = λw λx λyz ([A1w x]=z ∧ [[A2w x]y]); now we prove that B is semi-identical with A’ (which 
is sufficient because in this case B =i A’ =i A). Consider an arbitrary state-of-affairs W, x a 
value of the variable x.  

1. If [A’W x] = λyz ([AW (x,y)]=z) constructs a non-empty class C of couples (y,z), then the 
variable z takes the same value, say z, in all these couples (otherwise [A1W x] would be 
improper, which contradicts the assumption). Let the class C be {(y1,z),...,(yn,z)}. Hence 
[AW (x,y1)]=z, ..., [AW (x,yn)]=z, 
[A1W x] = ιz ∃y ([AW (x,y)]=z) = z, 
[A2W x] = λy ∃z ([AW (x,y)]=z) = {y1,...,yn},  
[BW x] = λyz ([A1W x] = z ∧ [[A2W x]y]) = C. 
Hence [A’W x] = [BW x]. 

2. If [A’W x] = λyz ([AW (x,y)]=z) does not construct a non-empty class, then [A1W x] is 
improper and [A2W x] constructs an empty class. Thus [BW x] constructs {⊥}, which means 
that B is semi-identical with A’. 

Corollary 1: If an attribute A is decomposable into subattributes A1, A2, then any lambda 
rotation or an admissible singular rotation of the attribute A is also decomposable into A1, A2. 

Corollary 2: A singular attribute A of a type (ωτ → ((S1, S2) → T)), where T is a tuple of 
sorts (T1,...,Tn), is decomposable into subattributes of types 

(ωτ → ((S1, S2) → T1)), 
(ωτ → ((S1, S2) → T2)), 
…  
(ωτ → ((S1, S2) → Tn)), respectively. 

Note: If a singular attribute A satisfies the condition of proper singularity, then the following 
holds: ∀w x y1 y2 z1 z2 (([Aw (x,y1)]=z1 ∧ [Aw (x,y2)]=z2) ⊃ z1 = z2). 

Now we can generalise the condition of proper singularity for a multivalued attribute. 

Statement 5. Let A be a multivalued attribute of a type (ωτ → ((S1, S2) → (T → ο))), where 
S1, S2, T  are sorts or tuples of sorts. Let x be a variable of the type S1, y, y1, y2 variables of the 
type S2, z, z1, z2 variables of the type (T → ο). Let the following condition hold: 

∀w x y1 y2 z1 z2 (([Aw (x,y1)]=z1 ∧ [Aw (x,y2)]=z2) ⊃ z1 = z2).  

Then the multivalued attribute A satisfies the condition of proper singularity, and it is 
decomposable into subattributes 

A1 = λw λx ιz ∃y ([Aw (x,y)] = z)  and 
A2 = λw λx λy ∃z ([Aw (x,y)] = z). 

Proof: We have to prove that {A} =i {A1, A2}. Obviously, {A1, A2} ←D {A}. To prove that 
{A} ←D {A1, A2} we shall define an attribute B constructed from the attributes A1, A2 as 
follows 

B = λw λx λyz ([A1w x]=z ∧ [[A2w x]y]),  

and prove that B is identical with an attribute A’ = λw λx λyz ([Aw (x,y)]=z) which is a 
rotation of the attribute A).  

Consider an arbitrary state-of-affairs W, x a value of the variable x.  
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Now [A’W x] = λyz ([AW (x,y)] = z) constructs a non-empty class C of couples (y,z) and the 
variable z takes the same value, say z, in all these couples. Let this class be {(y1,z),...,(yn,z)}.  

Then [A1W x] = ιz ∃y ([AW (x,y)] = z) = z, 

[A2W x] = λy ∃z ([AW (x,y)] = z) = {y1,...,yn}, 

[BW x] = λyz ( [A1W x] = z ∧ [[A2W x]y] ) = C. 

Hence [A’W x] = [BW x]. This fact is valid also in case of z being an empty class.  

The condition of proper singularity guarantees, in fact, that the value z of Aw assigned 
to a couple (x,y) does not depend on y. In the relational data model (RDM) [Ullman 1988] an 
analogous condition is called functional dependency (denoted x ⎯> z) in the case of a 
singular attribute or a multivalued dependency (denoted x ⎯>> z) in the case of a multivalued 
attribute. Statements 4 and 5 thus explicate the algorithms of the so-called lossless-join 
decomposition into Boyce-Codd normal form or 4th normal form, respectively. (Statements 4 
and 5 are, of course, formulated for general attributes.) The lossless-join decomposition can 
be understood in such a way that the informational capability of an attribute A (corresponding 
to a relation scheme R) is the same as the informational capability of {A1,A2}, where A1, A2 
correspond to the relations R1, R2). The exact explication of the correspondence of HIT-
attributes to relation schemes can be found, e.g., in [Zlatuška 1986], [Zlatuška 1990].  

Example: Consider the attribute S = ‘(SALARY) of a given (#EMPLOYEE) working on 
given (TASK)’ of the type: (ωτ → ((TASK, EMPLOYEE) → SALARY)).  

Assuming that the salary of an employee does not depend on the tasks he is working on, we 
can deduce that the attribute S satisfies the condition of proper singularity  

(EMPLOYEE ⎯> SALARY) with a singular subattribute   

S1 = ‘(SALARY) of an (#EMPLOYEE)’,  

And thus S is decomposable into two subattributes (variables s/SALARY, t/TASK, 
e/EMPLOYEE): 

S1 = λw λe ιs ∃t ([Sw (t,e)] = s) 
S2 = λw λe λt ∃s ([Sw (t,e)] = s) 

Example: The case of a decomposable multivalued attribute can be demonstrated by the 
attribute  

A = ‘(#AUTHOR)-s of a given (#BOOK) published by a given (#EDITOR)’  

of the type (ωτ → ((BOOK, EDITOR) → (AUTHOR → ο))). Attribute A satisfies the 
condition of proper singularity (BOOK ⎯>> AUTHOR). Author(s) of a given book do not 
depend on the editor(s) who have published the book. Attribute A is thus decomposable into 
subattributes A1 and A2 (variables a/AUTHOR, b/BOOK, e/EDITOR): 

A1 = λw λb λa ∃e ([[Aw (b,e)]a]) 

A2 = λw λb λe ∃a ([[Aw (b,e)]a]). 

It is important to comprehend the meaning of the attributes obtained by 
decomposition. For instance the attribute S1 of the above example is not actually the attribute 
‘(SALARY) of an (#EMPLOYEE)’ but the attribute ‘(SALARY) of an (#EMPLOYEE) 
working on some task(s)’. Hence using the attribute S1 we would not record salaries of those 
employees who do not work on any task just now. Similarly the attribute A1 of the above 
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example yields only information about the authors of those books that have been published. 
Of course, in practice, when designing a database conceptual schema we might wish to 
replace the attributes S1 and A1 by the attributes S1’ = ‘(SALARY) of an (#EMPLOYEE)’ and 
A1’ = ‘(#AUTHOR)-s of a (#BOOK)’ which in actual fact have a broader semantics than 
those obtained by the decomposition (and for which the equivalence {A} =i {A1’, A2’} does 
not hold). 

These facts are even more obvious when considering the attributes of the following 
example: 

B = ‘(#STUDENT)-s of a (#COURSE) who have taken a given (#REREQUISITE) for the 
course’ of the type (ωτ → ((COURSE, PREREQUISITE) → (STUDENT → ο))).  

This attribute is decomposable into subattributes (variables c/COURSE, p/PREREQUISITE, 
s/STUDENT) 

B1 = λw λc λs ∃p ([[Bw (c,p)]s]) 
B2 = λw λc λp ∃s ([[Bw (c,p)]s]) 

with the semantics  

B1 = ‘(#STUDENT)-s of a given (#COURSE) who took its prerequisites’ and  
B2 = ‘(#PREREQUISITE)-s prescribed for a given (#COURSE) which were taken by the 
students of the given course’,  

provided all the students of the given course took all the prescribed prerequisites. The 
multivalued dependency COURSE ⎯>> PREREQUISITE is in actual fact an attribute with 
different semantics, say B2’ = ‘(#PREREQUISITE)-s which are prescribed for a given 
(#COURSE)’. 

