Exercise (to Lecture 9)

- 1) Analyse the sentence "Dividing 5 by 0 is improper and Tilman knows *it*, while John doesn't believe *it* because *he* (*John*) believes that 5:0 = 1"
- 2) Prove that this argument is valid:

Dividing 5 by 0 is improper and Tilman knows *it*, while John doesn't believe *it* because *he* believes that 5:0 = 1

There is a construction such that Tilman knows that *it* is improper while John believes *it* produces 1

Ad (1)

Types. $Div/(\tau\tau\tau)$; 0, 1, $5/\tau$; *Improper*/ $(0*_n)$: the class of constructions *v*-improper for every valuation *v*; *Tilman*, *John*/ ι ; *Know*, *Believe*/ $(0\iota*_n)_{\tau\omega}$: hyperintensional attitudes to a construction of a truth-value; $it \rightarrow *_n$: anaphoric variable; $he \rightarrow \iota$: anaphoric variable.

Synthesis and type checking.

First clause.

 $[^{0}Div \ ^{0}5 \ ^{0}0]/*_{1} \rightarrow \tau; \ [^{0}Improper \ ^{0}[^{0}Div \ ^{0}5 \ ^{0}0]]/*_{2} \rightarrow o;$

Second and third clause.

 $[[{}^{0}Know_{wt} {}^{0}Tilman it] \land \neg [{}^{0}Believe_{wt} {}^{0}John it]] \rightarrow 0$: open construction that is typed to *v*-construct a truth-value according as Tilman knows it and John doesn't believe it. We have to complete it by substituting the subject of Tilman's and John's attitude, i.e. the construction $[{}^{0}Improper {}^{0}[{}^{0}Div {}^{0}5 {}^{0}O]]$ for *it*. Here is how.

 $^{2}[^{0}Sub [^{0}Tr \,^{0}[^{0}Improper \,^{0}[^{0}Div \,^{0}5 \,^{0}O]]] \,^{0}it \,^{0}[[^{0}Know_{wt} \,^{0}Tilman \,it] \wedge \neg [^{0}Believe_{wt} \,^{0}John \,it]]] \rightarrow o$

According to the definition of the function *Sub*, and by applying the rule ${}^{20}C = C$, for any construction *C*, this construction is equivalent to (=)

 $^{20}[[^{0}Know_{wt} \ ^{0}Tilman \ ^{0}[^{0}Improper \ ^{0}[^{0}Div \ ^{0}5 \ ^{0}0]]] \land \neg [^{0}Believe_{wt} \ ^{0}John \ ^{0}[^{0}Improper \ ^{0}[^{0}Div \ ^{0}5 \ ^{0}0]]]] =$

 $[[{}^{0}Know_{wt} {}^{0}Tilman {}^{0}[{}^{0}Improper {}^{0}[{}^{0}Div {}^{0}5 {}^{0}O]]] \land \neg [{}^{0}Believe_{wt} {}^{0}John {}^{0}[{}^{0}Improper {}^{0}[{}^{0}Div {}^{0}5 {}^{0}O]]]]$

Fourth clause.

 $[{}^{0}Believe_{wt} he {}^{0}[[{}^{0}Div {}^{0}5 {}^{0}O] = {}^{0}1]] \rightarrow o:$ open construction that is typed to *v*-construct a truth-value. We complete it by substituting ${}^{0}John$ for *he*.

 ${}^{2}[{}^{0}Sub [{}^{0}Tr {}^{0}John] {}^{0}he {}^{0}[{}^{0}Believe_{wt} he {}^{0}[[{}^{0}Div {}^{0}5 {}^{0}0] = {}^{0}1]]] =$

 ${}^{20}[{}^{0}Believe_{wt} {}^{0}John {}^{0}[[{}^{0}Div {}^{0}5 {}^{0}O] =_{\tau} {}^{0}1]] =_{o} [{}^{o}Believe_{wt} {}^{0}John {}^{0}[[{}^{0}Div {}^{0}5 {}^{0}O] =_{\tau} {}^{0}1]]$

The analysis of the whole sentence comes down to this construction.

