
Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

Inferring knowledge from textual data by natural deduction

Marie Duží, Marek Menšík

VSB-Technical University of Ostrava,
Department of Computer Science

17. Listopadu 15, 70833 Ostrava, Czech Republic

marie.duzi@vsb.cz marek.mensik@vsb.cz

Abstract. In this paper, we introduce the system for
inferring implicit computable knowledge from textual
data by natural deduction. Our background system is
Transparent Intensional Logic (TIL) with its procedural
semantics that assigns abstract procedures to terms of
natural language as their context-invariant meanings.
The input data for our method are produced by the so-
called Normal Translation Algorithm (NTA). The algo-
rithm processes natural-language texts and produces
TIL constructions. In this way we have obtained a large
corpus of TIL meaning procedures. These procedures
are furthermore processed by our algorithms for type
checking and context recognition so that the rules of
natural deduction for inferring computable knowledge
can be afterwards applied.

Keywords. Natural deduction, inference rules, Trans-
parent intensional logic, TIL, -conversion.

1 Introduction

There are large amounts of knowledge in textual
data. Yet it is difficult to obtain just those pieces of
information that one needs. To this end it is nec-
essary to build up systems of natural-language
processing that derive not only explicit knowledge
but also implicit, or rather inferable or computable
knowledge from these text corpuses. In order to
achieve such a goal, we have to combine linguis-
tic, semantic and logical methods.

As Nevěřilová in [23] says “[…] in computa-
tional linguistics, making implicit information ex-
plicit forces syntactic, semantic and pragmatic
modules to interact. Firstly, it is necessary to dis-
cover ‘gaps’ in the text, secondly, the correct
missing entities have to be found, and finally,
those entities can be filled in. For example, miss-
ing entities at the syntactic level are unexpressed
(but obligatory), and such sentence constituents
and the gaps are called ellipses. At the semantic

level, such missing entities are the unfilled se-
mantic roles [24].” Not only that, we also need to
combine linguistic and logical methods. For in-
stance, a logical method for computing the com-
plete meaning of sentences with anaphoric refer-
ences has been presented in [8]. The method is
similar to the one applied in general by Hans
Kamp’s Discourse Representation Theory (DRT).1
‘DRT’ is an umbrella term for a collection of logi-
cal and computational linguistic methods devel-
oped for a dynamic interpretation of natural lan-
guage, where each sentence is interpreted within
a certain discourse, which is a sequence of sen-
tences uttered by a group of speakers. These
methods are mostly based on first-order logics,
and thus only terms referring to individuals (indef-
inite or definite noun phrases) can introduce so-
called discourse referents, which are free varia-
bles that are updated when interpreting the dis-
course. However, Pavel Tichý’s Transparent In-
tensional Logic (TIL, see [26]) makes it possible
to substitute not only individuals, but entities of
any type, like properties of individuals, proposi-
tions and hyperpropositions, relations-in-
intension, and even constructions (i.e., meanings
of antecedent expressions) for anaphoric varia-
bles. Moreover, the thoroughgoing typing of the
universe of TIL makes it possible to determine the
respective type-theoretically appropriate anteced-
ent.

In this paper we introduce a method of deriving
inferable, or computational knowledge from the
explicit textual data by means of the system of
natural deduction adjusted to our background TIL
system. In TIL we assign abstract procedures to
terms of natural language as their context-

1 See, for instance, [17], [18], [22].

Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

invariant meanings. These procedures are rigor-
ously defined as TIL constructions that produce
lower-order objects as their products or in well-
defined cases fail to produce an object by being
improper. The input data for our method are pro-
duced by the so-called Normal Translation Algo-
rithm (NTA) that processes text data and produc-
es TIL constructions as their meanings. In this
way we have obtained a large corpus of TIL
meaning procedures.2

The rest of the paper is organised as follows.
Section 2 introduces the fundamentals of TIL. In
Section 3 we describe the three kinds of context
in which a given natural-language term or rather
its meaning can occur. Section 4 introduces the
rules of natural deduction adjusted to TIL together
with the principles of their correct application with
respect to a given context and type of an entity to
operate on. Section 5 deals with the rules of -
conversion validly applicable in the logic of partial
functions such as TIL. Concluding remarks can be
found in Section 6.

2 Basic notion of TIL

The TIL system will be familiar to those who are
acquainted with Montague system of IL.3 The
most important distinction between TIL and IL is
that TIL comes with procedural rather than model
set-theoretic semantics.4 It means that we assign
to terms of natural language procedures encoded
by these terms as their meanings. These proce-
dures are defined as TIL constructions. For in-
stance, the sentence “the Pope is wise” encodes
the procedure the evaluation of which in any pos-
sible world w and time t consists of these steps.

- Take the Papal office (‘Pope).
- Extensionalise this office with respect to a

world w and time t of evaluation to obtain the
holder of this office, if any (‘Popewt).

- If there is no holder (the office goes vacant),
finish with a truth-value gap.

- Take the property of being wise (‘Wise).

2 For details, see [19] or [20].
3 For details on Montague system see, for instance, [21].
4 A critical survey and comparison of IL and TIL can be

found in [11, §2.4].

- Produce a truth-value T or F according as the
holder of the papal office has the property of
being wise (‘Wisewt) in the world w and time t
of evaluation.

Definition 1 (constructions)
(i) Variables x, y, … are constructions that

construct objects (elements of their respec-
tive ranges) dependently on a valuation v;
they v-construct.

(ii) Where X is an object whatsoever (even a
construction), ‘X is the construction Triviali-
zation that constructs X without any change
of X.

(iii) Let X, Y1,…,Yn be arbitrary constructions.
Then Composition [X Y1…Yn] is the follow-
ing construction. For any v, the Composition
[X Y1…Yn] is v-improper if at least one of the
constructions X, Y1,…,Yn is v-improper, or if
X does not v-construct a function that is de-
fined at the n-tuple of objects v-constructed
by Y1,…,Yn. If X does v-construct such a
function, then [X Y1…Yn] v-constructs the
value of this function at the n-tuple.

(iv) (-) Closure [λx1…xm Y] is the following
construction. Let x1, x2, …, xm be pair-wise
distinct variables and Y a construction. Then
[λx1…xm Y] v-constructs the function f that
takes any members B1, …, Bm of the respec-
tive ranges of the variables x1, …, xm into
the object (if any) that is v(B1/x1,…,Bm/xm)-
constructed by Y, where v(B1/x1,…,Bm/xm) is
like v except for assigning B1 to x1, …,
Bm to xm.

(v) Where X is an object whatsoever, 1X is the
construction Single Execution that v-
constructs what X v-constructs. Thus, if X is
a v-improper construction or not a construc-
tion as all, 1X is v-improper.

(vi) Where X is an object whatsoever, 2X is the
construction Double Execution. If X is not it-
self a construction, or if X does not v-
construct a construction, or if X v-constructs
a v-improper construction, then 2X is v-
improper. Otherwise 2X v-constructs what is
v-constructed by the construction v-
constructed by X.

(vii) Nothing is a construction, unless it so fol-
lows from (i) through (vi).

Computación y Sistemas Vol. 15 No. 2, 2011 pp
ISSN 1405-5546

Comments. Constituents of constructions are
their sub-constructions, rather than the objects on
which constructions operate. Thus, we need
some simple constructions as ‘suppliers’ of or
referents to the objects. Trivialization and varia-
bles are such simple suppliers. TIL standard nota-
tion for Trivialization of an object X is ‘0X’. Yet,
due to easier typing, here we use the notation ‘X.

With constructions of constructions, construc-
tions of functions, functions, and functional values
in our stratified ontology, we need to keep track of
the traffic between multiple logical strata. The
ramified type hierarchy does just that. The type of
first-order objects includes all non-procedural
objects. Therefore, it includes not only the stand-
ard objects of individuals, truth-values, sets, map-
pings, etc., but also functions defined on possible
worlds (i.e., the intensions typical of possible-
world semantics). The type of second-order ob-
jects includes constructions of first-order objects
and functions with such constructions in their
domain or range. The type of third-order objects
includes constructions of first- and/or second-
order objects and functions with such construc-
tions in their domain or range. And so on, ad in-
finitum.

Definition 2 (ramified hierarchy of types). Let B
be a base, where a base is a collection of pair-
wise disjoint, non-empty sets. Then:

T1 (types of order 1).
i) Every member of B is an elementary type of

order 1 over B.
ii) Let α, β1, ..., βm (m > 0) be types of order 1

over B. Then the collection (α β1 ... βm) of all
m-ary partial mappings from β1 ... βm into
α is a functional type of order 1 over B.

iii) Nothing is a type of order 1 over B unless it so
follows from (i) and (ii).

Cn (constructions of order n)
i) Let x be a variable ranging over a type of

order n. Then x is a construction of order n
over B.

ii) Let X be a member of a type of order n. Then
‘X, 1X, 2X are constructions of order n over B.

iii) Let X, X1, ..., Xm (m > 0) be constructions of
order n over B. Then [X X1... Xm] is a con-
struction of order n over B.

iv) Let x1, ..., xm, X (m > 0) be constructions of

order n over B. Then [x1...xm X] is a construc-
tion of order n over B.

v) Nothing is a construction of order n over B
unless it so follows from Cn (i)-(iv).