The problem of the so-called embedded multivalued dependencies [ULLM88] can be solved 
by a gradual application of Statements 4 or 5. For instance, the attribute  

C = ‘The (YEAR) in which a given (#STUDENT) took a given (#PREREQUISITE) for a 
given (#COURSE)’  

of the type (ωτ → ((COURSE, STUDENT, PREREQUISITE) → YEAR)), can be 
decomposed (using Statement 4) into subattributes (the type of variables obvious) 

C1 = λw λs p ιy ∃c ([Cw (c,p,s)]=y) 

C2 = λw λc p λs ∃y ([Cw (c,p,s)]=y). 

The latter can be again decomposed (using Statement 5) in the same way as in the former 
example. Thus the embedded dependencies of the attribute C (COURSE ⎯>> STUDENT, 
COURSE ⎯>> PREREQUISITE) ensure the conditions of proper singularity for the attribute 
C2. Again, we have to bear in mind that the semantics of, e.g., attribute C1 is in actual fact not 
the attribute ‘The (YEAR) in which a given (#STUDENT) took a given (#PREREQUISITE)’ 
but it bears only information about those students who are enrolled in some course (for which 
the prerequisites have been prescribed). 

Note that the condition of proper singularity of an attribute A is, in fact, an empirical 
consistency constraint connected with this attribute. It is a well-known fact in the theory of 
the Relational Data Model that the lossless-join decomposition into Boyce-Codd (4th) normal 
form does not necessarily preserve functional dependencies. In such a case we have to 
transform particular consistency constraints as well. This is achieved by substituting 
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subattributes A1, A2 of the attribute A for A in the respective consistency constraint connected 
with A (CCA). 

Example: Consider the attribute  

A = ‘(#CITY) which is determined by a given (ZIP) code and (#STREET)’  

of the type (ωτ → (ZIP, STREET) → CITY).  

This attribute is decomposable into subattributes: 

A1 / (ωτ → (ZIP → CITY)) 
A2 / (ωτ → (ZIP → (STREET → ο))). 

But there is a consistency constraint connected with A, namely “There is at most one ZIP 
code assigned to a given city and street” (types of variables obvious):  

CCA = λw ∀z1 z2 s c (([Aw (z1,s)]=c ∧ [Aw (z2,s)]=c) ⊃ (z1 = z2)). 

Decomposing the attribute A into A1 and A2, we get: 

A = λw λzs ιc ([A1w z] = c ∧ [[A2w z]s]),  

and we have to transform CCA into CCA1A2: 

CCA1A2 = λw ∀z1 z2 c s (([A1w z1] = c ∧ [[A2w z1]s] ∧ [A1w z2] = c ∧ [[A2w z2]s]) ⊃ (z1 = z2)). 

Now we are ready to define the data kernel of a set of attributes (constructed by a 
database conceptual system describing the given part of reality, i.e., of a set of attributes of 
our interest). 

Definition 17: Data kernel of a set of attributes A ⎯ defined in a given database conceptual 
system ⎯ is a set of such attributes K for which the following holds: 

a) K =i A 

b) Members of K are undecomposable attributes 

c) There are no two subsets K1, K2 of K (K1 ≠ K2) such that K1 =i K2.                                     � 

From the above considerations and statements it follows that a data kernel K of a set of 
attributes A is a minimum subset of A that consists of elementary attributes, and which is 
informationally equivalent with the set A. The following statement can be easily proved: 

Statement 6: Let K be a kernel-like set of attributes, i.e. a set satisfying conditions (b), (c) of 
the above Definition 17, K1, K2 any two subsets of K. If K1 ←D K2 then K1 ⊂ K2. 

Proof: If K1 were not a subset of K2, then K1 ∪ K2 ≠ K2, K1 ∪ K2 =i K2 (Statement 2), which 
contradicts the condition (c) of the definition. 

4.3. Lattice model of informational capability 
In Section 4.1. we showed that the connection of attributes with information consists in 

associating attributes with sets of propositions generated in a state-of-affairs w. Informational 
capability of attributes has been defined (Definition 8), and Statement 1 claims that 
comparing attributes as for their informational capability can be realised by the definability 
relation (←D). Following these results we would now like to order attribute sets according to 
their informational capability, i.e., by utilizing the ←D relation. But this relation is in general 
a quasi-ordering on attribute sets: it is reflexive and transitive, but it is not antisymmetric. 
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Consider, e.g., attribute sets {A}, {A, B}, such that B ←D A (A, B attributes). Then {A} ←D 
{A, B}, {A, B} ←D {A}, hence {A, B} =i {A} (cf. Statements 1, 2). However, {A} ≠ {A, B}.  

Example: Set of attributes {A, B, C}, where 
A = ‘(#STUDENT)-s of a (#COURSE)’ 
B = ‘(#COURSE) which is given in a (#ROOM) in an (HOUR)’ 
C = ‘(#STUDENT)-s who are lectured in a (#ROOM) in an (HOUR)’ 
(types of attributes A, B, C are obvious), is not a kernel-like set.  

Either the attribute B or the attribute C is redundant: {B} ←D {A, C}, {C} ←D {A, B}. The 
respective constructions ensuring definability are as follows: 

B = λw λrh ιc ∃s ([[Aw c]s] ∧ [[Cw (r h)]s]) 

C = λw λrh λs ∃c ([[Aw c]s] ∧ [[Bw (r h)] = c]). 

Hence sets of attributes {A, B} and {A, C} are informationally equivalent: {A, B} =i {A, C}. 

Yet in a special case of a kernel-like set K of attributes a partial ordering on the power 
set P(K) of the set K can be easily defined. This partial ordering is based on the ←D relation, 
and due to the condition (c) of Definition 17 and Statement 6, respectively, it is the same as 
that one induced by the set-theoretical inclusion relation ⊆. Hence the partial ordered set  
LK = (P(K), ←D) is a complete lattice ([Birkhoff 1968], [Szasz 1963]), in which meet and join 
are defined as the set-theoretical intersection ∩ and union ∪, respectively. The least element 
of LK is an empty set {}, the greatest element is the set K.  

This is rather a trivial result. In order to partially order attribute sets that are not 
necessarily kernel-like, we will utilise the method of a factor set induced by the equivalence 
relation =i (↔D). 

Definition 18. Let A be a set of attribute sets, A ∈ A. 

We define the class generated by A as [A] = {A’ | A’ ∈ A, A’ =i A}, i.e. [A] is the class of 
attribute sets informationally equivalent with A (there can be infinitely many such attribute 
sets, of course). 

The factor set on A with respect to the equivalence =i is defined as the set of all equivalence 
classes induced by =I; hence A/=i is the set {C | C ⊂ A, C = [A] for some A ∈ A}. 

Finally, partial ordering on A/=i is defined as follows: [A] ≤i [B] iff A ←D B for any A ∈ [A], 
B ∈ [B].                                                      � 

Though the ≤i relation is not an inclusion relation it corresponds to the partial ordering 
based on the ⇒ relation (Definition 6) defined on the SIP classes of semiidentical 
propositions generated from particular attribute sets. In other words, there is an isomorphism 
between the factor set of attribute classes ordered by ≤i and the set of SIP classes ordered by 
⇒. As a result, ≤i is congruent with the informational capability of attribute sets. 

Now having a lattice LK = (P(K), ←D), we can extend it as follows: Let K1,...,K2n be 
members of P(K). By substituting [Ki] for Ki (1 ≤ i ≤ 2n) we obtain a partial ordered set of 
equivalence classes L1 = ({[Ki]}, ≤i).  

