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Inductive Definitions

In mathematics, it is often the case that the most natural definition of
an object (like of a set, a relation, a function, etc.) is not to define it all at
once but proceed in incremental steps:

to define it at first for some smallest, elementary case
— basis of the definition

to describe a way how to define it for a bigger case assuming it was
already defined for all smaller cases; this definition can refer to these
smaller cases
— inductive step
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Inductive Definitions

Example: We would like to define a function S : N → N that assigns to
each natural number n the sum of all natural numbers from 0 to n, i.e.,

S(n) = 0 + 1 + 2 + 3 + · · ·+ n

Basis: S(0) = 0

Inductive step: For n > 0 it holds that

S(n) = S(n − 1) + n
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5

S(4) = S(3) + 4
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5

S(4) = S(3) + 4

S(3) = S(2) + 3
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5

S(4) = S(3) + 4

S(3) = S(2) + 3

S(2) = S(1) + 2
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5

S(4) = S(3) + 4

S(3) = S(2) + 3

S(2) = S(1) + 2

S(1) = S(0) + 1
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5

S(4) = S(3) + 4

S(3) = S(2) + 3

S(2) = S(1) + 2

S(1) = S(0) + 1

S(0) = 0
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5

S(4) = S(3) + 4

S(3) = S(2) + 3

S(2) = S(1) + 2

S(1) = S(0) + 1 = 0 + 1 = 1

S(0) = 0
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5

S(4) = S(3) + 4

S(3) = S(2) + 3

S(2) = S(1) + 2 = 1 + 2 = 3

S(1) = S(0) + 1 = 0 + 1 = 1

S(0) = 0
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5

S(4) = S(3) + 4

S(3) = S(2) + 3 = 3 + 3 = 6

S(2) = S(1) + 2 = 1 + 2 = 3

S(1) = S(0) + 1 = 0 + 1 = 1

S(0) = 0
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5

S(4) = S(3) + 4 = 6 + 4 = 10

S(3) = S(2) + 3 = 3 + 3 = 6

S(2) = S(1) + 2 = 1 + 2 = 3

S(1) = S(0) + 1 = 0 + 1 = 1

S(0) = 0
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Inductive Definitions

Basis: S(0) = 0

Inductive step: S(n) = S(n − 1) + n for n > 0

S(5) = S(4) + 5 = 10 + 5 = 15

S(4) = S(3) + 4 = 6 + 4 = 10

S(3) = S(2) + 3 = 3 + 3 = 6

S(2) = S(1) + 2 = 1 + 2 = 3

S(1) = S(0) + 1 = 0 + 1 = 1

S(0) = 0
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Inductive Definitions

Remark: For natural numbers we often use a variant where the inductive
step gives the definition for n + 1 using already defined case for n.

The above definition in this variant looks as follows:

Basis: S(0) = 0

Inductive step: S(n+1) = S(n) + (n+1) for n ≥ 0
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Inductive Definitions

To ensure correctness of an inductive definition, the following must be
satisfied:

there must be elementary basic cases (the basis of the definition)
where the definition does not refer to smaller cases.

It must be ensured that for every element these elementary cases are
reached after finite number of step, i.e., there can not exist infinite
sequences, where each element is smaller than the previous one.

Examples of incorrect definitions:

To define function f : Z → Z by an inductive step where f (x) is
defined using f (x − 1).

To define function g : R+ → R by an inductive step where g(x) is
defined using g(x/2).
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Proofs by Induction

n S(n)

0 0
1 1
2 3
3 6
4 10
5 15
6 21
7 28
8 36
9 45
10 55
11 66
12 78
13 91
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Proofs by Induction

n S(n)

0 0
1 1
2 3
3 6
4 10
5 15
6 21
7 28
8 36
9 45
10 55
11 66
12 78
13 91

Hypothesis:

It seems that for every n it holds that

S(n) =
n · (n + 1)

2
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Proofs by Induction

n S(n)

0 0
1 1
2 3
3 6
4 10
5 15
6 21
7 28
8 36
9 45
10 55
11 66
12 78
13 91

Hypothesis:

It seems that for every n it holds that

S(n) =
n · (n + 1)

2

We would like to prove this hypothesis,
resp. to verify that it really holds for all n ∈ N.
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Proofs by Induction

Induction is used not only for defining objects but also as a tool for
proving propositions that assert something about these inductively defined
objects.

