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Abstract. This paper describes a utilization of the Self Organizing Map
(SOM) method for the analysis of power outage data. SOM, to be al-
ready used in many fields, is based on the Kohonen self-organizing neural
network and it is known to capture underlying concepts. We apply this
method for a unified database of power outages to be collected for several
years in the Czech Republic. The most significant attributes are selected
from the database and records are used for the training of the SOM.
We utilize our previously introduced application EDAS (Electrical Data
Analysis using SOM) for the visualization, understanding, and analysis
of the trained SOM. Because of performance issues in the previous in-
troduced approaches, we implement our SOM on GPU environment and
compare this method with previous solutions in this article.

Key words: power networks, outage data, Self Organizing Map (SOM),
GPU

1 Introduction

Databases of power outages have been collected in the Czech Republic for several
years [7, 8]. The common framework which enables us to combine these hetero-
geneous databases into the one unified database has been introduced in [15, 14].
Next we analyze this data and present the underlying knowledge in such a way
that can be easily understood by domain experts.

Clustering is a common technique for data analysis that can be used to reveal
structures and to identify groupings on different attributes of the input data.

Based on a similarity or dissimilarity measurement, clustering consists of
partitioning a data set into subsets or clusters, so that the data in each cluster
have high similarity in comparison to other, however they are very dissimilar to
data in other clusters.
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Competitive neural networks also have been applied to data clustering. Self
Organizing Map (SOM) [11] is a neural network algorithm based on unsuper-
vised learning. It has already been successfully applied in various engineering
applications like pattern recognition, image analysis process monitoring, and
fault diagnosis [13, 1].

In this paper, we describe an application of the SOM method [12] for the
power outage database. We select the most significant attributes of the database
and use SOM for the clustering. After the neural network is trained we identify
clusters of similar records in the map by means of the SOM density U-matrix
calculation [25]. This approach has been depicted in [5, 4]. The proposed appli-
cation is called EDAS (Electrical Data Analysis using SOM). In this articles, we
show that it is possible to improve the computation time using GPU (Graphics
Processing Unit). In this way we reach high parallelism capability and improve
total time for delivering of results.

In Section 2, we describe the Kohonen maps utilized in this article. In Sec-
tion 3, outage database is depicted. In Section 4, we briefly describe some prelim-
inaries of using SOM to analysis the outage data. Section 5 includes a description
of CUDA techniques for the SOM computation and results in comparison with
common methods for the computation. We conclude with summarization of our
work and the suggestions for the future.

2 Neural Networks

For the insight on how the method works, we will state the basic facts of the
(Kohonen) neural network [11] which has several beneficial features useful for
data mining. It implements a dimensionality-reduction mapping of trained data.

In the cerebral cortex, the basic element is a neuron, with the number of
inputs (dendrites) and one output (axon). The output can be divided and con-
nected to other dendrites through synaptic connections. Based on this biological
description, a formal neuron – a structural member of the neural network – was
defined. The formal neuron is shown in Figure 1.

Fig. 1. Formal neuron

Where, x =[ x1, . . . , xd] is the input vector of dimension d with x1, . . . , xd

scalar inputs which are mapped to the set or subset of input data attributes.
The weight vector w = [w1, . . . , wd] is assigned to the connection between the
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input and neuron. The ξ is the potential and y = f(ξ) is the neuron’s output
obtained from the potential by an activation function f . The potential ξ is
usually calculated from w and x vectors as the linear combination:

ξ =

d∑

i=1

wixi.

The basic idea of SOM is based on the human brain which uses an internal
2D or 3D representation of information. We can imagine the input data to be
transformed to vectors recorded in a neural network and most neurons in the
cortex are organized in 2D. Only the adjacent neurons are interconnected. This
is reflected in the SOM structure where the neurons are usually organized into
a 2D rectangular or hexagonal grid. We see an example in Figure 2(a).

(a) (b)

Fig. 2. (a) Rectangular and hexagonal grid latices with depicted neighborhoods
(b) Kohonen network structure

The neural network is trained by a training input set (set of input vectors).
Each vector of the size d is equal to the number of inputs in an input space
(dimension of the input space). Every input is connected with each neuron in
the grid (see Figure 2(b)). The increasing number of neurons the improving
coverage of the input space. However, the computation time is increased as well.