Statement 7: The partially ordered set L1 = ({[Ki]}, ≤i) is a lattice in which meet (∧) and join 
(∨) are defined as follows: 

[Ki] ∧ [Kj] = [Ki ∩ Kj] 
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[Ki] ∨ [Kj] = [Ki ∪ Kj],  

Ki, Kj ∈ P(K), 1 ≤ i,j ≤ 2n, K a kernel-like set of attributes. 

Proof: We have to prove that for any Ki, Kj ∈ P(K), [Ki ∩ Kj] = inf {[Ki], [Kj]} and  
[Ki ∪ Kj] = sup {[Ki], [Kj]}. Obviously [Ki ∩ Kj] ≤i [Ki], [Ki ∩ Kj] ≤i [Kj]. Let [Kl] (Kl ∈ P(K)) 
be such a class that [Kl] ≤i [Ki], [Kl] ≤i [Kj]. Then Kl ⊆ Ki, Kl ⊆ Kj (K is a kernel-like set 
(Statement 6) and, therefore, Kl ⊆ Ki ∩ Kj. Hence [Kl] ≤i [Ki ∩ Kj]. Analogously for the 
supremum. 

The proof of the statement immediately follows also from the fact that the partially 
ordered sets Lk, L1 are isomorphic with respect to the mapping Ki → [Ki] (1 ≤ i ≤ 2n). Lattice 
L1 is thus also a complete lattice of a finite length (though the members of particular [Ki] can 
be infinite) with the least and greatest elements [{}] and [K], respectively. 

Note: In this proof, and in all the following considerations, we naturally assume that if A ⊆ B 
then [A] ≤i [B], i.e., that our logic is monotonous. This is justified by the assumption of the 
‘correct data collection’, the restrictions of which are specified by analytical consistency 
constraints.  

Another lattice L2 can be obtained as follows: Let again K be a kernel-like set of 
attributes. We complement K by all the attributes that are definable from K. Let the resulting 
set of attributes (which is, of course, no more kernel-like, and which can be infinite) be 
denoted by A, and the power set P(A) by A. The following Statement 8 shows that the factor 
set of equivalence classes A/=i ordered by ≤i is a lattice as well. 

Statement 8. The partially ordered set L2 = (A/=i, ≤i  is a lattice in which meet (∧) and join 
(∨) are defined as follows: 

[Ai] ∧ [Aj] = [ ∪k,l (Ak ∩ Al) ], where Ak is any element of [Ai], Al is any element of [Aj], 

[Ai] ∨ [Aj] = [ Ak ∪ Al ]. 

Proof: We have to prove that [ ∪k,l (Ak ∩ Al) ] is the infimum of {[Ai], [Aj]}, [ Ak ∪ Al ] is the 
supremum of {[Ai], [Aj]}. Since the latter is obvious, we only prove the former. Obviously,  
[ ∪k,l (Ak ∩ Al) ] ≤i [Ai], [ ∪k,l (Ak ∩ Al) ] ≤i [Aj]. Let A’ ∈ P(A) be any set such that  
[A’] ≤i [Ai], [A’] ≤i [Aj]. Then any attribute A ∈ A’ is definable both from Ai and Aj; thus there 
are sets Am ∈ [Ai], An ∈ [Aj] such that A ∈ Am, A ∈ An. Hence A ∈ Am ∩ An, and A ∈  
[∪k,l (Ak ∩ Al)], which means that A’ ⊆ [ ∪k,l (Ak ∩ Al) ], [A’] ≤i [ ∪k,l (Ak ∩ Al) ]. 

The least and greatest elements of L2 are, again, [{}] and [K], respectively, [K] being 
identical with [A]. This lattice can be of an infinite length: Consider, e.g., a subchain of L2 
[{A}] ≥i [{A’}] ≥i [{A’’}] ≥i ....[{}], the length of which can be infinite in case of an infinite 
number of attributes A’, A’’, ... such that A’ ←D A, A’’ ←D A’, ... . 

Statement 9. A sublattice L2’ of L2, 
L2’ = ({[Ki]}, ≤i, ∧, ∨) is isomorphic with the lattice 
L1  = ({[Ki]}, ≤i, ∧, ∨), where Ki , 1 ≤ i ≤ 2n, are subsets of K. 

Proof: It is sufficient to prove that [Ki] ∧ [Kj] = [Ki] ∧ [Kj], i.e., that [Ki ∩ Kj] =  
[ ∪k,l (Ak ∩ Al) ], where Ak, Al are any elements of [Ki], [Kj], respectively. Obviously [Ki ∩ Kj] 
≤i [ ∪k,l (Ak ∩ Al) ]. Let A be any member of ∪k,l (Ak ∩ Al).  
Then A ←D Ki, A ←D Kj. Since Ki, Kj are kernel-like sets, it holds that A ←D Ki ∩ Kj.  
Hence [ ∪k,l (Ak ∩ Al) ] ≤i [Ki ∩ Kj], and, therefore, [ ∪k,l (Ak ∩ Al) ] =i [Ki ∩ Kj]. 
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Example: Consider a kernel-like set of attributes {A, B}. Let A’ ←D A, B’ ←D B. Lattices LK, 
L1, L2 can be illustrated by the following Hasse’s diagrams: 

 
                                                      {A,B} 

 

 

LK                                 {A}                                {B} 

 

 

                                                          {} 

 

 

                                                     [{A,B}] 

 

 

L1                              [{A}]                               [{B}] 

 

 

                                                         [{}] 

 

 

                                                     [{A,B}] 

 

                                      [{A,B’}]               [{A’,B}] 

 

L2                        [{A}]               [{A’,B’}]                [{B}] 

 

                                       [{A’}]                  [{B’}] 

 

                                                         [{}] 

 

There are some practical consequences of the above described lattice theory of 
informational capability. Such an information lattice should be found in every real 
information system. There are three levels of a database application [Tsichr 1975]: an external 
one that includes a simplified model of the real world as seen by one or more applications; 
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conceptual, including a model of the world maintained for all applications of the enterprise; 
and internal, including a model of the data maintained for the computer representation of this 
limited model of the world. Though current modern database system architectures (for 
instance federative architecture, distributive architecture) do not usually realise particular 
schemata in a full accordance with this three level model (there are usually more than one 
schema in a particular level), the following principles should be followed, providing the 
system is correctly designed: (We will call attribute sets describing data in particular levels a 
conceptual set, an external set and an internal set.) 

a) A conceptual set of attributes as well as an internal set should be members of the highest 
class, i.e. they must posses the greatest informational capability. 

b) While the conceptual set of attributes ⎯ as an invariant of the system ⎯ should be a 
kernel-like set, the internal set may contain some redundant data, i.e. a controlled degree of 
redundancy of the stored data may be useful. Though reducing the degree of redundancy 
decreases demands on disc storage and facilitates updates, there may be some reasonable 
redundant data storage: This is the case when the function realising definability of 
attributes is difficult to implement with software and hardware at our disposal, and its 
performing is a lot of time or space consuming process, so that redundant data enhance 
efficiency of the system. The redundancy may also enhance the reliability of the system 
when using redundant information to reconstruct the database state that has been lost by a 
failure of the system.  

c) Particular external sets of attributes are members of lower classes. The descending 
ordering of these classes mirrors the ascending ordering of particular management levels. 
Lowest classes contain highly aggregated information needed on higher management 
levels (top management). The classes on the same level are not comparable, for they 
describe different subsystems of a business application. Thus the lattice of equivalence 
classes of attribute sets illustrates the information flow in a correct information system. 
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5. Schema transformation, database design 

5.1. Four-schema architecture 

The process of the information system design by means of the HIT method can be 
characterised by a thorough adhering the principle of the four-schema architecture [Staníček 
1986], which is illustrated by the following Figure: 

 
                                           E-schema                                          external  
                                                                                                     level 

                                                                                         ____________________ 

 
 HIT schema                        C-schema                                         conceptual 
                                                                                                     level 

                                                                                        _____________________ 

 
                                            I-schema                                          internal  
                                                                                                     level 

The roles of particular schemas can be characterized as follows: 

• HIT schema (conceptual) 

serves for recording constructions of objects, their structure, characteristics and mutual 
relationships, i.e. for expressing concepts of objects of interest (UoD) and thus recording 
the semantics of natural language expressions that denote these objects; in other words, 
conceptual schema is an abstract model of the given part of reality. HIT schema defines 
informational demands that the system shall promote. At the same time it also serves as a 
common platform for users and designers of the information system, it is an invariant of 
the whole system. It is completely independent of the following way of implementation. It 
has to be comprehensive both to designers and users. We could see that the HIT conceptual 
schema (which is the result of the reality−mapping phase) defined as the couple of attribute 
and integrity-constraints constructions together with its graphical support meets these 
demands. 

