1. Analyse the following argument (a) intensionally, (b) hyperintensionally and explain, under which analysis it comes out valid:

Tom seeks an abominable snowman.
Abominable snowman is Yeti.
Tom seeks Yeti.
Comment. The second premise is to be read de dicto, i.e. as specifying the identity of the property of being an abominable snowman and being a Yeti, but the terms 'abominable snowman' and 'Yeti' are not synonymous.

Hint:

ad (a) Seek is here a relation-in-intension of an individual to a property, the instances of which Tom wants to find; hence $\operatorname{Seek} /\left(\mathrm{ol}(\mathrm{ot})_{\tau \omega}\right)_{\tau \omega}$.
ad b) Seek is here a relation-in-intension of an individual to the construction of a property, the instances of which Tom wants to find; hence Seek*/(ol* $\left.*_{n}\right)_{\text {т }}$.
2. Prove the validity of the following argument for both readings, intensional as well as hyperintensional:

Tom seeks an abominable snowman.
Tom seeks something abominable.
Hint. In the intensional case we do not have to apply the substitution method, but in the hyperintensional case we have to.
The term 'abominable' is to be analysed as denoting a property modifier, i.e.
Abominable $/\left((\mathrm{ot})_{\tau \omega}(\mathrm{Ot})_{\tau \omega}\right)$: a function that associates a given root property with the modified property. Hence the term 'abominable snowman' denotes a property that is constructed by the Composition [${ }^{0}$ Abominable ${ }^{0}$ Snowman].

3. Analyse and prove the validity:

Tom is solving the equation $\operatorname{Sin}(x)=0$.
Tom is solving something.
Hint. Apply Solve $\left.{ }^{*}\left(\mathrm{ot}^{*}\right)_{\tau}\right)_{\tau}$: the relation-in-intension of an individual (here Tom) to the construction. Tom wants to find out what is constructed by that construction.
The term 'equation $\operatorname{Sin}(x)=0$ ' can be analysed simply by the Closure $\lambda x\left[\left[{ }^{\circ} \operatorname{Sin} x\right]={ }^{0} 0\right]$.
To infer the conclusion you do not have to apply the substitution method.

4. Analyse and prove the validity:

Tom is solving the equation $\operatorname{Sin}(x)=0$.
There is a number n such that Tom is solving the equation $\operatorname{Sin}(x)=n$.
Hint. To infer the conclusion you must apply the substitution method.

