
C Language Mapping Specification

New Edition: June 1999

 paid up,
ified
 copyright
ving

ire use
y be
at are
r

 an
ent does
Copyright 1997, 1998, 1999 BEA Systems, Inc.
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1998, Borland International
Copyright 1991, 1992, 1995, 1996 Digital Equipment Corporation
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996, 1997 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright 1998 Inprise Corporation
Copyright 1996, 1997 International Business Machines Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1996, 1997 Micro Focus Limited
Copyright 1991, 1992, 1995, 1996 NCR Corporation
Copyright 1995, 1996 Novell USG
Copyright 1991,1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996, 1999 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1998 Telefónica Investigación y Desarrollo S.A. Unipersonal
Copyright 1996 Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY

 or c
s listed
s be the
marks or
rotected
form or
nd

 in

IDL,
, Inc.

ers to
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, relianceover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holder
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all time
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trade
other special designations to indicate compliance with these materials. This document contains information which is p
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage a
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

iii
iii

ii

 iv

 iv

v

-1
1-2

1-3
1-3
1-3
1-3
-4

1-4
-5

1-5

1-5

1-6

1-8

1-8

 1-9

-10

-11

-12

-12

1-13

-16

-17

-18

-19

-20

-21

21

1-21

1-22

-23

-26
Preface .
0.1 About CORBA Language Mapping Specifications

0.1.1 Alignment with CORBA i

0.2 Definition of CORBA Compliance.

0.3 Acknowledgements .

0.4 References .

1. C Language Mapping . 1
1.1 Requirements for a Language Mapping

1.1.1 Basic Data Types .
1.1.2 Constructed Data Types
1.1.3 Constants .
1.1.4 Objects .
1.1.5 Invocation of Operations 1
1.1.6 Exceptions .
1.1.7 Attributes . 1
1.1.8 ORB Interfaces .

1.2 Scoped Names .

1.3 Mapping for Interfaces .

1.4 Inheritance and Operation Names

1.5 Mapping for Attributes .

1.6 Mapping for Constants .

1.7 Mapping for Basic Data Types . 1

1.8 Mapping Considerations for Constructed Types 1

1.9 Mapping for Structure Types . 1

1.10 Mapping for Union Types . 1

1.11 Mapping for Sequence Types .

1.12 Mapping for Strings . 1

1.13 Mapping for Wide Strings . 1

1.14 Mapping for Fixed . 1

1.15 Mapping for Arrays . 1

1.16 Mapping for Exception Types . 1

1.17 Implicit Arguments to Operations 1

1.18 Interpretation of Functions with Empty Argument Lists . . 1-

1.19 Argument Passing Considerations

1.20 Return Result Passing Considerations

1.21 Summary of Argument/Result Passing 1

1.22 Handling Exceptions . 1
C Language Mapping i

Contents

-28

-29

1-29
-30

-30
30
-31

31
-32
-33
35
-37
-39

-39
-40

41

-44
1.23 Method Routine Signatures . 1

1.24 Include Files . 1

1.25 Pseudo-objects .
1.25.1 ORB Operations . 1

1.26 Mapping for Object Implementations 1
1.26.1 Operation-specific Details 1-
1.26.2 PortableServer Functions 1
1.26.3 Mapping for PortableServer::

ServantLocator::Cookie 1-
1.26.4 Servant Mapping . 1
1.26.5 Interface Skeletons . 1
1.26.6 Servant Structure Initialization 1-
1.26.7 Application Servants . 1
1.26.8 Method Signatures . 1

1.27 Mapping of the Dynamic Skeleton Interface to C 1
1.27.1 Mapping of ServerRequest to C 1
1.27.2 Mapping of Dynamic Implementation

Routine to C . 1-

1.28 ORB Initialization Operations . 1
ii C Language Mapping

Preface
tion

this
0.1 About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping informa
for the following languages:

• Ada

• C

• C++

• COBOL

• IDL to Java

• Java to IDL

• Smalltalk

Each language is described in a separate stand-alone volume.

0.1.1 Alignment with CORBA

The following table lists each language mapping and the version of CORBA that
language mapping is aligned with.

Language Mapping Aligned with CORBA version

Ada CORBA 2.0

C CORBA 2.1

C++ CORBA 2.3

COBOL CORBA 2.1
 C Language Mapping June 1999 iii

ng is

hey
e,
ng

d

 by
0.2 Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mappi
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, t
must adhere to the CORBA specifications to be called CORBA-compliant. For instanc
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ bindi
specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to the Common Object Request
Broker: Architecture and Specification, Interworking Architecture chapter.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core an
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA specifications are divided into these volumes:

1. The Common Object Request Broker: Architecture and Specification, which
includes the following chapters:

• CORBA Core, as specified in Chapters 1-11

• CORBA Interoperability , as specified in Chapters 12-16

• CORBA Interworking , as specified in Chapters 17-21

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

• Mapping of IDL to the Ada programming language

• Mapping of IDL to the C programming language

• Mapping of IDL to the C++ programming language

• Mapping of IDL to the COBOL programming language

• Mapping of IDL to the Java programming language

• Mapping of Java programming language to OMG/IDL

• Mapping of IDL to the Smalltalk programming language

0.3 Acknowledgements

The following companies submitted parts of the specifications that were approved
the Object Management Group to become CORBA (including the Language Mapping
specifications):

IDL to Java CORBA 2.3

Java to IDL CORBA 2.3

Smalltalk CORBA 2.0

Language Mapping Aligned with CORBA version
iv C Language Mapping June 1999

rk

2,

C
• BEA Systems, Inc.

• BNR Europe Ltd.

• Defense Information Systems Agency

• Expersoft Corporation

• FUJITSU LIMITED

• Genesis Development Corporation

• Gensym Corporation

• IBM Corporation

• ICL plc

• Inprise Corporation

• IONA Technologies Ltd.

• Digital Equipment Corporation

• Hewlett-Packard Company

• HyperDesk Corporation

• Micro Focus Limited

• MITRE Corporation

• NCR Corporation

• Novell USG

• Object Design, Inc.

• Objective Interface Systems, Inc.

• OC Systems, Inc.

• Open Group - Open Software Foundation

• Siemens Nixdorf Informationssysteme AG

• Sun Microsystems Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Telefónica Investigación y Desarrollo S.A. Unipersonal

• Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Ma
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping specification.

0.4 References

The following list of references applies to CORBA and/or the Language Mapping
specifications:

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG T
Document 95-3-31.
C Language Mapping References June 1999 v

o-

, S.

E

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.

COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.

IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micr
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version)
(Martin) O’Donnell, June 1994.

RPC Runtime Support For I18N Characters — Functional Specification, OSF DC
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.
vi C Language Mapping June 1999

C Language Mapping 1
.

d
w

Note – The C Language Mapping specification is aligned with CORBA version 2.0

CORBA is independent of the programming language used to construct clients an
implementations. In order to use the ORB, it is necessary for programmers to kno
how to access ORB functionality from their programming languages. This chapter
defines the mapping of OMG IDL constructs to the C programming language.

Contents

This chapter contains the following sections.

Section Title Page

“Requirements for a Language Mapping” 1-2

“Scoped Names” 1-5

“Mapping for Interfaces” 1-6

“Inheritance and Operation Names” 1-8

“Mapping for Attributes” 1-8

“Mapping for Constants” 1-9

“Mapping for Basic Data Types” 1-10

“Mapping Considerations for Constructed Types” 1-11

“Mapping for Structure Types” 1-12

“Mapping for Union Types” 1-12

“Mapping for Sequence Types” 1-13
 C Language Mapping August 1997 1-1

1

 the

and

ation

 To
ing
1.1 Requirements for a Language Mapping

All language mappings have approximately the same structure. They must define
means of expressing in the language:

• All OMG IDL basic data types

• All OMG IDL constructed data types

• References to constants defined in OMG IDL

• References to objects defined in OMG IDL

• Invocations of operations, including passing parameters and receiving results

• Exceptions, including what happens when an operation raises an exception
how the exception parameters are accessed

• Access to attributes

• Signatures for the operations defined by the ORB, such as the dynamic invoc
interface, the object adapters, and so forth.

A complete language mapping will allow a programmer to have access to all ORB
functionality in a way that is convenient for the particular programming language.
support source portability, all ORB implementations must support the same mapp
for a particular language.

“Mapping for Strings” 1-16

“Mapping for Wide Strings” 1-17

“Mapping for Fixed” 1-18

“Mapping for Arrays” 1-19

“Mapping for Exception Types” 1-20

“Implicit Arguments to Operations” 1-21

“Interpretation of Functions with Empty Argument Lists” 1-21

“Argument Passing Considerations” 1-21

“Return Result Passing Considerations” 1-22

“Summary of Argument/Result Passing” 1-23

“Handling Exceptions” 1-26

“Method Routine Signatures” 1-28

“Include Files” 1-29

“Pseudo-objects” 1-29

“Mapping for Object Implementations” 1-30

“Mapping of the DSI to C” 1-39

“ORB Initialization Operations” 1-44

Section Title Page
1-2 C Language Mapping August 1997

1

fined
ns

 sees
s 0,
ping

ypes

uage

ng
o

eters
 these

age.

ion of

gram

re not
nt to
e
g

y

1.1.1 Basic Data Types

A language mapping must define the means of expressing all of the data types de
in version 2.3 of The Common Object Request Broker: Architecture and Specificatio,
OMG IDL Syntax and Semantics chapter, Basic Types section. The ORB defines the
range of values supported, but the language mapping defines how a programmer
those values. For example, the C mapping might define TRUE as 1 and FALSE a
whereas the LISP mapping might define TRUE as T and FALSE as NIL. The map
must specify the means to construct and operate on these data types in the
programming language.

