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Důkazové kalkuly
Kalkul Hilbertova typu
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Formal systems, Proof calculi 
A proof calculus (of a theory) is given by:
A. a language
B. a set of axioms
C. a set of deduction rules
ad A. The definition of a language of the 

system consists of:
an alphabet (a non-empty set of symbols), and
a grammar (defines in an inductive way a set of 
well-formed formulas - WFF) 
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Hilbert-like calculus.
Language: restricted FOPL
Alphabet: 
1. logical symbols: 

(countable set of) individual variables x, y, z, …
connectives ¬, ⊃
quantifiers ∀

2. special symbols (of arity n)
predicate symbols Pn, Qn, Rn, …
functional symbols fn, gn, hn, …
constants a, b, c,    – functional symbols of arity 0

3. auxiliary symbols (, ), [, ], …
Grammar:
1. terms

each constant and each variable is an atomic term
if t1, …, tn are terms, fn a functional symbol, then fn(t1, …, tn) is a (functional) term

2. atomic formulas
if t1, …, tn are terms, Pn predicate symbol, then Pn(t1, …, tn) is an atomic (well-formed) 
formula

3. composed formulas
Let A, B be well-formed formulas. Then ¬A, (A⊃B), are well-formed formulas.
Let A be a well-formed formula, x a variable. Then ∀xA is a well-formed formula.

4. Nothing is a WFF unless it so follows from 1.-3.
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Hilbert calculus
Ad B. The set of axioms is a chosen subset of the set of 

WFF.
The set of axioms has to be decidable: axiom 
schemes:

1. A ⊃ (B ⊃ A)
2. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
3. (¬B ⊃ ¬A) ⊃ (A ⊃ B)
4. ∀x A(x) ⊃ A(x/t) Term t substitutable for x in A
5. (∀x [A ⊃ B(x)]) ⊃ (A ⊃ ∀x B(x)), x is not free in A
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Hilbert calculus
Ad C. The deduction rules are of a form: 

A1,…,Am |– B1,…,Bm
enable us to prove theorems (provable 
formulas) of the calculus. We say that each Bi is 
derived (inferred) from the set of assumptions 
A1,…,Am.
Rule schemas:
MP:  A, A ⊃ B |– B (modus ponens)
G: A |– ∀x A (generalization)
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Hilbert calculus
Notes:
1. A, B are not formulas, but meta-symbols denoting any formula. 

Each axiom schema denotes an infinite class of formulas of a 
given form. If axioms were specified by concrete formulas, like 

1. p ⊃ (q ⊃ p)
2. (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))
3. (¬q ⊃ ¬p) ⊃ (p ⊃ q)

we would have to extend the set of rules with the rule of 
substitution:
Substituting in a proved formula for each propositional logic 
symbol another formula, then the obtained formula is proved as 
well.
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Hilbert calculus
2. The axiomatic system defined in this way works only 

with the symbols of connectives ¬, ⊃, and quantifier 
∀. Other symbols of the other connectives and 
existential quantifier can be introduced as 
abbreviations ex definicione:

A ∧ B  =df ¬(A ⊃ ¬B)
A ∨ B  =df (¬A ⊃ B)
A ≡ B =df ((A ⊃ B) ∧ (B ⊃ A))
∃xA =df ¬∀x ¬A 

The symbols ∧, ∨, ≡ and ∃ do not belong to the 
alphabet of the language of the calculus.

3. In Hilbert calculus we do not use the indirect proof. 
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Hilbert calculus
4. Hilbert calculus defined in this way is sound (semantically 

consistent). 
a) All the axioms are logically valid formulas. 
b) The modus ponens rule is truth-preserving.

The only problem – as you can easily see – is the 
generalisation rule. 
This rule is obviously not truth preserving: 
formula P(x) ⊃ ∀xP(x) is not logically valid. However, this rule is 
tautology preserving:
If the formula P(x) at the left-hand side is logically valid, then 
∀xA(x) is logically valid as well. 
Since the axioms of the calculus are logically valid, the rule is 
correct. 
After all, this is a common way of proving in mathematics. To 
prove that something holds for all the triangles, we prove that for 
any triangle. 



