Asynchronous Transfer Mode (ATM) Broadband ISDN (B-ISDN)

Petr Grygárek

ATM basic characteristics

- Integrates transfer of voice, video, data and other media using statistical multiplexing
 - multiplexes cells of fixed length
 - QoS-aware

 Combines advantages of circuit-switched networks (constant delay, guaranteed capacity) and packet-switched networks (flexibility, efficiency for intermittent data transfers)

using (bidirectional) virtual circuits

Statistical multiplexing principle

ATM network

- implemented using polygonal infrastructure based on ATM switches
 - point-to-point lines allows to combine various media types and transfer rates
 - provides scalable bandwidth from a few Mbps to many Gbps
- ATM switches maintain switching tables for established virtual circuits

ATM Endpoints

- (Workstations)
- Routers, LAN switches
- Digital service units (DSUs)
- Video coder-decoders (CODECs)

ATM virtual circuits

- Each cell carries virtual circuit identifier in it's header (VPI+VCI)
 - some VPI/VCIs reserved for signalling and management
- Permanent and switched virtual circuits (PVC, SVC)
 - PVC: manual setup, no network resiliency
 - SVC: signalling protocol needed
- Virtual circuits are QoS-enabled
 - separate QoS contract can be appointed in each direction
- Point-to-point (unidirectional/bidirectional) VCs
- Point-to-multipoint (unidirectional) VCs

VPI and **VCI**

• VPI+VCI together identify virtual circuit

• virtual path

- identified by virtual path identifier (VPI)
- bundle of virtual channels, all of them can be switched transparently across the ATM network as a bundle (based on the common VPI)
- virtual channel
 - identified by the combination of a VPI and VCI

ATM Cell

- Total cell length is 53B
- Fixed and short payload length (48B)
 - short and deterministic delay priority cells can be sent without waiting for finish of transmission of previous long packets
 - well suited to transfer voice and video intolerant of delays and delay variation
 - 48 B is trade-off between 32 and 64B suggestions

ATM Cell header

• VPI, VCI - Virtual Path Identifier, Virtual Circuit Identifier

- identify virtual circuit (local significance)
- PT Payload Type
 - Bit 1: cell carries data / system control & management
 - Bit 2: congestion notification
 - Bit 3: indicates whether the cell is the last in a series of cells that represent a single frame (AAL5)
- CLP Cell Loss Priority
- HEC Header Error Control
 - can correct a single bit error in header
- Generic Flow Control (GFC)
 - Provides various local functions (typically not used)

Idle cells have reserved header bit pattern

ATM layers and reference model

ATM Reference model (Comparison with OSI RM)

Picture from http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/atm.htm

Covers physical layer and part of data link layer

ATM Reference model planes

- Control responsible for signalling
- User responsible for data transfer
- Management
 - Layer management manages layer-specific functions, such as the detection of failures and protocol problems
 - Plane management manages and coordinates functions related to the complete system

Physical layer

Manages medium-dependent issues

- Converts cells into bitstream
 - and packages it into frames of underlying technology (SDH, E3, ...)
- Tracks for cell boundaries

• Uses various media, various transfer rates

 plesiochronous hierarchy (E/T lines), SDH/SONET, dark fiber, TP, ...

ATM layer

- Switches cells according to switching table
 - forwarding + VPI/VCI rewrite
- Controls sharing of physical link by multiple VCs
 - negotiated VC QoS parameters have to be fulfilled
- Controls SVC connection establishment
 - connection setup (including setup request routing and switching table creation) decoupled from fast switching process

ATM Adaptation layer

- isolates higher-layer protocols from details of the ATM network
 - prepares user data for conversion into cells
 - segments data into 48-byte cell payloads
- Adapts existing upper-layer services to ATM
- Multiple adaptation layer types defined in for various user service classes (AAL1-AAL5)
 - connection-oriented synchronous constant bit rate (AAL1)
 - bursty variable bit rate traffic with constrained timing requirements (AAL2)
 - connection-oriented or connectionless data (AAL5)

ATM QoS

ATM Traffic Classification

- Constant Bit Rate (CBR)
 - isochronous applications like digitalized voice (AAL1)
- Variable Bit Rate (VBR)
 - bursty data transfer (MPEG video)
- Available Bit Rate (ABR)
 - guarantees minimal flow bitrate, tries to reach better
 - implements flow-control
- Unspecified Bit Rate (UBR)
 - no obligatory bitrate

Examples of ATM VC QoS parameters

- Peak Cell Rate
- Sustained Cell Rate
- Minimum Cell Rate
- Cell Delay Variation
- Cell Loss Ratio
- Cell Transfer Delay
- Cell Error Ratio, Cell Misinsertion Ratio, Severely Errored Cell Block Ratio
 - not appointed, given by network nature

ATM Addresses

Identify ATM end systems • Needed for SVC establishment ITU-T dictates use of E.164 addresses similar to telephone numbers • ATM Forum defines extended ATM addresses for private networks • 20B ATM address (OSI NSAP-based, hierarchical) • ATM address resolution protocol (ATM ARP) may be used to map higher-layer addresses to their

corresponding ATM addresses.

