
Tenses and truth-conditions: a plea for if-then-else

Marie Duž́ı∗

December 6, 2009

1 Introduction

Sentences in the present, past and future tenses obviously have different truth-
conditions. This fact has been observed by numerous logicians, and many variants
of so-called temporal logic have been developed. These formal systems are mostly
viewed as a special case of modal logic interpreted by means of Kripkean possible-
world semantics. The term temporal logic is broadly used to cover all approaches
to the representation of the temporal dimension within a logical framework. More
narrowly, it is also used to refer to a particular modal system of temporal propo-
sitional logic that Arthur Prior introduced in (1957, 1962 and 1967) under the
name ‘tense logic’.

The logical language of Prior’s tense logic contains, in addition to the usual
truth-functional operators, four modal operators whose intended meanings are:

P “It has at some time been the case that . . . ”

F “It will at some time be the case that . . . ”

H “It has always been the case that . . . ”

G “It will always be the case that . . . ”

P and F are known as the weak tense operators, while H and G are known as
the strong tense operators. Prior developed a formal system of tense logic with
axioms like

Gp → Fp “What will always be will be”;

G(p → q) → (Gp → Gq) “If p will always imply q, then if p will always be the
case, so will q”;

Fp → FFp “If it will be the case that p, it will be the case that it will be that
p”;

¬Fp → F¬Fp “If it will never be that p then it will be that it will never be that
p”.

∗This work has been supported by the Grant Agency of the Czech Republic, project No. GACR
401/07/0451, ‘Semantization of Pragmatics’, and by the internal grant agency of FEECS VSB-
TU Ostrava - IGA 22/2009, ‘Modelling, simulation and verification of software processes’.

2 Marie Duž́ı

Similarly for the past operators P, H ; e.g., Hp → Pp, “What has always been
has been”. Subsequently, systems of temporal logic have been further developed
by computer scientists, notably Zohar Manna and Amir Pnueli,1 and widely used
for formal verification of programs and for encoding temporal knowledge within
artificial intelligence. In addition to Prior’s future and past operators Manna and
Pnueli have introduced modal operators like Since and Until that are provably
more expressive than ordinary modal operators and are usually interpreted by
(labelled) transition systems of program states that are pivotal to the operational
semantics of programs.

These logics are undeniably simple, elegant and logically convenient. However,
simplicity and convenience do not always go hand in hand with logical adequacy.
Despite the great applicability of particular variants of tense logic in the semantics
of programming languages, the systems just mentioned suffer a drawback when
applied to the semantics of natural language. The drawback is their inability
to adequately analyse sentences indicating a point of reference referring to the
interval when the sentence was or will be true. Such sentences come attached
with a presupposition under which a sentence is true or false. To illustrate the
problem, consider the sentences

“Tom is sick”.

“Tom has been sick”.

“Tom was sick throughout October 2009”.

“Tom will be sick the whole day on April 1st, 2010”.

The first two sentences do not come with a presupposition. They ascribe to
Tom the property of being sick and of having been sick, respectively. They are true
or false according as Tom has the relevant property. However, the truth-condition
of the third sentence depends not only on whether Tom has the property of being
sick throughout October 2009, but also on the time at which the sentence is
evaluated. If T is the time of evaluation, then the truth-conditions are specified
as follows:

If T ≤October 31, 2009, 24:00, then no truth-value, else True or False

according as Tom was sick at all times during October 2009.

Similarly, the fourth sentence comes attached with a presupposition that the
time T of evaluation comes before April 1st, 2010.