11/29/2006 Hilbertův kalkul 9

A sound calculus: 
if |− A (provable) then |= A (True)

WFF

|– A
Theorems

Axioms

|= A
LVF
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Proof in a calculus
A proof of a formula A (from logical axioms of the 
given calculus) is a sequence of formulas (proof 
steps) B1,…, Bn such that:
A = Bn (the proved formula A is the last step)
each Bi (i=1,…,n) is either 

an axiom or
Bi is derived from the previous Bj (j=1,…,i-1) using a 
deduction rule of the calculus.

A formula A is provable by the calculus, denoted 
|– A, if there is a proof of A in the calculus. A provable 
formula is called a theorem.
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Hilbert calculus

Note that any axiom is a theorem as well. Its 
proof is a trivial one step proof. 
To make the proof more comprehensive, you 
can use in the proof sequence also 
previously proved formulas (theorems).
Therefore, we will first prove the rules of 
natural deduction, transforming thus Hilbert 
Calculus into the natural deduction system.
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A Proof from Assumptions
A (direct) proof of a formula A from assumptions 

A1,…,Am is a sequence of formulas (proof steps) 
B1,…Bn such that:
A = Bn (the proved formula A is the last step)
each Bi (i=1,…,n) is either 

an axiom, or
an assumption Ak (1 ≤ k ≤ m), or
Bi is derived from the previous Bj (j=1,…,i-1) using a rule of 
the calculus.

A formula A is provable from  A1, …, Am, denoted 
A1,…,Am |– A, if there is a proof of A from A1,…,Am. 
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Examples of proofs (sl. 4)

Proof of a formula schema A ⊃ A:
1. (A ⊃ ((A ⊃ A) ⊃ A)) ⊃ ((A ⊃ (A ⊃ A)) ⊃ (A ⊃ A))

axiom A2: B/A ⊃ A, C/A
2. A ⊃ ((A ⊃ A) ⊃ A)

axiom A1: B/A ⊃ A
3. (A ⊃ (A ⊃ A)) ⊃ (A ⊃ A) MP:2,1
4. A ⊃ (A ⊃ A) axiom A1: B/A
5. A ⊃ A MP:4,3 Q.E.D.

Hence: |– A ⊃ A .
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Examples of proofs
Proof of: A ⊃ B, B ⊃ C |− A ⊃ C

(transitivity of implication TI):
1. A ⊃ B assumption
2. B ⊃ C assumption
3. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) axiom A2
4. (B ⊃ C) ⊃ (A ⊃ (B ⊃ C)) axiom A1 

A/(B ⊃ C), B/A
5. A ⊃ (B ⊃ C) MP:2,4
6. (A ⊃ B) ⊃ (A ⊃ C) MP:5,3
7. A ⊃ C MP:1,6 Q.E.D.
Hence: A ⊃ B, B ⊃ C |– A ⊃ C .
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Examples of proofs
|– A(x/t) ⊃ ∃xA(x)

(the ND rule – existential generalisation)
Proof:
1. ∀x ¬A(x) ⊃ ¬A(x/t) axiom A4
2. ¬¬∀x ¬A(x) ⊃ ∀x ¬A(x) theorem of type ¬¬C ⊃ C 

(see below)
3. ¬¬∀x ¬A(x) ⊃ ¬A(x/t) C ⊃ D, D ⊃ E |– C ⊃ E: 2, 1  TI
4. ¬∀x ¬A(x) = ∃xA(x) Intr. ∃ acc. (by definition)
5. ¬∃xA(x) ⊃ ¬A(x/t) substitution: 4 into 3 
6. [¬∃xA(x) ⊃ ¬A(x/t)] ⊃ [A(x/t) ⊃ ∃xA(x)] axiom A3
7. A(x/t) ⊃ ∃xA(x) MP: 5, 6 Q.E.D.
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Examples of proofs

A ⊃ B(x) |– A ⊃ ∀xB(x) (x is not free in A)
Proof:

1. A ⊃ B(x) assumption
2. ∀x[A ⊃ B(x)] Generalisation:1
3. ∀x[A ⊃ B(x)] ⊃ [A ⊃ ∀xB(x)] axiom A5
4. A ⊃ ∀xB(x) MP: 2,3 Q.E.D.
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The Theorem of Deduction
Let A be a closed formula, B any formula. Then:
A1, A2,...,Ak |– A ⊃ B if and only if
A1, A2,...,Ak, A |– B.