• C-schema (central) 

serves as a unifying schema of the whole system: it records the general data structures as 
they are described in the HIT schema but in a form easier to implement. Hence it is a 
computer-oriented representation of the HIT schema which is nevertheless still completely 
independent of a DBMS used to implement the system, and it makes it possible to 
implement the system in any DBMS though relational system is currently the most 
frequent one. In the HIT method it is represented by the data type network (DTN). C-
schema is the result of the transformation HIT → DTN, and it basically corresponds to the 
Chen’s E-R schema. 

• E-Schema (external) 
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serves as a definition of user’s views of data in the information system, and it is therefore a 
basic means of the user’s communication with the information system. User-
comprehensive descriptions of data structures are derived from the HIT schema; data 
structures to be manipulated by a communication means are derived from the C-schema. 
There may be a number of E-schemata in the information system. But it always has to be 
guaranteed that the informational capacity of the HIT schema (C-schema) is a summary of 
the informational capacities of particular E-schemata. 

• I-schema (internal) 

is used for the implementation of the data base of the information system. It already 
determines the used programming techniques, namely the chosen DBMS, or at least the 
type of the DBMS. When the relational data model is used at this level (which is nowadays 
nearly exclusively valid), then the implementation in a relational DBMS will certainly 
follow. Network or hierarchical model can be used as well, but these we mention only for 
historical reasons. The role of an I-schema consists in optimally meeting the demands 
formulated in the HIT schema and represented in the data structures of the C-schema. 
Building up the I-schema is a subject of the information system design phase, and will be 
described in Section 5.3.  

5.2. Transforming HIT conceptual schema into the C-schema 
At the beginning of Section 4.2 we mentioned the problem of polarity described in 

[Hull 1987], i.e. the problem of ‘dual viewing’ attributes: either as (n-ary) empirical functions 
or as complex (encapsulated) objects. We will now solve this problem using the formalism of 
TIL by means of a key notion of the transformation of a schema. The HIT data model enables 
us to work with objects and their attributes in a very natural way on the user’s level of 
abstraction. Encapsulation is ensured by a schema on a different level of abstraction; the 
corresponding schema transformation is used to hide the internal structure of the objects being 
manipulated. 

According to the HIT method of designing a database system the designer creates the 
HIT conceptual schema first, „nodes“ of which are entity and descriptive sorts, and in which 
HIT attributes map the associations between these sorts. Following the principle of data 
independence according to which a conceptual schema should serve as an invariant of the 
system, we define the conceptual schema as containing a kernel of the database conceptual 
system. A set of HIT attributes describes reality in a user-friendly way but it is not easy to 
implement in a direct way. „User-friendliness“ is achieved by the fact that HIT notion of 
attribute is rather stronger than the analogous one of other data models (cf. relational attribute, 
Chen’s attribute, etc.). First, it covers not only descriptions of particular entities, such as 
name, identity card number, etc., but also links, associations between these entities (suppliers 
of a material,...). Moreover, HIT attribute is generally an n-ary (n ≥ 1) function, which makes 
it possible to model functional dependencies between basic objects of interest in a natural 
way. Covering both descriptive attributes and associations by the HIT-attribute (compare with 
ORM’s facts) makes the model extremely stable. Last but not least, this fact makes it possible 
to provide attributes with semantically exact names formulated in a natural-like language. But 
these n-ary functions are not easy to directly implement and thus most of the current database 
models fix these relationships as basic objects (of a more complex type) and allow only 
simpler unary descriptive attributes (cf. Chen’s data model [Chen 1976]). The transformation 
of the HIT conceptual schema into such a flatter schema consists in ‘binarisation’ of n-ary 
attributes, i.e. the principle of representing n-ary functions by means of relationship sets is 
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applied, and particular consistency constraints are transformed. ‘Binarisation principle’ is 
described by the following statement: 

Statement 10. A set of attributes A1, A2, ..., Ak of types 
ωτ → ((E1,...,En) → Dm) or 
ωτ → ((E1,...,En) → (Dm → ο)) , 
where Ej, j = 1,...,n, are entity sorts, Dm, m = 1,...,k, are descriptive sorts, is informationally 
equivalent with the set {B1,...,Bn, Bn+1,...,Bn+k}, where Bi (i=1,...,n) are constructed as follows 
(remember that r(i) is the i-th projection of r): 

Bi = λw λr ιei (ei = r(i) ∧ (∃d1 ([[A1w r] * d1]) ∨ 
                                         ∃d2 ([[A2w r] * d2]) ∨ 
                                              … 
                                         ∃dk ([[Akw r] * dk]))) 
and Bn+m (m=1,...,k) are constructed as follows: 
Bn+m = λw λr λdm ([[Amw r] * dm]). 
(Variables: ei/Ei, dm/Dm, r/(E1,...,En); symbol * stands either for the symbol = or it means 
application to dm.) 

Similarly an attribute A of a type 
(ωτ → ((E1,...,En-1) → En )) or (ωτ → ((E1,...,En-1) → (En → ο))) is informationally equivalent 
with the set of attributes {B1,...,Bn}, where Bi (i = 1,...,n) are constructed as follows: 
Bi = λw λr ιei (ei = r(i)  ∧ ([[Aw (r(1),...,r(n-1))] * r(n) ])). 

Proof: It is sufficient to prove that every Am (m = 1,...,k) is definable from {B1,...,Bn+k}, and 
that A is definable from {B1,...,Bn}. Indeed, 
Am = λw λr λdm ([[B(n+m)w r]dm]) or Am = λw λr ιdm ([B(n+m)w r] = dm), for any m ∈ {1, k}, 
and 
A = λw λr(1) ...r(n-1) λr(n) ([Biw r] = r(i) ) or A = λw λr(1) ...r(n-1) ιr(n) ([Biw r] = r(i) ), for any  
i ∈ {1, n}. 

Thus a new relationship set R = (E1,...,En) comes into being and the new attributes Bi are 
unary. Populations of the sort R consist of those tuples (E1,...,En) which are ‘bound’ by 
attributes Ai or A, and the are constructed as follows: 

[Rw] = λe1 e2 ... en ∃w (∃d1 ([[A1w (e1 e2 ... en)] * d1 ]) ∨ 

                                    ∃d2 ([[A2w (e1 e2 ... en)] * d2 ]) ∨ 

                                               . . . 

                                      ∃dk ([[Akw (e1 e2 ... en)] * dk ])) 

or in the case of attribute A 

[Rw] = λe1 e2 ... en ∃w ([[Aw (e1 ... en-1)] * en ]). 

Statement 10 makes it possible to transform a HIT conceptual schema into the so 
called central schema corresponding to Chen’s Entity Relationship schema in such a way that 
the two schemas are equivalent in the following way: 

 
Definition 19. Let S = (A, CA), S’ = (A’, CA’) be database schemas. We shall say that S, S’ are 
equivalent, iff 
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a) The set of attributes of schema S is informationally equivalent with the set of attributes of 
schema S’ 

b) Consistency statements constructed by CA and CA’ determine the same set of admissible 
states-of-affairs.        � 

Central schema C = (BN, CB) obtained by the transformation of a HIT conceptual 
schema is such a schema in which attributes B1,...,Bn constructed by BN are ‘unary’, i.e., they 
are of a type (ωτ → (T1 → T2)) or (ωτ → (T1 → (T2 → ο))), where T1, T2 are elements of the 
base N. 