2.1 SOM Learning Algorithm

The basic SOM algorithm is iterative. Each neuron ni has a d-dimensional weight
vector wi = [wi1, . . . , wid]. The network weights are preset to a random or pre-
calculated value. In each training step, a sample data vector x is randomly chosen
from the training set. Distances between x and all the weights are computed. The
best-matching unit (BMU), denoted by b, is the map neuron with the weights
closest to x:

‖x−wb‖ = min
i

{‖x−wi‖}
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Fig. 3. Updating the BMU and its neighbors towards the input vector marked by ×

Next, the weight vectors are updated. The BMU and its topological neighbors
are moved closer to the input vector in the input space (see Figure 3). The rule
for update of the weight vector of i-th neuron is:

wi(t+ 1) = wi(t) + α(t)hbi(t) [x−wi(t)] (1)

where t denotes time, α(t) is the learning rate and hbi(t) is the neighborhood
kernel centered of the i-th neuron. The kernel can be for example Gaussian:

hbi(t) = e
−
‖rb−ri‖

2

2σ2(t)

where rb and ri are the positions of b and i neurons of the SOM grid and σ(t)
is the neighborhood radius. Both α(t) and σ(t) decrease monotonically with the
time t. These parameters determine the speed of the weight adaptation. When
the weights are high the moves of the weights are also high and they are applied
to a larger area. With increasing time the moves are smaller and are applied to
a smaller area (we refer to Equation (1)). Because of the neighborhood relation,
the similar weights are pulled to the same direction in the flexible SOM network.
The similar weight regions form areas with the similar or very close values. We
call these areas as clusters.

So far a simple principle of the incremental and iterative algorithms has
been taken into account. Although the current evolution of modern hardware
significantly increases a performance of the algorithm, a truly acceleration of
learning algorithms consists in batch and parallel approaches.

Several different implementations of parallel SOM have already been pre-
sented in [18], [17], [21] and [29] and there are also studies on how the computer
architecture could be modified in order to support highly parallel calculations
especially for SOM training [19]. These approaches focus mainly on time effi-
ciency issues and how the mathematical operations can be distributed on differ-
ent machines to speed up the self-organization process. Different approach was
presented by I. Valova [27], [26], where the amount of parallelism is not deter-
mined by the number of available hardware resources but rather by the size of
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the input pattern. More convenient approach for a completely parallel SOM has
been presented by Weigang [28]. Here in fact, the network processes the whole in-
put space at once, but the algorithm still uses competitive weight updating (the
best-matching criterion) and thus only modifies one single node at a given time.
Another approach, known as batch training, consists of updating parameters for
the neurons only after all training patterns have been presented to the network,
allowing the use of advanced optimization algorithms, i.e. gradient descent.

Finally, all benefits of parallel approaches can be multiplied due to utilization
of modern hardware such as GPUs (Graphics Processor Units). In Section 5, we
show an implementation utilizing the nVIDIA CUDA technology [20].

3 Reliability Calculations and Outage Database

Research on power system reliability first appeared in the 1940s in the U.S.A.,
and later in the USSR and Great Britain. Since the 1950s, reliability research
has carried on in all developed countries.

Component failure rates tend to vary with a component work life [16, 3].
Many parameters in the field of reliability vary for a specific component and the
condition in which a component works. These random variables are represented
by probability distribution functions [6].

Since, in this paper, we apply SOM to the analysis of outage data in the Czech
and Slovak Republics, we should introduce a background of outage monitoring
in these countries. In the former Czechoslovakia, discussions on power system
reliability dated back to the 1960s. The turning point for reliability monitoring
was in 1974: Regulations 2/74 for electric power systems CEZ1 and SEP2 were
released [23]. These regulations unified failures, outages and damaged equipment
monitoring options for all distribution companies in Czechoslovakia. Since 1975,
exclusive outage databases have been on the rise.

This database is a very valuable baseline for reliability computation. Unfor-
tunately, database building has ceased since 1990 because of political and social
changes. Separate distribution companies have introduced their own systems for
reliability monitoring since the 1990s. A complete database has not been built
henceforth.

The expert group, CIRED Czech3, has introduced a discussion on reliability
issues. The first calls for integration of particular outage databases were already
claimed at the first meeting of this group in 1997. In 1999, distributors opted
for unified monitoring of global reliability indices and the reliability of selected
pieces of equipment. Data for the reliability computation is centrally processed
and analysed at the Technical University of Ostrava4. This data has been handled
and processed since the year 2000.

1 Czech energy company
2 Slovak energy company
3 http://www.ckcired.cz/
4 http://www.vsb.cz/
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The reliability computation of the whole system is executed on the basis of
components reliability that are included in the system [7]. In [15, 14], we have
introduced a framework for storage and querying outage data [7, 8]. Databases
of various distributors are transformed into the common relation scheme (see
Table 1). We see that some attributes are foreign keys of codebooks: these code-
books are labeled with an order number.