Remark: The statement 
a) if |– A ⊃ B,  then A |– B

is valid universally, not only for A being a closed formula (the proof is 
obvious – modus ponens). 
On the other hand, the other statement 

b) If A |– B, then |– A ⊃ B 
is not valid for an open formula A (with at least one free variable).
Example: Let A = A(x), B = ∀xA(x).
Then A(x) |– ∀xA(x) is valid according to the generalisation rule.
But the formula A(x) ⊃ ∀xA(x) is generally not logically valid, and 
therefore not provable in a sound calculus. 
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The Theorem of Deduction
Proof (we will prove the Deduction Theorem only for 
the propositional logic):

1. → Let A1, A2,...,Ak |– A ⊃ B.
Then there is a sequence B1, B2,...,Bn, which is the 
proof of A ⊃ B from assumptions A1,A2,...,Ak. 
The proof of B from A1, A2,...,Ak, A is then the 
sequence of formulas B1, B2,...,Bn, A, B, where 
Bn = A ⊃ B and B is the result of applying modus 
ponens to formulas Bn and A.



11/29/2006 Hilbertův kalkul 19

The Theorem of Deduction
2. ← Let A1, A2,...,Ak, A |– B.

Then there is a sequence of formulas C1,C2,...,Cr = B, which is the proof of B from A1,A2,...,Ak, A.
We will prove by induction that the formula A ⊃ Ci (for all i = 1, 2,...,r) is provable from A1, A2,...,Ak. 
Then also A ⊃ Cr will be proved.

a) Base of the induction: If the length of the proof is = 1, then there are possibilities:
1. C1 is an assumption Ai, or axiom, then:
2. C1 ⊃ (A ⊃ C1) axiom A1
3. A ⊃ C1 MP: 1,2 
Or, In the third case C1 = A, and we are to prove A ⊃ A (see example 1).
b) Induction step: we prove that on the assumption of A ⊃ Cn being proved for n = 1, 2, ..., i-1 the formula 

A ⊃ Cn can be proved also for n = i. 
For Ci there are four cases: 
1. Ci -is an assumption of Ai, 
2. Ci is an axiom, 
3. Ci is the formula A, 
4. Ci is an immediate consequence of the formulas Cj and Ck = (Cj ⊃ Ci), where j, k < i. 
In the first three cases the proof is analogical to a). 
In the last case the proof of the formula A ⊃ Ci is the sequence of formulas:

1. A ⊃ Cj induction assumption
2. A ⊃ (Cj ⊃ Ci) induction assumption 
3. (A ⊃ (Cj ⊃ Ci)) ⊃ ((A ⊃ Cj) ⊃ (A ⊃ Ci)) A2
4. (A ⊃ Cj) ⊃ (A ⊃ Ci) MP: 2,3
5.    (A ⊃ Ci) MP: 1,4 Q.E.D
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Semantics
A semantically correct (sound) logical calculus
serves for proving logically valid formulas
(tautologies). In this case the
axioms have to be logically valid formulas (true 
under all interpretations), and the
deduction rules have to make it possible to prove 
logically valid formulas. For that reason the rules are 
either truth-preserving or tautology preserving, 
i.e.,  A1,…,Am |– B1,…,Bm can be read as follows: 

if all the formulas A1,…,Am are logically valid formulas, then 
B1,…,Bm are logically valid formulas.
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Theorem on Soundness 
(semantic consistence)

Each provable formula in the Hilbert calculus is also 
logically valid formula: If |– A,  then |= A.

