Exercise (to Lecture 9)

1) Analyse the sentence "Dividing 5 by 0 is improper and Tilman knows it, while John doesn't believe it because he (John) believes that 5:0 = 1"
2) Prove that this argument is valid:

Dividing 5 by 0 is improper and Tilman knows it, while John doesn't believe it because he believes that 5:0 $=1$

There is a construction such that Tilman knows that it is improper while John believes it produces 1
Ad (1)
Types. Div/($\tau \tau \tau) ; 0,1,5 / \tau$ Improper $/\left(\mathrm{o} *_{n}\right)$: the class of constructions v-improper for every valuation v; Tilman, John/ı; Know, Believe/ $\left(\mathrm{ot} *_{n}\right)_{\tau \omega}$: hyperintensional attitudes to a construction of a truthvalue; it $\rightarrow *_{n}$: anaphoric variable; $h e \rightarrow \mathrm{t}$: anaphoric variable.

Synthesis and type checking.

First clause.
$\left[{ }^{0}\right.$ Div $\left.{ }^{0} 5^{0} 0\right] / *_{1} \rightarrow \tau ;\left[{ }^{0}\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.^{0} 5^{0} 0\right]\right] / *_{2} \rightarrow \mathrm{o}$;
Second and third clause.
$\left[\left[{ }^{0}\right.\right.$ Know $_{w t}{ }^{0}$ Tilman it $] \wedge \neg\left[{ }^{0}\right.$ Believe ${ }_{w t}{ }^{0}$ John it $\left.]\right] \rightarrow \mathrm{o}$: open construction that is typed to v-construct a truth-value according as Tilman knows it and John doesn't believe it. We have to complete it by substituting the subject of Tilman's and John's attitude, i.e. the construction [${ }^{\circ}$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.^{0} 5^{\circ} 0\right]\right]$ for it. Here is how.
${ }^{2}\left[{ }^{0}\right.$ Sub $\left[{ }^{0} \operatorname{Tr}{ }^{0}\left[{ }^{0}\right.\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.\left.^{0} 5^{0} 0\right]\right]\right]{ }^{0}$ it ${ }^{0}\left[\left[{ }^{0}\right.\right.$ Knowwt 0 Tilman it $] \wedge \neg\left[{ }^{0}\right.$ Believe $_{w t}{ }^{0}$ John it $\left.\left.]\right]\right] \rightarrow \mathrm{o}$
According to the definition of the function Sub, and by applying the rule ${ }^{20} C=C$, for any construction C, this construction is equivalent to ($=$)
${ }^{20}\left[\left[{ }^{0}\right.\right.$ Know $_{w t}{ }^{0}$ Tilman ${ }^{0}\left[{ }^{0}\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.\left.^{0} 5^{0} 0\right]\right]\right] \wedge \neg\left[{ }^{0}\right.$ Believe $_{w t}{ }^{0}$ John ${ }^{0}\left[{ }^{0}\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.\left.\left.^{0} 5^{0} 0\right]\right]\right]\right]=$
$\left[\left[{ }^{0}\right.\right.$ Know $_{w t}{ }^{0}$ Tilman ${ }^{0}\left[{ }^{0}\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.\left.^{0} 5{ }^{0} 0\right]\right]\right] \wedge \neg\left[{ }^{0}\right.$ Believe $_{w t}{ }^{0}$ John ${ }^{0}\left[{ }^{0}\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.\left.\left.^{0} 5^{0} 0\right]\right]\right]\right]$
Fourth clause.
$\left[{ }^{0}\right.$ Believe $_{w t} h e^{0}\left[\left[{ }^{0}\right.\right.$ Div $\left.\left.\left.^{0} 5^{0} 0\right]={ }^{0} 1\right]\right] \rightarrow \mathrm{o}$: open construction that is typed to v-construct a truth-value. We complete it by substituting ${ }^{0}$ John for $h e$.
${ }^{2}\left[{ }^{0}\right.$ Sub $\left[{ }^{0} \mathrm{Tr}^{0}\right.$ John $]{ }^{0}$ he ${ }^{0}\left[{ }^{0}\right.$ Believe $_{w t}$ he ${ }^{0}\left[\left[{ }^{0}\right.\right.$ Div $\left.\left.\left.\left.^{0} 5^{0} 0\right]={ }^{0} 1\right]\right]\right]=$
${ }^{20}\left[{ }^{0}\right.$ Believe $_{w t}{ }^{0}$ John ${ }^{0}\left[\left[{ }^{0}\right.\right.$ Div $\left.\left.\left.^{0} 5{ }^{0} 0\right]={ }_{\tau}{ }^{0} 1\right]\right]==_{o}\left[{ }^{0}\right.$ Believe $_{w t}{ }^{0}$ John $^{0}\left[\left[{ }^{0}\right.\right.$ Div $\left.\left.\left.^{0} 5{ }^{0} 0\right]={ }_{\tau}{ }^{0} 1\right]\right]$
The analysis of the whole sentence comes down to this construction.

```
\(\lambda w \lambda t\left[\left[^{0} / m p r o p e r{ }^{0}\left[{ }^{0} \operatorname{Div} 0^{0}{ }^{0} 0\right]\right] \wedge\right.\)
    \({ }^{2}\left[{ }^{0} \text { Sub }\left[{ }^{0} \mathrm{Tr}^{0}\left[{ }^{0} \text { Improper }{ }^{0}\left[{ }^{0} \text { Div }^{0} 5^{0} 0\right]\right]\right]\right]^{0}\) it \({ }^{0}\left[\left[{ }^{0}\right.\right.\) Know \(_{w t}{ }^{0}\) Tilman it \(] \wedge \neg\left[{ }^{0}\right.\) Believe \(_{w t}{ }^{0}\) John it \(\left.\left.]\right]\right] \wedge\)
    \({ }^{2}\left[{ }^{0}\right.\) Sub \(\left[{ }^{0} \operatorname{Tr}{ }^{0}\right.\) John \(]{ }^{0}\) he \({ }^{0}\left[{ }^{0}\right.\) Believe \(_{\text {wt }}\) he \({ }^{0}\left[\left[{ }^{0}\right.\right.\) Div \(\left.\left.\left.\left.\left.^{0} 5^{0} 0\right]={ }^{0} 1\right]\right]\right]\right] \rightarrow \mathrm{o}_{\tau \omega}\)
```