1.1.2 Constructed Data Types

A language mapping must define the means of expressing the constructed data t
defined in version 2.3 of The Common Object Request Broker: Architecture and
Specifications, OMG IDL Syntax and Semantics chapter, Constructed Types section.
The ORB defines aggregates of basic data types that are supported, but the lang
mapping defines how a programmer sees those aggregates. For example, the C
mapping might define an OMG IDL struct as a C struct, whereas the LISP mappi
might define an OMG IDL struct as a list. The mapping must specify the means t
construct and operate on these data types in the programming language.

1.1.3 Constants

OMG IDL definitions may contain named constant values that are useful as param
for certain operations. The language mapping should provide the means to access
constants by name.

1.1.4 Objects

There are two parts of defining the mapping of ORB objects to a particular langu
The first specifies how an object is represented in the program and passed as a
parameter to operations. The second is how an object is invoked. The representat
an object reference in a particular language is generally opaque, that is, some
language-specific data type is used to represent the object reference, but the pro
does not interpret the values of that type. The language-specific representation is
independent of the ORB representation of an object reference, so that programs a
ORB-dependent. In an object-oriented programming language, it may be convenie
represent an ORB object as a programming language object. Any correspondenc
between the programming language object types and the OMG IDL types includin
inheritance and operation names is up to the language mapping.

There are only three uses that a program can make of an object reference: it ma

• specify it as a parameter to an operation (including receiving it as an output
parameter),

• invoke an operation on it, or

• perform an ORB operation (including object adapter operations) on it.
C Language Mapping Requirements for a Language Mapping Aug. 1997 1-3

1

y of
the

 calls
ns to

the
n the
nd

on of
r, it
er or

e
input
sary to

irst is

 can
if it
meters

ind of

aining
1.1.5 Invocation of Operations

An operation invocation requires the specification of the object to be invoked, the
operation to be performed, and the parameters to be supplied. There are a variet
possible mappings, depending to a large extent on the procedure mechanism in
particular language. Some possible choices for language mapping of invocation
include: interface-specific stub routines, a single general-purpose routine, a set of
to construct a parameter list and initiate the operation, or mapping ORB operatio
operations on objects defined in an object-oriented programming language.

The mapping must define how parameters are associated with the call, and how
operation name is specified. It is also necessary to specify the effect of the call o
flow of control in the program, including when an operation completes normally a
when an exception is raised.

The most natural mapping would be to model a call on an ORB object as the
corresponding call in the particular language. However, this may not always be
possible for languages where the type system or call mechanism is not powerful
enough to handle ORB objects. In this case, multiple calls may be required. For
example, in C, it is necessary to have a separate interface for dynamic constructi
calls, since C does not permit discovery of new types at runtime. In LISP, howeve
may be possible to make a language mapping that is the same for objects wheth
not they were known at compile time.

In addition to defining how an operation is expressed, it is necessary to specify th
storage allocation policy for parameters, for example, what happens to storage of
parameters, and how and where output parameters are allocated. It is also neces
describe how a return value is handled, for operations that have one.

1.1.6 Exceptions

There are two aspects to the mapping of exceptions into a particular language. F
the means for handling an exception when it occurs, including deciding which
exception occurred. If the programming language has a model of exceptions that
accommodate ORB exceptions, that would likely be the most convenient choice;
does not, some other means must be used, for example, passing additional para
to the operations that receive the exception status.

A common case is that the programmer associates specific code to handle each k
exception. It is desirable to make that association as convenient as possible.

Second, when an exception has been raised, it must be possible to access the
parameters of the exception. If the language exception mechanism allows for
parameters, that mechanism could be used. Otherwise, some other means of obt
the exception values must be provided.
1-4 C Language Mapping August 1997

1

tribute
 One
ge
es
 set
f

cts

ing
ar to

rface
nted
same
 with
s
rface

e
 for

L
essed,

er

on, or
ed

1.1.7 Attributes

The ORB model attributes as a pair of operations, one to set and one to get the at
value. The language mapping defines the means of expressing these operations.
reason for distinguishing attributes from pairs of operations is to allow the langua
mapping to define the most natural way for accessing them. Some possible choic
include defining two operations for each attribute, defining two operations that can
or get, respectively, any attribute, defining operations that can set or get groups o
attributes, and so forth.

1.1.8 ORB Interfaces

Most of a language mapping is concerned with how the programmer-defined obje
and data are accessed. Programmers who use the ORB must also access some
interfaces implemented directly by the ORB, for example, to convert an object
reference to a string. A language mapping must also specify how these interfaces
appear in the particular programming language.

Various approaches may be taken, including defining a set of library routines, allow
additional ORB-related operations on objects, or defining interfaces that are simil
the language mapping for ordinary objects.

The last approach is called defining pseudo-objects. A pseudo-object has an inte
that can (with a few exceptions) be defined in IDL, but is not necessarily impleme
as an ORB object. Using stubs, a client of a pseudo-object writes calls to it in the
way as if it were an ordinary object. Pseudo-object operations cannot be invoked
the Dynamic Invocation Interface. However, the ORB may recognize such calls a
special and handle them directly. One advantage of pseudo-objects is that the inte
can be expressed in IDL independent of the particular language mapping, and th
programmer can understand how to write calls by knowing the language mapping
the invocations of ordinary objects.

It is not necessary for a language mapping to use the pseudo-object approach.
However, this document defines interfaces in subsequent chapters using OMG ID
wherever possible. A language mapping must define how these interfaces are acc
either by defining them as pseudo-objects and supporting a mapping similar to
ordinary objects, by defining language-specific interfaces for them, or in some oth
way.

1.2 Scoped Names

The C programmer must always use the global name for a type, constant, excepti
operation. The C global name corresponding to an OMG IDL global name is deriv
by converting occurrences of “:: ” to “_” (an underscore) and eliminating the leading
underscore.
C Language Mapping Scoped Names Aug. 1997 1-5

1

 the

ores

r
Consider the following example:

// IDL
typedef string<256> filename_t;
interface example0 {

enum color {red, green, blue};
union bar switch (enum foo {room, bell}) { ... };
• • •

};

Code to use this interface would look as follows:

/* C */
#include "example0.h"

filename_t FN;
example0_color C = example0_red;
example0_bar myUnion;

switch (myUnion._d) {
case example0_bar_room: • • •
case example0_bar_bell: • • •

};

Note that the use of underscores to replace the “:: ” separators can lead to ambiguity if
the OMG IDL specification contains identifiers with underscores in them. Consider
following example:

// IDL
typedef long foo_bar;
interface foo {

typedef short bar; /* A legal OMG IDL statement,
but ambiguous in C */
• • •

};

Due to such ambiguities, it is advisable to avoid the indiscriminate use of undersc
in identifiers.

1.3 Mapping for Interfaces

All interfaces must be defined at global scope (no nested interfaces). The mapping fo
an interface declaration is as follows:

// IDL
interface example1 {

long op1(in long arg1);
};
1-6 C Language Mapping August 1997

1

wn,

the

er the

The preceding example generates the following C declarations1:

/* C */
typedef CORBA_Object example1;
extern CORBA_long example1_op1(

example1 o,
CORBA_long arg1,
CORBA_Environment *ev

);

All object references (typed interface references to an object) are of the well-kno
opaque type CORBA_Object . The representation of CORBA_Object is a pointer. To
permit the programmer to decorate a program with typed references, a type with
name of the interface is defined to be a CORBA_Object . The literal
CORBA_OBJECT_NIL is legal wherever a CORBA_Object may be used; it is
guaranteed to pass the is_nil operation defined in version 2.3 of The Common Object
Request Broker: Architecture and Specifications, ORB Interface chapter, Nil Object
References section. OMG IDL permits specifications in which arguments, return
results, or components of constructed types may be interface references. Consid
following example:

// IDL
#include "example1.idl"

interface example2 {
example1 op2();

};

This is equivalent to the following C declaration:

/* C */
#include "example1.h"

typedef CORBA_Object example2;
extern example1 example2_op2(example2 o, CORBA_Environment
*ev);

A C fragment for invoking such an operation is as follows:

/* C */
#include "example2.h"

example1 ex1;
example2 ex2;
CORBA_Environment ev;

/* code for binding ex2 */

1. “Implicit Arguments to Operations” on page 1-21 describes the additional arguments added
to an operation in the C mapping.
C Language Mapping Mapping for Interfaces Aug. 1997 1-7

1

.

ing
ex1 = example2_op2(ex2, &ev);

1.4 Inheritance and Operation Names

OMG IDL permits the specification of interfaces that inherit operations from other
interfaces. Consider the following example:

// IDL
interface example3 : example1 {

void op3(in long arg3, out long arg4);
};

This is equivalent to the following C declarations:

/* C */
typedef CORBA_Object example3;
extern CORBA_long example3_op1(

example3 o,
CORBA_long arg1,
CORBA_Environment *ev

);
extern void example3_op3(

example3 o,
CORBA_long arg3,
CORBA_long *arg4,
CORBA_Environment *ev

);

As a result, an object written in C can access op1 as if it was directly declared in
example3 . Of course, the programmer could also invoke example1_op1 on an
Object of type example3 ; the virtual nature of operations in interface definitions
will cause invocations of either function to cause the same method to be invoked

1.5 Mapping for Attributes

The mapping for attributes is best explained through example. Consider the follow
specification:

// IDL
interface foo {

struct position_t {
float x, y;

};

attribute float radius;
readonly attribute position_t position;

};

This is exactly equivalent to the following illegal OMG IDL specification:
1-8 C Language Mapping August 1997

1

art

se

turn

ral of

with
// IDL (illegal)
interface foo {

struct position_t {
float x, y;

};

float _get_radius();
void _set_radius(in float r);
position_t _get_position();

};

This latter specification is illegal, since OMG IDL identifiers are not permitted to st
with the underscore (_) character.