Proof (outline):
Each formula of the form of an axiom schema of 
A1 – A5 is logically valid (i.e. true in every 
interpretation structure I for any valuation v of free 
variables). 
Obviously, MP (modus ponens) is a truth preserving 
rule.
Generalisation rule: A(x) |– ∀xA(x) ? 
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Theorem on Soundness 
(semantic consistence)

Generalisation rule A(x) |– ∀xA(x) is tautology 
preserving: 
Let us assume that A(x) is a proof step such that in 
the sequence preceding A(x) the generalisation rule 
has not been used as yet. 
Hence |= A(x) (since it has been obtained from 
logically valid formulas by using at most the truth 
preserving modus ponens rule). 
It means that in any structure I the formula A(x) is 
true for any valuation e of x. Which, by definition, 
means that |= ∀xA(x) (is logically valid as well).
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Hilbert & natural deduction
According to the Deduction Theorem each 
theorem of the implication form corresponds to 
a deduction rule(s), and vice versa. 
For example:

A ⊃ B |– (B ⊃ C) ⊃ (A ⊃ C); 
A ⊃ B, B ⊃ C |– A ⊃ C    /rule TI/

|– (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))
A |– A|– A ⊃ A 
A |– B ⊃ A;  A, B |– A|– A ⊃ (B ⊃ A) ax. A1
A, A ⊃ B |– B (MP rule)|– A ⊃ ((A ⊃ B) ⊃ B)
Rule(s)Theorem
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Example: a few simple theorems and the 
corresponding (natural deduction) rules:

A ⊃ (B ⊃ C) |– A ∧ B ⊃ C|– A ⊃ (B ⊃ C) ⊃ (A ∧ B ⊃C)8.

ICA, B |– A ∧ B|– A ⊃ (B ⊃ A ∧ B);  |– B ⊃ (A ⊃ A ∧ B)7.

ECA ∧ B |– A, B |– A ∧ B ⊃ A;  |– A ∧ B ⊃ B6.

TRA ⊃ B |– ¬B ⊃ ¬A |– (A ⊃ B) ⊃ (¬B ⊃ ¬A)5.

INA |– ¬¬A |– A ⊃ ¬¬A4.

EN¬¬A |– A |– ¬¬A ⊃ A3.

IDA |– A ∨ B;  B |– A ∨ B |– A ⊃ A∨ B;  |– B ⊃ A ∨ B2.

A, ¬A |– B|– A ⊃ (¬A ⊃ B);   |– ¬A ⊃ (A ⊃ B)1.
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Some proofs
Ad 1. |– A ⊃ (¬A ⊃ B);  i.e.: A, ¬A |– B.

Proof: (from a contradiction |-- anything)
1. A assumption
2. ¬A assumption 
3. (¬B ⊃ ¬A) ⊃ (A ⊃ B) A3
4. ¬A ⊃ (¬B ⊃ ¬A) A1
5. ¬B ⊃ ¬A MP: 2,4
6. A ⊃ B MP: 5,3
7. B MP: 1,6 Q.E.D. 
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Some proofs

Ad 2. |– A ⊃ A ∨ B,   i.e.:  A |– A ∨ B. 
(the rule ID of the natural deduction)
Using the definition abbreviation 
A ∨ B =df ¬A ⊃ B, 
we are to prove the theorem:
|– A ⊃ (¬A ⊃ B), i.e. 
the rule A, ¬A |– B, 
which has been already proved.
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Some proofs
Ad 3.  |– ¬¬A ⊃ A;  i.e.: ¬¬A |– A.

Proof:
1. ¬¬A assumption 
2. (¬A ⊃ ¬¬¬A) ⊃ (¬¬A ⊃ A) axiom A3
3. ¬¬A ⊃ (¬A ⊃ ¬¬¬A) theorem ad 1. 
4. ¬A ⊃ ¬¬¬A MP: 1,3
5. ¬¬A ⊃ A MP: 4,2
6. A MP: 1,5  

Q.E.D.
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Some proofs

Ad 4. |– A ⊃ ¬¬A; i.e.:  A |– ¬¬A.
Proof:
1. A assumption
2. (¬¬¬A ⊃ ¬A) ⊃ (A ⊃ ¬¬A) axiom A3
3. ¬¬¬A ⊃ ¬A theorem ad 3. 
4. A ⊃ ¬¬A MP: 3,2

Q.E.D.
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Some proofs
Ad 5. |– (A ⊃ B) ⊃ (¬B ⊃ ¬A),  i.e.:  (A ⊃ B) |– (¬B ⊃ ¬A).

