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A. Formal systems, Proof calculi 

1.  General characteristics 

A proof calculus (of a theory) is given by: 

 a language 

 a set of axioms 

 a set of deduction rules 

A definition of the language of the system consists of: 

 alphabet (a non-empty set of symbols) 

 grammar (defines in an inductive way a set of well-formed formulas - WFF) 

Example Language of the 1st-order predicate logic. 

a) alphabet:  
1. logical symbols:  
  * (countable set of) individual variables x, y, z, … 
  * connectives , , , ,  
  * quantifiers ,  
2. special symbols (of arity n) 
  * predicate symbols Pn, Qn, Rn, … 
  * functional symbols fn, gn, hn, … 
  * constants a, b, c,    – functional symbols of arity 0 
3. auxiliary symbols (, ), [, ], … 

b) grammar: 
1. terms 
  * each constant and each variable is an atomic term 
  * if t1, …, tn are terms, fn a functional symbol, then fn(t1, …, tn) is a  
   (functional) term 
2. atomic formulas 
  * if t1, …, tn are terms, Pn predicate symbol, then Pn(t1, …, tn) is an  
   atomic (well-formed) formula 
3. composed formulas 
  * let A, B be well-formed formulas. Then 
     A, (AB), (AB), (AB), (AB), are well-formed formulas. 
  * let A be a well-formed formula, x a variable. Then 
     xA, xA are well-formed formulas. 
4. Nothing is a WFF unless it so follows from 1.-3. 

Notes Outmost left/right brackets will be omitted whenever no confusion can arise. Thus, e.g., 
P(x)  Q(x) is a well formed formula. Predicate symbols P, Q of arity 0 are WFF formulas as 
well (they correspond to the propositional logic formulas p, q, ...). 

A set of axioms is a chosen subset of the set of WFF. 
 These axioms are considered to be basic formulas that are not being proved.  
  Example:  {p  p, p  p}. 
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A set of deduction rules of a form: A1,…,Am |– B1,…,Bm enables us to prove theorems 
(provable formulas) of the calculus. We say that each Bi is derived from the set of 
assumptions A1,…,Am . 
 Example:  p  q, p |– q 
    p  q |– p, q 

A proof of a formula A (from logical axioms of the given calculus) is a sequence of formulas 
(proof steps) B1,…Bn such that: 

 A = Bn  (the proved formula A is the last step) 

 each Bi (i=1,…,n) is either  

o an axiom or 

o Bi is derived from the previous Bj (j=1,…,i-1) using a deduction rule of 
the calculus. 

A formula A is provable by the calculus, denoted |– A, if there is a proof of A in the 
calculus. A provable formula is called a theorem. 

The following Figure 1 illustrates particular sets of formulas: 

WFF 
|= A 
LVF 

|– A 
Theorems 

axioms 
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 A proof of a formula A from assumptions A1,…,Am is a sequence of formulas (proof steps) 
B1,…Bn such that: 

 A = Bn  (the proved formula A is the last step) 

 each Bi (i=1,…,n) is either  

o an axiom, or 

o an assumption Ak (1  k  m), or 

o Bi is derived from the previous Bj (j=1,…,i-1) using a rule of the 
calculus. 

A formula A is provable from  A1,…,Am, denoted A1,…,Am |– A, if there is a proof of 
A from A1,…,Am.  

Logical calculus is sound, if each theorem is logically valid, symbolically: 

  If |– A then |= A, for all the formulas A. 

An indirect proof of a formula A from assumptions A1,…,Am is a sequence of formulas 
(proof steps) B1,…Bn such that: 

 each Bi (i=1,…,n) is either  

o an axiom, or 

o an assumption Ak (1  k  m), or 

o an assumption A of indirect proof (formula A that is to be proved is 
negated) 

o Bi is derived from the previous Bj (j=1,…,i-1) using a rule of the 
calculus. 

o Some Bk contradicts to Bl , i.e., Bk = Bl (k  {1,...,n}, l  {1,...,n}) 

A semantically correct (sound) logical calculus serves for proving logically valid 
formulas (tautologies). In this case axioms have to be logically valid formulas (true under all 
interpretations), and deduction rules have to make it possible to prove logically valid 
formulas. For that reason the rules are either truth-preserving or tautology preserving, i.e.,  
A1,…,Am |– B1,…,Bm can be read as follows: if all the formulas A1,…,Am are logically valid 
formulas, then B1,…,Bm are logically valid formulas. 

Logical calculus is complete, if each logically valid formula is a theorem, symbolically: 

 If |= A then |– A, for all the formulas A. 

 In a sound and complete calculus the set of theorems and logically valid formulas 
(LVF) are identical:  

 |= A iff |– A  

A sound proof calculus should meet the following Theorem of Deduction. 

Theorem of deduction. A formula  is provable from assumptions A1,…,Am, iff the formula 
Am   is provable from A1,…,Am-1.  

Symbolically:  
    A1,…,Am |–  iff A1,…,Am-1 |– Am   . 
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In a sound calculus meeting the Deduction Theorem the following implication holds:   
      If A1,…,Am |–  then  A1,…,Am |= . 

If the calculus is sound and complete, then provability coincides with logical entailment: 

      A1,…,Am |–  iff  A1,…,Am |= . 

Proof. If the Theorem of Deduction holds, then      
A1,…,Am |–  iff  |– (A1 (A2  …(Am  )…)).  
|– (A1 (A2  …(Am  )…)) iff |– (A1… Am)  .  
If the calculus is sound and complete, then  
|– (A1… Am)   iff |= (A1… Am)  . 
|= (A1… Am)   iff A1,…,Am |= . 

(The first equivalence is obtained by applying the Deduction Theorem m-times, the second is 
valid due to the soundness and completeness, the third one is the semantic equivalence.) 

Remarks. 

1) The set of axioms of a calculus is non-empty and decidable in the set of WFFs 
(otherwise the calculus would not be reasonable, for we couldn’t perform proofs if we 
did not know which formulas are axioms). It means that there is an algorithm that for 
any WFF  given as its input answers in a finite number of steps an output Yes or NO 
on the question whether  is an axiom or not. A finite set is trivially decidable. The set 
of axioms can be infinite. In such a case we define the set either by an algorithm of 
creating axioms or by a finite set of axiom schemata. The set of axioms should be 
minimal, i.e., each axiom is independent of the other axioms (not provable from 
them). 

2) The set of deduction rules enables us to perform proofs mechanically, considering just 
the symbols, abstracting of their semantics. Proving in a calculus is a syntactic 
method.  

3) A natural demand is a syntactic consistency of the calculus. A calculus is consistent iff 
there is a WFF  such that  is not provable (in an inconsistent calculus everything is 
provable). This definition is equivalent to the following one: a calculus is consistent 
iff a formula of the form A  A, or (A  A), is not provable. A calculus is 
syntactically consistent iff it is sound (semantically correct). 

4) For the 1st order predicate logic there are sound and complete calculi. They are, e.g., 
Hilbert style calculus, natural deduction and Gentzen calculus. 

5) There is another property of calculi. To illustrate it, let’s raise a question: having a 
formula , does the calculus decide ? In other words, is there an algorithm that 
would answer Yes or No, having  as input and answering the question whether  is 
logically valid or no? If there is such an algorithm, then the calculus is decidable.  