Tn+1 (types of order n+1) Let n be the collection of
all constructions of order n over B. Then
i) n and every type of order n are types of order

n+1.
ii) If m > 0 and , 1, ..., m are types of order

n+1 over B, then (1 ... m) (see T1 ii)) is a
type of order n+1 over B.

iii) Nothing is a type of order n+1 over B unless it
so follows from (i) and (ii).

For the purposes of natural-language analysis,
we are assuming the following base of ground
types:

ο: the set of truth-values {T, F};
ι: the set of individuals (the universe of dis-

course);
τ: the set of real numbers (doubling as discrete

times);
ω: the set of logically possible worlds (the logical

space).

We model sets and relations by their charac-
teristic functions. Thus, for instance, () is the
type of a set of individuals, while () is the type
of a relation-in-extension between individuals.
Empirical expressions denote empirical conditions
that may or may not be satisfied at the particular
world/time pair of evaluation. We model these
empirical conditions as possible-world-semantic
(PWS-) intensions. PWS-intensions are entities of
type (): mappings from possible worlds to an
arbitrary type . The type is frequently the type
of the chronology of -objects, i.e., a mapping of
type (). Thus -intensions are frequently func-
tions of type (()), abbreviated as ‘’. Exten-
sional entities are entities of a type where
() for any type . Where w ranges over and t
over , the following logical form essentially char-
acterizes the logical syntax of empirical language:

wt […w….t…].

Examples of frequently used PWS intensions

are: propositions of type , properties of individ-
uals of type (), binary relations-in-intension

Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

between individuals of type (), individual of-
fices (or roles) of type , intensional atti-
tudes/(); hyperintensional attitudes/(n).

Logical objects like truth-functions and quanti-
fiers are extensional: (conjunction), (disjunc-
tion) and (implication) are of type (), and
(negation) of type (). Quantifiers , are
type-theoretically polymorphic functions of type
(()), for an arbitrary type , defined as follows.

Definition 3 (quantifiers). The universal quantifi-
er is a polymorphic total function that associ-
ates a class A of -elements with T if A contains
all elements of the type , otherwise with F. The
existential quantifier is a polymorphic total
function that associates a class A of -elements
with T if A is a non-empty class, otherwise with F.

Below all type indications will be provided out-

side the formulae in order not to clutter the nota-
tion. The outermost brackets of the Closure will
be omitted whenever no confusion arises. Fur-
thermore, ‘X/’ means that an object X is (a
member) of type . ‘X v ’ means that X is
typed to v-construct an object of type , if any.
We write ‘X ’ if a valuation v does not matter.
Throughout, it holds that the variables w and
t . If C then the frequently used Com-
position [[C w] t], which is the intensional descent
(a.k.a. extensionalization) of the -intension v-
constructed by C, will be encoded as ‘Cwt’. For
instance, if Student/() is the property of being
a student, the procedure of extensionalizing this
property to obtain its population in a given world w
and time t is the Composition

[[‘Student w] t], or ‘Studentwt,
for short.

Whenever no confusion arises, we use tradi-
tional infix notation without Trivialisation for truth-
functions and the identity relation, to make the
terms denoting constructions easier to read.
Thus, for instance, instead of

wt [‘ [‘= [‘+ ‘2 ‘5] ‘7] [[[‘Know w] t] ‘Tilman it]]
we usually write

wt [[[‘+ ‘2 ‘5] = ‘7] [‘Knowwt ‘Tilman it]].

3 Three kinds of context

TIL operates with a fundamental dichotomy be-
tween procedures, i.e. constructions, and their
products, i.e. functions.5 This dichotomy corre-
sponds to two basic ways in which a construction
can occur within another construction, namely
displayed, or executed. If the construction is dis-
played then the construction itself is an object of
predication; we say that it occurs hyperintension-
ally. If the construction is executed, then it is a
constituent of another construction, and an addi-
tional distinction can be found at this level. The
constituent presenting a function may occur either
intensionally (de dicto) or extensionally (de re). If
intensionally, then the whole function is an object
of predication; if extensionally, then a functional
value is an object of predication. Both distinctions
are instrumental in selecting a construction or
else what the meaning construction produces,
which is either a function or a functional value, as
the functional argument of a function v-
constructed within a superconstruction.

For an example of the contrast between dis-
played and executed procedures, consider the
mathematical equation sin(x) = 0. If Tilman is
solving this equation then Tilman is related to the
very meaning of “sin(x) = 0” rather than the set of
multiples of the number . Tilman wants to exe-
cute the procedure expressed by “sin(x) = 0” in
order to find out which set of real numbers
matches the equation. Hence in “Tilman is solving
the equation sin(x) = 0” the meaning of “sin(x) =
0”, i.e. the Closure x [[‘Sin x] = ‘0] is displayed.
This very Closure is an object of predication here.
On the other hand, if we claim that the solution of
the equation sin(x) = 0 is the set {…, –2, –, 0, ,
2, …} the meaning of “sin(x) = 0” is executed to
produce this set. Yet the constituent meaning of
“sin(x) = 0” occurs intensionally in the meaning of
“The solution of the equation sin(x) = 0 is the set
{…, –2, –, 0, , 2, …}”. The whole set (a char-
acteristic function) is the object of predication. An
example of an extensional occurrence of the

5 Formally speaking, extensional entities like individuals,

numbers and truth-values are extreme forms of 0-ary
functions, whereas sets are identified with their character-
istic functions.

Computación y Sistemas Vol. 15 No. 2, 2011 pp
ISSN 1405-5546

meaning of ‘sin’ would be provided by the simple
sentence “sin() = 0”. Here the value of the func-
tion sine at the argument is the object of which it
is predicated that it is equal to zero.

The same differentiation applies also to the
meanings of empirical terms. For an example of
the contrast between intensional and extensional
occurrence, consider predication. Predication, in
TIL, is an instance of functional application: a
characteristic function is applied to a suitable
argument in order to obtain a truth-value, accord-
ing as the argument is an element of the set. In
the case of predication of empirical properties, the
relevant set is obtained by extensionalizing the
property. In the context “The site of Troy is locat-
ed in Asia Minor” we want the functional value of
the office the site of Troy to occur either as an
argument for the set of entities located in Asia
Minor or as an argument for the binary relation (-
in-intension) located in whose second argument is
Asia Minor. Hence the meaning of ‘the site of
Troy’ occurs extensionally here. On the other
hand, when Schliemann sought the site of Troy,
he was not related to any value of the denoted
function. Rather he was related to the whole office
aiming to determine its value, if any. As a result,
the meaning of ‘the site of Troy’ occurs intension-
ally in “Schliemann sought the site of Troy”.

Similarly, the meaning of the term ‘the temper-
ature in Prague’ occurs extensionally in “The
temperature in Prague is 130C”, while in “The
temperature in Prague is rising” the same mean-
ing of this definite description occurs intensionally.
To be rising is a property of the whole function
rather than of any value. Finally, in “a knows (hy-
perintensionally) that the temperature in Prague is
130C” the same meaning occurs hyperintensional-
ly. When knowing something hyperintensionally,
we are related to the very meaning of the embed-
ded clause rather than the produced function (a
possible-world proposition in this case).

The two distinctions, between displayed and
executed and intensional/extensional, allow us to
distinguish between three sorts of context.
Though the basic ideas of distinguishing these
contexts are simple, rigorous definition is rather
complicated. Hence, here is just a brief summary
of them:6

6 The rigorous definition can be found in [11, §2.6].

 hyperintensional context: one or more con-
structions occur displayed (though a construc-
tion at least one order higher need to be exe-
cuted in order to produce the displayed con-
structions)

 intensional context: one or more constructions
are executed in order to produce one or more
functions (moreover, the executed construc-
tions do not occur within another hyperinten-
sional context)

 extensional context: one or more construc-
tions are executed in order to produce one or
more particular values of one or more func-
tions at one or more given arguments (moreo-
ver, the executed constructions do not occur
within another intensional or hyperintensional
context).

The basic idea underlying the above trifurca-

tion is that the same set of logical rules apply to
all three kinds of context, but they operate on
different complements: constructions, functions,
and functional values, respectively. Thus, in TIL
we have no oblique contexts in which the funda-
mental logical rules were not valid. The rules are
all valid for constituent constructions; only that to
be validly applied, the rules must respect the type
of an entity to operate on. Furthermore, whenever
we operate inside a non-extensional context, we
apply our substitution method in order not to draw
a construction occurring in a lower context into a
higher one, which would be incorrect.

