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Abstract. In this paper, we introduce the system for 
inferring implicit computable knowledge from textual 
data by natural deduction. Our background system is 
Transparent Intensional Logic (TIL) with its procedural 
semantics that assigns abstract procedures to terms of 
natural language as their context-invariant meanings. 
The input data for our method are produced by the so-
called Normal Translation Algorithm (NTA). The algo-
rithm processes natural-language texts and produces 
TIL constructions. In this way we have obtained a large 
corpus of TIL meaning procedures. These procedures 
are furthermore processed by our algorithms for type 
checking and context recognition so that the rules of 
natural deduction for inferring computable knowledge 
can be afterwards applied.  

Keywords. Natural deduction, inference rules, Trans-
parent intensional logic, TIL, -conversion.  

1 Introduction 

There are large amounts of knowledge in textual 
data. Yet it is difficult to obtain just those pieces of 
information that one needs. To this end it is nec-
essary to build up systems of natural-language 
processing that derive not only explicit knowledge 
but also implicit, or rather inferable or computable 
knowledge from these text corpuses. In order to 
achieve such a goal, we have to combine linguis-
tic, semantic and logical methods.  

As Nevěřilová in [23] says “[…] in computa-
tional linguistics, making implicit information ex-
plicit forces syntactic, semantic and pragmatic 
modules to interact. Firstly, it is necessary to dis-
cover ‘gaps’ in the text, secondly, the correct 
missing entities have to be found, and finally, 
those entities can be filled in. For example, miss-
ing entities at the syntactic level are unexpressed 
(but obligatory), and such sentence constituents 
and the gaps are called ellipses. At the semantic 

level, such missing entities are the unfilled se-
mantic roles [24].” Not only that, we also need to 
combine linguistic and logical methods. For in-
stance, a logical method for computing the com-
plete meaning of sentences with anaphoric refer-
ences has been presented in [8]. The method is 
similar to the one applied in general by Hans 
Kamp’s Discourse Representation Theory (DRT).1 
‘DRT’ is an umbrella term for a collection of logi-
cal and computational linguistic methods devel-
oped for a dynamic interpretation of natural lan-
guage, where each sentence is interpreted within 
a certain discourse, which is a sequence of sen-
tences uttered by a group of speakers. These 
methods are mostly based on first-order logics, 
and thus only terms referring to individuals (indef-
inite or definite noun phrases) can introduce so-
called discourse referents, which are free varia-
bles that are updated when interpreting the dis-
course. However, Pavel Tichý’s Transparent In-
tensional Logic (TIL, see [26]) makes it possible 
to substitute not only individuals, but entities of 
any type, like properties of individuals, proposi-
tions and hyperpropositions, relations-in-
intension, and even constructions (i.e., meanings 
of antecedent expressions) for anaphoric varia-
bles. Moreover, the thoroughgoing typing of the 
universe of TIL makes it possible to determine the 
respective type-theoretically appropriate anteced-
ent.  

In this paper we introduce a method of deriving 
inferable, or computational knowledge from the 
explicit textual data by means of the system of 
natural deduction adjusted to our background TIL 
system. In TIL we assign abstract procedures to 
terms of natural language as their context-

                                                   
1 See, for instance, [17], [18], [22]. 
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invariant meanings. These procedures are rigor-
ously defined as TIL constructions that produce 
lower-order objects as their products or in well-
defined cases fail to produce an object by being 
improper. The input data for our method are pro-
duced by the so-called Normal Translation Algo-
rithm (NTA) that processes text data and produc-
es TIL constructions as their meanings. In this 
way we have obtained a large corpus of TIL 
meaning procedures.2   

The rest of the paper is organised as follows. 
Section 2 introduces the fundamentals of TIL. In 
Section 3 we describe the three kinds of context 
in which a given natural-language term or rather 
its meaning can occur. Section 4 introduces the 
rules of natural deduction adjusted to TIL together 
with the principles of their correct application with 
respect to a given context and type of an entity to 
operate on. Section 5 deals with the rules of -
conversion validly applicable in the logic of partial 
functions such as TIL. Concluding remarks can be 
found in Section 6. 

2 Basic notion of TIL 

The TIL system will be familiar to those who are 
acquainted with Montague system of IL.3 The 
most important distinction between TIL and IL is 
that TIL comes with procedural rather than model 
set-theoretic semantics.4 It means that we assign 
to terms of natural language procedures encoded 
by these terms as their meanings. These proce-
dures are defined as TIL constructions. For in-
stance, the sentence “the Pope is wise” encodes 
the procedure the evaluation of which in any pos-
sible world w and time t consists of these steps. 
  
- Take the Papal office (‘Pope). 
- Extensionalise this office with respect to a 

world w and time t of evaluation to obtain the 
holder of this office, if any (‘Popewt). 

- If there is no holder (the office goes vacant), 
finish with a truth-value gap.  

- Take the property of being wise (‘Wise). 

                                                   
2 For details, see [19] or [20]. 
3 For details on Montague system see, for instance, [21]. 
4 A critical survey and comparison of IL and TIL can be 

found in [11, §2.4]. 

- Produce a truth-value T or F according as the 
holder of the papal office has the property of 
being wise (‘Wisewt) in the world w and time t 
of evaluation. 

 
Definition 1 (constructions) 
(i) Variables x, y, … are constructions that 

construct objects (elements of their respec-
tive ranges) dependently on a valuation v; 
they v-construct. 

(ii) Where X is an object whatsoever (even a 
construction), ‘X is the construction Triviali-
zation that constructs X without any change 
of X. 

(iii) Let X, Y1,…,Yn be arbitrary constructions. 
Then Composition [X Y1…Yn] is the follow-
ing construction. For any v, the Composition 
[X Y1…Yn] is v-improper if at least one of the 
constructions X, Y1,…,Yn is v-improper, or if 
X does not v-construct a function that is de-
fined at the n-tuple of objects v-constructed 
by Y1,…,Yn. If X does v-construct such a 
function, then [X Y1…Yn] v-constructs the 
value of this function at the n-tuple.  

(iv) (-) Closure [λx1…xm Y] is the following 
construction. Let x1, x2, …, xm be pair-wise 
distinct variables and Y a construction. Then 
[λx1…xm Y] v-constructs the function f that 
takes any members B1, …, Bm of the respec-
tive ranges of the variables x1, …, xm into 
the object (if any) that is v(B1/x1,…,Bm/xm)-
constructed by Y, where v(B1/x1,…,Bm/xm) is 
like v except for assigning B1 to x1, …,  
Bm to xm. 

(v) Where X is an object whatsoever, 1X is the 
construction Single Execution that v-
constructs what X v-constructs. Thus, if X is 
a v-improper construction or not a construc-
tion as all, 1X is v-improper. 

(vi) Where X is an object whatsoever, 2X is the 
construction Double Execution. If X is not it-
self a construction, or if X does not v-
construct a construction, or if X v-constructs 
a v-improper construction, then 2X is v-
improper. Otherwise 2X v-constructs what is 
v-constructed by the construction v-
constructed by X.   

(vii) Nothing is a construction, unless it so fol-
lows from (i) through (vi).      
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Comments. Constituents of constructions are 
their sub-constructions, rather than the objects on 
which constructions operate. Thus, we need 
some simple constructions as ‘suppliers’ of or 
referents to the objects. Trivialization and varia-
bles are such simple suppliers. TIL standard nota-
tion for Trivialization of an object X is ‘0X’. Yet, 
due to easier typing, here we use the notation ‘X. 

With constructions of constructions, construc-
tions of functions, functions, and functional values 
in our stratified ontology, we need to keep track of 
the traffic between multiple logical strata. The 
ramified type hierarchy does just that. The type of 
first-order objects includes all non-procedural 
objects. Therefore, it includes not only the stand-
ard objects of individuals, truth-values, sets, map-
pings, etc., but also functions defined on possible 
worlds (i.e., the intensions typical of possible-
world semantics). The type of second-order ob-
jects includes constructions of first-order objects 
and functions with such constructions in their 
domain or range. The type of third-order objects 
includes constructions of first- and/or second-
order objects and functions with such construc-
tions in their domain or range. And so on, ad in-
finitum.  
 
Definition 2 (ramified hierarchy of types). Let B 
be a base, where a base is a collection of pair-
wise disjoint, non-empty sets. Then: 

T1 (types of order 1).  
i) Every member of B is an elementary type of 

order 1 over B. 
ii) Let α, β1, ..., βm (m > 0) be types of order 1 

over B. Then the collection (α β1 ... βm) of all 
m-ary partial mappings from β1  ...  βm into 
α is a functional type of order 1 over B. 

iii) Nothing is a type of order 1 over B unless it so 
follows from (i) and (ii). 