The language mapping for attributes then becomes the language mapping for the
equivalent operations. More specifically, the function signatures generated for the
above operations are as follows:

/* C */
typedef struct foo_position_t {

CORBA_float x, y;
} foo_position_t;

extern CORBA_float foo__get_radius(foo o, CORBA_Environment
*ev);
extern void foo__set_radius(

foo o,
CORBA_float r,
CORBA_Environment *ev

);
extern foo_position_t foo__get_position(foo o,
CORBA_Environment *ev);

Note that two underscore characters (__) separate the name of the interface from the
words “get ” or “set ” in the names of the functions.

If the “set ” accessor function fails to set the attribute value, the method should re
one of the standard exceptions defined in version 2.3 of The Common Object Request
Broker: Architecture and Specifications, OMG IDL Syntax and Semantics chapter,
Standard Exceptions section.

1.6 Mapping for Constants

Constant identifiers can be referenced at any point in the user’s code where a lite
that type is legal. In C, these constants are #define d.

The fact that constants are #define d may lead to ambiguities in code. All names
which are mandated by the mappings for any of the structured types below start
an underscore.
C Language Mapping Mapping for Constants Aug. 1997 1-9

1

r and

e

r.
gs.
The mappings for wide character and wide string constants is identical to characte
string constants, except that IDL literals are preceded by L in C. For example, IDL
constant:

const wstring ws = “Hello World”;

would map to

#define ws L”Hello World”

in C.

1.7 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 1-1. Implementations ar
responsible for providing typedefs for CORBA_short, CORBA_long, and so forth,
consistent with OMG IDL requirements for the corresponding data types.

The C mapping of the OMG IDL boolean types is unsigned char with only the
values 1 (TRUE) and 0 (FALSE) defined; other values produce undefined behavio
CORBA_boolean is provided for symmetry with the other basic data type mappin

The C mapping of OMG IDL enum types is an unsigned integer type capable of
representing 232 enumerations. Each enumerator in an enum is #define d with an
appropriate unsigned integer value conforming to the ordering constraints.

Table 1-1 Data Type Mappings

OMG IDL C
short CORBA_short

long CORBA_long

long long CORBA_long_long

unsigned short CORBA_unsigned_short

unsigned long CORBA_unsigned_long

unsigned long
long

CORBA_unsigned_long_long

float CORBA_float

double CORBA_double

long double CORBA_long_double

char CORBA_char

wchar CORBA_wchar

boolean CORBA_boolean

any typedef struct CORBA_any { CORBA_TypeCode _type; void
*_value; }

 CORBA_any;
1-10 C Language Mapping August 1997

1

t
 of a

ip

the

es)

llow

t is
TypeCodes are described in version 2.3 of The Common Object Request Broker:
Architecture and Specifications, Interface Repository chapter, TypeCodes section. The
_value member for an any is a pointer to the actual value of the datum. Note tha
this holds true when the datum is itself implemented as a pointer (e.g., in the case
CORBA string, the _value member would be a pointer (CORBA_char**) to
string(CORBA_char*).

The any type supports the notion of ownership of its _value member. By setting a
release flag in the any when a value is installed, programmers can control ownersh
of the memory pointed to by _value . The location of this release flag is
implementation-dependent, so the following two ORB-supplied functions allow for
setting and checking of the any release flag:

/* C */
void CORBA_any_set_release(CORBA_any*, CORBA_boolean);

CORBA_boolean CORBA_any_get_release(CORBA_any*);

CORBA_any_set_release can be used to set the state of the release flag. If the
flag is set to TRUE, the any effectively “owns” the storage pointed to by _value ; if
FALSE, the programmer is responsible for the storage. If, for example, an any is
returned from an operation with its release flag set to FALSE, calling CORBA_free()
on the returned any* will not deallocate the memory pointed to by _value . Before
calling CORBA_free() on the _value member of an any directly, the programmer
should check the release flag using CORBA_any_get_release . If it returns FALSE,
the programmer should not invoke CORBA_free() on the _value member; doing so
produces undefined behavior. Also, passing a null pointer to either
CORBA_any_set_release or CORBA_any_get_release produces undefined
behavior.

If CORBA_any_set_release is never called for a given instance of any, the default
value of the release flag for that instance is FALSE.

1.8 Mapping Considerations for Constructed Types

The mapping for OMG IDL structured types (structs, unions, arrays, and sequenc
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any
• A bounded or unbounded string or wide string

• A bounded or unbounded sequence

• An object reference or reference to a transmissible pseudo-object

• A struct or union that contains a member whose type is variable-length

• An array with a variable-length element type

• A typedef to a variable-length type

The reason for treating fixed- and variable-length data structures differently is to a
more flexibility in the allocation of out parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings, for example, to allocate all the string storage in one area tha
C Language Mapping Mapping Considerations for Constructed Types Aug. 19971-11

1

n

th

sing

rted
y the
deallocated in a single call. The mapping of a variable-length type as an out parameter
or operation return value is a pointer to the associated class or array, as shown i
Table 1-2 on page 1-23.

For types whose parameter passing modes require heap allocation, an ORB
implementation will provide allocation functions. These types include variable-leng
struct , variable-length union , sequence , any, string , wstring and array of a
variable-length type. The return value of these allocation functions must be freed u
CORBA_free() . For one of these listed types T, the ORB implementation will
provide the following type-specific allocation function:

/* C */
T *T__alloc();

The functions are defined at global scope using the fully-scoped name of T conve
into a C language name (as described in “Scoped Names” on page 1-5) followed b
suffix “__alloc” (note the double underscore). For any, string, and wstring , the
allocation functions are:

/* C */

CORBA_any *CORBA_any_alloc();
char *CORBA_string_alloc();
CORBA_wchar* CORBA_wstring_alloc(CORBA_unsigned_long len);

respectively.

1.9 Mapping for Structure Types

OMG IDL structures map directly onto C struct s. Note that all OMG IDL types that
map to C struct s may potentially include padding.

1.10 Mapping for Union Types

OMG IDL discriminated unions are mapped onto C struct s. Consider the following
OMG IDL declaration:

// IDL
union Foo switch (long) {

case 1: long x;
case 2: float y;
default: char z;

};

This is equivalent to the following struct in C:

/* C */
typedef struct {

CORBA_long _d;
union {
1-12 C Language Mapping August 1997

1

ses the
CORBA_long x;
CORBA_float y;
CORBA_char z;

} _u;
} Foo;

The discriminator in the struct is always referred to as _d ; the union in the struct is
always referred to as _u.

Reference to union elements is as in normal C:

/* C */
Foo *v;

/* make a call that returns a pointer to a Foo in v */

switch(v->_d) {
case 1: printf("x = %ld\n", v->_u.x); break;
case 2: printf("y = %f\n", v->_u.y); break;
default: printf("z = %c\n", v->_u.z); break;

}

An ORB implementation need not use a C union to hold the OMG IDL union
elements; a C struct may be used instead. In either case, the programmer acces
union elements via the _u member.

1.11 Mapping for Sequence Types

The OMG IDL data type sequence permits passing of unbounded arrays between
objects. Consider the following OMG IDL declaration:

// IDL
typedef sequence<long,10> vec10;

In C, this is converted to:

/* C */
typedef struct {

CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
CORBA_long *_buffer;

} vec10;

An instance of this type is declared as follows:

/* C */
vec10 x = {10L, 0L, (CORBA_long *)NULL);

Prior to passing &x as an in parameter, the programmer must set the _buffer
member to point to a CORBA_long array of 10 elements, and must set the _length
member to the actual number of elements to transmit.
C Language Mapping Mapping for Sequence Types Aug. 1997 1-13

1

ffer of
ough

ion,

 from

n

low

. If

, a

ence

of the

uments
Prior to passing the address of a vec10* as an out parameter (or receiving a vec10*
as the function return), the programmer does nothing. The client stub will allocate
storage for the returned sequence; for bounded sequences, it also allocates a bu
the specified size, while for unbounded sequences, it also allocates a buffer big en
to hold what was returned by the object. Upon successful return from the invocat
the _maximum member will contain the size of the allocated array, the _buffer
member will point at allocated storage, and the _length member will contain the
number of values that were returned in the _buffer member. The client is
responsible for freeing the allocated sequence using CORBA_free() .

Prior to passing &x as an inout parameter, the programmer must set the _buffer
member to point to a CORBA_long array of 10 elements. The _length member
must be set to the actual number of elements to transmit. Upon successful return
the invocation, the _length member will contain the number of values that were
copied into the buffer pointed to by the _buffer member. If more data must be
returned than the original buffer can hold, the callee can deallocate the original
_buffer member using CORBA_free() (honoring the release flag) and assign
_buffer to point to new storage.

For bounded sequences, it is an error to set the _length or _maximum member to a
value larger than the specified bound.

Sequence types support the notion of ownership of their _buffer members. By
setting a release flag in the sequence when a buffer is installed, programmers ca
control ownership of the memory pointed to by _buffer . The location of this release
flag is implementation-dependent, so the following two ORB-supplied functions al
for the setting and checking of the sequence release flag:

/* C */
void CORBA_sequence_set_release(void*, CORBA_boolean);
CORBA_boolean CORBA_sequence_get_release(void*);

CORBA_sequence_set_release can be used to set the state of the release flag
the flag is set to TRUE, the sequence effectively “owns” the storage pointed to by
_buffer ; if FALSE, the programmer is responsible for the storage. If, for example
sequence is returned from an operation with its release flag set to FALSE, calling
CORBA_free() on the returned sequence pointer will not deallocate the memory
pointed to by _buffer . Before calling CORBA_free() on the _buffer member of
a sequence directly, the programmer should check the release flag using
CORBA_sequence_get_release . If it returns FALSE, the programmer should not
invoke CORBA_free() on the _buffer member; doing so produces undefined
behavior. Also, passing a null pointer or a pointer to something other than a sequ
type to either CORBA_sequence_set_release or
CORBA_sequence_get_release produces undefined behavior.