4 Natural deduction in TIL

The rules we introduce here follow the general
pattern of the rules of natural deduction that are
introduced in the sequent form. We start with the
rules dealing with truth-functions, because these
rules are applicable in extensional contexts.
When applying the rules for quantifiers, we have
to take into account a context in which a given
construction occurs and the type of an entity that
is quantified over. Furthermore, when dealing with
empirical propositions, the first steps of each
proof are -elimination (-E) and the last ones -
introduction (-I) of the left-most wt, because

Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

the whole proof sequence must be truth-
preserving in any world w and time t.

Here is a simple example.

John is sick or went to the theatre.
If he is sick then he calls a doctor.

But he doesn’t call a doctor.

John went to the theatre.

To analyse the premises and the conclusion, we
apply our method of analysis.7 As always, we start
with type-theoretical analysis of the objects that
receive mention here.

Types. John/; Sick/(); Went/(); Theatre/;
Call(); Doctor/.

Synthesis.8

wt [[‘Sickwt ‘John] [‘Wentwt ‘John ‘Theatre]]
wt [[‘Sickwt ‘John] [‘Callwt ‘John ‘Doctor]]

wt [[‘Callwt ‘John ‘Doctor]]

wt [‘Wentwt ‘John ‘Theatre]]

The last step of our method is checking whether a
given construction is composed in a type-
theoretically coherent way. For the sake of sim-
plicity, here we demonstrate the type-checking
only for the Closure wt [‘Sickwt ‘John].

 [‘Sick w] (())
 [[‘Sick w] t] ()
 ‘John
 [[[‘Sick w] t] ‘John]
 t [[[‘Sick w] t] ‘John] ()
 wt [[[‘Sick w] t] ‘John] (())

The resulting type is the type of a proposition,

(()), or for short, as it should be.

The proof of our argument is as follows.

7 For details see [11, pp. 77-79].
8 For the sake of simplicity, we ignore the past tense here and

analyse ‘the theatre’ as denoting an individual, which is a
simplification, yet irrelevant for our exposition.

1) wt [[‘Sickwt ‘John] [‘Wentwt ‘John ‘Theatre]]
2) wt [[‘Sickwt ‘John] [‘Callwt ‘John ‘Doctor]]
3) wt [[‘Callwt ‘John ‘Doctor]]
4) [[‘Sickwt ‘John] [‘Wentwt ‘John ‘Theatre]] 1, -E
5) [[‘Sickwt ‘John] [‘Callwt ‘John ‘Doctor]] 2, -E
6) [‘Callwt ‘John ‘Doctor] 3, -E
7) [‘Sickwt ‘John] 5,6 MTT
8) [‘Wentwt ‘John ‘Theatre] 4,7 DS
9) wt [‘Wentwt ‘John ‘Theatre] 8, -I

In what follows we usually omit the initial and
final rules for elimination and introduction of wt.

Firstly, we introduce the rules of propositional
logic dealing with truth-functions, adjusted to TIL.
Though in our example we apply the rules in their
linear form, to demonstrate the proofs from as-
sumptions, we present the rules in the sequent
form.

4.1 The rules for truth-functions

Let A, B, C . X and Y represent lists of
constructions (assumptions).

1. Rule of Assumption
 A ⊢ A

2. Conjunction Introduction (-I)
X ⊢ A

Y ⊢ B

X, Y ⊢ A B

3. Conjunction Elimination (-E)
X ⊢ A B X ⊢ A B

X ⊢ A X ⊢ B

4. Modus Ponendo Ponens (MPP)
X ⊢ A B

Y ⊢ A

X, Y ⊢ B

5. Conditional Proof (CP)
X, A ⊢ B

X ⊢ A B

Computación y Sistemas Vol. 15 No. 2, 2011 pp
ISSN 1405-5546

6. Disjunction Introduction (-I)
X ⊢ A X ⊢ A

X ⊢ A B X ⊢ B A

7. Disjunction Elimination (-E)
X ⊢ A B

Y, A ⊢ C
Z, B ⊢ C

X,Y,Z ⊢ C

8. Double negation Introduction (DNI)
X ⊢ A

X ⊢ A

9. Double negation Elimination (DNE)
X ⊢ A

X ⊢ A

10. Modus Tollendo Tollens (MTT)
X ⊢ A B

Y ⊢ B

X, Y ⊢ A

11. Disjunctive Syllogism (DS)
X ⊢ A B X ⊢ A B

Y ⊢ A Y ⊢ B

X,Y ⊢ B X,Y ⊢ A

12. Reductio Ad Absurdum (RAA)
X, A ⊢ B B

X ⊢ A

Similar to propositional logic, predicate logic
has its natural deduction proof system. Needless
to say, the rules dealing with truth-functions are
the same as those in propositional logic. Addi-
tionally, there are rules for quantifiers (general
and existential). Again, these additional rules

are of two kinds, namely introduction and elimina-
tion rules.

However, we are building the deduction sys-
tem for TIL, and since TIL is a hyperintensional -
calculus of partial functions, there are additional
complications. First, quantifiers in TIL (see Def. 3)
are not special symbols; rather, they are functions
applicable to classes of objects. Furthermore, the
rules dealing with quantifiers, to be validly ap-
plied, must respect the context in which a given
construction occurs and the type of an entity to be
quantified over. Another serious problem that we
have to deal with is the problem of partiality. TIL is
a logic of partial functions and partiality, as we all
know too well, brings about technical complica-
tion. This concerns in particular the existential
quantifiers, as we are going to demonstrate be-
low.

4.2 Rules for general quantifiers

4.2.1 General quantifier Elimination (-E)

The rule (-E) for elimination of a general quanti-
fier in classical predicate logic is non-problematic.

X ⊢ x φ

X ⊢ φ [t/x]

where φ is a formula and the term t is substituta-

ble for the variable x in φ.
In an ordinary vernacular we would say “what

holds for everything holds also for something”,
which is no doubt true. Is it? What about if there is
no ‘something’? In other words, if the term t is not
referring to anything? Sure, in classical predicate
logic it is not possible, because it is a logic of total
functions. Yet TIL is a logic of partial functions
and we have to take this issue into account. We
must work with partial functions when processing
natural language, because in natural language
there are non-referring terms like ‘the King of
France’. And the method of domain-restriction
applied in mathematics or computer science is not
applicable here, because we would face the prob-
lem of a non-recursive domain explosion. We
cannot recursively define in which worlds w and

Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

times t the King of France exists. It is a matter of
empirical investigation. To adduce a simple ex-
ample, consider this argument.

All politicians are wise.

The King of Germany is a politician.

The King of Germany is wise.

If both the premises were true, the conclusion

would have to be true as well. Hence, the argu-
ment is valid.9 But the argument is not sound.
Even if the first premise were true, the second
premise denotes a proposition that is neither true
nor false, because there is no King of Germany.
Hence, there is no individual at hand to ascribe
the property of being or not being a politician.

However, we can prove that the argument is
valid. Here is how. As always, first typing:10

/(()); Politician/(); Wise/(); Germany/;
King-of/(); [‘King-ofwt ‘Germany] ; x,y .

9 The argument is valid, provided the second premise is read

extensionally, de re. On its de re reading, the property of
being a politician is ascribed to the holder of the office of
King of Germany, if any. If there is no such holder, the
sentence denotes a proposition with truth-value gap.
However, the sentence “The King of Germany is a politi-
cian” is ambiguous. There is another reading, namely in-
tensional (de dicto). On this reading the sentence conveys
a piece of information that the property of being a politi-
cian is a requisite of the royal office, where Requi-
site/(()). Necessarily, i.e. in all w and t, if an indi-
vidual a happens to be the King of Germany then a is a
politician. The requisite relation obtains between inten-
sions (here a property and an office) necessarily and inde-
pendently of a contingent occupancy of the office. On this
reading the argument is not valid, because then the second
premise is necessarily true, i.e. true even in those w,t-
pairs where there is no King of Germany, but the conclu-
sion has a truth-value gap in such w,t-pairs.

10 For the sake of simplicity, here we apply the ‘unrestricted’
general quantifier . The literal analysis of the sentence
should, however, be composed by applying the restricted
quantifier All/((())()) that is the function that associ-
ates a given set S of individuals with the set of all super-
sets of S. The literal analysis would then be
wt [[‘All ‘Politianwt] ‘Wisewt].

1) ’x [[‘Politicianwt x] [‘Wisewt x]]]
2) x [[‘Politicianwt x] [‘Wisewt x]] y] 1) -E
3) [[‘Politicianwt y] [‘Wisewt y]] 2) -r
4) [‘Politicianwt [‘King-ofwt ‘Germany]]
5) [[‘Politicianwt [‘King-ofwt ‘Germany]]

[‘Wisewt [‘King-ofwt ‘Germany]]]
 3) [‘King-ofwt ‘Germany]/y

6) [‘Wisewt [‘King-ofwt ‘Germany]] 4, 5, MPP

Comment. The substitution of the Composition

[‘King-ofwt ‘Germany] for y in the step (5) is truth-
preserving; provided the Composition (4) v-
constructs T, which is assumed, it is not v-
improper (see Def. 1, iii). On this assumption, the
Composition [‘King-ofwt ‘Germany] is not v-
improper either.