Our analysis must respect these truth-conditions. To this end we apply the
rich system of Tichý’s Transparent Intensional Logic (TIL).2 Tichý put forward
his solution in (1980). However, this solution is difficult to understand, because
Tichý applies the singulariser function to a singleton typed as containing a truth-
value in order to make the set fail to deliver a truth-value in case the associated
presupposition is not satisfied. Tichý’s analysis is analogous to what the computer
scientist would call an imperative rather than declarative analysis. The downside

1See (Manna & Pnueli, 1992).
2See (Tichý, 1988)

Tenses and truth-conditions: a plea for if-then-else 3

to an imperative analysis is that it may conceal flaws that rear their head only
when the analysis is applied to extreme situations. Yet there is an elegant alterna-
tive that makes use of the ‘if-then-else’ connective, which I am going to introduce
in Section 3 of this paper.3

There has been much dispute over the semantics of ‘if-then-else’ in the logic
of computer science. It cannot be adequately analyzed by means of material
implication. The reason is this. The application of if-then-else to a condition P
and two formulae F1 and F2 is not improper (by failing to provide a truth-value)
even when F2 is improper whenever P is true or when F1 is improper whenever
P is false. However, the regimentation of “If P then F1, else F2” in propositional
logic that takes the form [(P ⊃ F1)∧(¬P ⊃ F2)] is improper by failing to produce
a truth-value whenever F1 or F2 is improper regardless the condition P . Thus
it is often said that if-then-else is a non-strict function that does not behave in
compliance with the compositionality principle. Yet there is no cogent reason to
settle for non-strictness.

In what follows I am going to show that the procedural semantics of TIL enables
us to specify a strict definition of if-then-else that meets the compositionality con-
straint. The definition of “If P then F1, else F2” is a procedure that decomposes
into two phases. First, on the basis of the condition P , select one of F1, F2 as
the procedure to be executed. Second, execute the selected procedure. Thus,
for instance, if P is true then F1 is executed rather than F2, and the possible
improperness of F2 does not matter. After setting out the definition, I specify a
general schema in which to couch the analysis of sentences that come attached
with a presupposition, in particular sentences in the past and future tenses.

2 Method of analysis

TIL operates with a single procedural semantics for all kinds of logical-semantic
context, whether extensional, intensional or hyper-intensional.4 It means that
it explicates the meaning of an expression as an abstract procedure encoded by
the expression. Such procedures are rigorously defined as TIL constructions and
we assign them to expressions as their context-invariant meanings. From the
formal point of view, TIL is a hyper-intensional, partial, typed λ-calculus. Hyper-
intensional, because the terms of the TIL formal language in which constructions
are encoded are interpreted as procedures (generalized algorithms) rather than
their products; partial, because the primitive notion of TIL is function understood
as a partial mapping that assigns to each element of its domain at most one
element of its range; and typed, because all the entities of TIL ontology, including
constructions, receive a type.

Intuitively, construction C is a procedure (a generalised algorithm). Construc-
tions are structured in the following way. Each construction C consists of sub-

3I am grateful to Nikola Ciprich for drawing my attention to this option.
4In this section, the philosophy and basic notions of TIL are only briefly summarized. For

details, see (Duž́ı, Jespersen, & Materna, forthcomming).

4 Marie Duž́ı

constructions (constituents), each of which needs to be executed when executing
C. Specification of a construction can be viewed as an instruction on how to
proceed in order to obtain the output entity given some input entities. In this
way a construction constructs a function understood as a mapping from the set
of input entities into a set of output entities.

There are two kinds of constructions, atomic and compound (molecular). Atomic
constructions (Variables and Trivializations) do not contain any other constituent
but themselves; they specify objects (of any type) on which compound construc-
tions operate. The variables x, y, p, q, . . . , construct objects dependently on a
valuation; they v-construct. The Trivialisation of an object X (of any type, even
a construction), in symbols 0X, constructs simply X without the mediation of
any other construction. Compound constructions, which consist of other con-
stituents as well, are Composition and Closure. The Composition [F A1 . . . An] is
the operation of functional application. It v-constructs the value of the function
f (valuation-, or v-, -constructed by F) at a tuple argument A (v-constructed
by A1, . . . , An), if the function f is defined at A, otherwise the Composition is
v-improper, i.e., it fails to v-construct anything.5 The Closure [λx1 . . . xn F] spells
out the instruction to v-construct a function by abstracting over the values of the
variables x1, . . . , xn in the ordinary manner of the λ-calculi.6 Finally, higher-order
constructions can be used twice over as constituents of composite constructions.
This is achieved by a fifth construction called Double Execution, 2X, that behaves
as follows: If X v-constructs a construction Y , and Y v-constructs an entity
Z, then 2X v-constructs Z; otherwise 2X is v-improper, failing as it does to v-
construct anything.