Ad (2) proof

In every possible world w and time t of evaluation, the following steps are truth-preserving:

1. $\left[\left[{ }^{0} /\right.\right.$ mproper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.^{0} 5^{0} 0\right]\right] \wedge$

assumption
2. $\left[\left[{ }^{\circ}\right.\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.^{0} 5^{\circ} 0\right]\right] \wedge$
$\left[{ }^{0}\right.$ Knowwt $^{\circ}{ }^{\circ}$ Tilman ${ }^{0}\left[{ }^{0} /\right.$ mproper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.\left.^{0} 5^{0} 0\right]\right]\right] \wedge$
$\left[{ }^{0}\right.$ Believe $_{w t}{ }^{\circ}{ }^{\circ}$ ohn ${ }^{0}\left[{ }^{0}{ }^{0}\right.$ Div $\left.\left.\left.^{0} 5^{\circ} 0\right]={ }^{0} 1\right]\right] \wedge$
$\neg\left[{ }^{0}\right.$ Believe $_{w t}{ }^{0}$ John ${ }^{\circ}\left[{ }^{\circ}\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.\left.\left.^{0} 5^{\circ} 0\right]\right]\right]\right]$

$$
\text { (1), def. of Sub, commutativity of } \wedge
$$

3. $\left[\left[{ }^{0}\right.\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.^{0} 5^{\circ} 0\right]\right] \wedge$
$\left[\lambda c^{2}\left[{ }^{0}\right.\right.$ Sub $\left[{ }^{0} T r c\right]{ }^{0}{ }^{0}{ }^{0}\left[\left[^{0}\right.\right.$ Know $_{w t}{ }^{0}$ Tilman $\left.{ }^{0}\left[{ }^{0} / m p r o p e r i t\right]\right] \wedge$
$\left[{ }^{0}\right.$ Believe $_{w t}{ }^{\circ}$ John ${ }^{0}\left[{ }^{2}\right.$ it $\left.\left.\left.\left.={ }^{0} 1\right]\right]\right]\right]{ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.^{0} 5^{\circ} 0\right]\right] \wedge$
$\neg\left[{ }^{0}\right.$ Believe $_{w t}{ }^{0}$ John ${ }^{\circ}\left[{ }^{0}\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.\left.\left.^{0} 5^{\circ} 0\right]\right]\right]\right]$

$$
c, \text { it } \rightarrow *_{n} ;{ }^{2} \text { it } \rightarrow \tau ; \quad \lambda \text {-abstraction, (2) }
$$

4. $\left[\left[^{0}\right.\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.^{0} 5^{0} 0\right]\right] \wedge$
$\left[^{0} \exists \lambda c^{2}\left[{ }^{0} \mathrm{Sub}\left[{ }^{0} \mathrm{Tr} c\right]^{0}\right.\right.$ it ${ }^{0}\left[\left[^{0} \mathrm{Know}_{w t}{ }^{0}\right.\right.$ iilman ${ }^{0}\left[{ }^{0}\right.$ Improper it $\left.]\right] \wedge$
$\left[{ }^{0}\right.$ Believe ${ }_{w t}{ }^{0}$ John $\left.\left.\left.\left.{ }^{0}\left[{ }^{2} i t={ }^{0} 1\right]\right]\right]\right]\right] \wedge$
$\neg\left[{ }^{0}\right.$ Believe $_{w t}{ }^{0}$ John ${ }^{0}\left[{ }^{\circ}\right.$ Improper ${ }^{0}\left[{ }^{0}\right.$ Div $\left.\left.\left.\left.^{0} 5^{\circ} 0\right]\right]\right]\right]$
5. $\left[{ }^{0} \exists \lambda c^{2}\left[{ }^{0} \mathrm{Sub}\left[{ }^{0} \operatorname{Tr} c\right]{ }^{0}{ }^{\circ} t^{0}{ }^{0}\left[{ }^{0}\right.\right.\right.$ Know $_{w t}{ }^{0}$ Tilman ${ }^{0}\left[{ }^{0}\right.$ Improper it] $] \wedge \wedge$ $\left[{ }^{0}\right.$ Believe $_{w t}{ }^{\circ}$ John ${ }^{0}\left[{ }^{2}\right.$ it $\left.\left.\left.\left.={ }^{0} 1\right]\right]\right]\right]$]

Gloss. Indeed, in the step (4) we can introduce \exists-quantifier, because the class of constructions
 is non-empty; according to (3) it contains the construction [${ }^{0} \mathrm{Div}^{0} 5^{\circ} \mathrm{O}$].

Remark. The consequent of the argument, namely the construction (5) is entailed, provided John is able to apply the above rule ${ }^{20} C=C$, which we assume.