Now you may ask. Is this new piece of infor-
mation that we obtained of any value? Of course,
it is not. In order it be valuable we must obtain
another piece of knowledge, namely whether the
King of Germany exists. In other words, we must
find out whether such an argument is also sound.
To this end we must empirically explore the state
of affairs in Germany to find out whether the King
of Germany exists.

Another issue we encounter here is this.
Though the argument is valid, the corresponding
conditional sentence

“If all politicians are wise and
the King of Germany is a politician,
then the King of Germany is wise”

is not analytically true. In other words, the seman-
tic variant of the theorem of deduction does not
hold here. Due to the non-existence of the King of
Germany the sentence does not denote a propo-
sition true in all worlds w and times t. Rather, it
denotes the proposition with a truth-value gap in
the actual world and time of evaluation. Yet this
problem does not have to bother us too much,
because analytically true sentences convey no
empirical information.11 Our goal is deriving infer-
able knowledge from textual data, i.e., deriving
consequences of assumptions provided by these
data. When doing so, we assume that proposi-
tions encoded by the assumptions are true.

11 Yet, such sentences convey analytical information. For the

difference between analytical and empirical information,
see [2].

Computación y Sistemas Vol. 15 No. 2, 2011 pp
ISSN 1405-5546

Back to the rule of general quantifier elimina-

tion. As the above example illustrates, the rule
must be adjusted for the TIL system. Here is how.

Let x,y , B(x) : the variable x is free in

B; [x B] (), /(()), C . Then general
quantifier elimination in full detail consists of these
steps:

[‘x B]
[[x B] y] -E
B(y) r (see below)
B(C/y) substitution

where B(C/y) arises from B by a collision-less,
valid substitution of the construction C for all oc-
currences of the variable y in B.

For the sake of simplicity, we will write this rule
in the shortened form:

X ⊢ [‘x B]

 (-E)
X ⊢ B(C/x)

4.2.2 General quantifier Introduction (-I)

Dual to the general quantifier elimination is the

rule for general quantifier introduction, -I. This
rule is not as simple as the rule -E. Since we
can think of a general quantifier as a generaliza-
tion of conjunction, recall the rule -I:

X ⊢ A

Y ⊢ B

X, Y ⊢ A B

This suggests that to introduce a quantifier ,
i.e., to apply this function to the set produced by
x B to obtain the Composition [‘x B], we must
prove that the condition specified by the construc-
tion B is valid for all possible values of the varia-
ble x, i.e. for all the elements of the range of x.
This seems impossible. Yet, consider the proofs
in mathematics. For instance, suppose we want to
prove the theorem

“Every even natural number is the sum of
two odd natural numbers

whose difference is at most 2.”

Phrasing the proof informally, it comes down to

this. Let n be any even natural number. Then n is
of the form 2k, for some k ≥ 1.

If k is odd, then we can write n = k + k, and the
two k’s satisfy the theorem.

If k is even, we can write n = (k-1) + (k+1), and
the numbers k-1 and k+1 satisfy the theorem.

What is important here is the fact that by using
the variable n we consider an arbitrary even natu-
ral number, and show that this number is the sum
of two odd natural numbers whose difference is at
most 2. That allows us to conclude that the condi-
tion specified by the theorem holds for every natu-
ral number n, since there is nothing special about
n. It does not appear in the statement of the theo-
rem or anywhere else outside the proof.

Hence, to prove a construction of the form
[‘x B], we can prove B with some arbitrary but
“fresh” free variable y substituted for x.
That is, we want to prove the construction B(y/x).
By “fresh” we mean that the variable has never
been used before in the proof. Furthermore, it will
not be used once B(y/x) has been proven. It is
“local” to this part of the proof. The rule -I thus
comes down in this form:

 X ⊢ B(y/x)

 (-I)
X ⊢ [‘x B]

In an ordinary vernacular we usually do not

prove mathematical theorems. Yet, we can
demonstrate similar principles of a valid applica-
tion of the generalization rule by proving an ana-
lytically true sentence.

Mathematical sentences are analytical in this
sense. When evaluating their truth-values, possi-
ble worlds and times do not matter as points of
evaluation. Among the sentences involving empir-
ical expressions there are also analytically true
sentences. They denote the proposition TRUE that
takes the truth-value value T in all possible worlds
and times. Consider sentences like “No bachelor
is married”, “All whales are mammals” that con-
tain the empirical predicates ‘is a bachelor’, ‘is

Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

married’, ‘is a whale’, ‘is a mammal’. At no
world/time are the properties being a bachelor
and being married co-instantiated by the same
individual. And in every world/time is the property
of being a mammal a requisite of the property of
being a whale. This means that necessarily (in
every world/time pair) if an individual a happens
to be a whale then a is a mammal.

Now consider, e.g., the first sentence. Its literal
analysis comes down to the Closure

wt [[‘No ‘Bachelorwt] ‘Marriedwt]

Types. No/((())()): the restricted quantifier,
i.e. the function that associates a given set S of
individuals with the set of all those sets of individ-
uals that are disjoint with S; Bachelor, Mar-
ried/().

This analysis does not reveal that the proposi-
tion produced by the Closure takes the value T at
all w, t-pairs. The analysis itself does not make it
possible to prove it. We need to refine the analy-
sis. To this end we make use of the fact that the
property of being a bachelor is defined as the
property of being an unmarried man, so the sen-
tence is analytically, ex definitione, true. As soon
as we replace the simple predicate ‘is a bachelor’
by this definition, the truth of the sentence is obvi-
ous: “No unmarried man is married”. Still, to prove
it we need a refined analysis that makes use of
the definition of the restricted quantifier No. It is a
function that operates on sets of individuals and
returns T iff the sets are disjoint. By using the
variables m, n (), x , we obtain the defin-
ing equivalences

‘No = m n [‘x [[m x] [n x]]],

[[‘No m] n] = [‘x [[m x] [n x]]].

The property of being a bachelor can be de-
fined by composing the constructions of the nega-
tion and of the properties Married and Man as
follows:

‘Bachelor = wt x [[‘Marriedwt x] [‘Manwt x]].

Now by substituting the respective definitions
(and applying -reductions) we obtain:

[[‘No ‘Bachelorwt] ‘Marriedwt] =

[‘x [[‘Bachelorwt x] [‘Marriedwt x]]] =

[‘x [[‘Marriedwt x] [‘Manwt x] [‘Marriedwt x]]]

Since this last construction obviously and
provably v-constructs T for any valuation v of the
variables w and t, we can generalize to

[‘w ‘t [‘x
[[‘Marriedwt x] [‘Manwt x] [‘Marriedwt x]]]].

We have proven that the sentence “No bache-
lor is married” denotes the proposition TRUE.

When deriving new pieces of information from
text data we make use of corpuses like Wordnet,
where we can find such definitions of properties
and their requisites as above. In our example, the
property of being unmarried is a requisite of the
property of being a bachelor. Necessarily, if an
individual happens to be a bachelor then it is not
married. Hence, having a piece of knowledge that

Tom is a bachelor

together with the definition of the property of be-
ing a bachelor obtained from, e.g., Wordnet, we
can easily infer that

Tom is not married.

It should be obvious now how to do it. We are
to prove the argument:

wt [‘Bachelorwt ‘Tom]

wt [‘Marriedwt ‘Tom]

Omitting the steps of -E and -I, we have:

1. [‘Bachelorwt ‘Tom]
2. [x [[‘Marriedwt x] [‘Manwt x]] ‘Tom] 1, subst
3. [[‘Marriedwt ‘Tom] [‘Manwt ‘Tom]] 2, -r
4. [‘Marriedwt ‘Tom] 3, -E

In step 3 we applied the rule of -reduction,

the definition of which is coming below. Yet to
complete this section we are going to introduce
the rules dealing with existential quantifiers.

4.3 Rules for existential quantifiers

In classical logic the existential quantifier is dual
to the general quantifier . Thus, it might seem
that whereas the rule - for introduction is un-
problematic, the difficulties would arise with the
rule -E for elimination of the existential quantifier.

Computación y Sistemas Vol. 15 No. 2, 2011 pp
ISSN 1405-5546

This is true in logic of total functions. However, as
explained above, TIL is the logic of partial func-
tions and we must be careful also with the -I rule
not to derive that there is a value of a function at
an argument when there is none.

As in classical logic, the rules for existential
quantifier function, are parallel to those
for disjunction ().

Let x,y , B , [x B] (), /(()),
[‘x B] , C .

4.3.1 Existential quantifier Elimination (-E)

X ⊢ [‘x B]

Y, B(y) ⊢ C

 (-E)
X, Y ⊢ C

where the variable y does not occur free in C.

Comment. Recall the rule for eliminating disjunc-
tion; it is rather complicated.