TIL constructions, as well as the entities they construct, all receive a type.
The formal ontology of TIL is bi-dimensional; one dimension is made up of con-
structions, the other dimension encompasses non-constructions. On the ground
level of the type hierarchy, there are non-constructional entities unstructured from
the algorithmic point of view belonging to a type of order 1. Given a so-called
epistemic (or objectual) base of atomic types (o-truth values, ι-individuals, τ -time
moments/real numbers, ω-possible worlds), the induction rule for forming func-
tional types is applied: where α, β1, . . . , βn are types of order 1, the set of partial
mappings from β1 × · · · × βn to α, denoted ‘α β1 . . . βn’, is a type of order 1 as
well. Constructions that construct entities of order 1 are constructions of order 1.
They belong to a type of order 2, denoted ‘⋆1’. The type ⋆1 together with atomic
types of order 1 serve as a base for the induction rule: any collection of partial
mappings, type (α β1 . . . βn), involving ⋆1 in their domain or range is a type of
order 2. Constructions belonging to a type ⋆2 that v-construct entities of order 1
or 2, and partial mappings involving such constructions, belong to a type of order
3. And so on ad infinitum.

5We treat functions as partial mappings, i.e., set-theoretical objects, unlike the constructions

of functions.
6Comparison with programming languages might be helpful: λ-Closure corresponds to a

declaration of a procedure F with formal parameters x1, . . . , xn; Composition corresponds to
calling the procedure F with actual values A1, . . . , An of parameters.

Tenses and truth-conditions: a plea for if-then-else 5

The sense of an empirical expression is a hyperintension, i.e., a construction
that produces a (possible world) (α-)intension; α-intensions are members of type
(αω), i.e., functions from possible worlds to an arbitrary type α. On the other
hand, (α-)extensions are members of a type α, where α is not equal to (βω)
for any β, i.e., extensions are not functions whose domain are possible worlds.
Intensions are frequently functions of a type ((ατ)ω), i.e., functions from possible
worlds to chronologies of the type α (in symbols: ατω), where a chronology is a
function of type (ατ).

Some important kinds of intensions are:

Propositions, type oτω. They are denoted by empirical sentences.

Properties of members of a type α, or simply α-properties, type (oα)τω .7 Gen-
eral terms, some substantives, intransitive verbs (‘student’, ‘walks’) denote
properties, mostly of individuals.

Relations-in-intension, type (oβ1 . . . βm)τω. For example transitive empirical
verbs (‘like’, ‘worship’), also attitudinal verbs denote these relations.

α-roles, also α-offices, type ατω, where α 6= (oβ); frequently ιτω. They are
often denoted by concatenation of a superlative and a noun (‘the highest
mountain’).

Notational conventions. An object A of a type α is denoted ‘A/α’. That a con-
struction C/⋆n v-constructs an object of type α is denoted ‘C →v α’. We use
variables w,w1, . . . as v-constructing elements of type ω (possible worlds), and
t, t1, . . . as v-constructing elements of type τ (times). If C →v ατω v-constructs
an α-intension, the frequently used Composition of the form [[Cw]t], the inten-
sional descent of the α-intension, is abbreviated ‘Cwt’.