If the calculus is complete, then it proves all the logically valid formulas, and the 
proofs can be described in an algorithmic way. However, in case the input formula  is 
not logically valid, the algorithm does not have to answer (in a final number of steps). 
Indeed, there are no decidable 1st order predicate logic calculi, i.e., the problem of 
logical validity is not decidable.  

6) The relation of provability (A1,...,An |– A) and the relation of logical entailment 
(A1,...,An |= A) are distinct relations. Similarly, the set of theorems |– A (of a calculus) 
is generally not identical to the set of logically valid formulas |= A. The former is 
syntactic and defined within a calculus, the latter independent of a calculus, it is 
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semantic. In a sound calculus the set of theorems is a subset of the set of logically 
valid formulas. In a sound and complete calculus the set of theorems is identical with 
the set of formulas. 

The reason why proof calculi have been developed can be traced back to the end of 19th 
century. At that time formalization methods had been developed and various paradoxes arose. 
All those paradoxes arose from the assumption on the existence of actual infinities. To avoid 
paradoxes, D. Hilbert (a significant German mathematician) proclaimed the program of 
formalisation of mathematics. The idea was simple: to avoid paradoxes we will use only 
finitist methods: first, start with a decidable set of certainly (logically) true formulas, use truth 
preserving rules of deduction, and infer all the logical truths. Second, begin with some 
sentences true in an area of interest (interpretation), use truth-preserving rules of deduction, 
and infer all the truths of this area. In particular, he intended to axiomatise in this way 
mathematics, to avoid paradoxes.  

Hilbert supposed that these goals can be met.  Kurt Gödel (the greatest logician of the 20th 
century) proved the completeness of the 1st order predicate calculus, which was expected. He 
even proved the strong completeness: if SA |= T then SA |– T (SA – a set of assumptions). 
But Hilbert wanted more: he supposed that all the truths of mathematics can be proved in this 
mechanic finite way. That is, that a theory of arithmetic (e.g. Peano) is complete in the 
following sense: each formula is in the theory decidable, i.e., the theory proves either the 
formula or its negation, which means that all the formulas true in the intended interpretation 
over the set of natural numbers are provable in the theory:   

Gödel’s theorems on incompleteness give a surprising result: there are true but not 
provable sentences of natural numbers arithmetic. Hence Hilbert program is not fully 
realisable.  
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2. Natural deduction calculus 

Definition 1 Axioms, deduction rules schemata. 

Axioms:    A  A, A  A 

conjunction:               A, B |– A  B        IC 
            A  B |– A, B           EC 

disjunction:            A |– A  B or  B |– A  B    ID 
A  B,A |– B  or  A  B,B |– A  ED 

Implication:              B |– A  B     II 
A  B, A |– B    EI        modus ponens MP 

equivalence:   A  B, B  A |– A  B   IE 
A  B |– A  B, B  A   EE 

General quantifier:      Ax |– xAx     I 
 The rule can be used only if formula Ax is not derived from any assumption that would 

contain variable x as free. 

xAx |– Ax/t     E 
 Formula Ax/t is a result of correctly substituting the term t for the variable x.  

Existential quantifier  Ax/t |– xAx     I 

     xAx |– Ax/c    E 
 where c is a constant not used as yet in the language. If the rule is used for distinct 

formulas A’, then a different constant has to be used. A more general form of the rule is: 
  y1...yn x Ax, y1,...,yn |– y1...yn A x / f(y1,...,yn), y1,...,yn    E 

Notes 
1. In natural deduction calculus an indirect proof is often used. 
2. Existential quantifier elimination has to be done in accordance to the rules of 

Scolemisation in the general resolution method. 
3. Rules derivable from the above: 

 Ax  B |– xAx  B, x is not free in B 
 A  Bx |– A  xBx, x is not free in A 
 Ax  B |– xAx  B, x is not free in B 
 A  Bx |– A  xBx 
 A  xBx |– A  Bx  
 xAx  B |– Ax  B 

Example   Another useful rules and theorems of propositional logic (try to prove them):  
Introduction of negation:                      A |– A   IN 
Elimination of  negation:                   A |– A   EN 
Negation of  disjunction:                 A  B |– A  B  ND 
Negation of conjunction:               A  B |– A  B  NK 
Negation of  implication:                A  B |– A  B  NI 
Tranzitivityof  implication:       A  B, B  C |– A  C  TI 
Transpozition:                        A  B |– B  A  TR 
Modus tollens:                  A  B, B |– A   MT 
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 a)  A  B, B |– A                            MT 
  Proof:  
1.  A  B  assumption 
2.  B  assumption 
3.  A  assumption of the indirect proof 
4.  B  MP: 1, 3 contradicts to 2., hence A Q.E.D  

 b)  C  D |– C  D      
  Proof: 
  1. C  D    assumption 
  2.  (C  D)   assumption of indirect proof 
  3. (C  D)  (C  D) de Morgan (see c)) 
  4.  C  D   MP 2,3 
  5. C    EC 4 
  6.  D     EC 4 
  7. D    MP 1, 5 contradicts to 6, hence 
  8. C  D   (assumption of indirect proof is not true) Q.E.D.
  

 c) (A  B)  (A  B)   de Morgan 
  Proof: 
  1. (A  B)    assumption 
  2. A  B    assumption of indirect proof 
  3. A    EC 
  4.  B    EC 
   5.1.  A contradicts to 3 
   5.2.  B contradicts to 4.  
  6. (A  B)  Q.E.D. (assumption of indirect proof cannot be true) 

 d)  A  C, B  C |– (A  B)  C 
  Proof: 
  1.  A  C   assumption 
  2.  A  C  rule b) 
  3.  B  C   assumption 
  4.  B  C  rule b) 
  5.  A  B   assumption 
  6.  C   assumption of indirect proof 
  7.  B   MT 4, 6 
  8. A   MT 2, 6 
  9. A  B  IC 
  10. (A  B)  (A  B) theorem (de Morgan) 
  11. (A  B)   MP 9, 10 contradicts to 5., hence 
  12. C   (assumption of indirect proof is not true) Q.E.D. 
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Example (some proofs of FOL theorems) 

1) |– x [Ax  Bx]  [xAx  xBx] 

  Proof:   
  1.  x [Ax  Bx]   assumption   
   2. xAx    assumption  
  3. Ax  Bx    E:1 
  4. Ax     E:2  
  5.  Bx     MP:3,4 
  6.  xBx     I:5   Q.E.D. 
 According to the Deduction Theorem we prove theorems in the form of implication by 

means of the proof of consequent from antecedent: 
  x [Ax  Bx] |– [xAx  xBx] iff 

x [Ax  Bx], xAx |– xBx 

2) |– x Ax  x Ax  (De Morgan rule) 

  Proof:   
 : 1.  x Ax   assumption   
   2. x Ax   assumption of indirect proof 
   3.1. Ax    hypothesis 
   3.2. x Ax   I: 3.1 
  4.  Ax  x Ax  II: 3.1, 3.2 
  5.  Ax    MT: 4,2 
  6.  x Ax    Z:5  contradicts to:1 Q.E.D. 
 : 1. x Ax   assumption 
  2. x Ax   assumption of indirect proof 
  3. Ac)    E:1 
  4. Ac    E:2  contradicts to:3  Q.E.D. 