CORBA_sequence_set_release should only be used by the creator of a
sequence. If it is not called for a given sequence instance, then the default value
release flag for that instance is FALSE.

Two sequence types are the same type if their sequence element type and size arg
are identical. For example,
1-14 C Language Mapping August 1997

1

sed
ective

name
f the

.

// IDL
const long SIZE = 25;
typedef long seqtype;

typedef sequence<long, SIZE> s1;
typedef sequence<long, 25> s2;
typedef sequence<seqtype, SIZE> s3;
typedef sequence<seqtype, 25> s4;

declares s1, s2, s3, and s4 to be of the same type.

The OMG IDL type

// IDL
sequence<type,size>

maps to

/* C */
#ifndef _CORBA_sequence_type_defined
#define _CORBA_sequence_type_defined
typedef struct {

CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
type *_buffer;

} CORBA_sequence_type;
#endif /* _CORBA_sequence_type_defined */

The ifdef ’s are needed to prevent duplicate definition where the same type is u
more than once. The type name used in the C mapping is the type name of the eff
type. For example, in

/* C */
typedef CORBA_long FRED;
typedef sequence<FRED,10> FredSeq;

the sequence is mapped onto

struct { ... } CORBA_sequence_long;

If the type in

// IDL
sequence<type,size>

consists of more than one identifier (e.g, unsigned long), then the generated type
consists of the string “CORBA_sequence_” concatenated to the string consisting o
concatenation of each identifier separated by underscores (e.g, “unsigned_long”)

If the type is a string , the string “string” is used to generate the type name. If the
type is a sequence , the string “sequence” is used to generate the type name,
recursively. For example
C Language Mapping Mapping for Sequence Types Aug. 1997 1-15

1

pe.

RB

th of
yte).
und.
// IDL
sequence<sequence<long> >

generates a type of

/* C */
CORBA_sequence_sequence_long

These generated type names may be used to declare instances of a sequence ty

In addition to providing a type-specific allocation function for each sequence, an O
implementation must provide a buffer allocation function for each sequence type.
These functions allocate vectors of type T for sequence<T> . They are defined at
global scope and are named similarly to sequences:

/* C */
T *CORBA_sequence_T_allocbuf(CORBA_unsigned_long len);

Here, “T” refers to the type name. For the type

// IDL
sequence<sequence<long> >

for example, the sequence buffer allocation function is named

/* C */
T *CORBA_sequence_sequence_long_allocbuf

(CORBA_unsigned_long len);

Buffers allocated using these allocation functions are freed using CORBA_free() .

1.12 Mapping for Strings

OMG IDL strings are mapped to 0-byte terminated character arrays (i.e., the leng
the string is encoded in the character array itself through the placement of the 0-b
Note that the storage for C strings is one byte longer than the stated OMG IDL bo
Consider the following OMG IDL declarations:

// IDL
typedef string<10> sten;
typedef string sinf;

In C, this is converted to:

/* C */
typedef CORBA_char *sten;
typedef CORBA_char *sinf;

Instances of these types are declared as follows:

/* C */
sten s1 = NULL;
1-16 C Language Mapping August 1997

1

le,

ess
ller

for
hile

.

e
If the

.
d

 are
te
e
sinf s2 = NULL;

Two string types are the same type if their size arguments are identical. For examp

/* C */
const long SIZE = 25;

typedef string<SIZE> sx;
typedef string<25> sy;

declares sx and sy to be of the same type.

Prior to passing s1 or s2 as an in parameter, the programmer must assign the addr
of a character buffer containing a 0-byte terminated string to the variable. The ca
cannot pass a null pointer as the string argument.

Prior to passing &s1 or &s2 as an out parameter (or receiving a sten or sinf as the
return result), the programmer does nothing. The client stub will allocate storage
the returned buffer; for bounded strings, it allocates a buffer of the specified size, w
for unbounded strings, it allocates a buffer big enough to hold the returned string
Upon successful return from the invocation, the character pointer will contain the
address of the allocated buffer. The client is responsible for freeing the allocated
storage using CORBA_free() .

Prior to passing &s1 or &s2 as an inout parameter, the programmer must assign th
address of a character buffer containing a 0-byte terminated array to the variable.
returned string is larger than the original buffer, the client stub will call
CORBA_free() on the original string and allocate a new buffer for the new string
The client should therefore never pass an inout string parameter that was not allocate
using CORBA_string_alloc . The client is responsible for freeing the allocated
storage using CORBA_free() , regardless of whether or not a reallocation was
necessary.

Strings are dynamically allocated using the following ORB-supplied function:

/* C */
CORBA_char *CORBA_string_alloc(CORBA_unsigned_long len);

This function allocates len+1 bytes, enough to hold the string and its terminating
NUL character.

Strings allocated in this manner are freed using CORBA_free() .

1.13 Mapping for Wide Strings

The mapping for wide strings is similar to that of strings, except that (1) wide strings
mapped to null-terminated (note: a wide null) wide-character arrays instead of 0-by
terminated character arrays; and (2) wide strings are dynamically allocated using th
ORB-supplied function:
C Language Mapping Mapping for Wide Strings Aug. 1997 1-17

1

:

ns

d
CORBA_wchar* CORBA_wstring_alloc(CORBA_unsigned_long len);

instead of CORBA_string_alloc . The length argument len is the number of
CORBA::WChar units to be allocated, including one additional unit for the null
terminator.

1.14 Mapping for Fixed

If an implementation has a native fixed-point decimal type, matching the CORBA
specifications of the fixed type, then the OMG IDL fixed type may be mapped to the
native type.

Otherwise, the mapping is as follows. Consider the following OMG IDL declarations

fixed<15,5> dec1; // IDL
typedef fixed<9,2> money;

In C, these become:

typedef struct {/* C */
CORBA_unsigned_short _digits;
CORBA_short _scale;
CORBA_char _value[(15+2)/2];

} CORBA_fixed_15_5;

CORBA_fixed_15_5 dec1 = {15u, 5};

typedef struct {
CORBA_unsigned_short _digits;
CORBA_short _scale;

 CORBA_char _value[(9+2)/2];
} CORBA_fixed_9_2;

typedef CORBA_fixed_9_2 money;

An instance of money is declared:

money bags = {9u, 2};

To permit application portability, the following minimal set of functions and operatio
on the fixed type must be provided by the mapping. Since C does not support
parameterized types, the fixed arguments are represented as void* pointers. The type
information is instead conveyed within the representation itself. Thus the _digits and
_scale of every fixed operand must be set prior to invoking these functions. Indee
only the _value field of the result, denoted by *rp , may be left unset. Otherwise the
behavior of the functions is undefined.
1-18 C Language Mapping August 1997

1

d

iable.
diate

n:

inter
e

of

e of
’s
/* Conversions: all signs are the same. */
CORBA_long CORBA_fixed_integer_part(const void *fp);
CORBA_long CORBA_fixed_fraction_part(const void *fp);
void CORBA_fixed_set(void *rp, const CORBA_long i,

const CORBA_long f);

/* Operations, of the form: r = f1 op f2 */
void CORBA_fixed_add(void *rp, const void *f1p,

const void *f2p);
void CORBA_fixed_sub(void *rp, const void *f1p,

const void *f2p);
void CORBA_fixed_mul(void *rp, const void *f1p,

const void *f2p);
void CORBA_fixed_div(void *rp, const void *f1p,

const void *f2p);

These operations must maintain proper fixed-point decimal semantics, following the
rules specified in version 2.3 of The Common Object Request Broker: Architecture an
Specifications, OMG IDL Syntax and Semantics chapter, Semantics section for the
precision and scale of the intermediate results prior to assignment to the result var
Truncation without rounding may occur if the result type cannot express the interme
result exactly.

Instances of the fixed type are dynamically allocated using the ORB-supplied functio
CORBA_fixed_d_s* CORBA_fixed_alloc(CORBA_unsigned_short d);

1.15 Mapping for Arrays

OMG IDL arrays map directly to C arrays. All array indices run from 0 to <size - 1>.

For each named array type in OMG IDL, the mapping provides a C typedef for po
to the array’s slice. A slice of an array is another array with all the dimensions of th
original except the first. For example, given the following OMG IDL definition:

// IDL
typedef long LongArray[4][5];

The C mapping provides the following definitions:

/* C */
typedef CORBA_long LongArray[4][5];
typedef CORBA_long LongArray_slice[5];

The generated name of the slice typedef is created by appending “_slice” to the
original array name.

If the return result, or an out parameter for an array holding a variable-length type,
an operation is an array, the array storage is dynamically allocated by the stub; a
pointer to the array slice of the dynamically allocated array is returned as the valu
the client stub function. When the data is no longer needed, it is the programmer
responsibility to return the dynamically allocated storage by calling CORBA_free() .
C Language Mapping Mapping for Arrays Aug. 1997 1-19

1

turn

lobal
o

, it

urns

 least
r.

An array T of a variable-length type is dynamically allocated using the following
ORB-supplied function:

/* C */
T_slice *T__alloc();

This function is identical to the allocation functions described in Section 1.8,
“Mapping Considerations for Constructed Types,” on page 1-11, except that the re
type is pointer to array slice, not pointer to array.

1.16 Mapping for Exception Types

Each defined exception type is defined as a struct tag and a typedef with the C g
name for the exception. An identifier for the exception, in string literal form, is als
#define d, as is a type-specific allocation function. For example:

// IDL
exception foo {

long dummy;
};

yields the following C declarations:

/* C */
typedef struct foo {

CORBA_long dummy;
/* ...may contain additional

* implementation-specific members...
 */

} foo;
#define ex_foo <unique identifier for exception>
foo *foo__alloc();

The identifier for the exception uniquely identifies this exception type. For example
could be the Interface Repository identifier for the exception (see version 2.3 of The
Common Object Request Broker: Architecture and Specifications, Interface Repository
chapter, ExceptionDef section).