Signalling and SVC Establishment Request Routing

Building of SVC

Messages similar to ISDN signalling

• VPI = 0, VCI = 5

- Request contains peer endpoint's ATM address and QoS parameters required
- Switch-by-switch request forwarding and VC establishment
 - building of switching tables in ATM switches
 - routing needed to find way to the opposite endpoint
 - if no resources available on some path, request backtracks and tries to find another route (cranckback)
 - final destination either accepts or rejects the connection request
- Routes calculated based on topology information and Generic Connection Admission Control (GCAC) algorithm
 - GCAC used to guess whether ATM switch accept another connection or not

Connection request routing protocols

- Interim Inter-switch Signalling Protocol
 - Static routing (manual route setup)
- Private-NNI
 - discovers ATM topology
 - link-state protocol (same principle as OSPF)
 - Multiple metrics, load balancing support

Routing protocols have to find alternate paths if shortest one cannot fulfill required QoS parameters because of insufficient resources

Integrated Local Management Interface (ILMI)

- Enables devices to determine status of components at the other end of a physical link and to negotiate a common set of operational parameters
 - e.g. ATM address prefix

Usage of ATM for Data Transfers

LAN Emulation - LANE

LAN Emulation

- Gives to stations attached via ATM the same capabilities that they normally obtain from legacy LANs
- LAN emulated on OSI layer 2
 - ELAN emulates one LAN segment
- Emulates IEEE 802.3 Ethernet or an 802.5 Token Ring LAN
 - does not attempt to emulate the actual MAC protocol of the specific LAN (CSMA/CD for Ethernet or token passing for IEEE 802.5).
 - does not support QoS
 - defines a service interface for network layer protocols that is identical to that of existing LANs
- LANE operation is transparent to ATM switches
 - uses only standard ATM SVC signaling
 - no need of ATM switch modification
- LANE protocol maps MAC addresses to ATM addresses, so that LANE end systems can set up direct connections between themselves to forward data

LANE Components

Picture from http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/atm.htm

LANE components are implemented by SW in some ATM switch or LAN switch/router with ATM interface

LAN Emulation Client (LEC)

- entity in end system (station or router/switch) that performs
 - MAC-to-ATM address resolution
 - registration of MAC addresses behind it with the LAN Emulation Server
 - connection establishment to other LECs and data forwarding
- Provides a standard LAN interface to higher-level protocols on legacy LANs
- If end system connects to multiple ELANs, it has one LEC per ELAN

LAN Emulation Server (LES)

- maintains a list of MAC addresses in the ELAN and the corresponding ATM addresses of LECs
- LECs registers MAC addresses behind them with LES
- can answer questions from LECs wanting to obtain an ATM address corresponding to given MAC address

One LES exists per ELAN

Broadcast and Unknown Server (BUS)

- used to flood traffic to yet-unknown destination addresses and broadcast traffic to all endsystems behind all LECs within a particular ELAN
- Each LEC is associated with BUS for every ELAN

LAN Emulation Configuration Server (LECS)

- maintains a database of LECs and ELANs to which they belong
- accepts queries from LECs and responds with the appropriate ELAN parameters
 - ATM address of the LES

One LECS per administrative domain serves all ELANs within that domain.

Classical IP over ATM (CLIP)

Classical IP over ATM Architecture

- Defined in RFC 1577
- Uses ATM ARP to map IP addresses to ATM addresses
- Mappings maintained at ATM ARP server
 - ATM ARP server operates in scope of Logical IP Subnet (LIS)
 - Every node of LIS register it's ATM and IP address with ATM ARP server
- Communication between LIS has to pass router
- Typical MTU 9kB

ATM position today

Telco company backbone (some advantages over SDH)

- very flexible
- allows VBR VCs (videoconferencing)
- used as infrastructure for Frame Relay service VCs
- A few year ago, it was considered a promising backbone technology of campus networks
 - Shifted out today and replaced by (10)Gigabit Ethernet

• much more simpler administration, cheaper

- Lot of today-s technologies use ATM principles at physical layer
 - DSL
 - IEEE 802.16
 - (Wireless Local Loop, WiFi replacement for MANs)

For Further Study

See full version of ATM presentation for additional details