Note: In the proof sequence we can introduce a hypothetical assumption H (in this case 3.1.) 
and derive conclusion C from this hypothetical assumption (in this case 3.2.). As a regular 
proof step we can then introduce implication H  C (step 4.).  

According to the Theorem of Deduction this theorem corresponds to two rules of deduction: 
  x Ax |– x Ax, x Ax |– x Ax  

3) |– x Ax  x Ax  (De Morgan rule) 

  Proof:   
 : 1.  x Ax   assumption  
    2.1. Ax    hypothesis 
   2.2. x Ax   Z:2.1 
  3. Ax  x Ax  ZI: 2.1, 2.2 
  4.  Ax    MT: 3,1 
  5.  x Ax   Z:4   Q.E.D. 
 : 1. x Ax   assumption 
  2. x Ax   assumption of indirect proof 
  3. Ac)    E: 2 
  4. Ac    E: 1 contradictss to: 3   Q.E.D. 



 10

According to the Theorem of Deduction this theorem corresponds to two rules of deduction:
  x Ax |– x Ax, x Ax |– x Ax 

 
Note: In the second part of the proofs 2), 3) the rule of existential quantifier elimination (E) 

has been used. This rule is not correct, for it is not truth preserving:  
formula x A(x)  A(c) is not logically valid (cf. Scolem rule in the resolution 
method). This rule, however, preserves satisfiability, and in an indirect proof can be 
used in a correct way.  

4) |– x [Ax  Bx]  [xAx  xBx]  

  Proof:  
  1. x [Ax  Bx]  assumption 
  2. xAx    assumption  
  3. Aa    E: 2 
  4. Aa  Ba   E: 1 
  5. Ba    MP: 3,4  
  6. xBx    Z: 5   Q.E.D.  
Note: this is another example of a correct using the rule E.  

5) |– x [A  Bx]  A  xBx, where A does not contain variable x free 

  Proof:   
 : 1.  x [A  Bx]   assumption   
   2. A  Bx   E: 1    
  3. A  A   axiom 
   3.1. A    1. hypothesis 
   3.2. A  xBx   ZD: 3.1    
   4.1.  A     2. hypothesis 
   4.2. Bx    ED: 2, 4.1 
   4.3. xBx    Z: 4.2   
   4.4. A  xBx   ZD: 4.3. 

5.  [A  (A  xBx)]  [A  (A  xBx)]  II + IC  
6. (A  A)  (A  xBx)    theorem + MP 5 
7. A  xBx    MP 6, 2  

      Q.E.D. 
 : 1. A  xBx   Assumption, disjunction of hypotheses 
   2.1. A    1. hypothesis 
   2.2. A  Bx   ZD: 2.1   
   2.3. x [A  Bx]   Z: 2.2   

 3. A  x [A  Bx]   
   4.1. xBx   2. hypothesis 
   4.2. Bx    E: 3.1 
   4.3. A  Bx   ZD: 3.2 
   4.4. x [A  Bx]   Z: 3.3   
  5.  xBx  x [A  Bx]   ZI 4.1., 4.4. 
  6.  [A  xBx]  x [A  Bx]  theorem, IC, MP – 3, 5 
  7.  x [A  Bx]    MP 1, 6  Q.E.D. 
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6) |– A(x)  B  xA(x)  B 

 Proof:   
  1. A(x)  B   assumption 
  2. xA(x)    assumption  
  3. A(x)  B   rule b) C  D |– C  D  
  4. A(x)    E: 2 
  5. B    ED: 3,4  Q.E.D. 

 
 This theorem corresponds to the rule: 

 A(x)  B |– xA(x)  B 
 

Some more examples: 

Example 2.3.5: 
 Theorém: (p  r)  (p  r) 
1.  p  r    assumption 
2.  (p  r)   assumption indirect proof 
3.  (p  r)  (p  r) Theorém ND (de Morgan)  
4.  p  r   MP: 2.3. 
5.  p  r   EN: 4. 
6.  p 
7.  r    EK 
8.  r    MP: 1.6. – contr. 
9.  p  r   Q.E.D. 

Example 2.3.6: 
 Theorém: [(p  r)  (q  r)]  [(p  q)  r]  
1.  [(p  r)  (q  r)] assumption 
2.  (p  r)    EK: 1 
3.  (q  r)    EK: 1 
4.  p  q    assumption 
5.   (p  r)  (p  r)  Theorém (Example 2.3.5) 
6.  p  r   MP: 2.5. 
7.  r   assumption indirect proof 
8.   p   ED: 6.7. 
9.  q   ED: 4.8. 
10.  r    MP: 3.9. – contr. 
11.  r    Q.E.D 

 

Technique of hypothetic assumptions (conditional proof): 
 In the sequence of formulas of a proof there can be introduced a hypothetical 
assumption H. If from H and as the case may be from other ordinary assumptions we derive 
formula D, then the formula H  D can be introduced as an ordinary step.  
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Example 2.3.7: 
 Theorém: [(p  q)  r]  [(p  r)  (q  r)] 

   Direct proof by with hypothetic assumptions: 
 1. (p  q)  r    assumption  
  2.1. p    hypothesis 
  2.2. p  q    ZD:2.1 
  2.3. r    MP:1,2.2 
 3. p  r     ZI: 2.1  2.3 
  4.1. q    hypothesis 
  4.2. p  q    ZD:4.1 
  4.3.  r    MP:1,4.2 
 5. q  r    ZI: 4.1  4.3 
 6. (p  r)  (q  r)  ZK:3,5   Q.E.D 
 

 Theorem: (p  q)   p  q  

Indirect proof with hypothetic assumptions: 
 1. (p  q)    assumption 
  2.1. p    hypothesis 
  2.2. p  q    ZD: 2.1 contr.:1 
 3. p     because p leads to contr. 
  4.1. q    hypothesis 
  4.2. p  q    ZD: 4.1 contr.:1  
 4. q     because p leads to contr. 
 5. p  q   ZK: 3,4  Q.E.D. 

 

The technique of the split proof from hypotheses: 

 Let in the proof sequence of formula F there is a formula in the form of disjunction: 
 C1  C2 ... Ck. If the formula F can be proved from each of the additional assumptions C1, 
C2,...,Ck, then the formula F has been proved.  

Example 2.3.8: 

 Theorém: p  q  [p  r)  (q  r] 
Direct splitting proof: 

 1. p  q   assumption 
 2. p  r   assumption, disjunction of cases 
  3.1. p   hypothesis of the 1. case 
  3.2. q   MP: 1, 3.1 
  3.3. q  r   ZD: 3.2   
 3. p  q  r  ZI 

4.1. r   hypothesis of the 2. case 
  4.2. q  r   ZD: 4.1 
 4. r  q  r  ZI 
 5. (p  q  r)  (r  q  r) ZK: 3.4. 
 6. (p  r)  (q  r)  Theorém: Example 2.3.6, MP Q.E.D.  
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 Theorém: [p  q  r  s  q  s]  p  r 
 
Indirect splitting proof: 
 1. p  q   assumption 
 2. r  s   assumption 
 3. (q  s)  assumption 
 4. p  r   assumption of indirect proof in the form of disjunction 
  5.1. p   1. hypothesis 
  5.2. q   MP: 1, 5.1 
  5.3. q  s   ZD: 5.2, contr.:3 Q.E.D. 
  6.1. r   2. hypothesis 
  6.2. s   MP: 2, 6.1 
  6.3. q  s   ZD: 6.2, contr.:3 Q.E.D. 
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3. Hilbert calculus.  
 