Cn (constructions of order n)  
i) Let x be a variable ranging over a type of 

order n. Then x is a construction of order n 
over B. 

ii) Let X be a member of a type of order n. Then 
‘X, 1X, 2X are constructions of order n over B.  

iii) Let X, X1, ..., Xm (m > 0) be constructions of 
order n over B. Then [X X1... Xm] is a con-
struction of order n over B. 

iv) Let x1, ..., xm, X (m > 0) be constructions of 

order n over B. Then [x1...xm X] is a construc-
tion of order n over B. 

v) Nothing is a construction of order n over B 
unless it so follows from Cn (i)-(iv).   

Tn+1 (types of order n+1) Let n be the collection of 
all constructions of order n over B. Then 
i) n and every type of order n are types of order 

n+1.  
ii) If m > 0 and , 1, ..., m are types of order 

n+1 over B, then ( 1 ... m) (see T1 ii)) is a 
type of order n+1 over B. 

iii) Nothing is a type of order n+1 over B unless it 
so follows from (i) and (ii).    

For the purposes of natural-language analysis, 
we are assuming the following base of ground 
types: 

ο:   the set of truth-values {T, F}; 
ι:  the set of individuals (the universe of dis-

course); 
τ:   the set of real numbers (doubling as discrete 

times); 
ω:  the set of logically possible worlds (the logical 

space).  

We model sets and relations by their charac-
teristic functions. Thus, for instance, () is the 
type of a set of individuals, while () is the type 
of a relation-in-extension between individuals. 
Empirical expressions denote empirical conditions 
that may or may not be satisfied at the particular 
world/time pair of evaluation. We model these 
empirical conditions as possible-world-semantic 
(PWS-) intensions. PWS-intensions are entities of 
type (): mappings from possible worlds to an 
arbitrary type . The type  is frequently the type 
of the chronology of -objects, i.e., a mapping of 
type (). Thus -intensions are frequently func-
tions of type (()), abbreviated as ‘’. Exten-
sional entities are entities of a type  where   
() for any type . Where w ranges over  and t 
over , the following logical form essentially char-
acterizes the logical syntax of empirical language: 
 

wt […w….t…]. 
 
Examples of frequently used PWS intensions 

are: propositions of type , properties of individ-
uals of type (), binary relations-in-intension 
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between individuals of type (), individual of-
fices (or roles) of type , intensional atti-
tudes/(); hyperintensional attitudes/(n). 

Logical objects like truth-functions and quanti-
fiers are extensional:  (conjunction),  (disjunc-
tion) and  (implication) are of type (), and  
(negation) of type (). Quantifiers ,  are 
type-theoretically polymorphic functions of type 
(()), for an arbitrary type , defined as follows.  
 
Definition 3 (quantifiers). The universal quantifi-
er  is a polymorphic total function that associ-
ates a class A of -elements with T if A contains 
all elements of the type , otherwise with F. The 
existential quantifier  is a polymorphic total 
function that associates a class A of -elements 
with T if A is a non-empty class, otherwise with F.  

 
Below all type indications will be provided out-

side the formulae in order not to clutter the nota-
tion. The outermost brackets of the Closure will 
be omitted whenever no confusion arises. Fur-
thermore, ‘X/’ means that an object X is (a 
member) of type . ‘X v ’ means that X is 
typed to v-construct an object of type , if any. 
We write ‘X  ’ if a valuation v does not matter. 
Throughout, it holds that the variables w   and 
t  . If C   then the frequently used Com-
position [[C w] t], which is the intensional descent 
(a.k.a. extensionalization) of the -intension v-
constructed by C, will be encoded as ‘Cwt’. For 
instance, if Student/() is the property of being 
a student, the procedure of extensionalizing this 
property to obtain its population in a given world w 
and time t is the Composition  

[[‘Student w] t], or ‘Studentwt,  
for short. 

Whenever no confusion arises, we use tradi-
tional infix notation without Trivialisation for truth-
functions and the identity relation, to make the 
terms denoting constructions easier to read. 
Thus, for instance, instead of  

wt [‘ [‘= [‘+ ‘2 ‘5] ‘7] [[[‘Know w] t] ‘Tilman it]]  
we usually write   

wt [[[‘+ ‘2 ‘5] = ‘7]  [‘Knowwt ‘Tilman it]]. 

3 Three kinds of context 

TIL operates with a fundamental dichotomy be-
tween procedures, i.e. constructions, and their 
products, i.e. functions.5 This dichotomy corre-
sponds to two basic ways in which a construction 
can occur within another construction, namely 
displayed, or executed. If the construction is dis-
played then the construction itself is an object of 
predication; we say that it occurs hyperintension-
ally. If the construction is executed, then it is a 
constituent of another construction, and an addi-
tional distinction can be found at this level. The 
constituent presenting a function may occur either 
intensionally (de dicto) or extensionally (de re). If 
intensionally, then the whole function is an object 
of predication; if extensionally, then a functional 
value is an object of predication. Both distinctions 
are instrumental in selecting a construction or 
else what the meaning construction produces, 
which is either a function or a functional value, as 
the functional argument of a function v-
constructed within a superconstruction.  

For an example of the contrast between dis-
played and executed procedures, consider the 
mathematical equation sin(x) = 0. If Tilman is 
solving this equation then Tilman is related to the 
very meaning of “sin(x) = 0” rather than the set of 
multiples of the number . Tilman wants to exe-
cute the procedure expressed by “sin(x) = 0” in 
order to find out which set of real numbers 
matches the equation. Hence in “Tilman is solving 
the equation sin(x) = 0” the meaning of “sin(x) = 
0”, i.e. the Closure x [[‘Sin x] = ‘0] is displayed. 
This very Closure is an object of predication here. 
On the other hand, if we claim that the solution of 
the equation sin(x) = 0 is the set {…, –2, –, 0, , 
2, …} the meaning of “sin(x) = 0” is executed to 
produce this set. Yet the constituent meaning of 
“sin(x) = 0” occurs intensionally in the meaning of 
“The solution of the equation sin(x) = 0 is the set 
{…, –2, –, 0, , 2, …}”. The whole set (a char-
acteristic function) is the object of predication. An 
example of an extensional occurrence of the 

                                                   
5 Formally speaking, extensional entities like individuals, 

numbers and truth-values are extreme forms of 0-ary 
functions, whereas sets are identified with their character-
istic functions. 
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meaning of ‘sin’ would be provided by the simple 
sentence “sin() = 0”. Here the value of the func-
tion sine at the argument  is the object of which it 
is predicated that it is equal to zero.  

The same differentiation applies also to the 
meanings of empirical terms. For an example of 
the contrast between intensional and extensional 
occurrence, consider predication. Predication, in 
TIL, is an instance of functional application: a 
characteristic function is applied to a suitable 
argument in order to obtain a truth-value, accord-
ing as the argument is an element of the set. In 
the case of predication of empirical properties, the 
relevant set is obtained by extensionalizing the 
property. In the context “The site of Troy is locat-
ed in Asia Minor” we want the functional value of 
the office the site of Troy to occur either as an 
argument for the set of entities located in Asia 
Minor or as an argument for the binary relation (-
in-intension) located in whose second argument is 
Asia Minor. Hence the meaning of ‘the site of 
Troy’ occurs extensionally here. On the other 
hand, when Schliemann sought the site of Troy, 
he was not related to any value of the denoted 
function. Rather he was related to the whole office 
aiming to determine its value, if any. As a result, 
the meaning of ‘the site of Troy’ occurs intension-
ally in “Schliemann sought the site of Troy”.  

Similarly, the meaning of the term ‘the temper-
ature in Prague’ occurs extensionally in “The 
temperature in Prague is 130C”, while in “The 
temperature in Prague is rising” the same mean-
ing of this definite description occurs intensionally. 
To be rising is a property of the whole function 
rather than of any value. Finally, in “a knows (hy-
perintensionally) that the temperature in Prague is 
130C” the same meaning occurs hyperintensional-
ly. When knowing something hyperintensionally, 
we are related to the very meaning of the embed-
ded clause rather than the produced function (a 
possible-world proposition in this case).          