Induction is typically used for proofs of propositions that claim that
something (e.g., a proposition ϕ(n)) holds in all cases (e.g., “for all
natural numbers n”).

Such inductive proof has the always the following form:

Basis: We will prove that the proposition holds in elementary
smallest cases — e.g., that it holds that ϕ(0).

Inductive step: We will prove that if the given proposition holds in
smaller cases then it also holds in a bigger case.
The assumption that the proposition holds in smaller cases is called
the inductive hypothesis.
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Proofs by Induction

In the case of natural numbers, an inductive proof of a proposition of the
form

Proved proposition

for each n ∈ N it holds that ϕ(n)

is often of the following form:

Basis: A proof that ϕ(0) holds.

Inductive step: A proof that the following implication holds for all
n ∈ N:

“if ϕ(n) then ϕ(n + 1)”
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Proofs by Induction

In the case of natural numbers, an inductive proof of a proposition of the
form

Proved proposition

for each n ∈ N it holds that ϕ(n)

is often of the following form:

Basis: A proof that ϕ(0) holds.

Inductive step: A proof that the following implication holds for all
n ∈ N:

“if ϕ(n) then ϕ(n + 1)”

Remark: It is not necessary that the basis considers only the case n = 0.
Sometimes it can be more convenient to include also other cases into the
basis, e.g., all values of n where n ≤ 2.
Zdeněk Sawa (VŠB-TU Ostrava) Introduction to Logical Thinking November 1, 2022 9 / 51



Proofs by Induction

Example: We want to prove the proposition

For each n ∈ N it holds that S(n) = n·(n+1)
2 .

Basis (n = 0): S(0) = 0·(0+1)
2

Inductive step: For each n ∈ N it holds that

if S(n) = n·(n+1)
2 then S(n + 1) = (n+1)·((n+1)+1)

2

Remark: The proposition ϕ(n) in this example is

S(n) = n·(n+1)
2
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Proofs by Induction

Note that when we would have proofs that:

ϕ(0) holds

for each n it holds that if ϕ(n) then ϕ(n + 1)
(i.e., ϕ(n) ⇒ ϕ(n + 1))

then for arbitrary concrete values of n ∈ N we can easily construct a proof
that ϕ(n) holds:

n = 0: ϕ(0) is proved directly (basis)

n = 1: ϕ(1) follows from ϕ(0) and ϕ(0) ⇒ ϕ(1)

n = 2: ϕ(2) follows from ϕ(1) and ϕ(1) ⇒ ϕ(2)

n = 3: ϕ(3) follows from ϕ(2) and ϕ(2) ⇒ ϕ(3)

n = 4: ϕ(4) follows from ϕ(3) and ϕ(3) ⇒ ϕ(4)

n = 5: ϕ(5) follows from ϕ(4) and ϕ(4) ⇒ ϕ(5)
...
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Proofs by Induction

Finishing the previous proof:

Basis: We must prove that S(0) = 0·(0+1)
2

S(0) = 0 — from the definition of function S

0·(0+1)
2 = 0 — simple rewriting of arithmetic expressions
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Proofs by Induction

Inductive step: We must show that for each n it holds that

if S(n) = n·(n+1)
2 then S(n + 1) = (n+1)·((n+1)+1)

2
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Proofs by Induction

Inductive step: We must show that for each n it holds that

if S(n) = n·(n+1)
2 then S(n + 1) = (n+1)·((n+1)+1)

2

Let us assume an arbitrary n ∈ N.

Let us assume for this n that S(n) = n·(n+1)
2 — this is the inductive

hypothesis.