Definition 

 Language: Language of the 1st-order predicate logic, but: 
from the connectives only:  (implication), and  (negation) 
the only quantifier:  (general)  

 Axiom schemas:  A1:  A  (B  A) 
    A2:  (A  (B  C))  ((A  B)  (A  C)) 
    A3: (B  A)  (A  B) 

A4: xA(x)  A(x/t) Term t substitutable for x in A 
    A5: x[A  B(x)]  A  xB(x), x is not free in A 

 Rule schemas:  MP:  A, A  B |– B  (modus ponens) 
    G: A |– xA  (generalization) 

Notes: 

1. A, B are not formulas, but meta-symbols denoting any formula. Each axiom schema 
denotes an infinite class of formulas of a given form. If axioms were specified by concrete 
formulas, like  
   1. p  (q  p) 
   2. (p  (q  r))  ((p  q)  (p  r)) 
   3. (q  p)  (p  q) 
we would have to extend the set of rules with the rule of substitution: 

Substituting in a proved formula for each propositional logic symbol another formula, 
then the obtained formula is proved as well. 

2. The axiomatic system defined in this way works only with the symbols of connectives , 
, and quantifier . Other symbols of the other connectives and existential quantifier can 
be introduced as abbreviations ex definicione: 

 A  B  =df  (A  B) 

 A  B  =df  A  B 

 A  B =df  (A  B)  (B  A) 

 xA  =df x A  

 The symbols , ,  and  do not belong to the alphabet of the language of the calculus. 

3.  In Hilbert calculus we do not indirecet proof.  

4. Hilbert calculus defined in this way is sound (semantically consistent).  
a) All the axioms are logically valid formulas.  
b) The modus ponens rule is truth-preserving.  

The only problem – as you can easily see – is the generalisation rule. This rule is 
obviously not truth preserving: formula P(x)  xP(x) is not logically valid. 
However, this rule is tautology preserving: if the formula A(x) at the left-hand 
side is logically valid, then xA(x) is logically valid as well. Since the axioms of 
the calculus are logically valid, the rule is correct. 
After all, this is a common way of proving in mathematics. To prove that 
something holds for all the triangles, we prove that for any triangle.  
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5. Note that any axiom is a theorem as well. Its proof is a trivial one step proof.  

6. To make the proof more comprehensive, you can use in the proof sequence also 
previously proved formulas (theorems). 

Examples: 
1. Proof of a formula schema A  A: 

 1. (A  ((A  A)  A))  ((A  (A  A))  (A  A)) ax. A2  B/A  A, C/A 
2. A  ((A  A)  A)     ax. A1  B/A  A 
3. (A  (A  A))  (A  A)    MP:2,1 
4. A  (A  A)      ax. A1  B/A 
5. A  A       MP:4,3 Q.E.D. 
Hence: |– A  A . 

2.  Proof of the schema A  C from the assumptions A  B, B  C (transitivity of 
implication TI): 

  1. A  B     1. assumption 
  2. B  C     2. assumption 
  3. (A  (B  C))  ((A  B)  (A  C)) A2   
  4. (B  C)  (A  (B  C))   A1     A/(B  C), B/A 
  5. A  (B  C)    MP:2,4 
  6. (A  B)  (A  C)    MP:5,3 
  7. A  C     MP:1,6 Q.E.D. 
 hence: A  B, B  C |– A  C . 
  
 It is obvious that discovering proofs of even very simple formulas is in Hilbert 
calculus difficult. The reason is that in Hilbert calculus there are only two rules of deduction. 
However, when proving simple formulas, these theorems can be used in the other proofs. 
Since natural deduction (ND) calculus is much easier to use, it is useful to prove first the 
theorems of  it, which can further make the proofs easier. 

3. |– Ax/t  xAx 
 (the ND rule of introducing existential quantifier – existential generalisation) 
  Proof: 
  1. x Ax  Ax/t    ax. schema A4 
  2. x Ax  x Ax   theorem of type C  C  

         (see below) 
  3. x Ax  Ax/t   C  D, D  E |– C  E: 2, 1  TI 
  4. xAx  Ax/t    Intr.  acc. To the definition: 3 
  5. [xAx  Ax/t]  [Ax/t  xAx] ax. schema A3 
  6. Ax/t  xAx    MP: 4, 5 Q.E.D. 

3) A  Bx |– A  xBx   x is not free in A 
 Proof: 
  1. A  Bx     assumption   
  2. x[A  Bx]     rule of Generalisation: 1 
  3. x[A  Bx]  [A  xBx]  ax. schema A5 
  4. A  xBx     MP: 2,3 Q.E.D. 
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Theorem of Deduction:  
 Let A be a closed formula, B any formula. Then: 

A1, A2,...,Ak |– A  B  if and only if  A1, A2,...,Ak, A |– B. 

Remark:  The statement   if  |– A  B,  then  A |– B  
  Is valid universally, not only for A being a closed formula (the proof is obvious – 
modus ponens).  
  On the other hand, the other statement  

If  A |– B, then  |– A  B  
is  not valid  for an open formula A (with at least one free variable).  
Example: Let A = A(x), B = xA(x). Then A(x) |– xA(x) is valid according to the 
generalisation rule. But the formula Ax  xAx is generally not logically valid, and 
therefore not provable in a sound calculus.  

Proof (we will prove the Deduction Theorem only for the propositional logic): 

1.  Let A1, A2,...,Ak |– A  B. Then there is a sequence B1, B2,...,Bn, which is the proof of 

A  B from assumptions A1,A2,...,Ak. The proof of B from A1, A2,...,Ak, A is then the 

sequence of formulas B1, B2,...,Bn, A, B, where Bn = A  B and B is the result of 

applying modus ponens to formulas Bn and A. 

2.  Let A1, A2,...,Ak, A |– B. Then there is a sequence of formulas C1,C2,...,Cr = B, which 

is the proof of B from A1,A2,...,Ak, A. We will prove by induction that the formula A  

Ci (for all i = 1, 2,...,r) is provable from A1, A2,...,Ak. Then also A  Cr will be proved. 

a) Base of the induction: If the length of the proof is = 1, then for formula C1 there 

can be three cases: C1 is an assumption of Ai, C1 is an axiom, C1 is the formula A. In 

the first two cases the proof of A  C1 is the sequence of formulas: 

1. C1    assumption or axiom 

2. C1  (A  C1)  A1 
3. A  C1  MP: 1,2  

In the third case we are to prove A  A (see example 1). 

b) Induction step: we prove that on the assumption of A  Cn being proved for n = 1, 
2, ..., i-1 the formula A  Cn can be proved also for n = i. For Ci there are four cases: 

Ci is an assumption of Ai, Ci is an axiom, Ci is the formula A, Ci is an immediate 

consequence of the formulas Cj a Ck = (Cj  Ci), where j, k < i. In the first three cases 

the proof is analogical to a). In the last case the proof of the formula A  Ci is the 
sequence of formulas: 

 
1. A  Cj       induction assumption 

2. A  (Cj  Ci)      induction assumption  

3. (A  (Cj  Ci))  ((A  Cj)  (A  Ci)) A2 

4. (A  Cj)  (A  Ci)    MP: 2,3 

5.       A  Ci)      MP: 1,4 Q.E.D 
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Theorem of soundness (semantic consistence): 
 Each provable formula in the Hilbert calculus is also logically valid formula:  

If  |– A,  then  |= A. 