Proof:  
1. A ⊃ B assumption
2. ¬¬A ⊃ A theorem ad 3. 
3. ¬¬A ⊃ B TI: 2,1
4. B ⊃ ¬¬B theorem ad 4. 
5. A ⊃ ¬¬B TI: 1,4 
6. ¬¬A ⊃ ¬¬B TI: 2,5
7. (¬¬A ⊃ ¬¬B) ⊃ (¬B ⊃ ¬A) axiom A3
8. ¬B ⊃ ¬A MP: 6,7

Q.E.D.
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Some proofs
Ad 6. |– (A ∧ B) ⊃ A,  i.e.:  A ∧ B |– A. 

(The rule EC of the natural deduction)
Using definition abbreviation A ∧ B =df ¬(A ⊃ ¬B) we are to prove

|– ¬(A ⊃ ¬B) ⊃ A, i.e.: ¬(A ⊃ ¬B) |– A.
Proof:
1. ¬(A ⊃ ¬B) assumption
2. (¬A ⊃ (A ⊃ ¬B)) ⊃ (¬(A ⊃ ¬B) ⊃ ¬¬A) theorem ad 5. 
3. ¬A ⊃ (A ⊃ ¬B) theorem ad 1. 
4. ¬(A ⊃ ¬B) ⊃ ¬¬A MP: 3,2
5. ¬¬A MP: 1,4
6. ¬¬A ⊃ A theorem ad 3. 
7. A MP: 5,6

Q.E.D.
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Some meta-rules
Let T is any finite set of formulas: T = {A1, A2,..,An}. Then
(a) if T, A |– B  and |– A, then T |– B. 

It is not necessary to state theorems in the assumptions.
(b) if A |– B,  then T, A |– B.  (Monotonicity of proving)
(c) if T |– A  and  T, A |– B,  then T |– B.
(d) if T |– A  and  A |– B, then T |– B.
(e) if T |– A; T |– B; A, B |– C  then T |– C.
(f) if T |– A  and  T |– B,  then T |– A ∧ B.

(Consequences can be composed in a conjunctive way.)
(g) T |– A ⊃ (B ⊃ C)   if and only if T |– B ⊃ (A ⊃ C).

(The order of assumptions is not important.)
(h) T, A ∨ B |– C if and only if both  T, A |– C  and  T, B |– C.

(Split the proof whenever there is a disjunction in the 
sequence – meta-rule of the natural deduction)

(i) if T, A |– B  and if T, ¬A |– B,  then T |– B.
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Proofs of meta-rules 
(a sequence of rules)

Ad (h) ⇒:
Let T, A ∨ B |– C, we prove that: T, A |– C;  T, B |– C.
Proof:
1. A |– A ∨ B the rule ID
2. T, A |– A ∨ B meta-rule (b): 1
3. T, A ∨ B |– C assumption
4. T, A |– C meta-rule (d): 2,3

Q.E.D.
5. T, B |– C analogically to 4.

Q.E.D. 
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Proofs of meta-rules 
(a sequence of rules)

Ad (h) ⇐:
Let T, A |– C;  T, B |– C, we prove that  T, A ∨ B |– C. 

Proof:
1. T, A |– C assumption
2. T |– A ⊃ C deduction Theorem:1 
3. T |– ¬C ⊃ ¬A meta-rule (d): 2,  (the rule TR of natural deduction)
4. T, ¬C |– ¬A deduction Theorem: 3
5. T, ¬C |– ¬B analogical to 4.
6. T, ¬C |– ¬A ∧ ¬B meta-rule (f): 4,5
7. ¬A ∧ ¬B |– ¬(A ∨ B) de Morgan rule (prove it!)
8. T, ¬C |– ¬(A ∨ B) meta-rule (d): 6,7 
9. T |– ¬C ⊃ ¬(A ∨ B) deduction theorem: 8
10. T |– A∨ B ⊃ C meta-rule (d): 9. (the rule TR)
11. T, A ∨ B |– C deduction theorem: 10

Q.E.D.
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Proofs of meta-rules 
(a sequence of rules)