The two distinctions, between displayed and 
executed and intensional/extensional, allow us to 
distinguish between three sorts of context. 
Though the basic ideas of distinguishing these 
contexts are simple, rigorous definition is rather 
complicated. Hence, here is just a brief summary 
of them:6 

                                                   
6 The rigorous definition can be found in [11, §2.6]. 

 hyperintensional context: one or more con-
structions occur displayed (though a construc-
tion at least one order higher need to be exe-
cuted in order to produce the displayed con-
structions) 

 intensional context: one or more constructions 
are executed in order to produce one or more 
functions (moreover, the executed construc-
tions do not occur within another hyperinten-
sional context) 

 extensional context:  one or more construc-
tions are executed in order to produce one or 
more particular values of one or more func-
tions at one or more given arguments (moreo-
ver, the executed constructions do not occur 
within another intensional or hyperintensional 
context). 

 
The basic idea underlying the above trifurca-

tion is that the same set of logical rules apply to 
all three kinds of context, but they operate on 
different complements: constructions, functions, 
and functional values, respectively. Thus, in TIL 
we have no oblique contexts in which the funda-
mental logical rules were not valid. The rules are 
all valid for constituent constructions; only that to 
be validly applied, the rules must respect the type 
of an entity to operate on. Furthermore, whenever 
we operate inside a non-extensional context, we 
apply our substitution method in order not to draw 
a construction occurring in a lower context into a 
higher one, which would be incorrect. 

4 Natural deduction in TIL 

The rules we introduce here follow the general 
pattern of the rules of natural deduction that are 
introduced in the sequent form. We start with the 
rules dealing with truth-functions, because these 
rules are applicable in extensional contexts. 
When applying the rules for quantifiers, we have 
to take into account a context in which a given 
construction occurs and the type of an entity that 
is quantified over. Furthermore, when dealing with 
empirical propositions, the first steps of each 
proof are -elimination (-E) and the last ones -
introduction (-I) of the left-most wt, because 
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the whole proof sequence must be truth-
preserving in any world w and time t.  

Here is a simple example. 
 

John is sick or went to the theatre. 
If he is sick then he calls a doctor. 

But he doesn’t call a doctor.  
 

John went to the theatre. 
 

To analyse the premises and the conclusion, we 
apply our method of analysis.7 As always, we start 
with type-theoretical analysis of the objects that 
receive mention here. 
 
Types. John/; Sick/(); Went/(); Theatre/; 
Call(); Doctor/.  
 
Synthesis.8  
 

wt [[‘Sickwt ‘John]  [‘Wentwt ‘John ‘Theatre]] 
wt [[‘Sickwt ‘John]  [‘Callwt ‘John ‘Doctor]] 

wt [[‘Callwt ‘John ‘Doctor]] 
 

wt [‘Wentwt ‘John ‘Theatre]] 
 
The last step of our method is checking whether a 
given construction is composed in a type-
theoretically coherent way. For the sake of sim-
plicity, here we demonstrate the type-checking 
only for the Closure wt [‘Sickwt ‘John].  
 

 [‘Sick w]  (())  
 [[‘Sick w] t]  () 
 ‘John   
 [[[‘Sick w] t] ‘John]   
 t [[[‘Sick w] t] ‘John]  () 
 wt [[[‘Sick w] t] ‘John]  (()) 

 
The resulting type is the type of a proposition, 

(()), or  for short, as it should be. 
 
The proof of our argument is as follows. 
 
 

                                                   
7 For details see [11, pp. 77-79].  
8 For the sake of simplicity, we ignore the past tense here and 

analyse ‘the theatre’ as denoting an individual, which is a 
simplification, yet irrelevant for our exposition. 

1) wt [[‘Sickwt ‘John]  [‘Wentwt ‘John ‘Theatre]]     
2) wt [[‘Sickwt ‘John]  [‘Callwt ‘John ‘Doctor]]  
3) wt [[‘Callwt ‘John ‘Doctor]]    
4) [[‘Sickwt ‘John]  [‘Wentwt ‘John ‘Theatre]]      1, -E 
5) [[‘Sickwt ‘John]  [‘Callwt ‘John ‘Doctor]]         2, -E 
6) [‘Callwt ‘John ‘Doctor]          3, -E 
7) [‘Sickwt ‘John]       5,6 MTT 
8) [‘Wentwt ‘John ‘Theatre]      4,7 DS 
9) wt [‘Wentwt ‘John ‘Theatre]      8, -I 
 

In what follows we usually omit the initial and 
final rules for elimination and introduction of wt.  

Firstly, we introduce the rules of propositional 
logic dealing with truth-functions, adjusted to TIL. 
Though in our example we apply the rules in their 
linear form, to demonstrate the proofs from as-
sumptions, we present the rules in the sequent 
form. 

4.1 The rules for truth-functions  

Let A, B, C  . X and Y represent lists of 
constructions (assumptions). 

 
1. Rule of Assumption 
  A ⊢ A 

2. Conjunction Introduction (-I)  
X ⊢ A 

Y ⊢ B 

 
X, Y ⊢ A  B 

3. Conjunction Elimination (-E) 
X ⊢ A  B  X ⊢ A  B 

   
X ⊢ A   X ⊢ B 

4. Modus Ponendo Ponens (MPP) 
X ⊢ A  B 

Y ⊢ A 

 
X, Y ⊢ B  

5. Conditional Proof (CP) 
X, A ⊢ B    

 
X ⊢ A  B  
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6. Disjunction Introduction (-I)  
X ⊢ A   X ⊢ A 

   
X ⊢ A  B  X ⊢ B  A 

7. Disjunction Elimination (-E) 
X ⊢ A  B  

Y, A ⊢ C 
Z, B ⊢ C   

 
X,Y,Z ⊢ C 

8. Double negation Introduction (DNI)  
X ⊢ A    

    
X ⊢  A   

9. Double negation Elimination (DNE) 
X ⊢ A    

   
X ⊢ A 

10. Modus Tollendo Tollens (MTT)   
X ⊢ A  B 

Y ⊢ B 

 
X, Y ⊢ A 

11. Disjunctive Syllogism (DS) 
X ⊢ A  B  X ⊢ A  B 

Y ⊢ A   Y ⊢ B 

   
X,Y ⊢ B  X,Y ⊢ A 

12. Reductio Ad Absurdum (RAA) 
X, A ⊢ B  B    

   
X ⊢  A   
 

Similar to propositional logic, predicate logic 
has its natural deduction proof system. Needless 
to say, the rules dealing with truth-functions are 
the same as those in propositional logic. Addi-
tionally, there are rules for quantifiers (general  
and existential ). Again, these additional rules 

are of two kinds, namely introduction and elimina-
tion rules.  

However, we are building the deduction sys-
tem for TIL, and since TIL is a hyperintensional -
calculus of partial functions, there are additional 
complications. First, quantifiers in TIL (see Def. 3) 
are not special symbols; rather, they are functions 
applicable to classes of objects. Furthermore, the 
rules dealing with quantifiers, to be validly ap-
plied, must respect the context in which a given 
construction occurs and the type of an entity to be 
quantified over. Another serious problem that we 
have to deal with is the problem of partiality. TIL is 
a logic of partial functions and partiality, as we all 
know too well, brings about technical complica-
tion. This concerns in particular the existential 
quantifiers, as we are going to demonstrate be-
low. 

4.2 Rules for general quantifiers  

4.2.1 General quantifier Elimination (-E) 
 
The rule (-E) for elimination of a general quanti-
fier in classical predicate logic is non-problematic.  

 

X ⊢ x φ   

    

X ⊢ φ [t/x]   

 
where φ is a formula and the term t is substituta-

ble for the variable x in φ.   
In an ordinary vernacular we would say “what 

holds for everything holds also for something”, 
which is no doubt true. Is it? What about if there is 
no ‘something’? In other words, if the term t is not 
referring to anything? Sure, in classical predicate 
logic it is not possible, because it is a logic of total 
functions. Yet TIL is a logic of partial functions 
and we have to take this issue into account. We 
must work with partial functions when processing 
natural language, because in natural language 
there are non-referring terms like ‘the King of 
France’. And the method of domain-restriction 
applied in mathematics or computer science is not 
applicable here, because we would face the prob-
lem of a non-recursive domain explosion. We 
cannot recursively define in which worlds w and 
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times t the King of France exists. It is a matter of 
empirical investigation. To adduce a simple ex-
ample, consider this argument. 

 
All politicians are wise. 

The King of Germany is a politician. 
 

The King of Germany is wise. 
 
If both the premises were true, the conclusion 

would have to be true as well. Hence, the argu-
ment is valid.9 But the argument is not sound. 
Even if the first premise were true, the second 
premise denotes a proposition that is neither true 
nor false, because there is no King of Germany. 
Hence, there is no individual at hand to ascribe 
the property of being or not being a politician.   

However, we can prove that the argument is 
valid. Here is how. As always, first typing:10 

 
/(()); Politician/(); Wise/(); Germany/; 
King-of/(); [‘King-ofwt ‘Germany]  ; x,y  . 
  