Proof (outline): 
 Each formula of the form of an axiom schema of A1 – A5 is logically valid (i.e. true in 
every interpretation structure I for any valuation of free variables).  

Obviously, MP (modus ponens) is a truth preserving rule.  
A correct using of the generalisation rule Ax |– xAx is guaranteed by the 

definition of satisfying the formula xA by a structure I. Let us assume that A(x) is a proof 
step such that in the sequence preceding A(x) the generalisation rule has not been used as yet. 
Hence the formula A(x) must be logically valid (since it has been obtained from logically 
valid formulas by using at most the truth preserving modus ponens rule). It means that in any 
structure I the formula A(x) is true for any valuation e of x. Which, by definition, means that 
xA(x) is logically valid as well.  

Remark: 
 According to the deduction Theorem each theorem of the implication form 
corresponds to a deduction rule(s), and vice versa. For example: 
 

Theorem: Rule 
|– A  ((A  B)  B) A, A  B |– B         (MP rule) 
|– A  (B  A)      /ax. schema A1/  A |– B  A, and A, B |– A   
|– A  A            A |– A 
|– (A  B)  ((B  C)  (A  C)) A  B |– (B  C)  (A  C) and 
                  A  B, B  C |– A  C    /rule TI/ 

Example: a few simple theorems and the corresponding (natural deduction) rules: 

1. |– A  (A  B)   |– A  (A  B) A, A |– B  
2. |– A  A B,  |– B  A  B A |– A  B,  B |– A  B       ID 
3. |– A  A A |– A                  EN 
4. |– A  A A |– A                   IN 
5. |– (A  B)  (B  A) A  B |– B  A              TR 
6. |– A  B  A,  |– A  B  B A  B |– A, B                EC 
7. |– A  (B  A  B),  |– B  (A  A  B) A, B |– A  B,  IC 
8. |– A  (B  C)  (A  B C) A  (B  C) |– A  B  C  

 
Some proofs: 
Ad 1.  |– A  (A  B),  i.e.: A, A |– B. 
 Proof: 
 1. A   assumption 
 2. A   assumption  
 3. (B  A)  (A  B) A3 
 4. A  (B  A)  A1 
 5. B  A   MP: 2,4 
 6. A  B    MP: 5,3  
 7. B    MP: 1,6 Q.E.D.    
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Ad 2.   |– A  A  B,   i.e.:  A |– A  B. (the rule ID of the natural deduction) 

 Using the definition abbreviation A  B  =df  A  B, we are to prove the theorem: 

|– A  (A  B), i.e. the rule A, A |– B, which has been already proved. 

Ad 3.  |– A  A,  i.e.:. A |– A. 

 Proof: 
 1. A     assumption  
 2. (A  A)  (A  A) ax. schema A3 
 3. A  (A  A)  theorem ad 1.  
 4. A  A    MP: 1,3 
 5. A  A    MP: 4,2  
 6. A     MP: 1,5   Q.E.D. 

Ad 4. |– A  A,  i.e.:  A |– A. 

 Proof: 
 1. A     assumption 
 2. (A  A)  (A  A) ax. schema A3 
 3. A  A    theorem ad 3.  
 4. A  A    MP: 3,2 Q.E.D. 

Ad 5. |– (A  B)  (B  A),  i.e.:  A  B |– B  A. 

 Proof:   
 1. A  B     assumption 
 2. A  A    theorem ad 3.  
 3. A  B    TI: 2,1 
 4. B  B    theorem ad 4.  
 5. A  B    TI: 1,4  
 6. A  B    TI: 2,5 
 7. (A  B)  B  A  ax. schema A3 
 8.  B  A    MP: 6,7 Q.E.D. 

Ad 6. |– A  B  A,  i.e.:  A  B |– A. (The rule EC of the natural deduction) 

Using definition abbreviation A  B =df (A  B) we are to prove  

|– (A  B)  A,  i.e.: (A  B) |– A. 

 Proof: 
 1. (A  B)     assumption 
 2. (A  (A  B))  ((A  B)  A) theorem ad 5.  
 3. A  (A  B)    theorem ad 1.  
 4. (A  B)  A    MP: 3,2 
 5. A      MP: 1,4 
 6. A  A     theorem ad 3.  
 7. A      MP: 5,6 Q.E.D. 
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Some meta-rules: 

Let T is any finite set of formulas: T = {A1, A2,.., An}. Then the following rules are valid: 

(a) if  T, A |– B  and  A is a theorem, then  T |– B.  
 It is not necessary to state theorems in the assumptions. 

(b) if  A |– B,  then  T, A |– B.  
 (Monotonicity of proving) 

(c) if  T |– A  and  T, A |– B,  then   T |– B. 

(d) if  T |– A  and  A |– B,  then   T |– B. 

(e) if   T |– A, T |– B, A, B |– C,  then  T |– C. 

(f) if  T |– A  and  T |– B,  then  T |– A  B. 
 (Consequences can be composed in a conjunction way.) 

(g) T |– A  (B  C)   if and only if   T |– B  (A  C). 
 (The order of assumptions is not important.) 

(h) T, A  B |– C   if and only if  both  T, A |– C  and  T, B |– C. 
 (Split the proof whenever there is a disjunction in the sequence – meta-rule of the natural 

deduction) 

(i) if  T, A |– B  and if  T, A |– B,  then  T |– B. 
  

Notes: 

1) meta-rules are useful rules defining relations not between formulas (as the deduction 
rules do), but between the deduction rules themselves.  

2) A proof of the meta-rule is thus a sequence of rules. 

Proofs of the meta-rules: 

Ad (h): 
 Let T, A  B |– C, we prove that  T, A |– C  and  T, B |– C. 
 Proof: 
 1. A |– A  B  the rule ID 
 2. T, A |– A  B  meta-rule (b): 1 
 3. T, A  B |– C  assumption 
 4. T, A |– C  meta-rule (d): 2,3  Q.E.D. 
 5. T, B |– C  analogically to 4.  Q.E.D.  

 Let T, A |– C  and  T, B |– C, we prove that  T, A  B |– C.  
 Proof: 
 1.  T, A |– C   assumption 
 2. T |– A  C   deduction Theorem:1  
 3. T |– C  A  meta-rule (d): 2,  (the rule TR of natural deduction) 
 4. T, C |– A   deduction Theorem: 3 
 5. T, C |– B   analogical to 4.  
 6. T, C |– A  B  meta-rule (f): 4,5 
 7. A  B |– (A  B) de Morgan rule of natural deduction (prove it!) 
 8. T, C |– (A  B) meta-rule (d): 6,7  
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 9. T |– C  (A  B) deduction theorem: 8 
 10. T |– A B  C meta-rule (d): 9. (the rule TR) 
 11. T, A  B |– C  deduction theorem: 10   Q.E.D. 

