Examples of proofs

I) $\exists x \forall y P(x, y) \supset \forall y \exists x P(x, y)$
a) Proof by natural deduction:
$\begin{array}{ll}\text { 1. } \exists x \forall y P(x, y) & \text { assumption } \\ \text { 2. } \forall y P(a, y) & \mathrm{E} \exists(1) \\ \text { 3. } P(a, y) & \mathrm{E} \forall(2) \\ \text { 4. } \exists x P(x, y) & \mathrm{I} \exists(3) \\ \text { 5. } \forall y \exists x P(x, y) & \mathrm{I} \forall(4)\end{array}$
Note: this proof is valid, because we have to eliminate the existential quantifier first. The inverse implication $\forall y \exists x P(x, y) \supset \exists x \forall y P(x, y)$ is not a logically valid formula, because

1. $\forall y \exists x P(x, y) \quad$ assumption
2. $\forall y P(f(y), y) \quad \mathrm{E} \exists$ (1) - the variable x is in the scope of the general quantifier!
3. $P(f(y), y)$

E \forall (2)
Now there is no reasonable way to continue.
b) Proof by resolution method:
$\exists x \forall y P(x, y) \wedge \exists y \forall x \neg P(x, y)$ negated formula (A)
$\forall y P(a, y) \wedge \forall z \neg P(z, b) \quad$ Skolemization and renaming variable y (the second)
$\forall y \forall z P(a, y) \wedge \neg P(z, b) \quad$ quantifiers to the left

1. $P(a, y)$
2. $\neg P(z, b)$
3. \# empty clause by unification: $a / z, b / y$
inverse implication: $\forall y \exists x \boldsymbol{P}(x, y) \supset \exists x \forall y P(x, y)$
$\forall y \exists x P(x, y) \wedge \forall x \exists y \neg P(x, y)$ negated (B)
$\forall y P(f(y), y) \wedge \forall x \neg P(x, g(x)) \quad$ Skolemization (now x, y are in the scope of \forall)
4. $P(f(y), y)$
5. $\neg P(x, g(x))$
6. $\neg P(f(y), g(f(y))) \quad f(y) / x$ into 2 . (in the aim to unify 1 and 2)
7. $P(f(g(f(y))), g(f(y)))$
no way to unify the two clauses, they are not unifiable, the formula is not a tautology

(II) $\exists x[P(x) \wedge Q(x)] \supset[\exists x P(x) \wedge \exists x Q(x)]$

a) Proof by natural deduction

1. $\exists x[P(x) \wedge Q(x)]$	assumption
2. $[P(a) \wedge Q(a)]$	E $\exists(1)$
3. $P(a)$	E^(2)
4. $Q(a)$	E^(2)
5. $\exists x P(x)$	$\mathrm{I} \exists(3)$
6. $\exists x Q(x)$	$\mathrm{I} \exists(4)$
7. $[\exists x P(x) \wedge \exists x Q(x)]$	$\mathrm{I} \wedge(5,6)$

b) Proof by resolution method

First, negate the formula:
$\exists x[P(x) \wedge Q(x)] \wedge \neg[\exists x P(x) \wedge \exists x Q(x)] \Leftrightarrow$
$\exists x[P(x) \wedge Q(x)] \wedge[\forall x \neg P(x) \vee \forall x \neg Q(x)]$
Transform the negated formula into Skolem clausal form:
Eliminate \exists and rename x
$P(a) \wedge Q(a) \wedge[\forall x \neg P(x) \vee \forall y \neg Q(y)] \Leftrightarrow(\forall$ to the left $)$
$\forall x \forall y[P(a) \wedge Q(a) \wedge[\neg P(x) \vee \neg Q(y)]]$

1. $\quad P(a)$
2. $\quad Q(a)$
3. $\neg P(x) \vee \neg Q(y)$
4. $\quad \neg Q(a) \quad$ resolution 1., 3., a / x
5. \# contradiction 2. and 4.

Again, the inverse implication is not valid: $[\exists x P(x) \wedge \exists x Q(x)] \supset \exists x[P(x) \wedge Q(x)]$ Natural deduction:

1. $\exists x P(x) \wedge \exists x Q(x)$ assumption
2. $\exists x P(x) \quad$ E^ (1)
3. $\exists x Q(x) \quad$ E^(1)
4. $P(a) \quad \mathrm{E} \exists$ (2)
5. Q (b) $\mathrm{E} \mathrm{\exists}$ (3) - we must use a different konstant!
6. $P(a) \wedge Q(b) \quad \mathrm{I} \wedge(4,5)$
7. $\exists x P(x) \wedge \exists y Q(y) \quad \mathrm{I} \exists(6)$

No way to prove $\exists \boldsymbol{x}[\boldsymbol{P}(\boldsymbol{x}) \wedge \boldsymbol{Q}(\boldsymbol{x})]$.