 

                                                   
9 The argument is valid, provided the second premise is read 

extensionally, de re. On its de re reading, the property of 
being a politician is ascribed to the holder of the office of 
King of Germany, if any. If there is no such holder, the 
sentence denotes a proposition with truth-value gap. 
However, the sentence “The King of Germany is a politi-
cian” is ambiguous. There is another reading, namely in-
tensional (de dicto). On this reading the sentence conveys 
a piece of information that the property of being a politi-
cian is a requisite of the royal office, where Requi-
site/(()). Necessarily, i.e. in all w and t, if an indi-
vidual a happens to be the King of Germany then a is a 
politician. The requisite relation obtains between inten-
sions (here a property and an office) necessarily and inde-
pendently of a contingent occupancy of the office. On this 
reading the argument is not valid, because then the second 
premise is necessarily true, i.e. true even in those w,t-
pairs where there is no King of Germany, but the conclu-
sion has a truth-value gap in such w,t-pairs.  

10 For the sake of simplicity, here we apply the ‘unrestricted’ 
general quantifier . The literal analysis of the sentence 
should, however, be composed by applying the restricted 
quantifier All/((())()) that is the function that associ-
ates a given set S of individuals with the set of all super-
sets of S. The literal analysis would then be  
wt [[‘All ‘Politianwt] ‘Wisewt].  

1) ’x [[‘Politicianwt x]  [‘Wisewt x]]]        
2) x [[‘Politicianwt x]  [‘Wisewt x]] y]     1) -E 
3) [[‘Politicianwt y]  [‘Wisewt y]]          2) -r 
4) [‘Politicianwt [‘King-ofwt ‘Germany]]        
5) [[‘Politicianwt [‘King-ofwt ‘Germany]]   

[‘Wisewt [‘King-ofwt ‘Germany]]]        
        3) [‘King-ofwt ‘Germany]/y 

6) [‘Wisewt [‘King-ofwt ‘Germany]]  4, 5, MPP 
 
Comment. The substitution of the Composition 

[‘King-ofwt ‘Germany] for y in the step (5) is truth-
preserving; provided the Composition (4) v-
constructs T, which is assumed, it is not v-
improper (see Def. 1, iii). On this assumption, the 
Composition [‘King-ofwt ‘Germany] is not v-
improper either. 

Now you may ask. Is this new piece of infor-
mation that we obtained of any value? Of course, 
it is not. In order it be valuable we must obtain 
another piece of knowledge, namely whether the 
King of Germany exists. In other words, we must 
find out whether such an argument is also sound. 
To this end we must empirically explore the state 
of affairs in Germany to find out whether the King 
of Germany exists.  

Another issue we encounter here is this. 
Though the argument is valid, the corresponding 
conditional sentence  
 

“If all politicians are wise and  
the King of Germany is a politician,  
then the King of Germany is wise” 

 
is not analytically true. In other words, the seman-
tic variant of the theorem of deduction does not 
hold here. Due to the non-existence of the King of 
Germany the sentence does not denote a propo-
sition true in all worlds w and times t. Rather, it 
denotes the proposition with a truth-value gap in 
the actual world and time of evaluation. Yet this 
problem does not have to bother us too much, 
because analytically true sentences convey no 
empirical information.11 Our goal is deriving infer-
able knowledge from textual data, i.e., deriving 
consequences of assumptions provided by these 
data. When doing so, we assume that proposi-
tions encoded by the assumptions are true.  

                                                   
11 Yet, such sentences convey analytical information. For the 

difference between analytical and empirical information, 
see [2]. 
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Back to the rule of general quantifier elimina-

tion. As the above example illustrates, the rule 
must be adjusted for the TIL system. Here is how. 

 
Let x,y  , B(x)  : the variable x is free in 

B; [x B]  (), /(()), C  . Then general 
quantifier elimination in full detail consists of these 
steps: 

 
[‘x B]   
[[x B] y]  -E 
B(y)   r (see below) 
B(C/y)  substitution 
 

where B(C/y) arises from B by a collision-less, 
valid substitution of the construction C for all oc-
currences of the variable y in B.  

For the sake of simplicity, we will write this rule 
in the shortened form: 
 

X ⊢ [‘x B]    

  (-E) 
X ⊢ B(C/x)  

  

4.2.2 General quantifier Introduction (-I) 
  
Dual to the general quantifier elimination is the 

rule for general quantifier introduction, -I. This 
rule is not as simple as the rule -E. Since we 
can think of a general quantifier as a generaliza-
tion of conjunction, recall the rule -I: 

X ⊢ A 

Y ⊢ B 

 
X, Y ⊢ A  B 

This suggests that to introduce a quantifier , 
i.e., to apply this function to the set produced by 
x B to obtain the Composition [‘x B], we must 
prove that the condition specified by the construc-
tion B is valid for all possible values of the varia-
ble x, i.e. for all the elements of the range of x. 
This seems impossible. Yet, consider the proofs 
in mathematics. For instance, suppose we want to 
prove the theorem 

  

“Every even natural number is the sum of 
two odd natural numbers  

whose difference is at most 2.” 
 
Phrasing the proof informally, it comes down to 

this. Let n be any even natural number. Then n is 
of the form 2k, for some k ≥ 1.  

If k is odd, then we can write n = k + k, and the 
two k’s satisfy the theorem.  

If k is even, we can write n = (k-1) + (k+1), and 
the numbers k-1 and k+1 satisfy the theorem.  

What is important here is the fact that by using 
the variable n we consider an arbitrary even natu-
ral number, and show that this number is the sum 
of two odd natural numbers whose difference is at 
most 2. That allows us to conclude that the condi-
tion specified by the theorem holds for every natu-
ral number n, since there is nothing special about 
n. It does not appear in the statement of the theo-
rem or anywhere else outside the proof. 

Hence, to prove a construction of the form 
[‘x B], we can prove B with some arbitrary but 
“fresh” free variable y substituted for x. 
That is, we want to prove the construction B(y/x). 
By “fresh” we mean that the variable has never 
been used before in the proof. Furthermore, it will 
not be used once B(y/x) has been proven. It is 
“local” to this part of the proof. The rule -I thus 
comes down in this form: 
 

 X ⊢ B(y/x)    

  (-I) 
X ⊢ [‘x B]  

 
In an ordinary vernacular we usually do not 

prove mathematical theorems. Yet, we can 
demonstrate similar principles of a valid applica-
tion of the generalization rule by proving an ana-
lytically true sentence. 

Mathematical sentences are analytical in this 
sense. When evaluating their truth-values, possi-
ble worlds and times do not matter as points of 
evaluation. Among the sentences involving empir-
ical expressions there are also analytically true 
sentences. They denote the proposition TRUE that 
takes the truth-value value T in all possible worlds 
and times. Consider sentences like “No bachelor 
is married”, “All whales are mammals” that con-
tain the empirical predicates ‘is a bachelor’, ‘is 
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married’, ‘is a whale’, ‘is a mammal’. At no 
world/time are the properties being a bachelor 
and being married co-instantiated by the same 
individual. And in every world/time is the property 
of being a mammal a requisite of the property of 
being a whale. This means that necessarily (in 
every world/time pair) if an individual a happens 
to be a whale then a is a mammal.  

Now consider, e.g., the first sentence. Its literal 
analysis comes down to the Closure  

wt [[‘No ‘Bachelorwt] ‘Marriedwt] 

Types. No/((())()): the restricted quantifier, 
i.e. the function that associates a given set S of 
individuals with the set of all those sets of individ-
uals that are disjoint with S; Bachelor, Mar-
ried/(). 

This analysis does not reveal that the proposi-
tion produced by the Closure takes the value T at 
all w, t-pairs. The analysis itself does not make it 
possible to prove it. We need to refine the analy-
sis. To this end we make use of the fact that the 
property of being a bachelor is defined as the 
property of being an unmarried man, so the sen-
tence is analytically, ex definitione, true. As soon 
as we replace the simple predicate ‘is a bachelor’ 
by this definition, the truth of the sentence is obvi-
ous: “No unmarried man is married”. Still, to prove 
it we need a refined analysis that makes use of 
the definition of the restricted quantifier No. It is a 
function that operates on sets of individuals and 
returns T iff the sets are disjoint. By using the 
variables m, n  (), x  , we obtain the defin-
ing equivalences  

‘No = m n [‘x [[m x]  [n x]]],  

[[‘No m] n] = [‘x [[m x]  [n x]]].  