Ad (i): 
 Let  T, A |– B  and  T, A |– B,  we prove  T |– B. 
 Proof: 
  1. T, A |– B  assumption 
  2. T, A |– B  assumption  
  3. T, A  A |– B meta-rule (h): 1,2 
  4. T |– B   meta-rule (a): 3  
 
Remarks. 
Hilbert calculus is sound and complete: T |– A  if and only if  T |= A. 
 
The proof of soundness had been outlined above, the proof of the semantic completeness is 

much more complicated (Post theorem for PL, and so on). 
 
Hilbert calculus is not decidable. There are no decidable calculi for PL1 (the consequence of 

Goedel’s theorems on incompleteness). 
 
The problem of logical validity is not decidable in the 1st order predicate logic: 
 
Decidability: The existence of an algorithm that decides every formula. When having a 

formula F as an input – the algorithm should answer YES or NO on the question whether 
F is logically valid or not. 

 
The problem of logical validity is partially decidable in the 1st order predicate logic: 
 There are algorithms that partially decide every formula. When having a formula F as an 

input and when F is logically valid – the algorithm answers YES. But when A is not 
logically valid, the algorithm may answer NO, but does not have to answer at all.  
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B.  Formal axiomatic theories 

Introduction 
 

1. History. 
 

 a) State of the arts: empirical theory describing the area of interest. 
 Collecting facts is stressed, without taking into account particular 

consequences of them and relations-in-intension between them. 
   Question “What is there?” is more important than the question “Why is it so?”. 
 Typical problems are solved without any generalization 

b) Informal theories: 
  Primitive notions are given as basic, well understood, and by means of these 

primitives the other complex concepts are defined. Primitive basic knowledge is 
gathered, which is not being proved, but which the basis for deriving other 
knowledge is.  

   A formal symbolic language is used. 
  There are no formal rules of inferring and proving, logic is used just intuitively. 
  Examples: 

 Euclidean (parabolic) geometry (4th century before Christ). 
 All the mathematical theories till the end of 19th century. 
 Physical theories: mechanics (classical, relativistic, quant), 

thermodynamics, electromagnetic field theory, optics, ... 

c) Axiomatic formal theories: 
   Not only knowledge is formalized, but also rules and process of deriving 

consequences of the knowledge base. Logic is an inseparable part of each theory. 
 Formalizing the process of proving is not meaningless. The necessity of formal 

logic and semantics driven proving has been given by particular antinomies and 
paradoxes. When these paradoxes appeared in the very foundations of 
mathematics, a great effort has been devoted to building up correct consistent 
proof theories. 

 Formal theory can be used in a syntactic automatic way, without knowing the 
semantics of proved statements.  

2. Antinomies (paradoxes). 

 a) Paradox of the set of all sets. 

 Let M be a set of all sets. It means that each subset of M is a member of M. 
From the above it follows, that the cardinality of M is at least (greater than or) 
equal to the cardinality of the set of all the subsets of M: 

card (M)  card (2M). 
 On the other hand, obviously the set of all the subsets of a nonempty set M has 

more elements than M (besides having singleton (one member set) elements, it 
has also a lot of other subsets): 

     card (M) < card (2M). 
 This contradicts the above inequality. 
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 b) Russell’s antinomy  
   (Russell discovered this contradiction in Frege’s Grundladen of Arithmetik at the end  
  of 19th  century). 

i) Obviously, a subset of a set S (in particular the S itself) should not be an 
element of S. Let us define a normal set N such a set which is not its own 
element. There is a question: Is the set M of all the normal sets normal? 

ii) If we answer YES, then M does not contain M as its element, hence M should 
be normal, which means that M should be an element of M, otherwise M is not 
the set of all the normal sets. Contradiction. 

iii) If we answer NO, then M is not normal, which means that M contains as its 
element a set, which is not normal – contradiction.  

*  ii) and iii) in symbols: 
definition: M is a set of all x (x  M) such that x  M, and x is normal (x  x) . 
Question:  Is M normal? 

  NO:  M is not normal  M  M; 
     but M  M, and ex definitione M is normal – contradiction. 
      YES:  M  M  M is normal; 
    but M  M, and  M is normal  M  M. Contradiction.   

 
 To avoid such inconsistencies in mathematics, German mathematician and logician David 

Hilbert formulated in the beginning of the 20th century the so called 
 Program of Formalization of Mathematics.  

The basic idea was extremely simple:  
Choose some obviously true statements as axioms. Formulate truth preserving rules of 
inference.  Infer the consequences of axioms (theorems). In this way it is insured that all the 
theorems are true, no inconsistency can arise. 
Hilbert believed that all the true statements of mathematics can be mechanically proved in 
this way, i.e., using a finite set of rules of inference, and inferring true consequences from a 
recursively given set of true axioms; hence mathematics would be saved, without 
inconsistencies. Note that all the inconsistencies arise from the necessity to work with actual 
infinity.  
Hilbert wanted to preserve all the classical mathematics (integral calculus, e.g.) working with 
infinities, but infinities recursively defined – potential infinities. 

 Goedel’s results on incompleteness showed that this program cannot be realized in full.  
o The consistency of arithmetic cannot be formally proved by finite means 
o Each theory formalizing and containing arithmetic of natural numbers is 

incomplete. There are arithmetic statements that are neither provable nor refuted.  
 Consequences:  

 there are true arithmetic statements that cannot be proved in any formal theory, 
and are not consequences of any formal theory. 

 The theory of arithmetic is not decidable.   
 The problem of logical validity is not decidable 
 The set of theorems is not recursive 
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The most important theories are: 

a) Arithmetic theories:  

For instance Robinson’s arithmetic or Peano arithmetic, see the paper on Goedel’s  
  results, in particular incompleteness 

b) Relational theories: for instance the theories of ordering, and of equivalence 

c) Algebraic theories: for instance the theory of groups and lattices
 
The following figure illustrates incompleteness of arithmetic recursive theories. Provable 
theorems of the theory (formulas provable from special axioms T |– A) are a subset of the set  
of all the formulas valid in the intended interpretation I (entailed by the axioms T |= A):  
if |=I T and T |– A, then |=I A, but not vice versa. 

|=I A 
valid  T |– A 

T |= A 
Theory 

|– A 
Theorems= 
|= A (LVF) 

special 
ax. |=I T 

Ax. 
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B.1. Formal theory - definitions 

Definition B.1.1: 

 Formal theory is given by: 
 formal language  
 a set of axioms 
 a set of deduction rules  

 Formal language of the 1st-order theory is a language of the respective proof 
calculus: a set of well-formed formulas (WFF).  

 A set of axioms is a subset of the set of all WFF. It consists of:  
 a set of logical  axioms (of the respective calculus – logically valid formulas) 
 a set of special  axioms. The set of special axioms characterizes by means of formulas 

properties of relations between objects of a given area of interest. Hence, special 
axioms are chosen as true in the intended interpretation.  

 A set of deduction rules  is the set of rules of the respective calculus.  

 In a broader sense a theory is the set of all the formulas that can be proved drom the 
axioms of the theory. Formal theory is characterized by its set of axioms.  