X ⊢ A B

Y, A ⊢ C
Z, B ⊢ C

X,Y,Z ⊢ C

Roughly, it says this; consider both the dis-
juncts A and B, and if you manage to prove an-
other construction C taking first A as an assump-
tion and then B, you proved C from A B. The
rule is well justified. Proving C from A is equiva-
lent to proving A C, and proving C from B is
equivalent to proving B C. Hence, we have
proved (A C) (B C), which is equivalent to
(A B) C. By modus ponendo ponens, we
proved C.

This suggests that to eliminate an existential
quantification [‘x B] and derive another con-
struction C, we should be able to conclude C
starting from B with any ‘value’ substituted for x in
B. We do this by substituting a ‘fresh’ free variable
y that does not occur free in C (or anywhere out-
side the proof sequence).

Example.
There are smart politicians.

There is an individual x that is smart.

Proof.
1. wt [‘x [[‘Smartwt x] [‘Policianwt x]]]
2. [‘x [[‘Smartwt x] [‘Policianwt x]]] 1, -E
3. [[‘Smartwt y] [‘Policianwt y]] 2, -E
4. [‘Smartwt y] 3, -E
5. [‘x [‘Smartwt x]] 4, -I
6. wt [‘x [‘Smartwt x]] 5, -I

Notes. In the analysis (step 1) we make use of the
fact that ‘smart’ denotes here an intersective mod-
ifier of a property, which is a function that takes a
property as an argument returning another prop-
erty as its value, i.e. an entity of type (()()).
The modifier Smart is applied to the property of
being a politician here. For intersective modifiers
the rules of left and right subsectivity hold. In oth-
er words, if somebody is a smart politician then
he/she is smart and a politician. For details, see
for instance [5] and [15].

In the step 5 we applied the -I rule coming
below. In the logic of partial functions this rule is
not as simple as it might seem. To illustrate, con-
sider this argument.

Tilman is seeking an abominable snowman.
Tilman is seeking something.

The argument is valid, for sure. Yet the issue is
what type of an entity is that something. It cannot
be an individual, for then we would prove the ex-
istence of yeti, which would turn logic to magic.
Tilman is related to the property of being an
abominable snowman the instances of which the
seeker wants to find. Hence, the relation of seek-
ing establishes here an intensional context rather
than an extensional one. The analysis of the
premise and conclusion makes it explicit.

wt [‘Seekwt ‘Tilman [‘Abominable ‘Snowman]]

wt [‘p [‘Seekwt ‘Tilman p]]

Types. Seek/(()): the relation-in-intension
of an individual to a property the instances of

Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

which the seeker wants to find;12 Tilman/;
Abominable/(()()): a modifier of a property;
Snowman/(); /((())): the function that
assigns T to a non-empty class of properties,
otherwise F; p ().

Proof.
1. wt [‘Seekwt ‘Tilman [‘Abominable ‘Snowman]]
2. [‘Seekwt ‘Tilman [‘Abominable ‘Snowman]] 1, -E
3. p [‘Seekwt ‘Tilman p] [‘Abominable ‘Snowman]] 2, -Ex
4. [‘Empty p [‘Seekwt ‘Tilman p]] 3, Def.1 (iii)
5. [‘p [‘Seekwt ‘Tilman p] 4, Def. 3 of
6. wt [‘p [‘Seekwt ‘Tilman p] 5, -I

Comments. The proof steps (3) and (4) are nec-
essary, because we work with partial function.
Hence to make sure that the sequence of proof
steps is truth-preserving, before applying the exis-
tential quantifier , we have to prove that the ar-
gument class (here of properties) is not empty
(Empty/((()))).

Yet, we can generalize this proof for any
existential quantification over a constituent
construction. Here is how.

4.3.2 Existential quantification over a constitu-
ent.

First, recall that a constituent of B is a con-

struction that does not occur displayed in B. Now
let t be a constituent sub-construction of the
construction B, the other types as above. Since B
produces a truth-value and t is its constituent, B is
of the form of a Composition […t…]. Then on the
assumption that B v-constructs T, the constituent t
cannot be v-improper and the Composition
[[x B] t] v-constructs T as well by Def. 1 of Com-
position. Thus, the set of -elements produced by
x B is non-empty and the application of quanti-
fier is truth-preserving.

As a result, we obtain the classical -I rule.

12 Here we consider intensional seeking that relates the seeker

to an intension. If the seeker’s activity were sensitive to the
way a given intension is conceptualized, we would have to
analyze hyperintensional seeking of type (n). For de-

tails on such objectual attitudes, see, for instance, [10].

Existential quantifier Introduction (-I)

X ⊢ B(t/x)

 (-I)
X ⊢ [‘x B]

The type of an entity we abstract over is de-

termined by a proper typing. Here are a few ex-
amples.

The Pope is wise
Somebody is wise.

wt [‘Wisewt ‘Popewt] ‘Popewt

wt [‘x [’Wisewt x]] x

Comment. Wise is of type (): the property
of individuals. Hence the construction ‘Pope of the
papal office occurs extensionally here. The value
of the papal office, i.e. the individual that occupies
the office is an object of predication.

Tilman wants to become the Pope
Tilman wants to become something

wt [‘Wantwt ‘Tilman ‘Pope] ‘Pope

wt [‘y [‘Wantwt ‘Tilman y]] y

Comment. Want(-to-become) is of type

(): the relation of an individual to an office
the individual wants to occupy. Hence the
construction ‘Pope of the papal office occurs
intensionally here; the whole office/function is an
object of predication.

Tilman calculates Cotg()
Tilman calculates something

wt [‘Calcwt ‘Tilman ‘[‘Cotg ‘]] ‘[‘Cotg ‘] 1

wt [‘c [‘Calcwt ‘Tilman c]] c 1

Comment. Calc(ulate) is of type (1): the

relation of an individual to a construction that the
individual is executing. Thus, the Composition
[‘Cotg ‘] occurs hyperintensionally; the whole

Computación y Sistemas Vol. 15 No. 2, 2011 pp
ISSN 1405-5546

construction is displayed by Trivialization and
becomes an object of predication.

Additional types. Tilman/; Cotg/(); /.

As a result, application of this rule is classical,

and our type system makes it possible to quantify
over an entity of a proper type, even of a higher-
order. However, we can deduce more than that.
First, if a construction occurs extensionally, or,
using medieval terminology, de re, two principles
de re are valid.

4.3.3 Two principles de re

The two principles are existential pre-

supposition and substitutivity of v-congruent
constructions.

To illustrate, consider again the premise

The Pope is wise.

Since the meaning of ‘the Pope’, here

Trivialization ‘Pope, occurs de re, the existence of
the Pope is a presupposition of the sentence. In
other words, in order that the sentence have any
truth-value, the office must be occupied. If it is not
so, there is no individual to whom we might
ascribe the property of being wise; the sentence
cannot be true. But it cannot be false either,
because then the sentence that the Pope is not
wise would have to be true, which is not the case
as well, because likewise there is no individual at
hand to ascribe the property of not being wise
to.13 Thus we have:

The Pope is/is not wise
The Pope exists.

wt ()[‘Wisewt ‘Popewt] ‘Popewt

wt [‘xistwt ’Pope]

Comment. Exist/() is the property of an
individual office, namely the property of being

13 Survival under negation is the most important test for a de

re occurrence. Yet, there are two kinds of negation, to wit,
external (wide-scope) and internal (narrow-scope) nega-
tion. While the latter is presupposition preserving, the
former is presupposition denying. For details, see [6].

occupied at a given world/time pair of evaluation.
It is defined as follows. Let f , x . Then

‘Exist = wt f [‘x [x = fwt]]; hence
[‘Existwt f] = [‘x [x = fwt]]

Substituting this definition into the conclusion of
the above argument, we obtain

wt [‘x [x = ‘Popewt]]

The other principle de re is illustrated by this
argument.

The Pope is wise.
Francisco is the Pope.
Francisco is wise.

If the terms ‘Pope’ and ‘Francisco’ are co-
referring, i.e. the constructions ‘Popewt, ‘Francisco
v-congruent, then these constructions are mutual-
ly substitutable in an extensional context (de re).

The two principles de re are not valid in case
of an intensional or hyperintensional occurrence
of a construction, of course. If Tilman wants to
become the Pope, the existence of the Pope can-
not be derived; it is neither presupposed nor en-
tailed. Tilman may want to become the Pope just
in such a state-of-affairs when the papal office
goes vacant. And, if Tilman wants to become the
Pope and the Pope is Francisco, we cannot de-
rive that Tilman wants to become Francisco,
which would be a nonsense.

Yet, even in case of an intensional or hyperin-
tensional context, we can derive more. We can
quantify into such a context. Quantifying into an
intensional context is driven by the same -I rule
as above, because constructions occurring inten-
isonally are also constituents of a given super-
construction. To illustrate, consider this argument.

Tilman is seeking an abominable snowman.
Tilman is seeking something abominable.