The property of being a bachelor can be de-
fined by composing the constructions of the nega-
tion and of the properties Married and Man as 
follows:  

‘Bachelor = wt x [[‘Marriedwt x]  [‘Manwt x]].  

Now by substituting the respective definitions 
(and applying -reductions) we obtain:  

[[‘No ‘Bachelorwt] ‘Marriedwt] =  

[‘x [[‘Bachelorwt x]  [‘Marriedwt x]]] =  

[‘x [[‘Marriedwt x]  [‘Manwt x]  [‘Marriedwt x]]] 

Since this last construction obviously and 
provably v-constructs T for any valuation v of the 
variables w and t, we can generalize to 

[‘w ‘t [‘x  
[[‘Marriedwt x]  [‘Manwt x]  [‘Marriedwt x]]]].  

We have proven that the sentence “No bache-
lor is married” denotes the proposition TRUE. 

When deriving new pieces of information from 
text data we make use of corpuses like Wordnet, 
where we can find such definitions of properties 
and their requisites as above. In our example, the 
property of being unmarried is a requisite of the 
property of being a bachelor. Necessarily, if an 
individual happens to be a bachelor then it is not 
married. Hence, having a piece of knowledge that   

Tom is a bachelor 

together with the definition of the property of be-
ing a bachelor obtained from, e.g., Wordnet, we 
can easily infer that  

Tom is not married. 

It should be obvious now how to do it. We are 
to prove the argument: 

wt [‘Bachelorwt ‘Tom] 
 
wt [‘Marriedwt ‘Tom]  

Omitting the steps of -E and -I, we have: 

1. [‘Bachelorwt ‘Tom]     
2. [x [[‘Marriedwt x]  [‘Manwt x]] ‘Tom]        1, subst 
3. [[‘Marriedwt ‘Tom]  [‘Manwt  ‘Tom]]           2, -r 
4. [‘Marriedwt ‘Tom]       3, -E 

 
In step 3 we applied the rule of -reduction, 

the definition of which is coming below. Yet to 
complete this section we are going to introduce 
the rules dealing with existential quantifiers.    

4.3 Rules for existential quantifiers 

In classical logic the existential quantifier  is dual 
to the general quantifier . Thus, it might seem 
that whereas the rule - for  introduction is un-
problematic, the difficulties would arise with the 
rule -E for elimination of the existential quantifier. 
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This is true in logic of total functions. However, as 
explained above, TIL is the logic of partial func-
tions and we must be careful also with the -I rule 
not to derive that there is a value of a function at 
an argument when there is none.  

As in classical logic, the rules for existential 
quantifier function,  are parallel to those 
for disjunction ().  

Let x,y  , B  , [x B]  (), /(()),  
[‘x B ]  , C  . 
 

4.3.1 Existential quantifier Elimination (-E) 
 

X ⊢ [‘x B] 

Y, B(y) ⊢ C    

  (-E) 
X, Y ⊢ C  

  
where the variable y does not occur free in C.  
 
Comment. Recall the rule for eliminating disjunc-
tion; it is rather complicated.  

X ⊢ A  B  

Y, A ⊢ C 
Z, B ⊢ C   

 
X,Y,Z ⊢ C 

Roughly, it says this; consider both the dis-
juncts A and B, and if you manage to prove an-
other construction C taking first A as an assump-
tion and then B, you proved C from A  B. The 
rule is well justified. Proving C from A is equiva-
lent to proving A  C, and proving C from B is 
equivalent to proving B  C. Hence, we have 
proved (A  C)  (B  C), which is equivalent to 
(A  B)  C. By modus ponendo ponens, we 
proved C.     

This suggests that to eliminate an existential 
quantification [‘x B] and derive another con-
struction C, we should be able to conclude C 
starting from B with any ‘value’ substituted for x in 
B. We do this by substituting a ‘fresh’ free variable 
y that does not occur free in C (or anywhere out-
side the proof sequence). 

 
 

Example.  
There are smart politicians. 

 
There is an individual x that is smart. 

 
Proof. 
1. wt [‘x [[‘Smartwt x]  [‘Policianwt x]]]   
2. [‘x [[‘Smartwt x]  [‘Policianwt x]]]        1, -E 
3. [[‘Smartwt y]  [‘Policianwt y]]         2, -E 
4. [‘Smartwt y]           3, -E 
5. [‘x [‘Smartwt x]]          4, -I 
6. wt [‘x [‘Smartwt x]]          5, -I 

 
Notes. In the analysis (step 1) we make use of the 
fact that ‘smart’ denotes here an intersective mod-
ifier of a property, which is a function that takes a 
property as an argument returning another prop-
erty as its value, i.e. an entity of type (()()). 
The modifier Smart is applied to the property of 
being a politician here. For intersective modifiers 
the rules of left and right subsectivity hold. In oth-
er words, if somebody is a smart politician then 
he/she is smart and a politician. For details, see 
for instance [5] and [15]. 

In the step 5 we applied the -I rule coming 
below. In the logic of partial functions this rule is 
not as simple as it might seem. To illustrate, con-
sider this argument.  
 

Tilman is seeking an abominable snowman. 
Tilman is seeking something. 

 
The argument is valid, for sure. Yet the issue is 
what type of an entity is that something. It cannot 
be an individual, for then we would prove the ex-
istence of yeti, which would turn logic to magic. 
Tilman is related to the property of being an 
abominable snowman the instances of which the 
seeker wants to find. Hence, the relation of seek-
ing establishes here an intensional context rather 
than an extensional one. The analysis of the 
premise and conclusion makes it explicit.  
 
wt [‘Seekwt ‘Tilman [‘Abominable ‘Snowman]] 
  

wt [‘p [‘Seekwt ‘Tilman p]] 
 
Types. Seek/(()): the relation-in-intension 
of an individual to a property the instances of 
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which the seeker wants to find;12 Tilman/; 
Abominable/(()()): a modifier of a property; 
Snowman/(); /((())): the function that 
assigns T to a non-empty class of properties, 
otherwise F; p (). 

 
Proof. 
1. wt [‘Seekwt ‘Tilman [‘Abominable ‘Snowman]]  
2. [‘Seekwt ‘Tilman [‘Abominable ‘Snowman]]         1, -E 
3. p [‘Seekwt ‘Tilman p] [‘Abominable ‘Snowman]]  2, -Ex 
4. [‘Empty p [‘Seekwt ‘Tilman p]]                    3, Def.1 (iii) 
5. [‘p [‘Seekwt ‘Tilman p]                              4, Def. 3 of  
6. wt [‘p [‘Seekwt ‘Tilman p]              5, -I   
 
Comments. The proof steps (3) and (4) are nec-
essary, because we work with partial function. 
Hence to make sure that the sequence of proof 
steps is truth-preserving, before applying the exis-
tential quantifier , we have to prove that the ar-
gument class (here of properties) is not empty 
(Empty/((()))). 

Yet, we can generalize this proof for any 
existential quantification over a constituent 
construction. Here is how. 

 
4.3.2 Existential quantification over a constitu-
ent. 

 
First, recall that a constituent of B is a con-

struction that does not occur displayed in B. Now 
let t   be a constituent sub-construction of the 
construction B, the other types as above. Since B 
produces a truth-value and t is its constituent, B is 
of the form of a Composition […t…]. Then on the 
assumption that B v-constructs T, the constituent t 
cannot be v-improper and the Composition  
[[x B] t] v-constructs T as well by Def. 1 of Com-
position. Thus, the set of -elements produced by 
x B is non-empty and the application of  quanti-
fier is truth-preserving.   

As a result, we obtain the classical -I rule.  
 

                                                   
12 Here we consider intensional seeking that relates the seeker 

to an intension. If the seeker’s activity were sensitive to the 
way a given intension is conceptualized, we would have to 
analyze hyperintensional seeking of type (n). For de-

tails on such objectual attitudes, see, for instance, [10].     

Existential quantifier Introduction (-I) 
 

X ⊢ B(t/x) 

  (-I) 
X ⊢ [‘x B]  

 
The type  of an entity we abstract over is de-

termined by a proper typing. Here are a few ex-
amples.  

The Pope is wise 
Somebody is wise. 

 
wt [‘Wisewt ‘Popewt]  ‘Popewt   
  
wt [‘x [’Wisewt x]]    x   
 

Comment. Wise is of type (): the property 
of individuals. Hence the construction ‘Pope of the 
papal office occurs extensionally here. The value 
of the papal office, i.e. the individual that occupies 
the office is an object of predication. 