Quantifiers, ∀α (the general one) and ∃α (the existential one), are of types
(o(oα)), i.e., sets of sets of α-objects. [0∀α λxA] v-constructs the truth-value T

iff [λxA] v-constructs the whole type α, otherwise F; [0∃α λxA] v-constructs T

iff [λxA] v-constructs a non-empty subset of the type α, otherwise F. We write
‘∀xA’, ‘∃xA’ instead of [0∀α λxA], [0∃α λxA], respectively, when no confusion can
arise. In the effort of easier reading we will also use an infix notation without
trivialisation when using constructions of truth-value functions of type (ooo), i.e.,
∧ (conjunction), ∨ (disjunction), ⊃ (implication), ≡ (equivalence), and negation
(¬) of type (oo), and when using constructions of common relations like identities,
less than (<), greater than (>), etc.

We invariably furnish expressions with their procedural structured meanings,
which are explicated as TIL constructions. The analysis of a sentence thus consists
in discovering the logical construction encoded by a given sentence. The TIL
compositional method of analysis is driven by Carnap’s principle of subject matter,
which says, roughly, that only those entities that receive mention in a sentence

7We model α-sets and (α1 . . . αn)-relations by their characteristic functions of type (oα),
(oα1 . . . αn), respectively. Thus an α-property is an empirical function that dependently on
states-of-affairs (τω) picks-up a set of α-individuals, the population of the property.

6 Marie Duž́ı

can serve as constituents of the sentence meaning.8 The method decomposes into
three phases:

1. Type-theoretical analysis, i.e., assigning types to the objects that receive
mention in the analysed sentence.

2. Synthesis, i.e., combining the constructions of the objects ad (1) in order to
construct the proposition of type oτω denoted by the whole sentence.

3. Type-theoretical checking

To illustrate the method let us analyse the sentence “Tom is sick”.
Ad (1) Tom/ι; Sick/(oι)τω : the property of individuals (of being sick).
Ad (2) Since we aim at discovering the literal analysis of the sentence, objects
denoted by semantically simple expressions ‘Tom’, ‘is sick’ are constructed by
their Trivialisations: 0Tom, 0Sick. Now we need to predicate the property Sick
of the individual Tom. But we cannot apply the property directly to Tom. The
individual Tom is not a type-theoretically proper object to serve as an argument of
a property, because property is an intension. It must be extensionalized first, i.e.,
applied to a given world w and time t of evaluation, and only then applied to Tom.
This is achieved by three Compositions [0Sick w] →v ((oι)τ), [[0Sick w]t] →v (oι),
abbreviated as 0Sickwt, and finally [[[0Sick w]t]0Tom] →v o, or [0Sickwt

0Tom] for
short.9 Since we are going to construct a proposition, i.e., an intension, we must
abstract from values of w and t :

λwλt[0Sickwt
0Tom].

This construction is the literal analysis of the sentence “Tom is sick”.
Ad (3) Type-theoretical checking:

The role of Trivialisation and empirical parameters, that is modal w → ω
and temporal t → τ ones, can be elucidated as follows. When evaluating the
truth-condition of the sentence, then the upper index ‘0’ serves as a marker of the
primitive concept that supplies an object to be operated on. The lower index ‘wt’
can be understood as an instruction to execute an empirical inquiry (search) in

8See (Carnap, 1947, §24.2, §26)
9For details on predicating properties of individuals, see (Jespersen, 2008)

Tenses and truth-conditions: a plea for if-then-else 7

order to check whether the object in question (here Tom) satisfies the condition
specified by the intension (here sickness).

So much for the TIL method of analysis. Now I am going to apply this method
to analyze sentences in past and future.

3 Sentences in past and future tenses

Consider the sentence in present perfect

(1) “Tom has been sick”.

It informs us that Tom has the property of being sick not only in the present
time t of evaluation but also in an interval that runs from the past up to t (and
possibly beyond). Thus the analysis of the sentence comes down to the Closure

(1’) λwλt ∃t1 [∀t2 [t1 < t2 ≤ t] ⊃ [0Sickwt2

0Tom]].

A similar sentence in simple past, which is “Tom was sick”, seems to be in-
complete, because one is tempted to ask “When was Tom sick?” This is because
sentences in past should contain an indication of when something happened, for
instance

(2) “Tom was sick throughout October 2009”.