The method of transformation of the HIT conceptual schema K = (AS, CA) over a base 
of sorts S into an equivalent central schema C = (BN, CB) over a base N consists of the 
following three steps: 

1. Enriching the base of sorts S = E ∪ D (where E is the set of entity sorts, D is the set of 
descriptive sorts) by the respective relationship sets R. Hence N = E ∪ D ∪ R. 

2. Transforming n-ary (n ≥ 2) attributes constructed by AS into unary attributes over the base 
N according to the Statement 10. 

3. Transforming consistency constraints CA connected with attributes AS into consistency 
constraints CB connected with attributes BN by substituting the respective constructions (cf. 
Statement 10) 

λr λdi [[B(n+i)w r] di],  λr(1) ...r(n-1) λr(n) ([Biw r] = r(i)) 

for Aiw, Aw, respectively, in CA. The demand that CA and CB determine the same set of 
admissible states-of-affairs is obviously met due to the informational equivalence of the 
sets of attributes constructed by AS and BN. 

Note: The process of transformation can be fully automatized; it has been implemented by 
Duží in 1990 using the programming language Wander, see [BDSS 1990].   

Example: 
Consider a part of a HIT conceptual schema describing the purchase of a product. Supposing 
that one and the same product can be bought by different departments at different costs, we 
can have two undecomposable attributes: 

A1 – (DATE) when a given (#PRODUCT) has been bought for a given (#DEPARTMENT) 

A2 – (PRICE) that has been paid for a given (#PRODUCT) by a given (#DEPARTMENT) 

Using Statement 10 we can transform A1 and A2 into four binary attributes of types: 

B1 / (#PURCHASE) → (#PRODUCT) 

B2 / (#PURCHASE) → (#DEPARTMENT) 

B3 / (#PURCHASE) → (DATE) 

B4 / (#PURCHASE) → (PRICE) 

The new relationship set (#PURCHASE) is a couple (#PRODUCT, #DEPARTMENT). The 
respective part of the C-schema can be illustrated by a variant of the E-R diagram: 

 
 

      PRODUCT                                                     DEPARTMENT 
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                                      DATE        PRICE 

 

Note that relations from entity sorts to relationship sorts are of the type 1:N (see the 
respective attributes Bi – Statement 10). 

In the central schema obtained in the above described way there are two kinds of 
attributes, namely linkage attributes and descriptive attributes. Linkage attributes are of a 
type 

(ωτ → (O1 → O2)) or (ωτ → (O1 → (O2 → ο))),  

where O1, O2 are entity sorts or relationship sets, and descriptive attributes are of a type  

(ωτ → (O → D)) or (ωτ → (O → (D → ο))),   

where O is an entity sort or relationship set and D is a descriptive sort.  

A set of descriptive attributes describing one and the same entity or relationship sort is called 
a data type. Hence nodes of the central schema are data types, i.e. entity and/or relationship 
sorts with their relevant descriptions, links between these nodes are linkage attributes. 
Moreover, some descriptive sorts (or possibly tuples of descriptive sorts) are pointed out in 
the process of transformation, namely those descriptive sorts which occur in the type of more 
than one descriptive attribute or which appear as repeating items (D → ο) in a range of a 
descriptive attribute. We call them marked descriptive sorts, and they are mostly implemented 
in a similar way as data types. Considering each data type as a relation scheme in the above 
outlined way, we obtain (due to Statements 4 and 5) a schema in the 4th normal form (see 
5.3.). 

5.3. Transforming the C-schema into the I-schema (database design) 
Before briefly outlining the ways of possible I-schema design, we first describe the 

various normal forms used in („manual“) data schema normalisation. Afterwards we describe 
two basic ways of the I-schema design: either following some optimal normal forms 
principles or, in exactly defined and documented cases, breaking those principles. We also 
show that one of the benefits of using HIT method of database design is the fact that the 
resulting schema can be in an optimal normal form without ever wondering about any „post 
design“ manual normalisation techniques. This is due to the fact that using HIT method you 
express the UoD in terms of objects and their elementary functional dependencies. 

Why a database designer is concerned with normalisation? The main reasons include 
[Becker 1999a]: 
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• Semantic grouping of related elements: Assigning ‘right’ attributes to the ‘right’ entities. 

• Reduction of redundant values in tuples which can cause insert, delete and update 
anomalies. 

• Avoiding the difficulties with inserting values to „non-existent“ entities. 

• Reduction of null values in tuples. 

• Disallow spurious tuples (incorrect join combinations of data values due to improper 
structures). 

Functional dependencies 

(Now we presuppose an acquaintance with the relational data model; using the term 
‘attribute’ we mean a relational attribute.)  

The main root of a normalisation technique centres on functional dependencies. This simply 
means that the values of a set of attributes Y in a relationship depend on, or are determined 
by, the value of a component X (determined X → Y). It means that a functional dependency 
is invalid if we have two tuples with the same X value but different Y values.  

For example, in many data structures, a ‘Social Security Number (SSN)’ determines a 
‘Person’, which is commonly (but usually not uniquely) referenced by a ‘Name’. Thus we say 
that NAME is functionally dependent on SSN (SSN → NAME). Keep in mind that the 
components X and Y may be composite structures (more than one relational attribute or, in 
other words, column). 

Normalisation technique consists in ensuring that non-key attributes of a table are 
functionally dependent on the whole key of the same table. 

The normal forms 

A given data structure can be at one of several levels, or stages of completeness, of 
normalisation. These stages are known as normal forms. The eight normal forms are First 
Normal Form, Second Normal Form, Third Normal Form, Elementary Key Normal Form, 
Boyce-Codd Normal Form, Fourth Normal Form, Fifth Normal Form, and Project-Join 
Normal Form. 

First Normal Form 

First Normal Form (1NF) is now generally considered a part of the formal definition of a 
relation. Historically, 1NF was intended to disallow multi-valued attributes. 1NF dictates that 
the domains (allowable values) of attribute must include only atomic (simple, indivisible) 
values and that any given value of an instance of an attribute must be a single value from the 
domain of that attribute. In short, a given cell of a column in a table can contain only one 
value. 

Second Normal Form 

Second Normal Form (2NF) is based on the concept of a „full“ functional dependency. A 
functional dependency, X → Y, is a full functional dependency if removal of one attribute 
from X means that the dependency does not hold any more. For example, given a table that 
tracks hours (HOURS) a given employee (SSN) devotes to a given project (PROJNUM), we 
note that HOURS is functionally dependent on the combination of SSN and PROJNUM 
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because a given employee can work on more than one project. Removal of either SSN or 
PROJNUM from the functional dependency results in an incorrect relationship.  

A table is in 2NF if that table is in 1NF and every non-prime (is not involved in a primary key 
of the table) attribute in that table is fully functionally dependent on the primary key of the 
table. 

For example, the following table is in 1NF but is not in 2NF because PNAME and 
PLOCATION are dependent on only part of the primary key (PROJNUM and SSN). 
Likewise, ENAME is also dependent on SSN.  

Employee-Project table: 

SSN, PROJNUM, HOURS, ENAME, PNAME, PLOCATION 

To correct this schema, we need to create additional tables and decompose the partial 
dependencies into these new tables: 

(Please note that, for simplicity, these tables will not denote the resulting referential integrity, 
such as foreign keys, that would need to be added to these decomposed schemas.) 

Employee Table: 

SSN, ENAME 

Project Table: 

PROJNUM, PNAME, PLOCATION 

Hours Table: 

SSN, PROJNUM, HOURS 

Third Normal Form  

Third Normal Form (3NF) is based on the concept of ‘transitive dependency’. A transitive 
dependency can be loosely defined as a dependency that does not involve the primary key. 
For example, in the table below, we see that while all elements have functional dependencies 
on the key, SSN, there also exist other, transitive, dependencies. Namely, DEPTNAME is 
dependent on DEPTNUM. 