Tilman wants to become the Pope 
Tilman wants to become something 

 
wt [‘Wantwt ‘Tilman ‘Pope] ‘Pope   

  
wt [‘y [‘Wantwt ‘Tilman y]]   y   

 
Comment. Want(-to-become) is of type 

(): the relation of an individual to an office 
the individual wants to occupy. Hence the 
construction ‘Pope of the papal office occurs 
intensionally here; the whole office/function is an 
object of predication. 

Tilman calculates Cotg() 
Tilman calculates something 

 
wt [‘Calcwt ‘Tilman ‘[‘Cotg ‘]]     ‘[‘Cotg ‘]  1 

  
wt [‘c [‘Calcwt ‘Tilman c]]        c  1 

 
Comment. Calc(ulate) is of type (1): the 

relation of an individual to a construction that the 
individual is executing. Thus, the Composition 
[‘Cotg ‘] occurs hyperintensionally; the whole 
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construction is displayed by Trivialization and 
becomes an object of predication. 

Additional types.  Tilman/; Cotg/(); /. 
 
As a result, application of this rule is classical, 

and our type system makes it possible to quantify 
over an entity of a proper type, even of a higher-
order. However, we can deduce more than that. 
First, if a construction occurs extensionally, or, 
using medieval terminology, de re, two principles 
de re are valid.  

 
4.3.3 Two principles de re 

 
The two principles are existential pre-

supposition and substitutivity of v-congruent 
constructions.  

To illustrate, consider again the premise 
 

The Pope is wise. 
  
Since the meaning of ‘the Pope’, here 

Trivialization ‘Pope, occurs de re, the existence of 
the Pope is a presupposition of the sentence. In 
other words, in order that the sentence have any 
truth-value, the office must be occupied. If it is not 
so, there is no individual to whom we might 
ascribe the property of being wise; the sentence 
cannot be true. But it cannot be false either, 
because then the sentence that the Pope is not 
wise would have to be true, which is not the case 
as well, because likewise there is no individual at 
hand to ascribe the property of not being wise 
to.13 Thus we have: 

The Pope is/is not wise 
The Pope exists. 
 
wt ()[‘Wisewt ‘Popewt] ‘Popewt   
  
wt [‘xistwt ’Pope]     
 

Comment. Exist/() is the property of an 
individual office, namely the property of being 

                                                   
13 Survival under negation is the most important test for a de 

re occurrence. Yet, there are two kinds of negation, to wit, 
external (wide-scope) and internal (narrow-scope) nega-
tion. While the latter is presupposition preserving, the 
former is presupposition denying. For details, see [6].  

occupied at a given world/time pair of evaluation. 
It is defined as follows. Let f  , x  . Then 

 
‘Exist = wt f [‘x [x = fwt]]; hence 
[‘Existwt f] = [‘x [x = fwt]]  

 
Substituting this definition into the conclusion of 
the above argument, we obtain 
 
wt [‘x [x = ‘Popewt]] 
 

The other principle de re is illustrated by this 
argument. 
 
The Pope is wise. 
Francisco is the Pope. 
Francisco is wise. 
 

If the terms ‘Pope’ and ‘Francisco’ are co-
referring, i.e. the constructions ‘Popewt, ‘Francisco 
v-congruent, then these constructions are mutual-
ly substitutable in an extensional context (de re). 

The two principles de re are not valid in case 
of an intensional or hyperintensional occurrence 
of a construction, of course. If Tilman wants to 
become the Pope, the existence of the Pope can-
not be derived; it is neither presupposed nor en-
tailed. Tilman may want to become the Pope just 
in such a state-of-affairs when the papal office 
goes vacant. And, if Tilman wants to become the 
Pope and the Pope is Francisco, we cannot de-
rive that Tilman wants to become Francisco, 
which would be a nonsense. 

Yet, even in case of an intensional or hyperin-
tensional context, we can derive more. We can 
quantify into such a context. Quantifying into an 
intensional context is driven by the same -I rule 
as above, because constructions occurring inten-
isonally are also constituents of a given super-
construction. To illustrate, consider this argument. 

 
Tilman is seeking an abominable snowman. 
Tilman is seeking something abominable. 

 
Again, we must not derive that there is an indi-

vidual that is abominable and it is sought by Til-
man. And we do not derive it, because proper 
typing blocks such an invalid inference. Abomina-
ble is an entity of type (() ()): the modifier 
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applicable to a property of individuals rather than 
individuals.14 Hence, there is a property q  () 
such that Tilman is seeking an abominable q, 
namely the property of being a snowman. Proper 
analysis and typing make it explicit: 

 
wt [‘Seekwt ‘Tilman [‘Abominable ‘Snowman]] 
  
wt [‘q [‘Seekwt ‘Tilman [‘Abominable q]]]     
 
This goes smoothly. However, when quantify-

ing into a hyperintensional context, we contend 
with technical complications that arise from the 
fact that all constructions occurring in a hyperin-
tensional context are displayed rather than exe-
cuted. And, as explained above, a displayed con-
struction does not produce an object to operate 
on. Rather, the construction itself is an object to 
operate on. Constructions are displayed by Trivi-
alization, which “closes” the construction much 
closer than -abstraction. In particular, variables 
occurring in a hyperintensional context are bound 
by Trivialization and thus not amenable to logical 
operations.   

 
4.3.4 Existential quantification into a hyper-
intensional context; substitution method 

 
To illustrate, consider again the assumption 

that  
 

Tilman calculates cotangent of . 
 
We must not derive that there is a number x 

such that Tilman calculates x, because there is no 
such number. The function cotangent is not de-
fined at . And even if it were defined, it makes no 
sense to calculate a number without any mathe-
matical procedure to be executed. But we do not 
derive it, because the above -I rule is applicable 
only to constituents of a given construction, while 
the Composition [‘Cotg ‘] is displayed in 

 
wt [‘Calcwt ‘Tilman ‘[‘Cotg ‘]] 

   

                                                   
14 For details on property modifiers see, for instance, [5] and 

[16].  

Yet, it might seem unproblematic to derive that 
there is a number (to wit the number ) the cotan-
gent of which Tilman calculates, because this 
argument is obviously valid.   

Tilman calculates cotangent of  
Tilman calculates cotangent of something 

 
But careless application of the -I rule similar to 
generalization into an intensional or extensional 
context is not valid: 

wt [‘Calcwt ‘Tilman ‘[‘Cotg ‘]]     ‘[‘Cotg ‘]  1 

  
wt [‘x [‘Calcwt ‘Tilman ‘[‘Cotg x]]]        x   

 
The reason is this. Trivialisation ‘[‘Cot x] con-

structs the Composition [‘Cot x] independently of 
any valuation v. Thus, from the fact that at a w, 
t-pair of evaluation it is true that Tilman calcu-
lates [‘Cot ‘], we cannot validly infer that Tilman 
calculates [‘Cot x], because Tilman calculates the 
cotangent of  rather than of x. Put differently, the 
class of numbers constructed by  

x [‘Calcwt ‘Tilman ‘[‘Cot x]]  
will be non-empty, according as Tilman calculates 
[‘Cot x] and regardless of Tilman’s calculating 
[‘Cot ‘]. The problem just described of x being 
unable to catch the occurrence of x inside the 
Trivialized construction is TIL’s way of phrasing 
the standard objection to quantifying-in. Yet in TIL 
we have a way out (or perhaps rather, a way in). 
In order to validly infer the conclusion, we need to 
preprocess the Composition [‘Cot x] and substi-
tute the Trivialization of  for x. Only then can the 
conclusion be inferred. To this end we developed 
a substitution method. This method deploys the 
polymorphic functions Subn/(nnnn) and 
Tr/(n) that operate on constructions in the 
manner stipulated by the following definition. 

 
Definition 4 (Subn, Tr) Let C1/n+1  n, C2/n+1 
 n, C3/n+1  n v-construct constructions D1, 
D2, D3, respectively. Then the Composition  

[‘Subn C1 C2 C3] 
v-constructs the construction D that results from 
D3 by collision-less substitution of D1 for all occur-
rences of D2 in D3. The function Tr/(n ) returns 
as its value the Trivialization of its -argument.  
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Example. Let variable y v . Then [‘Tr y] v(/y)-
constructs ‘. The Composition 

[‘Sub1 [‘Tr y] ‘x ‘[‘Cot x]] 
v(/y)-constructs the Composition [‘Cot ‘]. 

 
Note that there is a substantial difference be-

tween the construction Trivialization and the func-
tion Tr. Whereas ‘y constructs just the variable y 
regardless of valuation, y being bound by Triviali-
zation in ‘y, [‘Tr y] v-constructs the Trivialization 
of the object v-constructed by y. Hence y occurs 
free in [‘Tr y].    