As mentioned above, such a sentence not only entails but also presupposes
that the time t of evaluation comes after October 2009. The difference between
presupposition and mere entailment can be schematically demonstrated as follows:

(i) P is a presupposition of S, iff: (S |= P) and (non-S |= P)
Corollary: If non-P then neither S nor non-S is true, i.e., S does not have a

truth-value.
(ii) Mere entailment: (S |= P) and neither (non-S |= P) nor (non-S |=non-P)

More precisely, the entailment relation |= obtains between hyperpropositions
P , S, i.e., the meaning of P is entailed or presupposed by the meaning of S.
And since we work with partial functions, we can smoothly analyse sentences
associated with a presupposition. If the proposition constructed by P does not
take the truth-value T at a given 〈w, t〉-pair, then the proposition constructed by
S has a truth-value gap at this 〈w, t〉.

Denoting the interval October 2009 by ‘Oct09’, the presupposition of (2) is

λwλt∀t1 [[0Oct09 t1] ⊃ [t1 < t]]

Gloss: In any world w at any time t it holds for all times t1 → τ belonging to the
interval Oct09/(oτ) that t1 < t. In other words, the entire month October 2009

8 Marie Duž́ı

precedes the time t.

Now the schematic analysis of (2) is this:

(2s) λwλt If ∀t1 [[0Oct09 t1] ⊃ [t1 < t]] then ∀t′ [[0Oct09 t′] ⊃ [0Sickwt′
0Tom]]

else Fail.

To complete the analysis, we must define the If-then-else function. Here is how.
The instruction encoded by “If P (→ o) then C(→ α), else D(→ α)” behaves as
follows:

a. If P v-constructs T then execute C (and return the result of type α, provided
C is not v-improper).

b. If P v-constructs F then execute D (and return the result of type α, provided
D is not v-improper).

c. If P is v-improper then fail to produce the result.

Hence, if-then-else is seen to be a function of type (αo ⋆n ⋆n), and its definition
decomposes into two phases.

First, select a construction to be executed on the basis of a specific condition
P . The choice between C and D comes down to this Composition:

[0The only λc [[P ⊃ [c = 0C]] ∧ [¬P ⊃ [c = 0D]]]]

Types: P →v o v-constructs the condition of the choice between the execution of
C or D, C/⋆n, D/⋆n; c →v ⋆n; The only/(⋆n(⋆n)): the singularizer function that
associates a singleton set of constructions with the only construction that is an
element of this singleton, and is otherwise (i.e., if the set is empty or many-valued)
undefined. If P v-constructs T then the variable c v-constructs the construction
C, and if P v-constructs F then the variable c v-constructs the construction D.
In either case, the set constructed by

λc [[P ⊃ [c = 0C]] ∧ [¬P ⊃ [c = 0D]]]

is a singleton and the singularizer The only returns as its value either the con-
struction C or the construction D. Note that in this phase constructions C and D
are not constituents to be executed; rather they are mere objects to be supplied
by the variable c. This is to say that without hyperintensional approach we would
not be able to define the function If-then-else.
Second, the selected construction is executed; therefore, Double Execution must
be applied:

2[0The only λc [[P ⊃ [c = 0C]] ∧ [¬P ⊃ [c = 0D]]]]

As a special case of P being a presupposition, no construction D is to be selected
whenever P is not satisfied. Thus the analysis of

“If (presupposition) P then C → o else Fail (to produce a truth-value)”

Tenses and truth-conditions: a plea for if-then-else 9

comes down to the Double Execution

2[0The only λc [[P ⊃ [c = 0C]] ∧ [¬P ⊃0F]]]

Gloss: If ¬P v-constructs T then [¬P ⊃ 0F] v-constructs F and the set v-
constructed by the Closure λc [[P ⊃ [c = 0C]] ∧ [¬P ⊃ 0F]]] is empty. Thus the
singulariser The only does not return any construction and the Double Execution
does not obtain an argument to execute; hence it is v-improper, that is fails to
produce a truth-value.