Table 1. The Outage relation scheme

Order Attribute Data Foreign Key/
Type Codebook Order

1 distributor NUMBER yes/01
2 event order CHAR

3 event type NUMBER yes/02
4 distribution point NUMBER yes/03
5 area CHAR

6 network type NUMBER yes/05
7 network voltage NUMBER yes/04
8 equipment voltage NUMBER yes/04
9 original event order CHAR

10 event cause NUMBER yes/06
11 equipment type NUMBER yes/07
12 damaged equipment NUMBER yes/08
13 damaged equipment type NUMBER yes/10
14 amount NUMBER

15 short type NUMBER yes/09
16 producer NUMBER yes/11
17 production date DATE

18 T0 DATE

19 T1 DATE

20 T2 DATE

21 T3 DATE

22 T4 DATE

23 TZ DATE

24 P1 NUMBER

25 P2 NUMBER

26 D1 NUMBER

27 D2 NUMBER

28 Z1 NUMBER

29 Z2 NUMBER

30 LxT NUMBER

31 failure type NUMBER yes/13

4 SOM Analysis of the Outage Database

In [5, 4], we have introduced a utilization of SOM for analysis of the outage
database. In these articles, we have selected attributes which are used in the
reliability computation. (see Table 2).

For analyses equipment voltage and one from T3 or T4 are skipped since
network voltage depends on equipment voltage and values of T3 or T4 are not
sometimes defined, therefore, we select the defined value of these two attributes.
Only records with defined values for all these attributes are considered in our
analysis. Consequently, 190,561 from 309,000 records are considered in this case.
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Table 2. Attributes selected for the analysis

Order Attribute Data Foreign Key/
Type Codebook Order

1 distributor NUMBER yes/01
3 event type NUMBER yes/02
7 network voltage NUMBER yes/04
8 equipment voltage NUMBER yes/04
10 event cause NUMBER yes/06
11 equipment type NUMBER yes/07
12 damaged equipment NUMBER yes/08
18 T0 DATE –
21 T3 DATE –
22 T4 DATE –
31 failure type NUMBER yes/13

Values of these attributes are different integer values. A vector distance is
calculated during the SOM computation. Obviously, these different values are not
appropriate for this distance computation. We need to normalize these values,
therefore, each value is normalized into the 〈0, 1〉 interval using a knowledge
about the attribute domain.

We trained the SOM with the normalized outage database. Training the SOM
map of the 100× 100 size with 500 epochs takes approximately 11 hours5 (only
one thread is used).

Once we created the result SOM map from the input data, we used our
application EDAS (Electrical Data Analysis using SOM) to display the result in
a comprehensible form. We can display the following maps: U-matrix describing
the network density, number of records mapped to the SOM node, component
plane maps, attribute correlation scatter plot and so on (see Figures 4 and 5).

5 SOM computation using GPU

As it was already mentioned, the SOM can be updated in two ways; sequential
(incremental) or batch. In the case of sequential training, the SOM is updated
just after every input vector has been processed. Such training is more time-
consuming in comparison with batch training where the SOM is updated after
a set of input vectors (batch) has been processed and the final weight vector has
been computed. Following text describes the parallel approach based on GPU.

5.1 Platform Description

Modern graphics hardware plays an important role in the area of parallel com-
puting. Graphics cards have been used to accelerate gaming and 3D graph-

5 The experiments were executed on an AMD Opteron 865 1.8Ghz, 2.0 MB L2 cache;
2GB of DDR333; Windows 2003 Server.
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(a) (b)

Fig. 4. (a) Density of SOM weights (b) Number of records per a SOM node

ics applications, and now, they are also used to accelerate computations with
relatively distant topics, e.g. remote sensing, environmental monitoring, busi-
ness forecasting, medical applications or physical simulations etc. Architecture
of GPUs (Graphics Processing Unit) is suitable for vector and matrix algebra
operations. That leads to the wide usage of GPUs in the area of information
retrieval, data mining, image processing, data compression, etc. [20].

There are two graphics hardware leaders, vendors (ATI and nVIDIA) that
prefer their solution before any other. ATI developed technology called ATI
Stream and nVIDIA presented nVIDIA CUDA. Comparison of these two APIs
is not a goal of this article, we refer to [20] for more information. CUDA is
an acronym for Compute Unified Device Architecture and it was used in our
experiments because of hardware availability. It is a general purpose parallel
computing architecture that leverages the parallel compute engine in nVIDIA
graphics processing units.