Resolution method:

Negation: $\exists x P(x) \wedge \exists x Q(x) \wedge \forall x[\neg P(x) \vee \neg Q(x)]$
Skolemization and clauses:

1. $P(a)$
2. $\quad Q(b)$
3. $\neg P(x) \vee \neg Q(x)$
4. $\quad \neg Q(a) \quad$ resolution $1,3, a / x$

No way to continue ...
(III) $[\forall x P(x) \vee \forall x Q(x)] \supset \forall x[P(x) \vee Q(x)]$
a) Proof by natural deduction:

1. $\forall x P(x) \vee \forall x Q(x)$	assumption
2.1. $\forall x P(x)$	hypotheses of a branching proof
2.2. $P(x)$	E \forall (2.1)
2.3. $P(x) \vee Q(x)$	$\mathrm{I} \vee$ (2.2)
2.4. $\forall x(P(x) \vee Q(x))$	I \forall (2.3)
2. $\forall x P(x) \supset \forall x(P(x) \vee Q(x))$	
3.1. $\forall x Q(x)$	hypotheses of a branching proof
3.2. $Q(x)$	E \forall (3.1)
3.3. $P(x) \vee Q(x)$	$\mathrm{I} \vee$ (3.2)
3.4. $\forall x(P(x) \vee Q(x))$	I \forall (3.3)
3. $\forall x Q(x) \supset \forall x(P(x) \vee Q(x))$	
4. $[\forall x P(x) \supset \forall x(P(x) \vee Q(x))] \wedge[\forall x Q(x) \supset \forall x(P(x) \vee Q(x))] \quad \mathrm{I} \wedge(2,3)$	
5. (4) $\supset[[\forall x P(x) \vee \forall x Q(x)] \supset \forall x(P(x) \vee Q(x))]$ Theorem	
6. $[\forall x P(x) \vee \forall x Q(x)] \supset \forall x(P(x) \vee Q(x)) \quad$ MP $(4,5)$	
7. $\forall x(P(x) \vee Q(x))$	MP (1,6)

The steps 4-6 are usually omitted, because we have proven them earlier.
b) Proof by resolution method; first, negate the formula
$\neg[\forall x P(x) \vee \forall x Q(x)] \supset \forall x[P(x) \vee Q(x)] \Leftrightarrow[\forall x P(x) \vee \forall x Q(x)] \wedge \exists x[\neg P(x) \wedge \neg Q(x)]$
Skolemization: [$\forall x P(x) \vee \forall x Q(x)] \wedge[\neg P(a) \wedge \neg Q(a)]$

1. $P(x) \vee Q(x)$
2. $\quad \neg P(a)$
3. $\neg Q(a)$
4. $Q(a) \quad$ resolution $1,2, a / x$
5. \# contradiction 3 and 4

(IV) $\exists x P(x) \supset(\forall x[P(x) \supset Q(x)] \supset \exists x Q(x))$

a) Proof by natural deduction:

1. $\exists x P(x)$
2. $\forall x[P(x) \supset Q(x)]$
3. $P(a)$
4. $P(a) \supset Q(a)$
5. $Q(a)$
6. $\exists x Q(x)$
assumption 1
assumption 2
E \exists (1)
E \forall (2)
MP $(3,4)$
$\mathrm{I} \exists$ (5)

Comments: we first eliminate existential quantifier by substituting a for x (step 3). Then we eliminate general quantifier by substituting a for x (step 4), because we can substitute any term for a generally quantified variable ("what is valid for everybody is also valid for somebody").
b) Proof by resolution method:

- First, negate the formula: $\neg\{\exists x P(x) \supset(\forall x[P(x) \supset Q(x)] \supset \exists x Q(x))\} \Leftrightarrow$ $\exists x P(x) \wedge \forall x[P(x) \supset Q(x)] \wedge \forall x \neg Q(x)$
- Eliminate \exists (Skolemisation), rename the second x, and \forall s to the left: $\forall x \forall y\{P(a) \wedge[P(x) \supset Q(x)] \wedge \neg Q(y)\}$
- Clauses

1. $P(a)$
2. $\neg P(x) \vee Q(x)$
3. $\neg Q(y)$
4. $Q(a) \quad$ resolution $1,2, a / x$
5. \# resolution $3,4, a / y$