Back to the analysis of (2). Applying this schematic definition to the construc-
tion (2s), that is, substituting ∀t1 [[0Oct09 t1] ⊃ [t1 < t]] for P and [∀t′ [[0Oct09 t′] ⊃
[0Sickwt′

0Tom]]] for C, we obtain the final analysis of the sentence (2):

(2∗) λwλt 2[0The only λc [[∀t1[[
0Oct09 t1] ⊃ [t1 < t]] ⊃

[c = 0[∀t′ [[0Oct09 t′] ⊃ [0Sickwt′
0Tom]]]]] ∧ [∃t1 [[0Oct09 t1] ∧ [t1 ≥ t]] ⊃ 0F]]]

Since such an analysis is not easy to read and the If-then-else function has been
defined, in what follows I will use the schematic analysis of the form

‘‘λwλt If Pwt then Swt else Fail’’

rather than the full-fledged

‘‘λwλt 2[0The onlyλc[[Pwt ⊃ [c = 0[Swt]]] ∧ [¬Pwt ⊃
0F]]]’’.

The sentences in past often indicate as a reference point not only an interval when
something happened but also a frequency of it, like once, twice, often, or through-
out (as is the case of (2)). To adduce another example, consider the sentence

(3) “Tom was sick (just) twice in October 2009”.

The presupposition of (3) is again the proposition that the entire month Oc-
tober 2009 precedes time t of evaluation: λwλt ∀t1 [[0Oct09 t1] ⊃ [t1 < t]]. The
schematic analysis of (3) comes down to:

(3s) λwλt If ∀t1 [[0Oct09 t1] ⊃ [t1 < t]] then [[0Twicewλwλt[0Sickwt
0Tom]] 0Oct09]

else Fail.

The frequency modifier Twice denotes a world-dependent function that takes a
proposition p → oτω to the class of those intervals d → (oτ) which are contained
in the chronology of p (i.e. pw → (oτ)). This class of intervals d that have a
non-empty intersection with a reference interval c is of cardinality two. Thus
the application of Twice of type ((o(oτ))oτω)ω to a proposition p and reference
interval c comes down to this Composition:

[[0Twicew p]c] = [0Cardλd [∀t [[d t] ⊃ pwt] ∧ ∃t [[d t] ∧ [c t]]] = 02]

In our case the interval c is Oct09 and the proposition p is λwλt [0Sickwt
0Tom],

and we have
[[0Twicew λwλt [0Sickwt

0Tom]] 0Oct09] =

10 Marie Duž́ı

[0Cardλd [∀t [[d t] ⊃ [0Sickwt
0Tom]] ∧ ∃t [[d t] ∧ [0Oct09 t]]] = 02]

Thus we can refine the analysis (3s) like this:

(3∗) λwλt If ∀t1 [[0Oct09 t1] ⊃ [t1 < t]]
then [0Cardλd [∀t [[d t] ⊃ [0Sickwt

0Tom]] ∧ ∃t [[d t] ∧ [0Oct09 t]]] = 02]
else Fail.

Our resources up to now make it possible to define a general schema of the analysis
of a sentence S in past tense with a reference interval In T ime/(oτ) and a modifier
Frequency/((o(oτ))oτω)ω. Let Past be a time-dependent function that takes a
class of o-chronologies (the intervals in which a given proposition is true) together
with an (implicit or explicit) reference interval and returns T, F or no value,
according as the interval serving as point of reference belongs to the respective
class of o-chronologies and precedes the time T at which the proposition denoted
by the sentence is being evaluated. Thus, Past is typed as ((o(o(oτ))(oτ))τ). Let
≤τ /(o(oτ)τ) mean that the reference interval In T ime is prior to time t. Then
the general schema of sentences in past is:

λwλt [0Pastτ [0Frequencyw S] 0In T ime] =

λwλt If [0In T ime ≤τ t] then [[0Frequencyw S]0In T ime] else Fail.

