Tutorial 6 - First Order Predicate Logic

Exercise 1: Express the following formulas verbally, assuming that the predicate P means to like (who, whom), the individual constant m means Mary and the individual constant k Charles.
a) $\exists x \exists y P(x, y)$
b) $\exists x \forall y P(x, y)$
c) $\exists y \forall x P(x, y)$
d) $\forall x \exists y P(x, y)$
e) $\forall x \forall y P(x, y)$
f) $\forall x P(x, m)$
g) $\forall y P(k, y)$

Exercise 2: Formalize following sentences into the language of First order predicate logic. Negate formally and verbally.
a) Everyone is in Mexico.
b) Someone is water goblin.
c) Each water goblin is wet.
d) All water goblins are not wet.
e) Not all water goblins are wet.
f) No water goblin is wet.
g) At least someone loves his mother.
h) Some people do not like logic.
i) Some people preach water but drink wine.
j) No educated man fell from heaven.
k) All man a football players and beer drinkers.
l) Some beer drinkers are not football players.
m) Someone is thinking that he is smarter than everyone else.
n) Two roosters in one dump hate each other.
o) When the lords quarrel, the peasants loosen their hair.
p) All students like their ILT tutor.

Exercise 3: For the following sequences of symbols, decide whether it is a well-formed formula of FOL (use common parentheses conventions). In case of well-formed formula, do the following:

- Decide, which symbols in the formulas are predicate symbols and which are terms. To each of them, determine the number of their arguments (arity).
- For each occurrence of a variable, identify whether it is free or bound occurrence.
a) P
k) $f(x, y)$
b) $\mathrm{P}(\mathrm{P}(x, y), z)$

1) $\neg P(x) \wedge \exists x Q(x)$
c) $x(P)$
m) $\forall x \forall y[P(x) \vee P(x, y)]$
d) Pxy
n) $\forall x \exists y P(x)$
e) $\forall P(x)$
o) $\forall x \exists x P(x)$
f) $P(x) \wedge \exists$
p) $\forall x \exists y P(R(x, y))$
g) $\exists x R(x, y)$
q) $\forall x \exists y P(R(\neg x, y))$
h) $\forall z[R(x, y) \supset R(y, x)]$
r) $\exists x P(u, z) \wedge \forall y[\neg Q(y, x) \vee P(y, z)]$
i) $\neg \exists x[\neg P(x, y) \supset R(u, x)]$
s) $\forall x \forall x S(x, x, x)$
j) $P(f(x, y), a)$
t) $\exists \mathrm{x}[\forall \mathrm{y}(\neg \mathrm{P}(\mathrm{x}, \mathrm{y})) \supset \forall \mathrm{y} \mathrm{Q}(\mathrm{y})) \equiv \mathrm{R}(\mathrm{x}, \mathrm{y})]$

Exercise 4: Decide, which interpretation is a model of which of the following formulas. Interpretation:

- universum $\mathrm{U}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $\mathrm{P}^{\mathrm{U}} \subseteq \mathrm{U}=\{\mathrm{a}, \mathrm{c}\}$
- $\mathrm{Q}^{\mathrm{U}}=\emptyset$
- $\mathrm{R}^{\mathrm{U}} \subseteq \mathrm{U} \times \mathrm{U}=\{(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{a})\}$
- $\mathrm{L}^{\mathrm{U}} \subseteq \mathrm{U} \times \mathrm{U}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{a})\}$
- $\mathrm{f}^{\mathrm{U}}: \mathrm{U} \times \mathrm{U} \rightarrow \mathrm{U}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}),(\mathrm{a}, \mathrm{c}, \mathrm{c}),(\mathrm{b}, \mathrm{c}, \mathrm{c}),(\mathrm{b}, \mathrm{a}, \mathrm{c}),(\mathrm{c}, \mathrm{a}, \mathrm{c}),(\mathrm{c}, \mathrm{b}, \mathrm{c}),(\mathrm{a}, \mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{b}, \mathrm{c}),(\mathrm{c}$, c, c) $\}$

Formulas:

Introduction to Logical Thinking (2021/2022) - tutorial 6 - First Order Predicate Logic 3
a) $\forall x P(x)$
b) $\exists x \neg Q(x)$
c) $\forall x \exists y R(x, y)$
d) $\forall x L(x, x)$
e) $\forall x \forall y[R(x, y) \supset R(y, x)]$
f) $\forall x \forall y P(f(x, y))$
g) $\exists x[Q(x) \wedge \forall y R(y, x)]$
h) $\forall x \forall y[R(x, y) \supset L(y, x)]$

Exercise 5: For the following formulas, define their models and interpretations that are not a models.
a) $\exists x[A(x) \wedge B(x)]$
b) $\forall x[A(x) \supset B(x)]$
c) $\exists x[A(x) \wedge \neg B(x)$
d) $\forall x R(x, f(x))$
e) $\forall x \forall y[R(x, y) \supset R(y, x)]$
f) $\forall x[(P(x) \wedge V(x, a)) \supset L(x)]$