Again, we must not derive that there is an indi-

vidual that is abominable and it is sought by Til-
man. And we do not derive it, because proper
typing blocks such an invalid inference. Abomina-
ble is an entity of type (() ()): the modifier

Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

applicable to a property of individuals rather than
individuals.14 Hence, there is a property q ()
such that Tilman is seeking an abominable q,
namely the property of being a snowman. Proper
analysis and typing make it explicit:

wt [‘Seekwt ‘Tilman [‘Abominable ‘Snowman]]

wt [‘q [‘Seekwt ‘Tilman [‘Abominable q]]]

This goes smoothly. However, when quantify-

ing into a hyperintensional context, we contend
with technical complications that arise from the
fact that all constructions occurring in a hyperin-
tensional context are displayed rather than exe-
cuted. And, as explained above, a displayed con-
struction does not produce an object to operate
on. Rather, the construction itself is an object to
operate on. Constructions are displayed by Trivi-
alization, which “closes” the construction much
closer than -abstraction. In particular, variables
occurring in a hyperintensional context are bound
by Trivialization and thus not amenable to logical
operations.

4.3.4 Existential quantification into a hyper-
intensional context; substitution method

To illustrate, consider again the assumption

that

Tilman calculates cotangent of .

We must not derive that there is a number x

such that Tilman calculates x, because there is no
such number. The function cotangent is not de-
fined at . And even if it were defined, it makes no
sense to calculate a number without any mathe-
matical procedure to be executed. But we do not
derive it, because the above -I rule is applicable
only to constituents of a given construction, while
the Composition [‘Cotg ‘] is displayed in

wt [‘Calcwt ‘Tilman ‘[‘Cotg ‘]]

14 For details on property modifiers see, for instance, [5] and

[16].

Yet, it might seem unproblematic to derive that
there is a number (to wit the number) the cotan-
gent of which Tilman calculates, because this
argument is obviously valid.

Tilman calculates cotangent of
Tilman calculates cotangent of something

But careless application of the -I rule similar to
generalization into an intensional or extensional
context is not valid:

wt [‘Calcwt ‘Tilman ‘[‘Cotg ‘]] ‘[‘Cotg ‘] 1

wt [‘x [‘Calcwt ‘Tilman ‘[‘Cotg x]]] x

The reason is this. Trivialisation ‘[‘Cot x] con-

structs the Composition [‘Cot x] independently of
any valuation v. Thus, from the fact that at a w,
t-pair of evaluation it is true that Tilman calcu-
lates [‘Cot ‘], we cannot validly infer that Tilman
calculates [‘Cot x], because Tilman calculates the
cotangent of rather than of x. Put differently, the
class of numbers constructed by

x [‘Calcwt ‘Tilman ‘[‘Cot x]]
will be non-empty, according as Tilman calculates
[‘Cot x] and regardless of Tilman’s calculating
[‘Cot ‘]. The problem just described of x being
unable to catch the occurrence of x inside the
Trivialized construction is TIL’s way of phrasing
the standard objection to quantifying-in. Yet in TIL
we have a way out (or perhaps rather, a way in).
In order to validly infer the conclusion, we need to
preprocess the Composition [‘Cot x] and substi-
tute the Trivialization of for x. Only then can the
conclusion be inferred. To this end we developed
a substitution method. This method deploys the
polymorphic functions Subn/(nnnn) and
Tr/(n) that operate on constructions in the
manner stipulated by the following definition.

Definition 4 (Subn, Tr) Let C1/n+1 n, C2/n+1
 n, C3/n+1 n v-construct constructions D1,
D2, D3, respectively. Then the Composition

[‘Subn C1 C2 C3]
v-constructs the construction D that results from
D3 by collision-less substitution of D1 for all occur-
rences of D2 in D3. The function Tr/(n) returns
as its value the Trivialization of its -argument.

Computación y Sistemas Vol. 15 No. 2, 2011 pp
ISSN 1405-5546

Example. Let variable y v . Then [‘Tr y] v(/y)-
constructs ‘. The Composition

[‘Sub1 [‘Tr y] ‘x ‘[‘Cot x]]
v(/y)-constructs the Composition [‘Cot ‘].

Note that there is a substantial difference be-

tween the construction Trivialization and the func-
tion Tr. Whereas ‘y constructs just the variable y
regardless of valuation, y being bound by Triviali-
zation in ‘y, [‘Tr y] v-constructs the Trivialization
of the object v-constructed by y. Hence y occurs
free in [‘Tr y].

Below we omit the superscripts n and and

write simply ‘Sub’ and ‘Tr’ whenever no confusion
arises.

It should be clear now how to validly derive
that Tilman calculates cotangent of something if
Tilman calculates the cotangent of . The valid
argument, in full TIL notation, is this:

wt [‘Calcwt ‘Tilman ‘[‘Cot ‘]]

wt [‘x [‘Calcwt ‘Tilman [‘Sub [‘Tr x] ‘y ‘[‘Cot y]]]]

Proof. Let Empty/(()) be the class of empty
sets of real numbers. Then for any world-time pair
w, t the following steps are truth-preserving:

1) [‘Calcwt ‘Tilman ‘[‘Cot ‘]]
2) [‘Calcwt ‘Tilman [‘Sub [‘Tr ‘] ‘y ‘[‘Cot y]]] 1, def.4
3) [x [‘Calcwt ‘Tilman [‘Sub [‘Tr x] ‘y ‘[‘Cot y]]] ‘]

 2, -expansion
4) [‘Empty

x [‘Calcwt ‘Tilman [‘Sub [‘Tr x] ‘y ‘[‘Cot y]]]]
 3, Def. 1 (iii)

5) [‘x [‘Calcwt ‘Tilman [‘Sub [‘Tr x] ‘y ‘[‘Cot y]]]]
 4, Def. 3 of

Similarly, we can derive that there is a function

f () such that Tilman calculates the value of f
at . Here is how.

wt [‘Calcwt ‘Tilman ‘[‘Cot ‘]]

wt [‘f [‘Calcwt ‘Tilman [‘Sub [‘Tr f] ‘g ‘[‘g ‘]]]]

Here is another example of valid quantifying
into a hyperintensional context.

Tilman believes that Pluto is a planet
Tilman believes that something is a planet

Types. Believe/(n): a hyperintensional
attitude, i.e., relation-in-intension of an individual
to a hyperproposition,15 i.e., the construction of a
proposition; Pluto/; Planet/(); x, y .

wt [‘Believewt ‘Tilman ‘[wt [‘Planetwt ‘Pluto]]]

wt [‘x [‘Believewt ‘Tilman [‘Sub [‘Tr x] ‘y

‘[wt [‘Planetwt y]]]]]

Note that the above arguments are valid,
because we quantified over objects produced by
Trivialization, namely ‘’Cotg, ‘Pluto, and these
constructions are not v-improper for any valuation
v. Trivialization just displays the object that we
then quantify over, and the function Tr applied to
this object (v-produced by a variable) returns as
its value just the Trivialization of the object.

In this way we fully respect an agent’s per-
spective, and our analyses are literal. This means
that semantically simple terms like ‘planet’, ‘Pluto’,
‘cotangent’ and ‘’ are analysed by their Trivializa-
tions. Indeed, the sentences do not convey any
more information about the meaning of these
terms. Strictly respecting agent’s perspective is
important, because hyperintensional contexts
mostly stem from agents’ attitudes that are sensi-
tive to the way a given object is conceptualized.

To give a simple example, assume that
instead of Trivialization displaying Pluto we
conceptualise the dwarf planet Pluto by a definite

15 In general, attitudinal sentences are ambiguous. They come

in two variants, intensional and hyperintensional, which
roughly correspond to implicit and explicit knowledge.
We usually vote for a hyperintensional analysis, because
on this approach the problem of logical/mathematical om-
niscience does not arise, while it is inevitable in case of an
intensional analysis. On the other hand, hyperintensional
attitudes are very restrictive as for an agent’s inferential
capacities. To solve this problem, we developed a method
of computing inferable knowledge of an agent, provided it
is possible to specify agent’s inferential capacities, i.e. the
set of rules the agent masters. For details, see [13].

Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

description ‘the first Kuiper belt object that has
been discovered’. Then Tilman can believe that
Pluto is a planet without believing that the first
Kuiper belt object that has been discovered is a
planet. Sure, one might object that this definite
description does not have to refer to any object,
because it might happen that no object was dis-
covered in Kuiper belt so that we obviously can-
not existentially generalize. This is true, but we
cannot even derive that there is an individual role
of type such that Tilman believes that its occu-
pant is a planet. This would change Tilman’s per-
spective, because we would substitute Trivializa-
tion of the role instead of the compose construc-
tion which is the meaning of that definite descrip-
tion.

Another objection against the substitution of
the definite description ‘the first Kuiper belt object
that has been discovered’ for ‘Pluto’ in a
hyperintensional context is this. Whereas the
definite description denotes an individual office
that can be occupied by at most one individual,
Pluto is the proper name of a definite individual.
Hence, the description and the name are not
analytically equivalent, and cannot be mutually
substituted even in an intensional context. This is
also true. Hyperintensional contexts have been
characterized just by the fact that the substitution
of analytically equivalent terms fails here.