We must show that S(n + 1) = (n+1)·((n+1)+1)
2 .
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Proofs by Induction

Inductive step: We must show that for each n it holds that

if S(n) = n·(n+1)
2 then S(n + 1) = (n+1)·((n+1)+1)

2

Let us assume an arbitrary n ∈ N.

Let us assume for this n that S(n) = n·(n+1)
2 — this is the inductive

hypothesis.

We must show that S(n + 1) = (n+1)·((n+1)+1)
2 .

According to the definition of function S we have
S(n+1) = S(n) + (n+1).

So it holds that:

S(n+1) = S(n) + (n+1) = n·(n+1)
2 + (n+1) = n·(n+1)+2·(n+1)

2 =

= (n+1)·(n+2)
2 = (n+1)·((n+1)+1)

2
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Proofs by Induction

Sometimes, it may be more convenient to use, instead of a proof of the
form

Basis: A proof that ϕ(0) holds.

Inductive step: A proof that for each n ∈ N the following
implication holds

“if ϕ(n) then ϕ(n + 1)”

an inductive proof of the form

Inductive step: A proof that for each n ∈ N the following
implication holds

“if ϕ(i) holds for each i ∈ N such that i < n, then ϕ(n) also holds”
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Proofs by Induction

Example:

Theorem

Every natural number n, such that n > 1, can be expressed as a product of
some finite number of primes, i.e., for each such n there exists a sequence
of primes p1, p2, . . . , pk such that

n = p1 · p2 · · · · · pk

Remark: A natural number n is a prime if it is greater than 1 and is
divisible only by numbers 1 and n.

Few of the first primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .
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Proofs by Induction

Proof: Let us assume an arbitrary n where n > 1.

By induction hypothesis, for every i < n it holds that if i > 1 then i can
be expressed as a product of a finite number of primes.

There are two possibilities:

n is a prime: the given sequence consists of the number n itself

n is not a prime: so there is a number i ∈ N such that 1 < i < n

and i is a divisor of number n, which means that there is some
number j ∈ N such that i · j = n. It is obvious that 1 < j < n.

So we can use the inductive hypothesis for both i and j .

i = p1 · p2 · · · · · pk j = q1 · q2 · · · · · qℓ

And so n = p1 · p2 · · · · · pk · q1 · q2 · · · · · qℓ.
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Graphs

A graph consists of vertices (or nodes) and edges.
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Trees

A tree is a special case of a graph where every node is reachable from
each other and that contains no cycles.
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Trees

Proposition

A tree with n vertices has n − 1 edges.
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Trees

Proposition

A tree with n vertices has n − 1 edges.
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Trees

Proposition

A tree with n vertices has n − 1 edges.
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Trees

When we remove one edge from a tree on n vertices (n > 1), the tree will
be decomposed into two trees:

Tree 1:

Vertices: k

Edges: k − 1

Tree 2:

Vertices: n − k

Edges: n − k − 1

The number of edges of the original graph:

(k − 1) + (n − k − 1) + 1 = n − 1
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Colouring of Areas Delimited by Lines

Consider an arbitrary rectangle divided to subareas by several lines.
(We assume a finite number of lines.)
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Colouring of Areas Delimited by Lines

Consider an arbitrary rectangle divided to subareas by several lines.
(We assume a finite number of lines.)

We would like to colour these subareas in such a way that every pair of
subareas that have a common borderline will have different colours.
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Colouring of Areas Delimited by Lines

Proposition

Every rectangle divided into subareas by a finite number of lines can be
coloured by two colours.
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Colouring of Areas Delimited by Lines

Proof: By induction on the number of lines n.