For instance, our sentence (2) receives the literal analysis

λwλt[0Pastt [0Throughoutw λwλt [0Sickwt
0Tom]] 0Oct09]

and the sentence

(4) “Tom was sick at least once before October 2009”

is analysed by the Closure

λwλt [0Pastt [0At least oncewλwλt [0Sickwt
0Tom]]λt′[0Before t′ 0Oct09]] =

λwλt If [λt′ [0Before t′ 0Oct09] ≤τ t]
then[[0At least oncewλwλt [0Sickwt

0Tom]]λt′[0Before t′ 0Oct09]]
else Fail.

Here the point of reference is specified as any time before Oct09. To analyse ‘before
October 2009’, we have to define the type of the object denoted by ‘before’. Given
a time t′ and a τ -class c, the time t′ is prior to c if t′ is prior to every element of
c. Thus Before/(oτ(oτ)) receives the definition 0Before = λt′c[∀t [c t] ⊃ [t′ < t]],
and ‘before October 2009’ expresses the Closure λt′[0Before t′ 0Oct09] which is
equivalent to λt′[∀t [0Oct09 t] ⊃ [t′ < t]].

The definition of At least once/((o(oτ))oτω)ω is easy:

0At least once = λwλpλc∃t [[c t] ∧ pwt].

Tenses and truth-conditions: a plea for if-then-else 11

The truth-condition is that a proposition p be true at least once in a world
w in an interval c if there is at least one time t in c at which p is true in
w. Thus the Composition [0At least oncew λwλt [0Sickwt

0Tom]] v-constructs the
class S/(o(oτ)) of intervals in which Tom is sick at least once.

The general schema of sentences in future is similar to the analytic schema
of sentences in past:

λwλt [0Futuret [0Frequencyw S]0In T ime] =

λwλt If [0In T ime ≥τ t] then [[0Frequencyw S] 0In T ime] else Fail.

Here ≥τ means that the reference interval In T ime comes after time t, Future re-
ceives the same type as Past, that is ((o(o(oτ))(oτ))τ). For instance, the sentence

(5) “Tom will be sick the whole day on April 1st 2010”

expresses as its sense (April1/(oτ): the day April 1st, 2010)

(5s) λwλt [0Futuret [0The wholew λwλt[0Sickwt
0Tom]] 0April1]

which is equivalent to

λwλt If [0April1 ≥τ t]
then [[0The wholewλwλt [0Sickwt

0Tom]] 0April1]
else Fail.

This analysis can be refined to this Closure:

λwλt If ∀t1[[
0April1 t1] ⊃ [t1 > t]]

then∀t′[[0April1 t′] ⊃ [0Sickwt′
0Tom]]

else Fail.

4 Topic-focus ambiguities

Now I am going to heed the ambiguities pivoted on the difference between topic
and focus articulation.10 As an example, consider the sentence

(6) “All Toms children were sick last week”.

There are two non-equivalent readings of this sentence. To illustrate, imagine
two scenarios.
(i) The sentence is an answer to the question “What about Tom’s children”?
Then ‘Tom’s children’ is the topic of the sentence and to each of these children
the property of being sick last week (the focus) is ascribed. In such a situation
the sentence not only entails but also presupposes that Tom has children in the

10For a linguistic analysis of this difference see (Hajičová, 2008)

12 Marie Duž́ı

present time.
(ii) Another possible scenario is this. The question is “What was going on last
week”? And the answer, “Oh, all Tom’s children were sick last week”. In this situ-
ation ‘last week’ is the topic and the sentence only entails but does not presuppose
that Tom had children last week.

Since the sentence is ambiguous, we are actually going to analyse two non-
equivalent sentences, which might be paraphrased as follows:

(6i) “Each of present Tom’s children was sick (throughout) last week”.
(6ii) “(Throughout) last week each of the children Tom had was sick”.

Let Last week/((oτ)τ) be the function that associates a given time t with an
interval that is last week with respect to t. The analyses come down to these
Closures:

(6i∗) λwλt If [0Haswt
0Tom 0Children]

then∀t∗ [[[0Last weekt] t∗] ⊃ [[0All [0Children ofwt
0Tom]] 0Sickwt∗]]

else Fail.