 
Below we omit the superscripts n and  and 

write simply ‘Sub’ and ‘Tr’ whenever no confusion 
arises.  

It should be clear now how to validly derive 
that Tilman calculates cotangent of something if 
Tilman calculates the cotangent of . The valid 
argument, in full TIL notation, is this: 

 
wt [‘Calcwt ‘Tilman ‘[‘Cot ‘]] 

 
wt [‘x [‘Calcwt ‘Tilman [‘Sub [‘Tr x] ‘y ‘[‘Cot y]]]] 

 
Proof. Let Empty/(()) be the class of empty 
sets of real numbers. Then for any world-time pair 
w, t the following steps are truth-preserving: 

 
1) [‘Calcwt ‘Tilman ‘[‘Cot ‘]]    
2) [‘Calcwt ‘Tilman [‘Sub [‘Tr ‘] ‘y ‘[‘Cot y]]]     1, def.4 
3) [x [‘Calcwt ‘Tilman [‘Sub [‘Tr x] ‘y ‘[‘Cot y]]] ‘] 

         2, -expansion 
4) [‘Empty  

x [‘Calcwt ‘Tilman [‘Sub [‘Tr x] ‘y ‘[‘Cot y]]]] 
                                   3, Def. 1 (iii)  

5) [‘x [‘Calcwt ‘Tilman [‘Sub [‘Tr x] ‘y ‘[‘Cot y]]]] 
               4, Def. 3 of  

 
Similarly, we can derive that there is a function 

f  () such that Tilman calculates the value of f 
at . Here is how. 

 
wt [‘Calcwt ‘Tilman ‘[‘Cot ‘]] 

 
wt [‘f [‘Calcwt ‘Tilman [‘Sub [‘Tr f] ‘g ‘[‘g ‘]]]] 

 

Here is another example of valid quantifying 
into a hyperintensional context.  

 
Tilman believes that Pluto is a planet 
Tilman believes that something is a planet    
 
Types. Believe/(n): a hyperintensional 
attitude, i.e., relation-in-intension of an individual 
to a hyperproposition,15 i.e., the construction of a 
proposition; Pluto/; Planet/(); x, y  . 
 
wt [‘Believewt ‘Tilman ‘[wt [‘Planetwt ‘Pluto]]] 
 
wt [‘x [‘Believewt ‘Tilman [‘Sub [‘Tr x] ‘y  

‘[wt [‘Planetwt y]]]]] 
 

Note that the above arguments are valid, 
because we quantified over objects produced by 
Trivialization, namely ‘’Cotg, ‘Pluto, and these 
constructions are not v-improper for any valuation 
v. Trivialization just displays the object that we 
then quantify over, and the function Tr applied to 
this object (v-produced by a variable) returns as 
its value just the Trivialization of the object. 

In this way we fully respect an agent’s per-
spective, and our analyses are literal. This means 
that semantically simple terms like ‘planet’, ‘Pluto’, 
‘cotangent’ and ‘’ are analysed by their Trivializa-
tions. Indeed, the sentences do not convey any 
more information about the meaning of these 
terms. Strictly respecting agent’s perspective is 
important, because hyperintensional contexts 
mostly stem from agents’ attitudes that are sensi-
tive to the way a given object is conceptualized.  

To give a simple example, assume that 
instead of Trivialization displaying Pluto we 
conceptualise the dwarf planet Pluto by a definite 

                                                   
15 In general, attitudinal sentences are ambiguous. They come 

in two variants, intensional and hyperintensional, which 
roughly correspond to implicit and explicit knowledge. 
We usually vote for a hyperintensional analysis, because 
on this approach the problem of logical/mathematical om-
niscience does not arise, while it is inevitable in case of an 
intensional analysis. On the other hand, hyperintensional 
attitudes are very restrictive as for an agent’s inferential 
capacities. To solve this problem, we developed a method 
of computing inferable knowledge of an agent, provided it 
is possible to specify agent’s inferential capacities, i.e. the 
set of rules the agent masters. For details, see [13].     
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description ‘the first Kuiper belt object that has 
been discovered’. Then Tilman can believe that 
Pluto is a planet without believing that the first 
Kuiper belt object that has been discovered is a 
planet. Sure, one might object that this definite 
description does not have to refer to any object, 
because it might happen that no object was dis-
covered in Kuiper belt so that we obviously can-
not existentially generalize. This is true, but we 
cannot even derive that there is an individual role 
of type  such that Tilman believes that its occu-
pant is a planet. This would change Tilman’s per-
spective, because we would substitute Trivializa-
tion of the role instead of the compose construc-
tion which is the meaning of that definite descrip-
tion.  

Another objection against the substitution of 
the definite description ‘the first Kuiper belt object 
that has been discovered’ for ‘Pluto’ in a 
hyperintensional context is this. Whereas the 
definite description denotes an individual office 
that can be occupied by at most one individual, 
Pluto is the proper name of a definite individual. 
Hence, the description and the name are not 
analytically equivalent, and cannot be mutually 
substituted even in an intensional context. This is 
also true. Hyperintensional contexts have been 
characterized just by the fact that the substitution 
of analytically equivalent terms fails here. 

To illustrate, suppose that the Pope denotes 
exactly the same office as Bishop of Rome. Still, 
Tilman can (hyperintensionally) believe that the 
Pope is wise without his believing that Bishop of 
Rome is wise, because the meanings of ‘the 
Pope’ and ‘bishop of Rome’ are different 
constructions that are not procedurally 
isomorphic. Thus, ‘the Pope’ and ‘Bishop of 
Rome’ are not synonymous terms and cannot be 
mutually substituted here, because in a hyper-
intensional contexts only synonymous terms with 
procedurally isomorphic meanings can be 
mutually substituted.16  

                                                   
16 The relation of procedural isomorphism has been intro-

duced in TIL to deal with the problem of the structural 
isomorphism of meanings, hence of co-
hyperintensionality, hence of synonymy. It has been 
demonstrated that the individuation of procedures as-
signed to expressions as their structured meaning cannot 
be decided in virtue of a universal criterion applicable to 

Hence, existential quantifying into hyperinten-
sional contexts is valid only if we quantify over 
objects presented by Trivialization. Our substitu-
tion method does precisely this. Generalizing, we 
formulate the rule for quantifying into a 
hyperintensional context.   
 
The rule of existential quantifying into a 
hyperintensional context (-HI)  

 
Let C  , and let D be a subconstruction of C 

that is displayed in C ; furthermore let ‘a be a sub-
construction of D, a/, x,y  . Then the rule -HI 
is schematically defined as follows:  

 
X ⊢ C(…’D(y/‘a)…) 

    (-HI) 
X ⊢ [‘x C(… [‘Sub [‘Tr x] ‘y ‘D(y)]…)]  
 
Applications of the substitution method intro-

duced in this section are much broader. The 
method is not applied only for existential quantify-
ing into hyperintensional context. It is used to pre-
process a procedural meaning of a sentence with 
anaphorical references, i.e. to substitute the 
meaning of an anaphorically referred terms for 
anaphoric variables (see [8]), and in particular as 
the correct way of applying a function to an argu-
ment, which is specified by -conversion rules.         

                                                                               
every language. Yet, the positive result is that we have 
specified a set of rigorously defined criteria of fine-
grained procedural individuation, partially ordered ac-
cording to the degree of their being permissive with re-
spect to synonymy. It turned out that the formalization of 
procedures in TIL in terms of constructions may become a 
bit too fine-grained from the point of view of the seman-
tics of natural language. Yet the same problem must be 
met in any formalization that makes use of -bound vari-
ables, i.e. in any -calculus, because in an ordinary ver-
nacular we do not use -bound variables. For this reason, 
we proposed a criterion that is the most suitable for an or-
dinary, non-professional language. It is the criterion that 
declares that procedural isomorphism of TIL construc-
tions obtains whenever the differences between construc-
tions consist just in technical manipulations with -bound 
variables. Thus, the rule of co-hyperintensionality (i.e. the 
rule for substitution of synonymous terms in hyperinten-
sional contexts) has been formulated only conditionally.  
For details, see [7]. 
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5 The rules for -conversion 

Since TIL is a partial, typed -calculus, besides 
classical rules of natural deduction introduced 
above, we also need the so-callled -conversion 
rules which specify how to validly apply a function 
produced by a -Closure to an argument 
produced by the ‘called’ subprocedure, i.e., how 
to compute a functional value. These rules come 
again in two forms, namely -reduction and -
expansion, sometimes also called -expansion. 
The problem is this. In the logic of partial 
functions such as TIL, careless -conversion ‘by 
name’ is not an equivalent transformation. This 
issue has been delt with in many papers. For 
recent ones see, for instance, [7], [12], [10]. Thus, 
here we just briefly summarise.  