The allocation function dynamically allocates an instance of the exception and ret
a pointer to it. Each exception type has its own dynamic allocation function.
Exceptions allocated using a dynamic allocation function are freed using
CORBA_free() .

Since IDL exceptions are allowed to have no members, but C structs must have at
one member, IDL exceptions with no members map to C structs with one membe
This member is opaque to applications. Both the type and the name of the single
member are implementation-specific.
1-20 C Language Mapping August 1997

1

ce

e
he
r

n
s of

types,

of a
iable-

d for
. For
,
1.17 Implicit Arguments to Operations

From the point of view of the C programmer, all operations declared in an interfa
have additional leading parameters preceding the operation-specific parameters:

1. The first parameter to each operation is a CORBA_Object input parameter; this
parameter designates the object to process the request.

2. The last parameter to each operation is a CORBA_Environment* output
parameter; this parameter permits the return of exception information.

3. If an operation in an OMG IDL specification has a context specification, then a
CORBA_Context input parameter precedes the CORBA_Environment*
parameter and follows any operation-specific arguments.

As described above, the CORBA_Object type is an opaque type. The
CORBA_Environment type is partially opaque; Section 1.22, “Handling
Exceptions,” on page 1-26 provides a description of the non-opaque portion of th
exception structure and an example of how to handle exceptions in client code. T
CORBA_Context type is opaque; see the Dynamic Invocation Interface chapter fo
more information on how to create and manipulate context objects.

1.18 Interpretation of Functions with Empty Argument Lists

A function declared with an empty argument list is defined to take no operation-
specific arguments.

1.19 Argument Passing Considerations

For all OMG IDL types (except arrays), if the OMG IDL signature specifies that a
argument is an out or inout parameter, then the caller must always pass the addres
a variable of that type (or the value of a pointer to that type); the callee must
dereference the parameter to get to the type. For arrays, the caller must pass the
address of the first element of the array.

For in parameters, the value of the parameter must be passed for all of the basic
enumeration types, and object references. For all arrays, the address of the first
element of the array must be passed. For all other structured types, the address
variable of that type must be passed, regardless of whether they are fixed- or var
length. For strings, a char* and wchar* must be passed.

For inout parameters, the address of a variable of the correct type must be passe
all of the basic types, enumeration types, object references, and structured types
strings, the address of a char* and the * of a wchar must be passed. For all arrays
the address of the first element of the array must be passed.

Consider the following OMG IDL specification:

// IDL
interface foo {

typedef long Vector[25];
C Language Mapping Implicit Arguments to Operations Aug. 1997 1-21

1

 The
lue is

gs or

null

s

eturn

r
void bar(out Vector x, out long y);
};

Client code for invoking the bar operation would look like:

/* C */
foo object;
foo_Vector_slice x;
CORBA_long y;
CORBA_Environment ev;

/* code to bind object to instance of foo */

foo_bar(object, &x, &y, &ev);

For out parameters of type variable-length struct , variable-length union , string ,
sequence , an array holding a variable-length type, or any, the ORB will allocate
storage for the output value using the appropriate type-specific allocation function.
client may use and retain that storage indefinitely, and must indicate when the va
no longer needed by calling the procedure CORBA_free , whose signature is:

/* C */
extern void CORBA_free(void *storage);

The parameter to CORBA_free() is the pointer used to return the out parameter.
CORBA_free() releases the ORB-allocated storage occupied by the out parameter,
including storage indirectly referenced, such as in the case of a sequence of strin
array of object reference. If a client does not call CORBA_free() before reusing the
pointers that reference the out parameters, that storage might be wasted. Passing a
pointer to CORBA_free() is allowed; CORBA_free() simply ignores it and returns
without error.

1.20 Return Result Passing Considerations

When an operation is defined to return a non-void return result, the following rule
hold:

1. If the return result is one of the types float , double , long , short , unsigned
long , unsigned short , char , wchar, fixed, boolean , octet , Object , or an
enumeration , then the value is returned as the operation result.

2. If the return result is one of the fixed-length types struct or union , then the value
of the C struct representing that type is returned as the operation result. If the r
result is one of the variable-length types struct , union , sequence , or any, then a
pointer to a C struct representing that type is returned as the operation result.

3. If the return result is of type string or wstring , then a pointer to the first characte
of the string is returned as the operation result.

4. If the return result is of type array , then a pointer to the slice of the array is
returned as the operation result.
1-22 C Language Mapping August 1997

1

tain
y

 as a
Consider the following interface:

// IDL
interface X {

struct y {
long a;
float b;

};

long op1();
y op2();

};

The following C declarations ensue from processing the specification:

/* C */
typedef CORBA_Object X;
typedef struct X_y {

CORBA_long a;
CORBA_float b;

} X_y;

extern CORBA_long X_op1(X object, CORBA_Environment *ev);
extern X_y X_op2(X object, CORBA_Environment *ev);

For operation results of type variable-length struct , variable-length union , wstring ,
string , sequence , array , or any, the ORB will allocate storage for the return value
using the appropriate type-specific allocation function. The client may use and re
that storage indefinitely, and must indicate when the value is no longer needed b
calling the procedure CORBA_free() described in Section 1.19, “Argument Passing
Considerations,” on page 1-21.

1.21 Summary of Argument/Result Passing

Table 1-2 summarizes what a client passes as an argument to a stub and receives
result. For brevity, the CORBA_prefix is omitted from type names in the tables.

Table 1-2 Basic Argument and Result Passing

Data Type In Inout Out Return

short short short* short* short

long long long* long* long

long long long_long long_long* long_long* long_long

unsigned short unsigned_short unsigned_short* unsigned_short* unsigned_short

unsigned long unsigned_long unsigned_long* unsigned_long* unsigned_long

unsigned long long unsigned_long_long unsigned_long_long* unsigned_long_long* unsigned_long_long

float float float* float* float

double double double* double* double
C Language Mapping Summary of Argument/Result Passing Aug. 1997 1-23

1

A client is responsible for providing storage for all arguments passed as in arguments.

long double long_double long_double* long_double* long_double

fixed<d,s> fixed_d_s* fixed_d_s* fixed_d_s* fixed_d_s

boolean boolean boolean* boolean* boolean

char char char* char* char

wchar wchar wchar* wchar* wchar

octet octet octet* octet* octet

enum enum enum* enum* enum

object reference ptr1 objref_ptr objref_ptr* objref_ptr* objref_ptr

struct, fixed struct* struct* struct* struct

struct, variable struct* struct* struct** struct*

union, fixed union* union* union* union

union, variable union* union* union** union*

string char* char** char** char*

wstring wchar* wchar** wchar** wchar*

sequence sequence* sequence* sequence** sequence*

array, fixed array array array array slice*2

array, variable array array array slice**2 array slice*2

any any* any* any** any*

1. Including pseudo-object references.

2. A slice is an array with all the dimensions of the original except the first one.

Table 1-3 Client Argument Storage Responsibilities

Type Inout
Param

Out
Param

Return Result

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

Table 1-2 Basic Argument and Result Passing (Continued)

Data Type In Inout Out Return
1-24 C Language Mapping August 1997

1

the
 that
ts the

alue;
inal
te the
f all
t of

e sets
ar

t
d

put

n

cation
 the

ns of
the
allee
sing
lues
rray
struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

Table 1-4 Argument Passing Cases

Case1

1. As listed in Table 1-3 on page 1-24

1 Caller allocates all necessary storage, except that which may be encapsulated and managed within
parameter itself. For inout parameters, the caller provides the initial value, and the callee may change
value. For out parameters, the caller allocates the storage but need not initialize it, and the callee se
value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an initial v
if the callee wants to reassign the inout parameter, it will first call CORBA_Object_release on the orig
input value. To continue to use an object reference passed in as an inout, the caller must first duplica
reference. The client is responsible for the release of all out and return object references. Release o
object references embedded in other out and return structures is performed automatically as a resul
calling CORBA_free.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The calle
the pointer to point to a valid instance of the parameter’s type. For returns, the callee returns a simil
pointer. The callee is not allowed to return a null pointer in either case. In both cases, the caller is
responsible for releasing the returned storage. Following the completion of a request, the caller is no
allowed to modify any values in the returned storage—to do so, the caller must first copy the returne
instance into a new instance, then modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the char* pointing to it. The
callee may deallocate the input string and reassign the char* to point to new storage to hold the out
value. The size of the out string is therefore not limited by the size of the in string. The caller is
responsible for freeing the storage for the out. The callee is not allowed to return a null pointer for a
inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause deallo
of owned storage before any reallocation occurs, depending upon the state of the boolean release in
sequence or any.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same dimensio
the original array except the first, and passes the pointer by reference to the callee. The callee sets
pointer to point to a valid instance of the array. For returns, the callee returns a similar pointer. The c
is not allowed to return a null pointer in either case. In both cases, the caller is responsible for relea
the returned storage. Following the completion of a request, the caller is not allowed to modify any va
in the returned storage—to do so, the caller must first copy the returned array instance into a new a
instance, then modify the new instance.

Table 1-3 Client Argument Storage Responsibilities (Continued)

Type Inout
Param

Out
Param

Return Result
C Language Mapping Summary of Argument/Result Passing Aug. 1997 1-25

1

ns

-

i-

d.

n.
ler

g

ning
1.22 Handling Exceptions

Since the C language does not provide native exception handling support, applicatio
pass and receive exceptions via the special CORBA_Environment parameter passed to
each IDL operation. The CORBA_Environment type is partially opaque; the C declara
tion contains at least the following:

/* C */
typedef struct CORBA_Environment {

CORBA_exception_type _major;
...