Basis (n ≤ 1): For n = 0 or n = 1, the proposition is obvious.
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Colouring of Areas Delimited by Lines

Inductive step (n > 1):
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Colouring of Areas Delimited by Lines

Inductive step (n > 1):

Consider one of the lines.
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Colouring of Areas Delimited by Lines

Inductive step (n > 1):

Remove the selected line.
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Colouring of Areas Delimited by Lines

Inductive step (n > 1):

By inductive hypothesis, the areas delimited by n − 1 lines can be
coloured by two colours.
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Colouring of Areas Delimited by Lines

Inductive step (n > 1):

Return the removed line back.
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Colouring of Areas Delimited by Lines

Inductive step (n > 1):

Switch coulours in areas on one of sides of this line.
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Colouring of Areas Delimited by Lines

Inductive step (n > 1):

We have obtained a correct colouring for n lines.
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Structural Induction

Inductive definitions are often used for specifying a subset C of some given
set A in the following way:

Basis: There is specified some particular subset of elements of A
that must belong to the set C .

Inductive step: There is specified some (finite) set of rules that
prescribe that whenever some elements belong to C then also some
other elelements, that can be computed from them, must also belong
to C .

It is specified that C is the smallest set (with respect to inclusion)
that satisfies the conditions given above.
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Structural Induction

Example: An inductive definition of a subset A of the set Z:

Basis: 4 ∈ C

Inductive step:

If x ∈ C then x − 12 ∈ C .

If x ∈ C then x2 ∈ C .

The indend is to define the set C in such a way that it consists of exactly
those elements x ∈ Z, for which it is possible to justify in a finite number
of steps, using the rules given above, that they must belong to C .
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Structural Induction

We can imagine that we successively build a sequence of approximations

of the set C :

C0 = {4}

C1 = {4,−8, 16}

C2 = {4,−8, 16,−20, 64, 256}

C3 = {4,−8, 16,−20, 64, 256,−32, 400, 52, 4096, 244, 65536}
...
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Structural Induction

We can imagine that we successively build a sequence of approximations

of the set C :

C0 = {4}

C1 = {4,−8, 16}

C2 = {4,−8, 16,−20, 64, 256}

C3 = {4,−8, 16,−20, 64, 256,−32, 400, 52, 4096, 244, 65536}
...

The set C is then defined as the union of all these sets Ci :

C = C0 ∪ C1 ∪ C2 ∪ · · ·
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Structural Induction

We can imagine that we successively build a sequence of approximations

of the set C :

C0 = {4}

C1 = {4,−8, 16}

C2 = {4,−8, 16,−20, 64, 256}

C3 = {4,−8, 16,−20, 64, 256,−32, 400, 52, 4096, 244, 65536}
...

The set C is then defined as the union of all these sets Ci :

C = C0 ∪ C1 ∪ C2 ∪ · · ·

which can be written in the following way:

C =
⋃

i∈N

Ci
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Structural Induction

This can be understood as follows:

Basis of the definition specifies the approximation C0 (where
C0 ⊆ A).

Inductive step specifies a function F : P(A) → P(A) that adds to
an arbitrary given set X ⊆ A some other elements depending on the
elements that already belong to X .

To ensure that the definition is correct, it is necessary to check that
the function F is monotonic, i.e., that

if X ⊆ X ′ then F(X ) ⊆ F(X ′)

We can then define for each i > 0 the set Ci (i.e., the i-th approximation)
inductively as follows

Ci = F(Ci−1)

Zdeněk Sawa (VŠB-TU Ostrava) Introduction to Logical Thinking November 1, 2022 25 / 51



Structural Induction

Let us consider only the simpler case when the rules in the inductive step
are such that whether an element x ∈ A will be added to F(X ) depends
always only on some finite set of elements from X .

It can be shown that in this case the set C =
⋃

i∈N
Ci has the following

properties:

For each Ci it holds that Ci ⊆ C .

F(C ) = C

For each set C ′ such that C0 ⊆ C ′ and F(C ′) = C ′, it holds that

C ⊆ C ′
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Structural Induction

When a set C is defined by an inductive definition as described above, we
can prove propositions of the form

for each x ∈ C it holds that ϕ(x)

using a proof by structural induction:

Basis: To prove that ϕ(x) holds for all elements x ∈ C0.