The rule of β-reduction is a fundamental com-
putational rule of -calculi and functional pro-
gramming languages. In -calculi the rule is usu-
ally specified thus:   

[[x M] N] |– M (x := N) 

where M is a procedure with a free variable x (the 
‘formal parameter’ of the procedure M), and this 
procedure ‘calls’ another procedure N to supply 
the actual argument value. Hence by ‘M (x := N)’ 
is meant the collision-less substitution of N for all 
the occurrences of the variable x in the calling 
procedure M.  

However, Plotkin in [25] pointed out that this 
specification is ambiguous. There are two proce-
durally or operationally non-equivalent ways of 
executing the rule, namely β-reduction ‘by name’ 
and β-reduction ‘by value’. From the operational 
point of view, these two ways differ in the way the 
argument value is being passed for the formal 
parameter x. If by name, then the procedure N is 
executed after its substitution for all the occur-
rences of the variable x in the calling-procedure 
body M (after appropriate renaming of -bound 
variables to prevent collision). If by value, then the 
procedure N is executed first, and only if N does 
not fail to produce an argument value is this value 
substituted for all the occurrences of x in the body 
M. Plotkin (ibid.) put forward a programming lan-
guage and a formal calculus for each calling 
mechanism and then showed how each deter-
mines the other. As a result, he proved that the 

two mechanisms are not operationally equivalent. 
Furthermore, Duží in [3] and [4] logically proved 
that these two ways of executing the conversion 
are not only operationally but also denotationally 
non-equivalent whenever partial functions are 
involved.17 

By validity of the -reduction we mean the fol-
lowing. The rule is valid if and only if both the 
redex (the left-hand side procedure) and the con-
tractum (the right-hand side procedure) are strictly 
equivalent in the sense that under any valuation v 
the two procedures produce the same func-
tion/mapping or are both v-improper, that is, fail to 
produce anything.18 

There are two -conversions that are strictly 
equivalent, namely -conversion by value and 
restricted -conversion by name, which we use in 
our algorithm for TIL deduction system.  

Definition 5 (-conversion by value) Let Y  ; 
x1, D1  1, …, xn, Dn  n, [x1…xn Y]  

(1...n). Then the conversion  

[[x1…xn Y] D1…Dn]   
2[‘Sub [‘Tr D1] ‘x1 … [‘Sub [‘Tr Dn] ‘xn ‘Y]] 

is -reduction by value. The reverse conversion is 
-expansion by value.  

Claim 1. -reduction and -expansion by value 
are valid conversions. In other words, the redex 
and contractum constructions are strictly 
equivalent.19  

 
This rule is applied not only in hyperintensional 
contexts, but also in intensional ones. Consider 
the de re reading of the sentence expressing 
Tom’s intensional attitude 
 

“Tom believes of the Pope that he is wise”. 
 
We can analyse this sentence by applying the 
property of being believed by Tom to be wise to 

                                                   
17 There are two other flaws of -conversion by name that are 

not shared by the conversion by value, to wit ‘loss of ana-
lytic information’ and ineffectiveness. For details, see [9].   

18 As an extreme case the produced function/mapping can be 
nullary, i.e. an atomic object. The produced object can be 
also a lower-order procedure. 

19 For the proof see, for instance, [12]. 
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the holder of papal office, if any. This analysis 
comes down to the construction 
 

wt [he [‘Believewt ‘Tom  
w*t* [‘Wisew*t* he]] ‘Popewt] 

 
Types. he  ; Believe/(): intensional atti-
tude of an individual to a proposition; Tom/; 
Wise/(); Pope/.  
 

This analysis can be validly reduced in this 
way: 

wt [he [‘Believewt ‘Tom  
w*t* [‘Wisew*t* he]] ‘Popewt]  

wt  2[‘Sub [‘Tr ‘Popewt] ‘he  
‘[‘Believewt ‘Tom w*t* [‘Wisew*t* he]]] 

This reduced construction is the literal analysis of 
the sentence “Tom believes of the Pope that he is 
wise”. The anaphoric reference ‘he’ referring to 
the holder of the papal office is resolved by the 
substitution of the Trivialization of this holder (if 
any) for the variable he.  

Note that Double Execution is necessary here. 
According to the rule, we first substitute the ar-
gument value (here ‘Popewt) for the “formal pa-
rameter” (here he). As a result, if the Pope is 
Francsico we obtain the construction  

wt [‘Believewt ‘Tom w*t* [‘Wisewt ‘Francisco]] 

which must be afterwards executed to obtain the 
proposition that Tom believes. If the Pope does 
not exist, then both the substitution and the 
Double execution are v-improper in the sense of 
failing to produce any truth-value. This is as it 
should be, because ‘Pope occurs with the 
supposition de re. Hence, existence of the Pope 
is presupposed here.  

In case the argument of a function is produced 
by Trivialization or by a variable, which are con-
structions that are not v-improper for any valua-
tion v, conversion by name is also strictly equiva-
lent, and can thus be applied.   

Definition 6 (restricted -conversion by name) 
Let Y  ; x1, D1  1,…, xn, Dn  n, [x1…xn Y] 
 (1...n). Furthermore, let D1,…,Dn be atomic 
constructions, i.e. variables distinct from x1,…xn, 
respectively, or Trivializations of i-objects. Then 

the conversion  

[[x1…xn Y] D1…Dn] r Y(D1/x1…Dn/xn)  

where Y(D1/x1…Dn/xn) arises from D by a 
collision-less substitution of D1 for x1, …, Dn for xn, 
is the restricted -reduction by name. The reverse 
conversion is the restricted -expansion by name.  
 
Claim 2. Restricted -reduction and -expansion 
by name are valid conversions. In other words, 
the redex and contractum constructions are strict-
ly equivalent. 
Proof is obvious. 
 

Such a restricted -reduction is often applied 
in case we just technically manipulate with -
bound variables. For instance, the above sen-
tence “The Pope has the property of being be-
lieved by Tom to be wise” should obtain the literal 
analysis as follows.  

 
wt [w1t1 [he [‘Believew1t1 ‘Tom  

w*t* [‘Wisew*t* he]]wt ‘Popewt] 
 
Which is reducible to 
 

wt [he [‘Believewt ‘Tom  
w*t* [‘Wisew*t* he]] ‘Popewt] 

 
Yet, we do not see any reason to differentiate 
between the two analyses, and thus mostly use 
the reduced one. 

6 Conclusion  

In this paper we introduced the system of natural 
deduction adjusted for TIL. We first specified the 
deduction rules applicable in an extensional con-
text that deal with truth-functions. Then the rules 
for general and existential quantifiers have been 
introduced. We described a correct application of 
elimination and introduction rules for quantifiers 
which are applicable both in an extensional and 
intensional context. In other words, the rules that 
quantify over a constituent of a given meaning 
procedure. Furthermore, we specified the rules for 
quantifying into a hyperintensional context that 
make use of the substitution method. Last but not 
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least, we dealt with valid rules of -conversion by 
value and restricted -conversion by name.  

Though there are systems of automatic theo-
rem provers, known today as HOL (see, for in-
stance, [1] and [14]), we need a system of deduc-
tion rules for TIL. The reason is this. HOL provers 
are broadly used in automatic theorem checking 
and applied as interactive proof assistants in 
mathematics. As ‘HOL’ is an acronym for higher-
order logic, the underlying logic is usually a ver-
sion of a simply typed -calculus. This makes it 
possible to operate both in extensional and inten-
sional contexts, where a value of the denoted 
function or the function itself, respectively, is an 
object of predication.   

Yet there is another application that is gaining 
interest, and where HOL systems are not so apt 
as in mathematics, namely natural-language 
processing. There are large amounts of text data 
that we need to analyse and formalize. Not only 
that, we also want to have question-answer sys-
tems which would infer implicit computable 
knowledge from these large explicit knowledge 
bases. To this end not only intensional but rather 
hyperintensional logic is needed, because we 
need to formally analyse natural language in a 
fine-grained way so that the underlying inference 
machine is neither over-inferring (that yields in-
consistencies) nor under-inferring (that causes 
lack of knowledge). We need to properly analyse 
agents’ attitudes like knowing, believing, seeking, 
solving, designing, etc., because attitudinal sen-
tences are part and parcel of our everyday ver-
nacular. And attitudinal sentences, inter alia, call 
for a hyperintensional analysis, because 
substitution of a logically equivalent clause for 
what is believed, known, etc. may fail. TIL is a 
system apt for natural-language processing where 
these goals can be met.   
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