} CORBA_Environment;

Upon return from an invocation, the _major field indicates whether the invocation term
nated successfully; _major can have one of the values CORBA_NO_EXCEPTION,
CORBA_USER_EXCEPTION, or CORBA_SYSTEM_EXCEPTION; if the value is one of
the latter two, then any exception parameters signalled by the object can be accesse

Five functions are defined on a CORBA_Environment structure for accessing
exception information. Their signatures are:

/* C */
extern void CORBA_exception_set(

CORBA_Environment *ev,
CORBA_exception_type major,
CORBA_char *except_repos_id,
void *param

);
extern CORBA_char *CORBA_exception_id(

CORBA_Environment *ev
);

extern void *CORBA_exception_value(CORBA_Environment *ev);
extern void CORBA_exception_free(CORBA_Environment *ev);
extern CORBA_any* CORBA_exception_as_any(

CORBA_Environment *ev
);

CORBA_exception_set() allows a method implementation to raise an exceptio
The ev parameter is the environment parameter passed into the method. The cal
must supply a value for the major parameter. The value of the major parameter
constrains the other parameters in the call as follows:

• If the major parameter has the value CORBA_NO_EXCEPTION, this is a normal
outcome to the operation. In this case, both except_repos_id and param
must be NULL. Note that it is not necessary to invoke
CORBA_exception_set() to indicate a normal outcome; it is the default
behavior if the method simply returns.

• For any other value of major it specifies either a user-defined or system
exception. The except_repos_id parameter is the repository ID representin
the exception type. If the exception is declared to have members, the param
parameter must be the address of an instance of the exception struct contai
the parameters according to the C language mapping, coerced to a void* . In this
1-26 C Language Mapping August 1997

1

n

ked

p
 valid

ter is
ler;

tatic

ter

d
case, the exception struct must be allocated using the appropriate T__alloc()
function, and the CORBA_exception_set() function adopts the allocated
memory and frees it when it no longer needs it. Once the allocated exceptio
struct is passed to CORBA_exception_set() , the application is not allowed to
access it because it no longer owns it. If the exception takes no parameters,
param must be NULL.

If the CORBA_Environment argument to CORBA_exception_set() already has
an exception set in it, that exception is properly freed before the new exception
information is set.

CORBA_exception_id() returns a pointer to the character string identifying the
exception. The character string contains the repository ID for the exception. If invo
on a CORBA_Environment which identifies a non-exception,
(_major==CORBA_NO_EXCEPTION) a null pointer is returned. Note that ownershi
of the returned pointer does not transfer to the caller; instead, the pointer remains
until CORBA_exception_free() is called.

CORBA_exception_value() returns a pointer to the structure corresponding to
this exception. If invoked on a CORBA_Environment which identifies a non-
exception or an exception for which there is no associated information, a null poin
returned. Note that ownership of the returned pointer does not transfer to the cal
instead, the pointer remains valid until CORBA_exception_free() is called.

CORBA_exception_free() frees any storage which was allocated in the
construction of the CORBA_Environment or adopted by the
CORBA_Environment when CORBA_exception_set() is called on it, and sets
the _major field to CORBA_NO_EXCEPTION. It is permissible to invoke
CORBA_exception_free() regardless of the value of the _major field.

CORBA_exception_as_any() returns a pointer to a CORBA_any containing the
exception. This allows a C application to deal with exceptions for which it has no s
(compile-time) information. If invoked on a CORBA_Environment which identifies a
non-exception, a null pointer is returned. Note that ownership of the returned poin
does not transfer to the caller; instead, the pointer remains valid until
CORBA_exception_free() is called.

Consider the following example:

// IDL
interface exampleX {

exception BadCall {
string<80> reason;

};

void op() raises(BadCall);
};

This interface defines a single operation which returns no results and can raise a
BadCall exception. The following user code shows how to invoke the operation an
recover from an exception:
C Language Mapping Handling Exceptions Aug. 1997 1-27

1

he
ers
/* C */
#include "exampleX.h"

CORBA_Environment ev;
exampleX obj;
exampleX_BadCall *bc;

/*
* some code to initialize obj to a reference to an object

* supporting the exampleX interface
*/

exampleX_op(obj, &ev);
switch(ev._major) {
case CORBA_NO_EXCEPTION:/* successful outcome*/

/* process out and inout arguments */
break;

case CORBA_USER_EXCEPTION:/* a user-defined exception */
if (strcmp(ex_exampleX_BadCall,

CORBA_exception_id(&ev)) == 0) {
bc = (exampleX_BadCall*)CORBA_exception_value(&ev);
fprintf(stderr, "exampleX_op() failed - reason: %s\n",

bc->reason);
}
else { /* should never get here ... */

fprintf(stderr,
"unknown user-defined exception -%s\n",
CORBA_exception_id(&ev));

}
break;

default: /* standard exception */
/*
 * CORBA_exception_id() can be used to determine
 * which particular standard exception was
 * raised; the minor member of the struct
 * associated with the exception (as yielded by
 * CORBA_exception_value()) may provide additional
 * system-specific information about the exception
 */
break;

}
/* free any storage associated with exception */
CORBA_exception_free(&ev);

1.23 Method Routine Signatures

The signatures of the methods used to implement an object depend not only on t
language binding, but also on the choice of object adapter. Different object adapt
may provide additional parameters to access object adapter-specific features.
1-28 C Language Mapping August 1997

1

ost

lt,

do-
ORB
re

B

orm

string
Most object adapters are likely to provide method signatures that are similar in m
respects to those of the client stubs. In particular, the mapping for the operation
parameters expressed in OMG IDL should be the same as for the client side.

See Section 1.26, “Mapping for Object Implementations,” on page 1-30 for the
description of method signatures for implementations using the Portable Object
Adapter.

1.24 Include Files

Multiple interfaces may be defined in a single source file. By convention, each
interface is stored in a separate source file. All OMG IDL compilers will, by defau
generate a header file named Foo.h from Foo.idl . This file should be #include d by
clients and implementations of the interfaces defined in Foo.idl .

Inclusion of Foo.h is sufficient to define all global names associated with the
interfaces in Foo.idl and any interfaces from which they are derived.

1.25 Pseudo-objects

In the C language mapping, there are several interfaces that are defined as pseu
objects; A client makes calls on a pseudo-object in the same way as an ordinary
object. However, the ORB may implement the pseudo-object directly, and there a
restrictions on what a client may do with a pseudo-object.

The ORB itself is a pseudo-object with the following partial definition (see the OR
Interface chapter for the complete definition):

// IDL
interface ORB {

string object_to_string (in Object obj);
Object string_to_object (in string str);

};

This means that a C programmer may convert an object reference into its string f
by calling:

/* C */
CORBA_Environment ev;
CORBA_char *str = CORBA_ORB_object_to_string(

orbobj, obj, &ev
);

just as if the ORB were an ordinary object. The C library contains the routine
CORBA_ORB_object_to_string , and it does not do a real invocation. The
orbobj is an object reference that specifies which ORB is of interest, since it is
possible to choose which ORB should be used to convert an object reference to a
(see the ORB Interface chapter for details on this specific operation).
C Language Mapping Include Files Aug. 1997 1-29

1

he C
not be
re also
 in

cts,

bject

hey
sual

RB

pply
ods

 to
rally,
Although operations on pseudo-objects are invoked in the usual way defined by t
language mapping, there are restrictions on them. In general, a pseudo-object can
specified as a parameter to an operation on an ordinary object. Pseudo-objects a
not accessible using the dynamic invocation interface, and do not have definitions
the interface repository.

Because the programmer uses pseudo-objects in the same way as ordinary obje
some ORB implementations may choose to implement some pseudo-objects as
ordinary objects. For example, assuming it could be efficient enough, a context o
might be implemented as an ordinary object.

1.25.1 ORB Operations

The operations on the ORB defined in the ORB Interface chapter are used as if t
had the OMG IDL definitions described in the document, and then mapped in the u
way with the C language mapping.

For example, the string_to_object ORB operation has the following signature:

/* C */
CORBA_Object CORBA_ORB_string_to_object(

CORBA_Object orb,
CORBA_char *objectstring,
CORBA_Environment *ev

);

Although in this example, we are using an “object” that is special (an ORB), the
method name is generated as interface_operation in the same way as ordinary
objects. Also, the signature contains an CORBA_Environment parameter for error
indications.

Following the same procedure, the C language binding for the remainder of the O
and object reference operations may be determined.

1.26 Mapping for Object Implementations

This section describes the details of the OMG IDL-to-C language mapping that a
specifically to the Portable Object Adapter, such as how the implementation meth
are connected to the skeleton.

1.26.1 Operation-specific Details

The C Language Mapping Chapter defines most of the details of binding methods
skeletons, naming of parameter types, and parameter-passing conventions. Gene
for those parameters that are operation-specific, the method implementing the
operation appears to receive the same values that would be passed to the stubs.
1-30 C Language Mapping August 1997

1

mory
1.26.2 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::ObjectId type, as object identifiers. However, because C
programmers will often want to use strings as object identifiers, the C mapping
provides several conversion functions that convert strings to ObjectId and vice-
versa:

/* C */
extern CORBA_char* PortableServer_ObjectId_to_string(

PortableServer_ObjectId* id,
CORBA_Environment* env

);
extern CORBA_wchar_t* PortableServer_ObjectId_to_wstring(

PortableServer_ObjectId* id
CORBA_Environment* env

);

extern PortableServer_ObjectId*
PortableServer_string_to_ObjectId(
CORBA_char* str,
CORBA_Environment* env

);
extern PortableServer_ObjectId*

PortableServer_wstring_to_ObjectId(
CORBA_wchar_t* str,
CORBA_Environment* env

);

These functions follow the normal C mapping rules for parameter passing and me
management.