Inductive step: To prove that for each set X ⊆ A that if ϕ(x) is
true for each x ∈ X then for each y ∈ F(X ) it holds that ϕ(y).
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Structural Induction

Let us assume that we have constructed a proof by structural induction of
the above mentioned kind.

Let us define the set

C ′ = {x ∈ A | ϕ(x)}

It obviously holds that:

for each x ∈ C ′ it holds that ϕ(x)

C0 ⊆ C ′

F(C ′) = C ′

It also follows from that previous discussion that C ⊆ C ′, and so for
each x ∈ C we have ϕ(x).
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Structural Induction

Example:

Proposition

All elements of the set C , which is inductively defined below, are multiples
of 4.

Basis: 4 ∈ C

Inductive step:

If x ∈ C then x − 12 ∈ C .

If x ∈ C then x2 ∈ C .

Proof:

Basis: Number 4 is a multiple of 4.

Inductive step:

If x is a multiple of 4 then also x − 12 is a multiple of 4.

If x is a multiple of 4 then also x2 is a multiple of 4.
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Reachability in a Graph

Let us assume a directed graph G with the set of nodes V the set of
edges E .
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Reachability in a Graph

Let us assume a directed graph G with the set of nodes V the set of
edges E .

v0

We would like to define the set of those nodes of G that are reachable

from the given node v0.
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Reachability in a Graph

The set D, consisting of exactly those nodes that are reachable from the
node v0, can be defined by an inductive definition as follows:

Basis: v0 ∈ D

Inductive step: If u ∈ D and (u, v) ∈ E then v ∈ D.

Zdeněk Sawa (VŠB-TU Ostrava) Introduction to Logical Thinking November 1, 2022 31 / 51



Lists

An inductive definition of a set can be sometimes formulated not in such
a way that we separate some elements from an already defined set but
rather is such a way that it gives a description how to construct elements
of the given set.

Basically, we consider the existence of these elements as an additional
assumption.
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Lists
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assumption.

Example: Let us assume that we have some arbitrary set A.

We would like to define a set Lists consisting of all lists whose elements
are arbitrary elements from this set A.
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Lists

An inductive definition of a set can be sometimes formulated not in such
a way that we separate some elements from an already defined set but
rather is such a way that it gives a description how to construct elements
of the given set.

Basically, we consider the existence of these elements as an additional
assumption.

Example: Let us assume that we have some arbitrary set A.

We would like to define a set Lists consisting of all lists whose elements
are arbitrary elements from this set A.

This inductive definition of the set Lists defines two ways how to construct
a list:

Basis: There exists an element nil ∈ Lists.

Inductive step: For each element a ∈ A and each list ℓ ∈ Lists there
exists a list cons(a, ℓ) ∈ Lists.
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Lists

An intuitive idea of a list consisting of elements [3, 8, 5].
(We assume here that A = N.)

nil

cons

cons

cons3

8

5

cons(3, cons(8, cons(5, nil)))
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Lists

The above given definition of the set Lists is incomplete. We must add
assumptions that basically say that every list constructed by the two above
given ways (nil and cons) is unique:

For each a ∈ A and ℓ ∈ Lists it holds that nil 6= cons(a, ℓ).

For each a, a′ ∈ A and ℓ, ℓ′ ∈ Lists it holds that

if cons(a, ℓ) = cons(a′, ℓ′) then a = a′ and ℓ = ℓ′.

Remark: In particular, this means that whenever we have an arbitrary list
from the set Lists then we know that:

it must be either nil or cons(a, ℓ) for some a ∈ A and ℓ ∈ Lists,

if it is cons(a, ℓ) for some a ∈ A and ℓ ∈ Lists then these elements
a and ℓ are determined uniquely by this.
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Lists

Example: An inductive definition of function Length : Lists → N

Basis: Length(nil) = 0

Inductive step: For each a ∈ A and ℓ ∈ Lists is

Length(cons(a, ℓ)) = 1 + Length(ℓ).
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Lists

Example: An inductive definition of function
Append : Lists× Lists → Lists

Basis: For each ℓ′ ∈ Lists is

Append(nil, ℓ′) = ℓ′

Inductive step: For each a ∈ A and ℓ ∈ Lists is

Append(cons(a, ℓ), ℓ′) = cons(a,Append(ℓ, ℓ′)).
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Lists

Proposition

For every pair of lists ℓ, ℓ′ ∈ Lists it holds that

Length(Append(ℓ, ℓ′)) = Length(ℓ) + Length(ℓ′).