$\lambda w \lambda t \left[\left[{}^{0} Improper \, {}^{0} \left[{}^{0} Div \, {}^{0} 5 \, {}^{0} 0 \right] \right] \wedge \right]$

 ${}^{2}[{}^{0}Sub [{}^{0}Tr {}^{0}[{}^{0}Improper {}^{0}[{}^{0}Div {}^{0}5 {}^{0}0]]] {}^{0}it {}^{0}[[{}^{0}Know_{wt} {}^{0}Tilman it] \land \neg [{}^{0}Believe_{wt} {}^{0}John it]]] \land$ ${}^{2}[{}^{0}Sub [{}^{0}Tr {}^{0}John] {}^{0}he {}^{0}[{}^{0}Believe_{wt} he {}^{0}[[{}^{0}Div {}^{0}5 {}^{0}0] = {}^{0}1]]]] \rightarrow \sigma_{\tau\omega}$

Ad (2) proof

In every possible world *w* and time *t* of evaluation, the following steps are truth-preserving:

1.	[[⁰ Improper ⁰ [⁰ Div ⁰ 5 ⁰ 0]] ∧	
	² [⁰ Sub [⁰ Tr ⁰ [⁰ Improper ⁰ [⁰ Div ⁰ 5 ⁰ 0]]] ⁰ it ⁰ [[⁰ Know _{wt} ⁰ Tilman it] $\land \neg$ [⁰ Believe _{wt} ⁰ John it]]] \land	
	² [⁰ Sub [⁰ Tr ⁰ John] ⁰ he ⁰ [⁰ Believe _{wt} he ⁰ [[⁰ Div ⁰ 5 ⁰ 0] = ⁰ 1]]]]	
		assumption
2.	[[⁰ Improper ⁰ [⁰ Div ⁰ 5 ⁰ 0]] ∧	
	[⁰ Know _{wt} ⁰ Tilman ⁰ [⁰ Improper ⁰ [⁰ Div ⁰ 5 ⁰ 0]]] <	
	$[{}^{0}Believe_{wt} {}^{0}John {}^{0}[[{}^{0}Div {}^{0}5 {}^{0}0] = {}^{0}1]] \land$	
	¬[⁰ Believe _{wt} ⁰ John ⁰ [⁰ Improper ⁰ [⁰ Div ⁰ 5 ⁰ 0]]]]	
	(1), def. of <i>Sub</i>	, commutativity of \wedge
3.	[[⁰ Improper ⁰ [⁰ Div ⁰ 5 ⁰ 0]] ∧	
	[λc ²[ºSub [ºTr c] ºit º[[ºKnow _{wt} ºTilman º[ºImproper it]] ∧	
	[⁰ Believe _{wt} ⁰ John ⁰ [² it = ⁰ 1]]]] ⁰ [⁰ Div ⁰ 5 ⁰ 0]] ^	
	¬[°Believe _{wt} °John °[°Improper °[°Div °5 °0]]]]	
	$c, it \rightarrow *_n; {}^2it \rightarrow \tau;$	λ -abstraction, (2)
4.	[[⁰ Improper ⁰ [⁰ Div ⁰ 5 ⁰ 0]] ∧	
	[⁰ ∃ λc ² [⁰ Sub [⁰ Tr c] ⁰ it ⁰ [[⁰ Know _{wt} ⁰ Tilman ⁰ [⁰ Improper it]] ∧	
	[⁰ Believe _{wt} ⁰ John ⁰ [² it = ⁰ 1]]]]] ^	
	¬[ºBelieve _{wt} ºJohn º[ºImproper º[ºDiv º5 º0]]]]	
		l∃, (3)
5.	[⁰ ∃ λc ² [⁰ Sub [⁰ Tr c] ⁰ it ⁰ [[⁰ Know _{wt} ⁰ Tilman ⁰ [⁰ Improper it]] ∧	
	$[^{0}Believe_{wt} ^{0}John ^{0}[^{2}it = ^{0}1]]]]$	E∧, (4)

Gloss. Indeed, in the step (4) we can introduce \exists -quantifier, because the class of constructions produced by $\lambda c \, {}^{2}[{}^{0}Sub \, [{}^{0}Tr \, c] \, {}^{0}it \, {}^{0}[[{}^{0}Know_{wt} \, {}^{0}Tilman \, {}^{0}[{}^{0}Improper \, it]] \land [{}^{0}Believe_{wt} \, {}^{0}John \, {}^{0}[{}^{2}it = {}^{0}1]]]]$ is non-empty; according to (3) it contains the construction [${}^{0}Div \, {}^{0}5 \, {}^{0}0$].

Remark. The consequent of the argument, namely the construction (5) is entailed, provided John is able to apply the above rule ${}^{20}C = C$, which we assume.