If conversion of an ObjectId to a string would result in illegal characters in the
string (such as a NUL), the first two functions raise the CORBA_BAD_PARAM
exception.

1.26.3 Mapping for PortableServer::ServantLocator::Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native type, its type
must be specified by each language mapping. In C, Cookie maps to void* :

/* C */
typedef void* PortableServer_ServantLocator_Cookie;

For the C mapping of the PortableServer::ServantLocator::preinvoke()
operation, the Cookie parameter maps to a Cookie* , while for the postinvoke()
operation, it is passed as a Cookie :

/* C */
extern PortableServer_ServantLocator_preinvoke(

PortableServer_ObjectId* oid,
C Language Mapping Mapping for Object Implementations Aug. 1997 1-31

1

ith a

a
nce

alled
th
PortableServer_POA adapter,
CORBA_Identifier op_name,
PortableServer_ServantLocator_Cookie* cookie

);
extern PortableServer_ServantLocator_postinvoke(

PortableServer_ObjectId* oid,
PortableServer_POA adapter,
CORBA_Identifier op_name,
PortableServer_ServantLocator_Cookie cookie,
PortableServer_Servant servant

);

1.26.4 Servant Mapping

A servant is a language-specific entity that can incarnate a CORBA object. In C, a
servant is composed of a data structure that holds the state of the object along w
collection of method functions that manipulate that state to implement the CORBA
object.

The PortableServer::Servant type maps into C as follows:

/* C */
typedef void* PortableServer_Servant;

Servant is mapped to a void* rather than a pointer to ServantBase so that all
servant types for derived interfaces can be passed to all the operations that take
Servant parameter without requiring casting. However, it is expected that an insta
of PortableServer_Servant points to an instance of a
PortableServer_ServantBase or its equivalent for derived interfaces, as
described below.

A servant is associated with a table of pointers to method functions. This table is c
an entry point vector, or EPV. The EPV has the same name as the servant type wi
“__epv” appended (note the double underscore). The EPV for
PortableServer_Servant is defined as follows:

/* C */
typedef struct PortableServer_ServantBase__epv {

void* _private;
void (*finalize)(PortableServer_Servant,

CORBA_Environment*);
PortableServer_POA (*default_POA)(
PortableServer_Servant,

CORBA_Environment*);
} PortableServer_ServantBase__epv;

extern PortableServer_POA
PortableServer_ServantBase__default_POA(

PortableServer_Servant,
CORBA_Environment*

);
1-32 C Language Mapping August 1997

1

ach

 a
t is

-

n.
aque

 for
er in
w

ase,
PVs

The PortableServer_ServantBase__epv “_private” member, which is opaque
to applications, is provided to allow ORB implementations to associate data with e
ServantBase EPV. Since it is expected that EPVs will be shared among multiple
servants, this member is not suitable for per-servant data. The second member is
pointer to the finalization function for the servant, which is invoked when the servan
etherealized. The other function pointers correspond to the usual Servant operations.

The actual PortableServer_ServantBase structure combines an EPV with per
servant data, as shown below:

/* C */
typedef PortableServer_ServantBase__epv*

PortableServer_ServantBase__vepv;

typedef struct PortableServer_ServantBase {
void* _private;
PortableServer_ServantBase__vepv* vepv;

} PortableServer_ServantBase;

The first member is a void* that points to data specific to each ORB implementatio
This member, which allows ORB implementations to keep per-servant data, is op
to applications. The second member is a pointer to a pointer to a
PortableServer_ServantBase__epv . The reason for the double level of
indirection is that servants for derived classes contain multiple EPV pointers, one
each base interface as well as one for the interface itself. (This is explained furth
the nextsection.) The name of the second member, “vepv,” is standardized to allo
portable access through it.

1.26.5 Interface Skeletons

All C skeletons for IDL interfaces have essentially the same structure as ServantB
with the exception that the second member has a type that allows access to all E
for the servant, including those for base interfaces as well as for the most-derived
interface.

For example, consider the following IDL interface:

// IDL
interface Counter {

long add(in long val);
};

The servant skeleton generated by the IDL compiler for this interface appears as
follows (the type of the second member is defined further below):

/* C */
typedef struct POA_Counter {

void* _private;
POA_Counter__vepv* vepv;

} POA_Counter;
C Language Mapping Mapping for Object Implementations Aug. 1997 1-33

1

irst

es

ed, is
As with PortableServer_ServantBase , the name of the second member is
standardized to “vepv” for portability.

The EPV generated for the skeleton is a bit more interesting. For the Counter
interface defined above, it appears as follows:

/* C */
typedef struct POA_Counter__epv {

void* _private;
CORBA_Long (*add)(PortableServer_Servant servant,

CORBA_Long val,
CORBA_Environment* env);

} POA_Counter__epv;

Since all servants are effectively derived from PortableServer_ServantBase ,
the complete set of entry points has to include EPVs for both
PortableServer_ServantBase and for Counter itself:

/* C */
typedef struct POA_Counter__vepv {

PortableServer_ServantBase__epv* _base_epv;
POA_Counter__epv* Counter_epv;

} POA_Counter__vepv;

The first member of the POA_Counter__vepv struct is a pointer to the
PortableServer_ServantBase EPV. To ensure portability of initialization and
access code, this member is always named “_base_epv.” It must always be the f
member. The second member is a pointer to a POA_Counter__epv .

The pointers to EPVs in the VEPV structure are in the order that the IDL interfac
appear in a top-to-bottom left-to-right traversal of the inheritance hierarchy of the
most-derived interface. The base of this hierarchy, as far as servants are concern
always PortableServer_ServantBase . For example, consider the following
complicated interface hierarchy:

// IDL
interface A {};
interface B : A {};
interface C : B {};
interface D : B {};
interface E : C, D {};
interface F {};
interface G : E, F {

void foo();
};

The VEPV structure for interface G shall be generated as follows:

/* C */
typedef struct POA_G__epv {

void* _private;
void (*foo)(PortableServer_Servant, CORBA_Environment*);
1-34 C Language Mapping August 1997

1

ing

For

The

en
e
};
typedef struct POA_G__vepv {

PortableServer_ServantBase__epv* _base_epv;
POA_A__epv* A_epv;
POA_B__epv* B_epv;
POA_C__epv* C_epv;
POA_D__epv* D_epv;
POA_E__epv* E_epv;
POA_F__epv* F_epv;
POA_G__epv* G_epv;

};

Note that each member other than the “_base_epv” member is named by append
“_epv” to the interface name whose EPV the member points to. These names are
standardized to allow for portable access to these struct fields.

1.26.6 Servant Structure Initialization

Each servant requires initialization and etherealization, or finalization, functions.
PortableServer_ServantBase , the ORB implementation shall provide the
following functions:

/* C */
void PortableServer_ServantBase__init(

PortableServer_Servant,
CORBA_Environment*);

void PortableServer_ServantBase__fini(
PortableServer_Servant,
CORBA_Environment*);

These functions are named by appending “__init” and “__fini” (note the double
underscores) to the name of the servant, respectively.

The first argument to the init function shall be a valid PortableServer_Servant
whose “vepv” member has already been initialized to point to a VEPV structure.
init function shall perform ORB-specific initialization of the
PortableServer_ServantBase , and shall initialize the “finalize” struct member
of the pointed-to PortableServer_ServantBase__epv to point to the
PortableServer_ServantBase_fini() function if the “finalize” member is
NULL. If the “finalize” member is not NULL, it is presumed that it has already be
correctly initialized by the application, and is thus not modified. Similarly, if the th
default_POA member of the PortableServer_ServantBase__epv structure
is NULL when the init function is called, its value is set to point to the
PortableServer_ServantBase__default_POA() function, which returns an
object reference to the root POA.

If a servant pointed to by the PortableServer_Servant passed to an init function
has a NULL “vepv” member, or if the PortableServer_Servant argument itself
is NULL, no initialization of the servant is performed, and the
C Language Mapping Mapping for Object Implementations Aug. 1997 1-35

1

ed

 the
ng to
r

t

CORBA::BAD_PARAM standard exception is raised via the CORBA_Environment
parameter. This also applies to interface-specific init functions, which are describ
below.

The fini function only cleans up ORB-specific private data. It is the default
finalization function for servants. It does not make any assumptions about where
servant is allocated, such as assuming that the servant is heap-allocated and tryi
call CORBA_free() on it. Applications are allowed to “override” the fini function fo
a given servant by initializing the PortableServer_ServantBase__epv
“finalize” pointer with a pointer to a finalization function made specifically for that
servant; however, any such overriding function must always ensure that the
PortableServer_ServantBase_fini() function is invoked for that servant as
part of its implementation. The results of a finalization function failing to invoke
PortableServer_ServantBase_fini() are implementation-specific, but may
include memory leaks or faults that could crash the application.

If a servant passed to a fini function has a NULL “epv” member, or if the
PortableServer_Servant argument itself is NULL, no finalization of the servan
is performed, and the CORBA::BAD_PARAM standard exception is raised via the
CORBA_Environment parameter. This also applies to interface-specific fini
functions, which are described below.

Normally, the PortableServer_ServantBase__init and
PortableServer_ServantBase__fini functions are not invoked directly by
applications, but rather by interface-specific initialization and finalization functions
generated by an IDL compiler. For example, the init and fini functions generated
for the Counter skeleton are defined as follows:

/* C */
void POA_Counter__init(POA_Counter* servant,

CORBA_Environment* env)
{

/*
* first call immediate base interface init functions
* in the left-to-right order of inheritance
*/

PortableServer_ServantBase__init(
(PortableServer_ServantBase*)servant,
env

);
/* now perform POA_Counter initialization */
...