To illustrate, suppose that the Pope denotes
exactly the same office as Bishop of Rome. Still,
Tilman can (hyperintensionally) believe that the
Pope is wise without his believing that Bishop of
Rome is wise, because the meanings of ‘the
Pope’ and ‘bishop of Rome’ are different
constructions that are not procedurally
isomorphic. Thus, ‘the Pope’ and ‘Bishop of
Rome’ are not synonymous terms and cannot be
mutually substituted here, because in a hyper-
intensional contexts only synonymous terms with
procedurally isomorphic meanings can be
mutually substituted.16

16 The relation of procedural isomorphism has been intro-

duced in TIL to deal with the problem of the structural
isomorphism of meanings, hence of co-
hyperintensionality, hence of synonymy. It has been
demonstrated that the individuation of procedures as-
signed to expressions as their structured meaning cannot
be decided in virtue of a universal criterion applicable to

Hence, existential quantifying into hyperinten-
sional contexts is valid only if we quantify over
objects presented by Trivialization. Our substitu-
tion method does precisely this. Generalizing, we
formulate the rule for quantifying into a
hyperintensional context.

The rule of existential quantifying into a
hyperintensional context (-HI)

Let C , and let D be a subconstruction of C

that is displayed in C ; furthermore let ‘a be a sub-
construction of D, a/, x,y . Then the rule -HI
is schematically defined as follows:

X ⊢ C(…’D(y/‘a)…)

 (-HI)
X ⊢ [‘x C(… [‘Sub [‘Tr x] ‘y ‘D(y)]…)]

Applications of the substitution method intro-

duced in this section are much broader. The
method is not applied only for existential quantify-
ing into hyperintensional context. It is used to pre-
process a procedural meaning of a sentence with
anaphorical references, i.e. to substitute the
meaning of an anaphorically referred terms for
anaphoric variables (see [8]), and in particular as
the correct way of applying a function to an argu-
ment, which is specified by -conversion rules.

every language. Yet, the positive result is that we have
specified a set of rigorously defined criteria of fine-
grained procedural individuation, partially ordered ac-
cording to the degree of their being permissive with re-
spect to synonymy. It turned out that the formalization of
procedures in TIL in terms of constructions may become a
bit too fine-grained from the point of view of the seman-
tics of natural language. Yet the same problem must be
met in any formalization that makes use of -bound vari-
ables, i.e. in any -calculus, because in an ordinary ver-
nacular we do not use -bound variables. For this reason,
we proposed a criterion that is the most suitable for an or-
dinary, non-professional language. It is the criterion that
declares that procedural isomorphism of TIL construc-
tions obtains whenever the differences between construc-
tions consist just in technical manipulations with -bound
variables. Thus, the rule of co-hyperintensionality (i.e. the
rule for substitution of synonymous terms in hyperinten-
sional contexts) has been formulated only conditionally.
For details, see [7].

Computación y Sistemas Vol. 15 No. 2, 2011 pp
ISSN 1405-5546

5 The rules for -conversion

Since TIL is a partial, typed -calculus, besides
classical rules of natural deduction introduced
above, we also need the so-callled -conversion
rules which specify how to validly apply a function
produced by a -Closure to an argument
produced by the ‘called’ subprocedure, i.e., how
to compute a functional value. These rules come
again in two forms, namely -reduction and -
expansion, sometimes also called -expansion.
The problem is this. In the logic of partial
functions such as TIL, careless -conversion ‘by
name’ is not an equivalent transformation. This
issue has been delt with in many papers. For
recent ones see, for instance, [7], [12], [10]. Thus,
here we just briefly summarise.

The rule of β-reduction is a fundamental com-
putational rule of -calculi and functional pro-
gramming languages. In -calculi the rule is usu-
ally specified thus:

[[x M] N] |– M (x := N)

where M is a procedure with a free variable x (the
‘formal parameter’ of the procedure M), and this
procedure ‘calls’ another procedure N to supply
the actual argument value. Hence by ‘M (x := N)’
is meant the collision-less substitution of N for all
the occurrences of the variable x in the calling
procedure M.

However, Plotkin in [25] pointed out that this
specification is ambiguous. There are two proce-
durally or operationally non-equivalent ways of
executing the rule, namely β-reduction ‘by name’
and β-reduction ‘by value’. From the operational
point of view, these two ways differ in the way the
argument value is being passed for the formal
parameter x. If by name, then the procedure N is
executed after its substitution for all the occur-
rences of the variable x in the calling-procedure
body M (after appropriate renaming of -bound
variables to prevent collision). If by value, then the
procedure N is executed first, and only if N does
not fail to produce an argument value is this value
substituted for all the occurrences of x in the body
M. Plotkin (ibid.) put forward a programming lan-
guage and a formal calculus for each calling
mechanism and then showed how each deter-
mines the other. As a result, he proved that the

two mechanisms are not operationally equivalent.
Furthermore, Duží in [3] and [4] logically proved
that these two ways of executing the conversion
are not only operationally but also denotationally
non-equivalent whenever partial functions are
involved.17

By validity of the -reduction we mean the fol-
lowing. The rule is valid if and only if both the
redex (the left-hand side procedure) and the con-
tractum (the right-hand side procedure) are strictly
equivalent in the sense that under any valuation v
the two procedures produce the same func-
tion/mapping or are both v-improper, that is, fail to
produce anything.18

There are two -conversions that are strictly
equivalent, namely -conversion by value and
restricted -conversion by name, which we use in
our algorithm for TIL deduction system.

Definition 5 (-conversion by value) Let Y ;
x1, D1 1, …, xn, Dn n, [x1…xn Y]

(1...n). Then the conversion

[[x1…xn Y] D1…Dn]
2[‘Sub [‘Tr D1] ‘x1 … [‘Sub [‘Tr Dn] ‘xn ‘Y]]

is -reduction by value. The reverse conversion is
-expansion by value.

Claim 1. -reduction and -expansion by value
are valid conversions. In other words, the redex
and contractum constructions are strictly
equivalent.19

This rule is applied not only in hyperintensional
contexts, but also in intensional ones. Consider
the de re reading of the sentence expressing
Tom’s intensional attitude

“Tom believes of the Pope that he is wise”.

We can analyse this sentence by applying the
property of being believed by Tom to be wise to

17 There are two other flaws of -conversion by name that are

not shared by the conversion by value, to wit ‘loss of ana-
lytic information’ and ineffectiveness. For details, see [9].

18 As an extreme case the produced function/mapping can be
nullary, i.e. an atomic object. The produced object can be
also a lower-order procedure.

19 For the proof see, for instance, [12].

Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

the holder of papal office, if any. This analysis
comes down to the construction

wt [he [‘Believewt ‘Tom
w*t* [‘Wisew*t* he]] ‘Popewt]

Types. he ; Believe/(): intensional atti-
tude of an individual to a proposition; Tom/;
Wise/(); Pope/.

This analysis can be validly reduced in this
way:

wt [he [‘Believewt ‘Tom
w*t* [‘Wisew*t* he]] ‘Popewt]

wt 2[‘Sub [‘Tr ‘Popewt] ‘he
‘[‘Believewt ‘Tom w*t* [‘Wisew*t* he]]]

This reduced construction is the literal analysis of
the sentence “Tom believes of the Pope that he is
wise”. The anaphoric reference ‘he’ referring to
the holder of the papal office is resolved by the
substitution of the Trivialization of this holder (if
any) for the variable he.

Note that Double Execution is necessary here.
According to the rule, we first substitute the ar-
gument value (here ‘Popewt) for the “formal pa-
rameter” (here he). As a result, if the Pope is
Francsico we obtain the construction

wt [‘Believewt ‘Tom w*t* [‘Wisewt ‘Francisco]]

which must be afterwards executed to obtain the
proposition that Tom believes. If the Pope does
not exist, then both the substitution and the
Double execution are v-improper in the sense of
failing to produce any truth-value. This is as it
should be, because ‘Pope occurs with the
supposition de re. Hence, existence of the Pope
is presupposed here.

In case the argument of a function is produced
by Trivialization or by a variable, which are con-
structions that are not v-improper for any valua-
tion v, conversion by name is also strictly equiva-
lent, and can thus be applied.

Definition 6 (restricted -conversion by name)
Let Y ; x1, D1 1,…, xn, Dn n, [x1…xn Y]
 (1...n). Furthermore, let D1,…,Dn be atomic
constructions, i.e. variables distinct from x1,…xn,
respectively, or Trivializations of i-objects. Then

the conversion

[[x1…xn Y] D1…Dn] r Y(D1/x1…Dn/xn)

where Y(D1/x1…Dn/xn) arises from D by a
collision-less substitution of D1 for x1, …, Dn for xn,
is the restricted -reduction by name. The reverse
conversion is the restricted -expansion by name.

Claim 2. Restricted -reduction and -expansion
by name are valid conversions. In other words,
the redex and contractum constructions are strict-
ly equivalent.
Proof is obvious.