Ad (i):
Let  T, A |– B;   T, ¬A |– B,  we prove  T |– B.
Proof:

1. T, A |– B assumption
2. T, ¬A |– B assumption 
3. T, A ∨ ¬A |– B meta-rule (h): 1,2
4. T |– B meta-rule (a): 3 
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A Complete Calculus: 
if |= A then |− A

Each logically valid formula is provable 
in the calculus
The set of theorems = the set of logically 
valid formulas (the red sector of the previous 
slide is empty)
Sound (semantic consistent) and 
complete calculus: |= A iff |− A

Provability and logical validity coincide in FOPL 
(1st-order predicate logic)

Hilbert calculus is sound and complete
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Properties of a calculus: 
deduction rules, consistency

The set of deduction rules enables us to perform proofs 
mechanically, considering just the symbols, abstracting of their 
semantics. Proving in a calculus is a syntactic method. 
A natural demand is a syntactic consistency of the calculus. 
A calculus is consistent iff there is a WFF ϕ such that ϕ is not 
provable (in an inconsistent calculus everything is provable). 
This definition is equivalent to the following one: a calculus is 
consistent iff a formula of the form A ∧ ¬A, or ¬(A ⊃ A), is not 
provable. 
A calculus is syntactically consistent iff it is sound (semantically 
consistent).
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Sound and Complete Calculus: 
|= A iff |− A

Soundness 
(an outline of the proof has been done)
In 1928 Hilbert and Ackermann published a concise small book 
Grundzüge der theoretischen Logik, in which they arrived at 
exactly this point: they had defined axioms and derivation rules of 
predicate logic (slightly distinct from the above), and formulated 
the problem of completeness. They raised a question whether 
such a proof calculus is complete in the sense that each logical
truth is provable within the calculus; in other words, whether the 
calculus proves exactly all the logically valid FOPL formulas.
Completeness Proof: 
Stronger version: if T |= ϕ, then T |– ϕ. Kurt Gödel, 1930
A theory T is consistent iff there is a formula ϕ which is not 
provable in T: not T |– ϕ.
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Hilbert Calculus: if T |= ϕ, then 
T |– ϕ

The proof of the Completeness theorem is based on 
the following Lemma:

Each consistent theory has a model.
if T |= ϕ, then T |– ϕ iff
if not T |– ϕ, then not T |= ϕ⇒
{T ∪ ¬ϕ} does not prove ϕ as well 
(¬ϕ does not contradict T) ⇒
{T ∪ ¬ϕ} is consistent, it has a model M ⇒
M is a model of T in which ϕ is not true ⇒
ϕ is not entailed by T: T |= ϕ
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Properties of a calculus: Hilbert 
calculus is not decidable

There is another property of calculi. To illustrate it, let’s raise a 
question: having a formula ϕ, does the calculus decide ϕ? 
In other words, is there an algorithm that would answer Yes or 
No, having ϕ as input and answering the question whether ϕ is 
logically valid or no? If there is such an algorithm, then the calculus 
is decidable. 
If the calculus is complete, then it proves all the logically valid 
formulas, and the proofs can be described in an algorithmic way.
However, in case the input formula ϕ is not logically valid, the 
algorithm does not have to answer (in a final number of steps).
Indeed, there are no decidable 1st order predicate logic calculi, i.e.,
the problem of logical validity is not decidable in the FOPL.
(the consequence of Gödel Incompleteness Theorems)



11/29/2006 Hilbertův kalkul 40

Provable = logically true?
Provable from … = logically entailed by …?

The relation of provability (A1,...,An |– A) and the 
relation of logical entailment (A1,...,An |= A) are 
distinct relations. 
Similarly, the set of theorems |– A (of a calculus) is 
generally not identical to the set of logically valid 
formulas |= A. 
The former is syntactic and defined within a calculus, 
the latter independent of a calculus, it is semantic.
In a sound calculus the set of theorems is a subset of 
the set of logically valid formulas. 
In a sound and complete calculus the set of theorems 
is identical with the set of formulas.
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Hilbert Calculus 

WFF

|– A
Theorems

Axioms

|= A
LVF

???