Employee-Department Table: 

SSN, ENAME, BDATE, DEPTNUM, DEPTNAME 

A table is in 3NF if it is in 2NF and no non-key attributes are dependent on other non-key 
attributes. 

We can decompose the above table into 3NF by creating a second table for department. Thus 
the following structure is in 3NF: 

Employee Table: 

SSN, ENAME, BDATE, DEPTNUM  

Department Table: 

DEPTNUM, DEPTNAME 

There is a subtle difference between 2NF and 3NF. In 2NF, we are concerned about non-key 
fields being dependent on subsets of the key. In 3NF, we are concerned about non-key fields 
being dependent on other non-key fields. Another way to say this has been nicely summarised 
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as: any non-key field must be “...Dependent on the key, the whole key, and nothing but the 
key“ [Kent 1983]. 

Elementary Key Normal Form 

Elementary Key Normal Form (EKNM) is a subtle enhancement on 3NF (by definition, 
EKNF tables are also in 3NF) that most often occurs when there is more than one unique 
composite key (more than one column) which overlap (one or more columns are involved in 
both keys) in a table. Such cases can cause redundant information in the overlapping 
column(s). For example, in the following table, let’s assume that a subject title 
(SUBJECTTITLE) is also a unique identifier for a given subject: 

Enrollment Table: 

STUDENTNUM SUBJECTCODE SUBJECTTITLE 

1 CS100 ER 

1 CS114 ORM 

2 CS114 ORM 

This table, although it is in 3NF, violates EKNF. What is wrong with it? The primary key of 
the table is the combination of STUDENTNUM and SUBJECTCODE. However, we can also 
see a (non-primary) uniqueness constraint (alternate key) that should span the 
STUDENTNUM and SUBJECTTITLE attributes. The above schema could result in update 
and deletion anomalies because values of both SUBJECTCODE and SUBJECTTITLE tend to 
be repeated for a given subject. Decomposing the above table we obtain a schema satisfying 
EKNF: 

Subject Table: 

SUBJECTCODE SUBJECTTITLE 

CS100 ER 

CS114 ORM 

Enrollment Table: 

STUDENTNUM SUBJECTCODE 

1 CS100 

1 CS114 

2 CS114 

For reasons that will become obvious in the following paragraph, ensuring that a table is in 
EKNF is usually skipped, as most designers will move directly on to Boyce-Codd Normal 
Form after ensuring that a schema is in 3NF. Thus, EKNF is included here only for reasons of 
historical accuracy and completeness.  

Boyce-Codd Normal Form 



 91

Like EKNF, the only case a table is in 3NF but is not in Boyce-Codd Normal Form (BCNF) is 
when the table contains two or more candidate keys that overlap. Beyond that, there is only a 
subtle difference between EKNF and BCNF, which we outline now. 

Consider the same example we used to illustrate EKNF, but we now add an attribute 
(GRADE) to denote a student’s grade received in the course. (Further, for illustrative 
simplicity) let’s assume that a student can only take a course once.) The following table 
violates BCNF: 

Enrolment-Grade Table: 

STUDENTNUM SUBJECTCODE SUBJECTTITLE GRADE 

1 CS100 ER C 

1 CS114 ORM A 

2 CS114 ORM A 

We see that the GRADE attribute is now dependent only on a given enrolment pair and that 
the keys are now elementary (which satisfies EKNF). However, SUBJECTTITLE is 
dependent on SUBJECTCODE. Since the key of the table is STUDENTNUM and 
SUBJECTCODE, we decompose this structure into the following two tables which satisfy 
BCNF: 

Course Table: 

SUBJECTCODE SUBJECTTITLE 

CS100 ER 

CS114 ORM 

Enrolment-Grade table: 

STUDENTNUM SUBJECTCODE GRADE 

1 CS100 C 

1 CS114 A 

2 CS114 A 

One may note that this would also have happened to solve the EKNF problem in the previous 
section. For that very reason, most designers seldom worry about EKNF and move straight on 
to BCNF. 

Fourth Normal Form 

The final normal forms are concerned with multi-valued dependencies. We can also note that 
they are concerned with composite keys, as they tend to minimise the number of fields 
involved in a composite key. 

A table is in Fourth Normal Form (4NF) if it is in BCNF and all functional dependencies are 
„single-valued“. Another way to state this is to say that a table cannot contain two or more 
independent “multi-valued” facts [Kent 1983]. By independent we mean to say that there is 
no direct connection between the two (or more) multi-valued facts. This vague definition is 
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better handled by example. In the following table (in BCNF, since it is entirely composed of 
attributes involved in the key), we record people (NAME), instruments they play 
(INSTRUMENT), and music styles (MUSICSTYLE) they play: 

NAME INSTRUMENT MUSICSTYLE 

Hallock Piano Classical 

Hallock French Horn Classical 

Hallock Kazoo Blues 

Barden Trumpet Jazz 

Hallock Piano Blues 

We see that redundancy occurs because a given person (NAME) can play more than one 
instrument (INSTRUMENT) and can play more than one music style (MUSICSTYLE) (the 
fact that Hallock plays piano is repeated, as is the fact that he plays the blues and classical). 
Further this table suggests a link between instruments and music styles. Can Hallock play 
blues with a French horn? Yes, he can.  

In other words, we see that there are two independent multi-valued dependencies in the above 
table. The first is that a person (NAME) can play more than one instrument while the second 
is that a person (NAME) can play more than one music style. These facts are independent 
because these two facts have no bearing on each other. Decomposing this table into two tables 
in the 4NF solves the problem: 

Plays Table 

NAME INSTRUMENT 

Hallock Piano 

Hallock French Horn 

Hallock Kazoo 

Barden Trumpet 

Styles table: 

NAME MUSICSTYLE 

Hallock Classical 

Hallock Blues 

Barden Jazz 

One should note that 4NF only applies to tables with three or more attributes (it eliminates 
overlapping multi-valued dependencies, which, by definition, require three or more attributes) 
and only when all attributes compose the primary key of the table. 

 

Fifth Normal Form and Project Join Normal Form 
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Cases where table is in 4NF but is not in the Fifth Normal Form (5NF) are extremely rare. 
Further, Project Join Normal Form (PJNF) is a slightly stronger (although this is debated) 
case of 5NF, and in virtually all cases it can be treated as an equivalent. Therefore, PJNF is 
included here only for completeness. 

As in 4NF, 5NF considerations apply only to tables with three or more attributes, all of which 
comprise the primary key. 

The formal definition of 5NF PJNF requires using projection. A projection of a table is a 
subset of the total number of columns with no duplicate rows. For example, the following 
table can violate 5NF. 

Trains table: 

EMPLOYEE CLASSTYPE COMPANY 

Hallock ORM Visio 

Hallock UML Visio 

Hallock ER Visio 

Hallock Diagramming Visio 

Becker ER Oracle 

Becker ORM Visio 

Becker UML Visio 

Becker ER Visio 

Becker Diagramming Visio 

The table has the following projections: 

Trains1: 

EMPLOYEE CLASSTYPE 

Hallock ORM 

Hallock UML 

Hallock ER 

Hallock Diagramming 

Becker ER 

Becker ORM 

Becker UML 

Becker Diagramming 

 

 

Trains 2 
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EMPLOYEE COMPANY 

Hallock Visio 

Becker Oracle 

Becker Visio 

Trains 3 

CLASSTYPE COMPANY 

ORM Visio 

UML Visio 

ER Visio 

Diagramming Visio 

ER Oracle 

 

The trains table may or may not be in 5NF depending on the business rules. Say we have to 
enforce the rule: 

An EMPLOYEE trains a CLASSTYPE for a COMPANY if and only if an EMPLOYEE 
trains a CLASSTYPE, the EMPLOYEE trains for a COMPANY, and the COMPANY the 
EMPLOYEE trains for makes a tool that implements the CLASSTYPE the EMPLOYEE 
trains.  