Such a restricted -reduction is often applied
in case we just technically manipulate with -
bound variables. For instance, the above sen-
tence “The Pope has the property of being be-
lieved by Tom to be wise” should obtain the literal
analysis as follows.

wt [w1t1 [he [‘Believew1t1 ‘Tom

w*t* [‘Wisew*t* he]]wt ‘Popewt]

Which is reducible to

wt [he [‘Believewt ‘Tom
w*t* [‘Wisew*t* he]] ‘Popewt]

Yet, we do not see any reason to differentiate
between the two analyses, and thus mostly use
the reduced one.

6 Conclusion

In this paper we introduced the system of natural
deduction adjusted for TIL. We first specified the
deduction rules applicable in an extensional con-
text that deal with truth-functions. Then the rules
for general and existential quantifiers have been
introduced. We described a correct application of
elimination and introduction rules for quantifiers
which are applicable both in an extensional and
intensional context. In other words, the rules that
quantify over a constituent of a given meaning
procedure. Furthermore, we specified the rules for
quantifying into a hyperintensional context that
make use of the substitution method. Last but not

Computación y Sistemas Vol. 15 No. 2, 2011 pp
ISSN 1405-5546

least, we dealt with valid rules of -conversion by
value and restricted -conversion by name.

Though there are systems of automatic theo-
rem provers, known today as HOL (see, for in-
stance, [1] and [14]), we need a system of deduc-
tion rules for TIL. The reason is this. HOL provers
are broadly used in automatic theorem checking
and applied as interactive proof assistants in
mathematics. As ‘HOL’ is an acronym for higher-
order logic, the underlying logic is usually a ver-
sion of a simply typed -calculus. This makes it
possible to operate both in extensional and inten-
sional contexts, where a value of the denoted
function or the function itself, respectively, is an
object of predication.

Yet there is another application that is gaining
interest, and where HOL systems are not so apt
as in mathematics, namely natural-language
processing. There are large amounts of text data
that we need to analyse and formalize. Not only
that, we also want to have question-answer sys-
tems which would infer implicit computable
knowledge from these large explicit knowledge
bases. To this end not only intensional but rather
hyperintensional logic is needed, because we
need to formally analyse natural language in a
fine-grained way so that the underlying inference
machine is neither over-inferring (that yields in-
consistencies) nor under-inferring (that causes
lack of knowledge). We need to properly analyse
agents’ attitudes like knowing, believing, seeking,
solving, designing, etc., because attitudinal sen-
tences are part and parcel of our everyday ver-
nacular. And attitudinal sentences, inter alia, call
for a hyperintensional analysis, because
substitution of a logically equivalent clause for
what is believed, known, etc. may fail. TIL is a
system apt for natural-language processing where
these goals can be met.

Acknowledgements

The research reported here in was supported by
the Grant Agency of the Czech Republic, project
No. GA18-23891S "Hyperintensional Reasoning
over Natural Language Texts", and by the internal
grant agency of VSB-TU Ostrava, project SGS
No. SP2018/172, “Application of Formal Methods
in Knowledge Modelling and Software Engineer-

ing”. Versions of this paper were presented at the
19th International Conference on Computation-
al Linguistics and Intelligent Text Processing,
CICLing 2018, Vietnam.

References

1. Benzmüller, Ch. (2015). Higher-Order
Automated Theorem Provers. In All about
Proofs, Proof for All, David Delahaye, Bruno
Woltzenlogel Paleo (eds.), Mathematical
Logic and Foundations, College Publications,
pp. 171-214.
doi: 10.2143/LEA.239.0.3237153

2. Duží, M. (2010). The paradox of inference
and the non-triviality of analytic information.
Journal of Philosophical Logic, vol. 39, No. 5,
pp. 473-510.

3. Duží, M. (2012). Extensional logic of
hyperintensions. Lecture Notes in Computer
Science, vol. 7260, pp. 268-290, doi:
10.1007/978-3-642-28279-9-19

4. Duží, M. (2014). Structural isomorphism of
meaning and synonymy. Computación y
Sistemas, vol. 18, No. 3, pp. 439–453, doi:
10.13053/CyS-18-3-2018.

5. Duží, M. (2017a). Property modifiers and
intensional essentialism. Computación y
Sistemas. Vol. 21, No. 4, 2018, pp. 601–613,
doi: 10.13053/CyS-21-4-2811.

6. Duží, M. (2017b). Presuppositions and two
kinds of negation. Logique & Analyse, vol.
239, pp. 245-263, the special issue on How to
Say ‘Yes’ or ‘No’.

7. Duží, M. (2017c). If structured propositions
are logical procedures then how are
procedures individuated? Synthese special
issue on the Unity of propositions. doi:
10.1007/s11229-017-1595-5

8. Duží, M. (2018). Logic of Dynamic Discourse;
Anaphora Resolution. Frontiers in Artificial
Intelligence and Applications, vol. 301:
Information Modelling and Knowledge Bases
XXIX, pp. 263-279, Amsterdam: IOS Press,
doi: 10.3233/978-1-61499-834-1-263

Computación y Sistemas Vol. XX No. X, 20XX pp XX–XX
ISSN 1405-5546

9. Duží, M., Jespersen, B. (2013). Procedural

isomorphism, analytic information, and -
conversion by value, Logic Journal of the
IGPL, Oxford, vol. 21, No. 2, pp. 291-308, doi:
10.1093/jigpal/jzs044.

10. Duží, M., Jespersen, B. (2015). Transparent
Quantification into Hyperintensional objectual
attitudes. Synthese, vol. 192, No. 3, pp. 635-
677. doi: 10.1007/s11229-014-0578-z

11. Duží, M., Jespersen, B., Materna, P. (2010).
Procedural Semantics for Hyperintensional
Logic; Foundations and Applications of
Transparent Intensional Logic. Dordrecht:
Springer.

12. Duží, M., Kosterec, M. (2017). A valid rule of

-conversion for the logic of partial functions.
Organon F, vol. 24, No 1, pp. 10-36.

13. Duží, M., Menšík, M. (2017). Logic of
Inferable Knowledge. In Jaakkola, H.,
Thalheim, B., Kiyoki, Y. and Yoshida, N.
(eds.), Frontiers in Artificial Intelligence and
Applications, Amsterdam: IOS Press, vol.
292, pp. 405-425.

14. Gordon, M. J. C., Melhan T. F. (1993) (eds).
Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge
University Press.

15. Jespersen, B. (2016): Left subsectivity: how
to infer that a round peg is round. Dialectica,
vol. 70, No. 4, pp. 531-547.

16. Jespersen, B., Carrara, M., Duží, M. (2017):
Iterated privation and positive predication.
Journal of Applied Logic, Vol. 25, pp. S48–
S71. https://doi.org/10.1016/j.jal.2017.12.004.

17. Kamp, H. (1981). A theory of truth and se-
mantic representation. In Formal Methods in
the Study of Language, Part 1, eds. J.
Groenendijk, T. Janssen & M. Stokhof, pp.
277-322. Amsterdam: Mathematical Center.

18. Kamp, H., Reyle, U. (1993). From Discourse
to Logic. Introduction to Model-Theoretic Se-
mantics of Natural Language, Formal Logic
and Discourse Representation Theory. Dor-
drecht: Kluwer.

19. Kovář, V. Baisa, V, Jakubíček, M. (2016).
Sketch Engine for Bilingual Lexicography.

International Journal of Lexicography, vol. 29,
No. 3, pp. 339-352.

20. Medveď, M., Šulganová, T. Horák, A.
(2017). Multilinguality Adaptations of Natural
Language Logical Analyzer. In Proceedings of
the 11th Workshop on Recent Advances in
Slavonic Natural Language Processing,
RASLAN 2017, Brno: Tribun EU, pp. 51-58.

21. Montague, R. (1974): English as a formal
language. In B. Visentini et al. (eds.), Lin-
guaggi nella societa e nella tecnica. Milan, pp.
189-224, 1970. Reprinted in R.H. Thomasson
(ed.), Formal Philosophy. New Haven, Lon-
don: Yale University Press, 1974.

22. Muskens, R. (1996). Combining Montague
Semantics and Discourse Representation.
Linguistic and Philosophy, vol. 19, pp. 143-
186.

23. Nevěřilová, Z. (2014). Paraphrase and Tex-
tual Entailment Generation in Czech.
Computación y Sistemas, vol. 18, No. 3, pp.
555-568.

24. Palmer, M. S., Dahl, D. A., Schiffman, R. J.,
Hirschman, L., Linebarger, M., & Dowding,
J. (1986). Recovering implicit information. In
Proceedings of the 24th Annual Meeting on
Association for Computational Linguistics,
ACL '86. Association for Computational
Linguistics, Stroudsburg, PA, USA, 10-19.
doi:10.3115/981131.981135.

25. Plotkin, G.D. (1975). ‘Call-by-name, call-by-
value and the -calculus’, Theoretical Com-
puter Science, vol. 1, pp. 125-159.

26. Tichý, P. (1988). The Foundations of Frege’s
Logic. de Gruyter.

Article received on 21/11/2011; accepted 21/11/2012.