Proof of a formula A in the theory T (denoted T |– A) is a sequence of WFFs (proof 
steps) such that: 
 the last step is the formula A 
 each step of the proof is either  

o a logical axiom, or 
o a special axiom, or 
o a formula that is obtained by applying a deduction rule to some previous 

formulas of the sequence. 

Note B.1.1: 

1. Proof calculus of FOL (e.g. Hilbert calculus or natural deduction) is a special case of an 
axiomatic theory. It is a theory without special axioms. 

 

B.2. Relational Theories 

B.2.1 Theory of equivalence: 

Special constants: 
  ... binary predicate constant  

Logical axioms: axioms of Hilbert calculus 

Special axioms: 
O1. x (x  x)      reflexivity 
O2. x y [(x  y)  (y  x)]    symmetry 
O3. x y z [((x  y)  (y  z))  (x  z)]  transitivity 
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B.2.2 Theory of sharp ordering: 

1. variant: 
 Special constants: 

   = ... binary predicate constant 
 < ... binary predicate constant 

 Logical axioms: axioms of Hilbert calculus 
 Special axioms: 

O1. x (x = x)      reflexivity 
O2. x y [(x=y)  (y=x)]    symmetry 
O3. x y z [(x=y  y=z)  (x=z)]   transitivity 
O4. x y z [(x=y  x<z)  (y<z)] 
O5. x y z [(x=y  z<x)  (z<y)] 
O6. x y [(x<y)  (y<x)]    asymmetry 
O7. x y z [(x<y  y<z)  (x<z)]   transitivity 
O8. x y [x=y  x<y  y<x]  
O9. x y [x<y] 
O10.x y [y<x] 
O11.x y  [x<y  z [x<z  z<y]] 

2. variant: 
 Special constant: 
 < ... binary predicate symbol  
 Logical axioms: axioms of Hilbert calculus 
 Special axioms: 

V1. x y [x<y  (y<x)]    asymetry 
V2. x y z [x<y  y<z  x<z]   transitivity 
V3. x y [x=y  x<y  y<x]    
V4. x y [x<y] 
V5. x y [y<x] 
V6. x y [x<y  z (x<z  z<y)] 
 

Some other examples: 

Theory of equality: O1-O3  
 Models: identity on the set of natural numbers, rational numbers, real numbers, ...  

Theory of sharp ordering (O1-O7) or (V1-V2) 
 Models: identity and sharp number ordering on the set of natural, rational, real numbers. 

Identity and proper inclusion on the set of all the subsets of a set S,... 

Theory of linear sharp ordering: O1-O8 or V1-V3 
 Models: identity and sharp ordering on the set of natural, rational, real numbers; 
  Identity and lexicographical ordering on the set of words over an alphabet,... 

Theory of dense ordering: O1-O11 or V1-V6 
Models: identity and sharp ordering on the set of rational or real numbers,...  
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B.2.3 Theory of partial ordering:  

Special constants: 
  ... binary predicate constant  

Logical axioms: axioms of Hilbert calculus 

Special axioms: 
PO1. x (x  x)      reflexivity 
PO2. x y [((x y)  (y  x))  x=y]   anti-symmetry 
PO3. x y z [((x  y)  (y  z))  (x  z)]  transitivity  

  where ‘=’ stands for identity. 

Structure M,  , i.e., a nonempty set S, on which a binary relation  ( M  M) is defined, 
which satisfies the axioms of partial ordering PO1, PO2, PO3 is a model of the theory, and it 
is called a partially ordered set (poset).  

Models:  
 The set N of natural numbers ordered according to the common comparing greater or 

equal. 
 The set of individuals ordered according to ‘older or of the same age’. 
 The set of natural numbers N ordered by the relation |, which is defined as follows: m | n iff 

m is divisible by n (without a remainder). 

 The last example illustrates why this ordering is called ‘partial’: there are elements 
which are not comparable. For instance, numbers 3, 5 are not comparable. 

It is often the case that the relation seems to be a partial ordering, but it is actually quasi-
ordering. The problem is caused by the axiom of anti-symmetry. 

Example: A model of axioms i) and iii) – quasi-ordered set: 

The set F of formulas of the FOL language ordered by the relation of logical entailment |= is a 
quasi-ordered set. 

(If A |= B and B |= A, then formulas A, B are only equivalent but not identical: for instance 
A  B and A  B are equivalent but distinct formulas.) 

Partial ordering of factor sets. 

If we however wish to (partially) order a set the relation of which is just a quasi-ordering, we 
use the following tricky method: If a relation  is a quasi-ordering on a set S, then we define 
on the set S a relation of equivalence (satisfying the reflexivity, symmetry and transitivity 
axioms) in this way: a  b if and only if a  b and b  a (a  S, b  S).  

 It is a well-known fact that any equivalence relation  on a set S defines a partition 
of the set S into disjunctive classes (subsets of S) such that their union is equal to the whole 
set S. Members of a partition class are those elements of S that are equivalent according to the 
relation . Thus with respect to the relation  these elements are indistinguishable and any 
element of a class can serve as its representative. No members of distinct classes are 
equivalent. The set of partition classes is called the factor set of S, denoted S/. The 
elements of S/ are classes of equivalent elements denoted usually by [e], where e is a 
representative of the respective class.  
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 Consider now the set F of all the formulas of the FOL language, and its factor set F/. 
On this set of sets (classes) a relation of partial ordering can be defined as follows:  

 [A1]  [A2] if and only if A1 |= A2. 

The structure  F/,   is a poset. To prove it, we have first to show that the relation  is 
well-defined, and then second to prove that the axioms of partial ordering PO1-PO3 are 
satisfied. So that the above definition of ordering be correct, the defined relation must not 
depend on choosing particular representatives of classes.  

Let A1’  [A1] a A2’  [A2], [A1]  [A2]. Then:   
A1’  A1, hence A1’ |= A1. By definition A1 |= A2,  and A2 |= A2’, hence also A1’ |= A2’, 
which means [A1’]  [A2’], and the definition is correct. Reflexivity and transitivity of the 
relation  are obvious. We show that this relation is also anti-symmetric: if [A1]  [A2] and 
[A2]  [A1], then  A1 |= A2 and A2 |= A1. This means that A1  A2 and [A1] = [A2]. 

B.3. Algebraic  Theories 

B.3.1. Theory of groups:  
A structure G, f (ie. a non-empty set G, on which a binary operation – mapping  
f: G  G  G), which satisfies the following axioms of the theory of groups, is called a 
commutative (Abel) group. If the structure satisfies only the axioms i)-iii), it is called a (non-
commutative) group: 
        (f is a binary functional symbol) 
 i) ea f(e,a) = f(a,e) = a   the existence of the unit element 
 ii) abc f(f(a,b),c) = f(a,f(b,c)  associativity  
 iii) aâ f(a,â) = f(â,a) = e    the existence of an inverse element 
 iv) ab f(a,b) = f(b,a)    commutativity 

The theory of groups illustrates a method of axiomatic study. We generalize some similar 
“situations”, in which the way of proofs is identical up to some isomorphism. The (minimum 
set of) assumptions of these proofs are formulated in the language of logic in the form of 
axioms. By deductive methods we then infer their logical consequences (theorems) valid in 
any interpretation of the axioms. And we know that these theorems are true in particular 
interpretations. In this way we can even discover some unexpected properties of other 
structures (models) of the theory, which are identical to the intended original interpretation. 
We do not have to repeat particular proofs, they are common to the whole theory. 