(6ii∗) λwλt ∀t∗ [[[[0Last week t]t∗] ⊃ [0Haswt∗
0Tom 0Children]]∧

[[0Haswt∗
0Tom 0Children] ⊃ [[0All [0Children ofwt∗

0Tom]] 0Sickwt∗]]]

Types: All/((o(oι))(oι)): the restricted quantifier that associates a set M of
individuals with the set of supersets of M . Has/(oι(oι)τω)τω: the relation-in-
intension between an individual and a property (of having instances of the prop-
erty); Children/(oι)τω ; Children of/((oι)ι)τω ;

Note that indeed (6ii∗) only entails that Tom had children in all times t∗

belonging to the last week, but does not presuppose it. This is because (6ii∗)
constructs a proposition that takes value F in those 〈w, t〉-pairs where either Tom
did not have children in times t∗ or Tom had children at that time but some of
them were not sick.

5 Concluding remarks

In this paper I demonstrated the method of analysis of sentences in past and
future. Moreover, I also presented the general analytic schema for sentences that
come associated with a presupposition. To this end I utilized a strict definition of
the If-then-else function that complies with the compositionality constraint. Last
but not least, the semantic character of the ambivalence concerning the topic-focus
articulation of sentences was analysed.

Logical analysis cannot disambiguate any sentence, because it presupposes full
linguistic competence. Yet, our fine-grained method can contribute to a language
disambiguation by making these hidden features explicit and logically tractable.
In case there are more non-equivalent senses of a sentence we furnish the sentence
with different TIL constructions. Having a formal fine-grained encoding of a sense,
we can then infer the relevant consequences.

Tenses and truth-conditions: a plea for if-then-else 13

To sum up, I am convinced that if any logic can serve to solve such hard
problems like fine-grained analysis of tenses, topic-focus ambiguities, and many
others that natural language can produce, then it must be a logic with hyper-
intensional (most probably procedural) semantics, such as TIL.

Marie Duž́ı
Department of Computer Science
VSB-Technical University Ostrava
17. listopadu 15
708 33 Ostrava, Czech Republic
marie.duzi@vsb.cz

http://www.cs.vsb.cz/duzi

References

Carnap, R. (1947). Meaning and Necessity. Chicago: Chicago University Press.
Duž́ı, M., Jespersen, B., & Materna, P. (forthcomming). Procedural Semantics

for Hyperintensional Logic; Foundations and Applications of Transparent
Intensional Logic. Berlin: Springer.

Hajičová, E. (2008). What we are talking about and what we are saying about it.
Computational Linguistics and Intelligent Text Processing , 4919 , 241-262.

Jespersen, B. (2008). Predication and extensionalization. Journal of Philosophical
Logic, 37 , 479–499.

Manna, Z., & Pnueli, A. (1992). The Temporal Logic of Reactive and Concurrent
Systems: Specification. New York: Springer-Verlag.

Manna, Z., & Pnueli, A. (1995). Temporal Verification of Reactive Systems:
Safety. New York: Springer-Verlag.

Prior, A. N. (1957). Time and Modality. Oxford: Oxford University Press.
Prior, A. N. (1962). Tense logic and the continuity of time. Studia Logica, 13 ,

133–148.
Prior, A. N. (1967). Past, Present and Future. Oxford: Clarendon Press.
Tichý, P. (1980). The logic of temporal discourse. Linguistics and Philosophy , 3 ,

343–369. (reprinted in (Tichý, 2004))
Tichý, P. (1988). The Foundations of Frege’s Logic. Berlin: New York: De

Gruyter.
Tichý, P. (2004). Collected Papers in Logic and Philosophy (V. Svoboda, B. Jes-

persen, & C. Cheyne, Eds.). Prague: Filosofia, Czech Academy of Sciences
and Dunedin: University of Otago Press.