Proof: By induction on ℓ:

Basis (ℓ = nil):

Length(Append(nil, ℓ′)) = Length(ℓ′)

= 0 + Length(ℓ′)

= Length(nil) + Length(ℓ′)
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Lists

Inductive step (ℓ = cons(a, ℓ′′) for some a ∈ A and ℓ′′ ∈ Lists):

Length(Append(cons(a, ℓ′′), ℓ′))

= Length(cons(a,Append(ℓ′′, ℓ′)))

= 1 + Length(Append(ℓ′′, ℓ′))

= 1 + (Length(ℓ′′) + Length(ℓ′))

= (1 + (Length(ℓ′′)) + Length(ℓ′)

= (Length(cons(a, ℓ′′)) + Length(ℓ′)
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Abstract Syntax Trees

A structure of an arbitrary expression can be represented in a form of an
abstract syntax tree.

x

z

1

25+

−

∗

∗

Example: An abstract syntax tree for expression ((x + 1) ∗ 5) ∗ (z − 2)
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Abstract Syntax Trees

We would like to define a set of all well-formed abstract syntax trees of
arithmetic expressions.

Let us assume that the following sets are already defined:

Var = {x , y , z , . . .}

Num = {0, 1, 2, . . .}

UnOp = {−, . . .}

BinOp = {+,−, ∗, /, . . .}

The set Expr of all well-formed abstract syntax trees:

For each x ∈ Var there is a tree var(x) ∈ Expr.

For each n ∈ Num there is a tree num(n) ∈ Expr.

For each op ∈ UnOp and e ∈ Expr there is a tree unop(op, e) ∈ Expr.

For each op ∈ BinOp and e1, e2 ∈ Expr there is a tree
binop(op, e1, e2) ∈ Expr.
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Abstract Syntax Trees

For each x ∈ Var, n ∈ Num, op1 ∈ UnOp, op2 ∈ BinOp,
e, e1, e2 ∈ Expr it holds that

var(x) 6= num(n)
var(x) 6= unop(op1, e)
var(x) 6= binop(op2, e1, e2)
num(n) 6= unop(op1, e)
num(n) 6= binop(op2, e1, e2)
unop(op1, e) 6= binop(op2, e1, e2)

For each x , x ′ ∈ Var it holds that if var(x) = var(x ′) then x = x ′.

For each n, n′ ∈ Num it holds that if num(n) = num(n′) then n = n′.

For each op, op′ ∈ UnOp and e, e ′ ∈ Expr it holds that if
unop(op, e) = unop(op′, e ′) then op = op′ and e = e ′.

For each op, op′ ∈ BinOp and e1, e2, e
′

1, e
′

2 ∈ Expr it holds that if
binop(op, e1, e2) = binop(op′, e ′1, e

′

2) then op = op′, e1 = e ′1,
and e2 = e ′2.
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Natural Numbers

In a similar way we can also define the set of natural numbers.

The definition of the set Nat:

Basis: There exists an element zero ∈ Nat.

Inductive step: For each element x ∈ Nat there exists an
elementent succ(x) ∈ Nat.

We also assume that:

For each x ∈ Nat it holds that succ(x) 6= zero.