Note: in a commutative group the functional symbol f is often denoted by the sign for 
multiplying ‘.’ (the group is called multiplicative) or for adding ‘+’ (additive group). An 
inverse element is denoted multiplicative group by a-1, or in additive group -a, respectively, 
the unit element by 1, or 0 respectively. 

 Let us illustrate the role of the group theory by a simple example.  

Example 1. You may surely know the following arithmetic formulas: 
a) u - v + v - w = u - w 
b) u/v . v/w = u/w 
c) logvu . logwv = logwu  

These are valid for real numbers R.  

Obviously, the set of real numbers with the adding operation, as well as multiplying 
operation, are commutative groups.  
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In any group the following theorem can be easily proved (try to do it!): if  is the 
binary group operation, then 

Theorem u  v-1  v  w-1 = u  w-1  

It is easy to see that formulas a) and b) are special cases of the theorem.  

Let R be the set R – {0}.  To show that the formula c) is also valid according to the 
Theorem, we have to characterize a commutative group the elements of which are logarithms. 
Let us define a binary operation  on the set R:  

u  v = logU . log V, where U, V are numbers such that  u = logU, v = logV.  

Since u  v = u . v, it is obvious that R,  is a commutative group.  
Now for v  0 the following holds: u  v-1 = logU . (log V)-1 = log10U . logV10 = logVU.  
We can see that according to the Theorem we get:  

logVU . logWV = u  v-1  v  w-1 = u  w-1 = logWU (for v, w  0). 

Example 2. The set Z of positive and negative whole numbers is a commutative group with 
respect to the operation of adding: Z, +. 

Example 3. Consider the set Z with an equivalence relation defined as follows: a n b 
modulo n iff n | (a - b), i.e., the difference of numbers a, b is divisible by n.  
Try to prove that the relation n  is the equivalence relation !  
This equivalence defines (as every equivalence) the partition of Z into classes of 
numbers congruent modulo n.  
Let us denote this factor set by Z/n and its elements by [i], where I is a 
representative of the respective class. To adduce an example, let us illustrate the set 
Z / 5 modulo 5 by enumerating its elements:  

[0] = {... -10, -5, 0, 5, 10, 15, ... } 
[1] = {...   -9, -4, 1, 6, 11, 16, ... } 
[2] = {...   -8, -3, 2, 7, 12, 17, ... } 
[3] = {...   -7, -2, 3, 8, 13, 18, ... } 
[4] = {...   -6, -1, 4, 9, 14, 19, ... } 

Let  be a binary operation of class adding on Z /n defined as follows:  
[i]  [j] = [i+j].   
This adding of classes is well-defined:  
If [i] = [i’], [j] = [j’], then n | (i-i’) and n | (j-j’), hence n | (i-i’+j-j’), n | (i+j - i’+j’).  
Which means  [i+j] = [i’+j’]. It is easy to prove that the structure Z/n,  is a 
commutative group. The unit element is the class [0], and for every [a] the inverse 
element is the class [-a].   
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B.3.2. Theory of lattices: 

Let S be a set on which two binary operations (mappings from S  S  S) are defined that are 
denoted and called  (meet) and  (join). Let meet and join satisfy the following six axioms 

(a,b,c are elements of S): 

i) (abc) (a  b)  c = a  (b  c)  associativity 
ii) (abc) (a  b)  c = a  (b  c)  associativity 
iii) (ab) a  b = b  a    commutativity 
iv) (ab) a  b = b  a    commutativity 
v) (ab) (a  b)  a = a   Boole properties, or  
vi) (ab) a  (b  a) = a   idempotent properties  

Then the structure M, ,  is called a lattice.   

 In the lattice theory the following two theorems are valid. These theorems determine 
the relationship of the lattice theory and the theory of partial ordering. Actually, each lattice 
can be viewed as a poset, and a poset with the following properties can be viewed as a lattice: 

Theorem 1: Let L = S, ,  be a lattice. Then the binary relation  defined on S as 
follows:  

a  b  df  a  b = b    a  b = a  

is a partial ordering, and for all the two-element subsets there is a supremum and 
infimum in S:  

(ab) [sup{a,b} = a  b], (ab) [inf{a,b} = a  b]. 

Theorem 2: If S = M,   is a partially ordered set such that each two-element subset of M 
has a supremum and infimum within M, then the structure L = M, ,  with meet 
and join defined: a  b =df sup{a,b}, a  b =df inf{a,b}, is a model of the lattice theory, 
i.e., L is a lattice. 

In each lattice the following theorems are valid: 

Theorem 3: 
|–  (a  b)  (a  c)    a  (b  c) 
|–  (a  b)  (a  c)    a  (b  c) 

 There are several important classes of lattices such that they satisfy the above lattice 
axioms and some additional axioms.  

If the formulas of the theorem 3 are of the equality form, then the lattice is 
distributive: 

D1 (a  b)  (a  c)  =  a  (b  c) 

D2 (a  b)  (a  c)  =  a  (b  c) 

Another important lattices are modular lattices: 

 M (a,b,c) ( (a  c)  [a  (b  c) = (a  b)  c] ) 

Examples: 

 A set 2M of all the subsets of M, where meet is defined as the set-theoretical union, and join 
as the set-theoretical intersection, is a distributive lattice. 
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 The factor set F/ of classes of equivalent formulas is a distributive lattice, in which the 
meet and join are defined as follows:  

[A1]  [A2] = [A1  A2], [A1]  [A2] = [A1  A2], 

i.e., as a class formed by disjunction and conjunction, respectively. 

(Proof that the definition is correct!) 

Each distributive lattice is modular, but not vice versa: 

 A set {o, a, b, c, i} ordered in this way: a  i, b  i, c  i, a  o, b  o, c  o is a modeular 
lattice which is not distributive. Using a Hasse diagram: 

    i 
 
 
     a b      c 
 
  
    o 
 
 A set {o, a, b, c, i} ordered according the the Hasse diagram is not a modular lattice: 
 
                i 
 
       c 
    b 
       a 
 
      o 
 
The theory of lattices is used in informatics, for instance in the area of information retrieval, 
or the Formal Concept Analysis.  

Definition: 
 A theory T’ is stronger than a theory T, iff each formula provable in T is also 
provable in T’, but not vice versa.  
 Theories T and T’ are equivalent (equally strong), iff each formula provable in T is 
also provable in T’, and vice versa. 
 A Theory T’ is an extension of a theory T, iff the set of special symbols used in T is a 
subset of the set of special symbols used in T’, or if the set of axioms of T is a subset of the 
set of axioms of T’. If T’ is equivalent to T, the extension is inessential. If T’ is stronger than 
T, the extension is essential. 

Example: 
 The theory of sharp ordering O1-O11 is stronger than the theory O1-O8. 
 The theory of sharp ordering O1-O11 is in the predicate logic with equality equivalent 
to the theory V1-V6 (in the predicate logic without equality). 
 Adding the axiom V6 to the theory V1-V5 is an essential extension of the former. 
Introducing a new relational symbol  and an special axiom xy  x<y  x=y is, however an 
inessential extension. 
 