Each SIMD (Single Instruction Multiple Data) multiprocessor drives eight
arithmetic logic units (ALU) which process the data, thus each ALU of a multi-
processor executes the same operations on different data, lying in the registers.
In contrast to standard CPUs which can reschedule operations (out-of-order exe-
cution), the selected GPU is an in-order architecture. This drawback is overcome
by using multiple threads as described by Hager et al. in [9]. Current general
purpose CPUs with clock rates of 3 GHz outrun a single ALU of the multiproces-
sors with its rather slow 1.3 GHz. In case of nVidia Tesla C1060 card, the huge
number of 30 multiprocessors each with 240 cores compensates this drawback.
The processing is optimized for floating point calculations and a FMA (Fused
Multiply Add) is four step pipelined, thus its latency is four clock cycles. Ad-
ditional operations have different specifications and therefore require different
numbers of clock cycles to complete. GPU producers prefer double precision in
later GPUs because of their wide utilization in scientific computations. CUDA
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(a) (b)

Fig. 5. (a) SOM map for the Distribution company and (b) Outage cause attributes

Capability 1.3 and above is necessary to have double precision support. For
completion, we refer to [2], [24], [22], [20] for more nVidia CUDA examples.

5.2 Parallel Learning Algorithm on GPU

From the theoretical point of view, the process of SOM update can be trans-
formed into a sequence of matrix operations (multiplications) and thus it can be
easily implemented on GPU. Of course, one have to think about dimensions of all
used matrices to prevent memory leaks and hardware restrictions. The nVIDIA
CUDA was used in our experiments, moreover, some of the matrix operations
were performed with the usage of CUBLAS library6, which is a well designed
library for basic linear algebra. Individual critical parts which can not be inter-
preted as a matrix operations were implemented as separate kernel functions,
e.g. finding the BMU (Best Matching Unit). Even in this cases, the principles
of parallel programing and data processing were used, e.g. the principle of PR
(Parallel Reduction) brings a significant time savings.

From the programming point of view, some fix data is precomputed in our
application. Such data is stored in the global memory and then partially copied
into the shared memory by all thread blocks to reduce the computational time
during SOM update [10]. First, it is a distance matrix which holds the distances
among neurons in a SOM. In Figure 6 on the left, there is an example of the
SOM with rectangular topology of dimension 7 × 7. The maximum distance in
this topology is maxDist = (dimX − 1) + (dimY − 1) = (7− 1) + (7− 1) = 12.
Just for illustration, the black node in the middle represents BMU and all nodes
with the same gray scale have the same distance to the BMU with respect to
the rectangular topology.

6 http://developer.nvidia.com/cuBLAS
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A vector of learning factors F represents another fix data. In Figure 6 on
the right, there are curves of learning functions for all epochs (e = 4). The
vector F has a dimension equal to (maxDist + 1) ∗ e = (12 + 1) ∗ 4 = 48 in
our example and represents a set of values fi(d), where fi(d) is the evaluated
learning function (learning factors) for a given epoch i, and a distance d, where
d ∈< 0,maxDist > and i ∈< 0, e >.

Fig. 6. Neuron distances in the SOM for a given BMU in the center of the SOM (on
the left) and curves of learning functions for all epochs

5.3 GPU Performance

Following two experiments include a comparison between GPU and CPU imple-
mentation of SOM. The Table 3 shows detailed hardware specifications of GPU
and CPU. The number of epochs for SOM was always set to 1000.

GPU CPU

CPU Intel Core 2 Duo 2,2Ghz 4 x AMD Opteron 1,8 GHz
RAM 4 GB 32 GB
GPU nVidia Tesla C1060, 4 GB -

Threads depends of GPU 8(CPU)

Table 3. Hardware specification

The first experiment and its results in Figure 7 shows the power of parallelism
on neurons. The contribution of GPU implementation is perceptible in higher
dimension of input vectors. As it can be seen in the graph, higher dimension does
not have such influence on time consumption in case of the GPU utilization.

Next experiment (see Figure 8) illustrates the power of the GPU utilization in
the case of different dimensions of SOM grid. The parallelism brings a significant
improvement.
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Fig. 7. Variable dimensions of input vectors
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One can predict the computation time for the real data collection. In the
case of the outage data analysis, several experiments have been done. Figure 9
shows the final computation times.

grid X grid Y epochs

1 192036 9 32 32 500 741

2 192036 9 32 32 1000 716

3 192036 9 64 64 500 723

4 192036 9 64 64 1000 815

SOMExperiment

ID

Number of

inputs

Vector

dimension

GPU

time (s)

Fig. 9. Experiments on outage data collection

Current evolution of High Performance Computing (HPC) shows, that the
usage of GPU can shift the limits of mathematical computation. Thus the earlier
time-consuming computations can be performed on computers with common
hardware configuration which is important for practical use.

6 Conclusion

In this paper, we described the SOM analysis of the outage database. We de-
scribed how to prepare the data for a SOM analysis and how to create the SOM
map from them. After analysis we visualized the data in the EDAS tool for a
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convenient work with a SOM map. Due to the performance issue, we introduced

a parallel implementation using GPU in this article. The parallel implementa-

tion is up-to 10× faster then the CPU implementation. In future work, we will

compare the results of SOM with other methods.
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