For each x , x ′ ∈ Nat it holds that if succ(x) = succ(x ′) then x = x ′.
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Natural Numbers

Basically this means that the individual natural numbers are the elements
denoted by the following expressions:

0 zero

1 succ(zero)
2 succ(succ(zero))
3 succ(succ(succ(zero)))
4 succ(succ(succ(succ(zero))))
5 succ(succ(succ(succ(succ(zero)))))
6 succ(succ(succ(succ(succ(succ(zero))))))
7 succ(succ(succ(succ(succ(succ(succ(zero)))))))

...
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Natural Numbers

An inductive definition of function Plus : Nat× Nat → Nat — the
induction proceeds here by the second argument:

Basis: For each x ∈ Nat it holds that

Plus(x , zero) = x

Inductive step: For each x , y ∈ Nat it holds that

Plus(x , succ(y)) = succ(Plus(x , y))
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Natural Numbers

An inductive definition of function Plus : Nat× Nat → Nat — the
induction proceeds here by the second argument:

Basis: For each x ∈ Nat it holds that

Plus(x , zero) = x

Inductive step: For each x , y ∈ Nat it holds that

Plus(x , succ(y)) = succ(Plus(x , y))

Example: Plus(5, 3) = succ(Plus(5, 2))

= succ(succ(Plus(5, 1)))

= succ(succ(succ(Plus(5, 0))))

= succ(succ(succ(5))) = 8
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Natural Numbers

Proposition

For each x , y , z ∈ Nat it holds that

Plus(x ,Plus(y , z)) = Plus(Plus(x , y), z)

Proof: By induction on z .

Basis:

Plus(x ,Plus(y , zero)) = Plus(x , y) = Plus(Plus(x , y), zero)

Inductive step:

Plus(x ,Plus(y , succ(z))) = Plus(x , succ(Plus(y , z)))

= succ(Plus(x ,Plus(y , z)))

= succ(Plus(Plus(x , y), z))

= Plus(Plus(x , y), succ(z)))
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Towers of Hanoi

A B C

Task: To move the disks from A to B in such a way that:

In one moment we can move only one disk.

It is not allowed to place a bigger disk on top of a smaller disk.
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Towers of Hanoi

n = 1 :

A → B
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Towers of Hanoi

n = 1 :

A → B

n = 2 :

A → C

A → B

C → B

n = 3 :

A → B

A → C

B → C

A → B

C → A

C → B

A → B
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Towers of Hanoi

n = 1 :

A → B

n = 2 :

A → C

A → B

C → B

n = 3 :

A → B

A → C

B → C

A → B

C → A

C → B

A → B

n = 4 :

A → C

A → B

C → B

A → C

B → A

B → C

A → C

A → B

C → B

C → A

B → A

C → B

A → C

A → B

C → B
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Towers of Hanoi

A B C
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Towers of Hanoi

void hanoi(int n, char src, char dst, char tmp)
{

if (n == 0) return;
hanoi(n−1, src, tmp, dst);
printf(”%c −> %c\n”, src, dst);
hanoi(n−1, tmp, dst, src);

}

int main()
{

int n;
scanf(”%d”, &n);
hanoi(n, ’A’, ’B’, ’C’);
return 0;

}
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Towers of Hanoi

Let P(n) denote the number of moves performed by the algorithm for
n disks.

Proposition

P(n) = 2n − 1.

Proof:

For n = 0: P(n) = 0 = 20 − 1

For n > 0: We can assume that P(n − 1) = 2n−1 − 1.

P(n) = 2P(n − 1) + 1 =
= 2(2n−1 − 1) + 1 =
= 2 · 2n−1 − 2 + 1 =
= 2n − 1
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Towers of Hanoi

Proposition

To move n disks requires at least 2n − 1 moves.

Proof:

By induction.

So the given algorithm finds the optimal solution.

Remark

Question: How long it takes to move 64 disks if moving one disk
takes 1 s ?
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Towers of Hanoi

Proposition

To move n disks requires at least 2n − 1 moves.

Proof:

By induction.

So the given algorithm finds the optimal solution.

Remark

Question: How long it takes to move 64 disks if moving one disk
takes 1 s ?

Answer: 18446744073709551615 s, i.e., about 585 billions of years.
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