If we enforce this rule the Trains table is not in 5NF and must be reduced to the three 
tables represented by the above projections of the original table. To achieve 5NF, one checks 
all key tables for decompositions whose joins result in the same information. A cautionary 
note, however, is that such decompositions can lead to a loss of constraint knowledge. For 
example, in the above case, we need to create database code to handle the specified rule 
between an EMPLOYEE, the CLASSTYPES they train, and the COMPANY who makes the 
tool that implements the CLASSTYPE.  

The root concept behind 4NF, 5NF and PJNF is that the tables not in these normal 
forms can be derived from simpler, more fundamental relationships. Further, 5NF does not 
differ from 4NF unless there are other rules (symmetric constraints) that dictate correct data 
population [Kent 1983]. Lastly, 5NF differs from 4NF in that the fact combinations we are 
concerned with are no longer independent from each other (due to the semantic constraints). 

The previous discussion centres on what can be called „manual normalisation“. As 
you could see, this normalisation technique can be tricky and difficult to explain. Hence when 
designing a database schema by HIT method, we prefer data modelling technique that, in 
addition to many other benefits also happens to completely normalise the data structures with 
little extra “post-design” effort. For practical reasons we will be satisfied with the 4NF. 

As it has been stated in the above Section 5.2, ‘nodes’ of the C-schema are data types, 
i.e. particular object classes together with the set of their descriptive attributes, linkage 
attributes describe relationships of a type 1:1, 1:M, M:N. Object classes are of two possible 
types: entity classes and relationship classes (aggregations, i.e. tuples of entity sorts). Now we 
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briefly outline the database design in the relational data model, i.e. transformation of the C-
schema into the I-schema.  

Data types. 

Particular data types are realised as relational schemas, where the name of a schema is 
the name of the respective object class, descriptive attributes of the given class are relational 
attributes of the relational schema, the domains of which are particular representations of 
descriptive sorts. 

Keys and system identifications 

How shall we now realise relationships? The only way in the relational data model is 
realisation by means of keys, namely attributes ensuring the unique occurrence of a relation in 
every state-of-affairs. Keys are usually taken to be identification attributes. But there is a 
certain problem with this conception: Identification attributes are empirical functional 
dependencies and a completely correct data collection cannot be guaranteed, i.e. mistakes can 
occur when determining their values. Moreover, some object classes (especially the 
relationship classes) are identified by a set of attributes so that the respective key can be 
composite and rather long. Further, one and the same object can be identified in several 
different ways (for instance a person by its Social Security Number, or by its Birth-date 
Identity Number, or by a Personal Number in a given organisation, etc.). As a consequence 
we get the fact that one and the same object can be identified by different id-attributes in 
particular components of the system. How shall we then recognise that it is the same object? 
When taking into account the object-oriented approach to data design, then each real object 
should have in a database a unique image. Technical solving of this demand is a rather 
complicated problem. Modern object-oriented DBMSs provide us with the means for its 
realisation (they ensure the so-called object-identity). But nowadays there are still not many 
such systems, which could be actually called object-oriented, and if there are any in the 
market, they are rather expensive. Therefore it is recommended to introduce the so-called 
system identification of each object, i.e. a field uniquely identifying the object, which is 
calculated by the system. 

Realisation of relationships (linkage attributes) 

a) Realisation in 4NF 

Linkage attributes of the type 1:M are realised by repeating the key on the M-side. 
More precisely, a linkage attribute of a type (O1 → (O2 → ο)) is realised by two relational 
schemas O1, O2, where the respective descriptive attributes of the objects O1, O2 are particular 
fields (relational attributes) of relations O1, O2. Relation O2 will moreover contain a field⎯ 
attribute which is the key of O1. This situation is generally valid for such linkage attributes 
that are not ‘partial on the 1-side’ (object O2 has a mandatory membership in the 
relationship), i.e. the number p in the ratio p,q:m,n of the attribute is equal to one. If it is not 
the case, then we have to realise such an attribute by three relational schemas, namely O1, O2 
and moreover a schema R the attributes of which will be the id-attributes of the objects O1, 
O2. Hence such a relationship is realised analogically as the relationship M:N, see below. 
Note that the linkage attributes that we obtain using ‘binarisation principle’ have always the 
ratio 1,1:0,M, the new relationship set has an obligatory membership in the relationship. 

Note: We did not pay an attention to 1:1 relationships, for they are just a special case of 1:M. 

Example: Consider an attribute 
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(#ROOM) in which a given (#PACIENT) is placed / 0,1:0,M 

When stating the ratio of this attribute we presupposed that, some rooms can be vacant, and, 
on the other hand, some patients do not have to be placed in any room, in other words, the 
system will record information also about non resident, out patients. This attribute will be 
realised be the following three relational schemas: 

PACIENT(SSN, NAME, ADDRESS, ...) 

ROOM(ROOM-NUMBER, LOCATION, NUMBER-OF-BEDS, ...) 

PLACED(SSN, ROOM-NUMBER) 

Note: This simple example illustrates the importance of distinguishing analytical vs. empirical 
constraints (see Section 3.2.4). Imagine that the user would insist on his being content with 
recording only resident patients, and would simply affirm that they do not have any non 
resident patients. In such a case we would record the above attribute as 

(#ROOM) in which a given (#PACIENT) is placed / 1,1:0,M 

with a note that the above total constraint is empirical. An admissible I-schema is now as 
follows: 

PACIENT(SSN, NAME, ADDRESS, ..., ROOM-NUMBER) 

ROOM(ROOM-NUMBER, LOCATION, NUMBER-OF-BEDS, ...) 

However, such a schema would not be stable, unless we are content with null values (which 
should not be the case in the design phase), for the above constraint is only empirical, and the 
user can later easily change his mind and demand recording also non-resident patients. Hence 
in case of the empirical total constraint “on the 1-side” the former design (three relational 
schemes) is strictly recommended. 

Relationships of the type M:N cannot be realised in a straight way. We have to use an 
analogical principle that we used when ’binarising’ HIT attributes of the complexity greater 
than two. We introduce another relationship set and the original attribute is decomposed into 
two new attributes. For instance attribute 

A = (#PERSON)-s who take part in an (#ACTION) / 1,M:0,N 

is decomposed using a new relationship set, say  

#PARTICIPATION = (#PERSON, #ACTION), and the attribute A is converted into two 
attributes B1, B2: 

B1 of the type (#PERSON → (#PARTICIPATION → ο)) / 1,1:0,M 

B2 of the type (#ACTION → (#PARTICIPATION → ο)) / 1,1:0,M 

These two attributes are now realised as in the above case ⎯ relationships 1:M (the total 
constraint is now analytical!). As a result we obtain again three relational schemas PERSON, 
ACTION, PARTICIPATION. 

There is also a problem with the realisation of multi-valued descriptive attributes. These 
attributes would violate 1NF. If a given DBMS does not make it possible to implement so-
called ‘nested relations’, i.e. among others multi-valued attributes, then we have essentially 
two possibilities. An attribute A of the type (O → (D → ο)) can be either realised as two 
relational schemas O and D that will be in the relation 1:M (hence we have to repeat the key 
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of the object O in the schema D), or as one relational schema in which there is one row for 
each value of D. 

If we transform in the above described way the C-schema which originated in 
transformation of the HIT schema in which all the decomposable attributes have been 
decomposed, then the Statements 4 and 5 ensure that the resulting I-schema is in an optimal 
normal form (4NF in this case).  

A special role in the schema is played by those marked descriptive attributes that have 
as its ‘domain’ a common descriptive sort. Hence the problem concerns such sets of attributes 
like A1 / (O1 → D), A2 / (O2 → D), ..., An / (On → D). As an example consider the descriptive 
sort ADDRESS. If there are more descriptive attributes with this sort in the C-schema, e.g. 

