
Inteligentní systémy (TIL)

Přednáška 4
Marie Duží
http://www.cs.vsb.cz/duzi/

Pravidlo -transformace
 Základní výpočtové pravidlo -kalkulů a funkcionálních

programovacích jazyků
 určuje, jak provést operaci aplikaci funkce f na argument a

za účelem získání hodnoty funkce f na a.
Př.: [x [0+ x 01] 03] – chci hodnotu funkce následníka

na čísle 3:
-redukce (někdy také -redukce) „jménem“:

[x [0+ x 01] 03]  [0+ 03 01] (= 04)
-rozvinutí (nebo také -rozvinutí):

[0+ 03 01]  [x [0+ x 01] 03]
[0+ 03 01]  [y [0+ 03 y] 01]
[0+ 03 01]  [xy [0+ x y] 03 01]

 Redukce obecně: [[[[xx11……xxmm YY]] DD11……DDmm]]┣┣ Y(Y(DDii//xxii))

--conversionconversion:: [x C(x) A] | C(A/x)

 ProcedureProcedure of applying the function presented by
x C(x) to an argument presented by A.

 The fundamental computational rule of -calculi and
functional programming languages

 The fundamental inference rule of HOL

‘by name’; the procedure Aprocedure A is substituted for all the
occurrences of x

 not operationally equivalent
‘by value’; the valuevalue presented by A is substituted for all
the occurrences of x

--conversionconversion:: [x C(x) A] | C(A/x)
 In programming languages the difference between

‘by value’ and ‘by name’ revolves around the
programmer’s choice of evaluation strategyevaluation strategy.
 Algol’60: “call-by-value” and “call-by-name”
 Java: manipulates objects “by name”, however, procedures

are called “by-value”
 Clean and Haskell: “call-by-name”

 Similar work has been done since the early 1970s;
for instance, Plotkin (1975) proved that the two
strategies are not operationally equivalent.

 Chang & Felleisen (2012)’s call-by-need reduction
by value. But their work is couched in an untyped -
calculus.

[x C(x) A] | C(A/x)

 Conversion by nameConversion by name three problems.
1. conversion of this kind is not guaranteed to be an

equivalent transformation as soon as partial
functions are involved.

2. even in those cases when -reduction is an
equivalent transformation, it can yield a loss of
analytic information of which function has been
applied to which argument

3. In practice less efficient than ‘by value’

Problems with -reduction ‘by name’

1) 1) nonnon--equivalenceequivalence
[[xx [[yy [[00+ + x yx y]]]] [[00CotgCotg 00]]]]

is an improper construction; it does not construct
anything, because there is no value of the cotangent
function at 
but its -reduced Composition

[[yy [[00+ + [[00CotgCotg 00]] yy]]]]
constructs a degenerate function

 The improper construction [[00CotgCotg 00]] has been drawn
into the intensional context of the Closure [[yy [[00+ + x yx y]]]].

-conversion by name:
2) loss of analytic informationloss of analytic information

[x [x + 1] 3]

 [3 + 1]

[y [3 + y] 1]

which function has been applied to which argument?

No ‘backward path’. Does it matter?

Problems with -reduction
2) Loss of analytic information2) Loss of analytic information
 “John loves his wife, and so does Peter”
 exemplary husbands (sloppy reading)

 “loving one’s own wife” vs. “loving John’s wife”
Lown (John): wt [x [0Lovewt x [0Wife_ofwt xx]] 0John]
LJohn (John): wt [x [0Lovewt x [0Wife_ofwt

0JohnJohn]]
0John]

Both -reduce to LJohn (John):
wt [0Lovewt

0John [0Wife_ofwt
0JohnJohn]]

 “so does Peter”
 Peter loves JohnJohn’’s s wife  trouble on the horizon

-conversion by name: loss of info

(1) wt [x [0Lovewt x [[00Wife_ofWife_ofwtwt
00JohnJohn]]] 0John]

(2) wt [x [0Lovewt x [[00Wife_ofWife_ofwtwt xx]]] 0John]

(3) wt [0Lovewt
0John [[00Wife_ofWife_ofwtwt

00JohnJohn]]]

It is uncontroversial that the contractum (3) can be
equivalently expanded back both to (1) and (2).

The problem is, of course, that there is no way to
reconstruct which of (1), (2) would be the correct
redex

Does it matter?
 HOL tools are broadly used in automatic theorem

checking and applied as interactive proof assistants.
 The underlying logic is usually a version of simply simply

typedtyped -calculus of total functionstotal functions.
 However, there is another application  natural natural

language processinglanguage processing hyperintensional logic is
needed so that the underlying inference machine is inference machine is
neither overneither over--inferring inferring (that yields inconsistencies) nor nor
underunder--inferringinferring (that causes lack of knowledge).

 agents’ attitudes like knowing, believing, seeking,
solving, designing, etc., because attitudinal sentences
are part and parcel of our everyday vernacular.