(ADDRESS) of a given supplier (#ORGANISATION) 

(ADDRESS) of a given customer (#ORGANISATION) 

(ADDRESS) of a given contact (#PERSON) 

(ADDRESS) where a given (#ACTION) is held 

etc.,  

and if by analysing user’s demands during a dialogue we find out that the user will often put 
questions like „What is located on a given address?“, then these facts signal that the 
expression ‘address’ denotes an entity sort rather than a descriptive one. In such a case we 
realise these attributes as if they were linkage attributes, i.e. the sort ADDRESS will result in 
a relational schema (which should be better called a LOCATION).  

b) Realisation violating 4NF (‘nested relations’) 

In some modern systems the 4NF is not strictly demanded. Normalisation yields the 
well known benefits like reducing redundancy and update anomalies (as described above), but 
sometimes it is so at the cost of effectiveness. As we have seen, keeping normal forms leads 
to introducing new relational schemas (new ‘objects’), which means that in the run-time more 
join operations have to be performed, which are time demanding. Therefore some modern 
DBMSs make it possible to realise the so-called ‘nested relations’, especially multi-valued 
attributes, though at the same time the principle of non-redundancy is preserved.  

In such systems we can then realise some M:N relationships and some multi-valued 
attributes without introducing another relation. Thus, for instance, we can decide to realise the 
following attribute  

A = ‘(#PERSON)-s who take part in a given (#ACTION)’ / 1,M:0,N 

without additional relation PARTICIPATION in such a way that the couple 
PARTICIPATION is nested in the relation ACTION, i.e. relation ACTION will contain some 
attributes of participating persons. It, of course, has to contain the key, i.e., identification 
attribute(s) of participating persons. These attributes are multi-valued. Generally some 
relationship classes R = (E1,...,En) can be ‘nested’ into a relational schema corresponding to 
some of the entity sorts Ei. For instance, transforming HIT-attributes 

A1 = ‘(DATE) when a given (#PERSON) should be informed about a given (#ACTION)’ 

A1 = ‘(HOUR) when a given (#PERSON) should be informed about a given (#ACTION)’, 

we obtain a new relationship class #INFORM = (#PERSON, #ACTION) with descriptive 
attributes ‘DATE’, ‘HOUR’ and linkage attributes 
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B1 / INFORM → PERSON 

B2 / INFORM →ACTION. 

The corresponding relation INFORM can now be nested into, e.g., the relation PERSON 
which will then contain a set of multi-valued attributes: 

• ACTION-CODE 

• ACTION-DESCRIPTION 

• DATE 

• HOUR 

Implementation of such queries as “About which actions shall we inform a given employee in 
the next week?” is then much more effective than in case the relationship class INFORM 
were realised as another relation (for it would demand performing a join operation of relations 
PERSON and INFORM). If, however, we expect frequent queries like “Which employees 
should be informed about a given action?”, we can promote their effective realisation by 
means of the given DBMS (relational indices, etc.). 

We have, however, to keep in mind that all such cases of breaking the principles of an 
optimal normal form have to be carefully documented. We have to know that the respective 
relationship classes did not disappear, but were nested into certain relations. Only in such a 
way we ensure that the database will not be „stiff“ and a future redesign according to user’s 
demands will be possible. If, for instance, a user wishes to record also a text of a notice that 
should be supported to the given employee together with the other information about an 
action, we have to know, to which relation the attribute ‘text of a notice’ should be added. 
Whether to PERSON or ACTION. In our above example this would mean to adjust the set of 
multi-valued attributes in the relation PERSON: 

• ACTION-CODE 

• ACTION-DESCRIPTION 

• TEXT-OF-NOTICE 

• DATE 

• HOUR 

Note: The Fourth Normal Form or Boyce-Codd Normal Form is sometimes not strictly 
demanded even in classical relational systems. The Third Normal Form is, however, 
recommended. In such a case we do not demand a careful applying decomposition statements. 
For instance, the relation ADDRESS = (STATE, TOWN, STREET, ZIP-CODE) would not be 
decomposed, for it is in the Third Normal Form (not Boyce-Codd Normal Form) though there 
is redundancy in storing the (name) of the city. 
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6. Conclusion 

In this study we have dealt with the problems of conceptual data modelling. After a 
brief summary (which cannot be considered to be exhaustive, for such a task is completely 
out of the scope of the present study) of some well-known semantic (conceptual) data models 
we concentrated on the two models, namely COMIC and HIT which are both based on the 
theory of concepts. Whereas the COMIC system is based on the traditional Kaupi’s theory of 
concepts, thus being rather intuitive and probably not sufficiently theoretically founded, the 
HIT data model stems from the Transparent Intensional Logic (TIL) and from the new non-
traditional Materna’s theory of concepts based on TIL. The core of this work can be 
characterised as a description of theoretical foundations of conceptual modelling using HIT 
data model. We thus concentrated on theoretical-logical aspects of the HIT data model, and 
rather neglected its practical consequences which have been described in [Duží 1986], [Duží 
2000]. Of course, a good data model must prove its qualities in practice, and we can claim 
that the HIT data model has proved to be very intelligible for users, and has been successfully 
used when analysing and designing very large and complicated information systems. 
Nevertheless, the work of designers cannot be driven only by intuition, a good theoretical 
background becomes a great advantage. We have shown that all the currently used semantic 
data models actually do not essentially differ concerning modelling capabilities and 
constructs, but they all lack just a good theoretical background. Thus the used basic modelling 
notions are not precisely defined, the semantics is unclear, particular constraints are expressed 
in many different ways, most frequently in a natural language or in a programming language, 
the whole area seems to be rather „chaotic“. We have shown that the HIT data model covers 
all the traditional modelling constructs, but unlike the above models it is well theoretically 
founded and all the modelling capabilities are handled in a uniform way. 

The Entity-Relationship model is mostly considered to be quite an adequate model to 
business data analysis and has become nearly a standard nowadays. Why then do we advocate 
using HIT data model in the application analysis? A straightforward design of the central 
schema in the Entity-Relationship model is, of course, possible. But when the business reality 
is completely unknown to the designer or too complex, the design of relationship sets in the 
E-R model becomes a stumbling block. Moreover, using E-R, the designer has to determine 
particular entity sets, descriptive sets, attributes and relationships at the very beginning of the 
analysis. Any change of the conceptual view can thus cause redesigning the schema, which 
may sometimes be very burdensome. In such a case the designer can use the HIT method 
producing HIT conceptual schema first that is afterwards (automatically) transformed to the 
central schema, which produces particular entity and relationship sorts and their associations 
in a natural and at the same time exact way as the result of a careful analysis of functional 
dependencies between basic objects. Using the HIT method we can model n-ary (empirical) 
functional dependencies in a natural way as n-ary (empirical) functions, and we are not forced 
to fix these objects of a more complicated type as basic ‘nodes’ of a schema at the very 
beginning of the design process. Moreover, similarly as in some progressive, user-friendly 
and stable data models (e.g. ORM), using the HIT data model we do not distinguish between 
(descriptive) attributes and relationships between entity sorts, modelling them in a uniform 
way as n-ary HIT attributes, which makes the model stable and easy to use. Last but not least, 
by recording HIT attributes we obtain a precise documentation of the database conceptual 
schema including the semantics of particular objects and their relations for a future re-design.  
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Of course, the HIT data model, though being successfully used in practice, is still being 
developed. Further research in this area will concentrate on the HIT analysis of metadata and 
its usage for integrating information sources, studying metadata in the context of a Global 
Information System (GIS), and the development of a theoretical framework for the 
specification, querying and maintenance of GIS. We will aim at finding and realising 
possibilities of the support of GIS cooperativity and interoperatibility. Proposed models and 
procedures will be tested by a prototype software application that can be used as a tool for the 
work with metadata. 
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