Hyperintensionality
 was born out of a negative need, to block invalid inferences

 Carnap (1947, §§13ff); there are contexts that are neither
extensional nor intensional (attitudes)

 Cresswell; any context in which substitution of necessary equivalent
terms fails is hyperintensional

 Yet, which inferences are valid in hyperintensional
contexts?

 How hyper are hyperintensions?  procedural
isomorphism

 Which contexts are hyperintensionalWhich contexts are hyperintensional?
 TIL definition is positive: a context is hyperintensionalhyperintensional if the

very meaning procedure is an object of predication; TIL is a
hyperintensional, partial typed -calculus

11

-reduction by value

[[x x CC((xx)) AA] |] |–– CC((A/xA/x))
underspecified:

 How to execute C(A/x)?
a)a) ‘‘by nameby name’’: constructionconstruction A is substituted for

x  problems
b)b) ‘‘by valueby value’’: execute A first, and only if it does

not fail, substitute the produced valuevalue for x
– substitution methodsubstitution method bingo, no
problems !!! 

Substitution ‘by value’

[[x x FF((xx)) AA]] = = 22[[00Sub Sub [[00Tr ATr A]] 00x x 00FF((xx)])]

1.1. AA: execute A in order to obtain the value a;
if A is v-improper, then the whole
Composition is v-improper (stop); else:

2.2. [[00Tr ATr A]]: obtain Trivialization of (“pointer at”)
the argument a

3.3. [[00Sub Sub [[00Tr ATr A]] 00x x 00FF]]: substitute this
Trivialization for x into ‘the body’ F

4.4. 22[[00Sub Sub [[00Tr ATr A]] 00x x 00FF]]: execute the result

Substitution ‘by value’
SubSub/(/(nnnnnnnn)) operuje na konstrukcích takto:
[[00Sub CSub C1 1 CC2 2 CC33]]

co za_co kam

Nechť C1 v-konstruuje konstrukci D1,
C2 v-konstruuje konstrukci D2,
C3 v-konstruuje konstrukci D3,

konstruuje konstrukci D, která vznikne korektní substitucí
D1 za D2 do D3

TrTr/(/(nn )) v-konstruuje Trivializaci -objektu
[[00TrTr xx]] v-konstruuje Trivializaci objektu v-konstruovaného proměnnou

x, x je volná
0x konstruuje x bez ohledu na valuaci, proměnná x je o-vázaná

Substitution ‘by value’

Příklad
[0Sub [0Tr 0] 0x 0[0Sin x]]

konstruuje konstrukci [0Sin 0]
2[0Sub [0Tr 0] 0x 0[0Sin x]]

konstruuje hodnotu funkce Sinus na ,
tj. číslo 0

[0Sub [0Tr y] 0x 0[0Sin x]]
v(/y)-konstruuje konstrukci [0Sin 0]

Substitution method; broadly appliedbroadly applied

 Application of a function to an argument
(-reduction by value)

 Existential quantification into
hyperintensional contexts

 Hyperintensional attitudes de re
 Anaphoric preprocessing
 Topic/focus articulation; presuppositions;

active vs. passive

Substitution method; broadly appliedbroadly applied

de rede re attitudes
Tilman believes of the Pope that he is wise

wt [0Believewt
0Tilman 2[0Of [0Tr 00PopePopewtwt] 0he

0[w*t* [0Wisew*t* he]]]

Of = Sub operates on the (hyper)intensional
context of “that he is wise”

Substitution method; broadly appliedbroadly applied

Quantifying into …
 Tom is seeking the last decimal of 

There is a number such that Tom is seeking its last
decimal

 wt [0Seek*wt
0Tom 0[0Last_Dec 0]]


wt [0x [0Seek*wt

0Tom [0Sub [0Tr x] 0y
0[0Last_Dec y]]]]

How hyper are hyperintensions 
procedural isomorphismprocedural isomorphism

 Maybe that it is philosophically wise to adopt
several notions of procedural isomorphism.

 It is not improbable that several degrees of
hyperintensional individuation are called for,
depending on which sort of discourse happens to
be analysed.

 What appears to be synonymous in an ordinary
vernacular might not be synonymous in a
professional language like the language of logic,
mathematics, computer science or physics.

Procedural isomorphism

 Ordinary vernacular – no variables 
(A1(A1’’’’’’)): -conversion + -conversion by value

+ restrictedrestricted -conversion by name;
[x [0+ x 00] y]  [0+ y 00]
+ pairs of simple synonyms

 Programming language – variables matter 
(A0(A0’’)): -conversion + pairs of simple synonyms