}

void POA_Counter__fini(POA_Counter* servant,
CORBA_Environment* env)

{
/* first perform POA_Counter cleanup */
...
/*

* then call immediate base interface fini functions
1-36 C Language Mapping August 1997

1

g to

 can

r used
* in the right-to-left order of inheritance
*/

PortableServer_ServantBase__fini(
(PortableServer_ServantBase*)servant,
env

);
}

The address of a servant shall be passed to the init function before the servant is
allowed to be activated or registered with the POA in any way. The results of failin
properly initialize a servant via the appropriate init function before registering it or
allowing it to be activated are implementation-specific, but could include memory
access violations that could crash the application.

1.26.7 Application Servants

It is expected that applications will create their own servant structures so that they
add their own servant-specific data members to store object state. For the Counter
example shown above, an application servant would probably have a data membe
to store the counter value:

/* C */
typedef struct AppServant {

POA_Counter base;
CORBA_Long value;

} AppServant;

The application might contain the following implementation of the Counter::add
operation:

/* C */
CORBA_Long
app_servant_add(PortableServer_Servant _servant,

CORBA_Long val,
CORBA_Environment* _env)

{
AppServant* self = (AppServant*)_servant;
self->value += val;
return self->value;

}

The application could initialize the servant statically as follows:

/* C */
PortableServer_ServantBase__epv base_epv = {

NULL, /* ignore ORB private data */
NULL, /* no servant-specific finalize

function needed */
NULL, /* use base default_POA function */

};
C Language Mapping Mapping for Object Implementations Aug. 1997 1-37

1

 the
g

 at
fields
es.

e that
POA_Counter__epv counter_epv = {
NULL, /* ignore ORB private data */
app_servant_add /* point to our add function */

};

/* Vector of EPVs */
POA_Counter__vepv counter_vepv = {

&base_epv,
&counter_epv

};

};
AppServant my_servant = {

/* initialize POA_Counter */
{

NULL, /* ignore ORB private data */
&counter_vepv /* Counter vector of EPVs */

},
0 /* initialize counter value */

};

Before registering or activating this servant, the application shall call:

/* C */
CORBA_Environment env;
POA_Counter__init(&my_servant, &env);

If the application requires a special destruction function for my_servant , it shall set
the value of the PortableServer_ServantBase__epv “finalize” member either
before or after calling POA_Counter__init() :

/* C */
my_servant.epv._base_epv.finalize = my_finalizer_func;

Note that if the application statically initialized the “finalize” member before calling
the servant initialization function, explicit assignment to the “finalize” member as
shown here is not necessary, since the PortableServer_ServantBase
__init() function will not modify it if it is non-NULL.

The example shown above illustrates static initialization of the EPV and VEPV
structures. While portable, this method of initialization depends on the ordering of
VEPV struct members for base interfaces—if the top-to-bottom left-to-right orderin
of the interface inheritance hierarchy is changed, the order of these fields is also
changed. A less fragile way of initializing these fields is to perform the initialization
runtime, relying on assignment to the named struct fields. Since the names of the
are used in this approach, it does not break if the order of base interfaces chang
Performing field initialization within a servant initialization function also provides a
convenient place to invoke the servant initialization functions. In any case, both
approaches are portable, and it is ultimately up to the developer to choose the on
is best for each application.
1-38 C Language Mapping August 1997

1

tubs

ject
r the

.

the

to

 to
1.26.8 Method Signatures

With the POA, implementation methods have signatures that are identical to the s
except for the first argument. If the following interface is defined in OMG IDL:

// IDL
interface example4 {

long op5(in long arg6);
};

a method function for the op5 operation must have the following function signature:

/* C */
CORBA_long example4_op5(

PortableServer_Servant _servant,
CORBA_long arg6,
CORBA_Environment* _env

);

The _servant parameter is the pointer to the servant incarnating the CORBA ob
on which the request was invoked. The method can obtain the object reference fo
target CORBA object by using the POA_Current object. The _env parameter is used
for raising exceptions. Note that the names of the _servant and _env parameters
are standardized to allow the bodies of method functions to refer to them portably

The method terminates successfully by executing a return statement returning the
declared operation value. Prior to returning the result of a successful invocation,
method code must assign legal values to all out and inout parameters.

The method terminates with an error by executing the CORBA_exception_set
operation (described in Section 1.22, “Handling Exceptions,” on page 1-26) prior
executing a return statement. When raising an exception, the method code is not
required to assign legal values to any out or inout parameters. Due to restrictions in
C, however, it must return a legal function value.

1.27 Mapping of the DSI to C

For general information about mapping of the Dynamic Skeleton Interface to
programming languages, refer to version 2.3 of The Common Object Request Broker:
Architecture and Specifications, Dynamic Skeleton Interface chapter, DSI: Language
Mapping section.

This section contains

• A mapping of the Dynamic Skeleton Interface’s ServerRequest to C

• A mapping of the Portable Object Adapter’s Dynamic Implementation Routine
C.
C Language Mapping Mapping of the DSI to C Aug. 1997 1-39

1

t

MG

be

n

o

. If

1.27.1 Mapping of ServerRequest to C

In the C mapping, a ServerRequest is a pseudo object in the CORBA module tha
supports the following operations:

/* C */
CORBA_Identifier CORBA_ServerRequest_operation(

CORBA_ServerRequest req,
CORBA_Environment *env

);

This function returns the name of the operation being performed, as shown in the
operation’s OMG IDL specification.

/* C */
CORBA_Context CORBA_ServerRequest_ctx (

CORBA_ServerRequest req,
CORBA_Environment *env

);

This function may be used to determine any context values passed as part of the
operation. Context will only be available to the extent defined in the operation’s O
IDL definition; for example, attribute operations have none.

/* C */
void CORBA_ServerRequest_arguments(

CORBA_ServerRequest req,
CORBA_NVList* parameters,
CORBA_Environment *env

);

This function is used to retrieve parameters from the ServerRequest , and to find
the addresses used to pass pointers to result values to the ORB. It must always
called by each DIR, even when there are no parameters.

The caller passes ownership of the parameters NVList to the ORB. Before this
routine is called, that NVList should be initialized with the TypeCodes and directio
flags for each of the parameters to the operation being implemented: in, out, and inout
parameters inclusive. When the call returns, the parameters NVList is still usable
by the DIR, and all in and inout parameters will have been unmarshalled. Pointers t
those parameter values will at that point also be accessible through the parameters
NVList.

The implementation routine will then process the call, producing any result values
the DIR does not need to report an exception, it will replace pointers to inout values in
parameters with the values to be returned, and assign pointers to out values in that
NVList appropriately as well. When the DIR returns, all the parameter memory is
freed as appropriate, and the NVList itself is freed by the ORB.
1-40 C Language Mapping August 1997

1

o

n is

s (and
/* C */
void CORBA_ServerRequest_set_result(

CORBA_ServerRequest req,
CORBA_any* value,
CORBA_Environment *env

);

This function is used to report any result value for an operation. If the operation has
no result, it must either be called with a tk_void TypeCode stored in value , or not be
called at all.

/* C */
void CORBA_ServerRequest_set_exception(

CORBA_ServerRequest req,
CORBA_exception_type major,
CORBA_any* value,
CORBA_Environment *env

);

This function is used to report exceptions, both user and system, to the client wh
made the original invocation.

Parameters

major - indicates whether the exception is a user exception or system exception

value - the value of the exception, including an exceptionTypeCode.

1.27.2 Mapping of Dynamic Implementation Routine to C

In C, a DIR is a function with this signature:

/* C */
typedef void (*PortableServer_DynamicImplRoutine)(
PortableServer_Servant servant,
CORBA_ServerRequest request
);

Such a function will be invoked by the Portable Object Adapter when an invocatio
received on an object reference whose implementation has registered a dynamic
skeleton.

Parameters

servant - the C implementation object incarnating the CORBA object to which the
invocation is directed.

request - the ServerRequest used to access explicit parameters and report result
exceptions).
C Language Mapping Mapping of the DSI to C Aug. 1997 1-41

1

rface

ture
both

ived

g a
Unlike other C object implementations, the DIR does not receive a
CORBA_Environment* parameter, and so the CORBA_exception_set API is not
used. Instead, CORBA_ServerRequest_set_exception is used; this provides
the TypeCode for the exception to the ORB, so it does not need to consult the Inte
Repository (or rely on compiled stubs) to marshal the exception value.

To register a Dynamic Implementation Routine with a POA, the proper EPV struc
and servant must first be created. DSI servants are expected to supply EPVs for
PortableServer_ServantBase and for PortableServer_DynamicImpl ,
which is conceptually derived from PortableServer_ServantBase , as shown
below.

/* C */
typedef struct PortableServer_DynamicImpl__epv {

void* _private;
PortableServer_DynamicImplRoutine invoke;
CORBA_RepositoryId (*primary_interface)(

PortableServer_Servant svt,
PortableServer_ObjectId id,
PortableServer_POA poa,

CORBA_Environment* env);
} PortableServer_DynamicImpl__epv;

typedef struct PortableServer_DynamicImpl__vepv {
PortableServer_ServantBase__epv* _base_epv;
PortableServer_DynamicImpl__epv*
PortableServer_DynamicImpl_epv;

} PortableServer_DynamicImpl__vepv;

typedef struct PortableServer_DynamicImpl {
void* _private;
PortableServer_DynamicImpl__vepv* vepv;

} PortableServer_DynamicImpl;

As for other servants, initialization and finalization functions for
PortableServer_DynamicImpl are also provided, and must be invoked as
described in “Servant Structure Initialization” on page 1-35.

To properly initialize the EPVs, the application must provide implementations of the
invoke and the primary_interface functions required by the
PortableServer_DynamicImpl EPV. The invoke method, which is the DIR,
receives requests issued to any CORBA object it represents and performs the
processing necessary to execute the request.

The primary_interface method receives an ObjectId value and a POA as input
parameters and returns a valid Interface Repository Id representing the most-der
interface for that oid .

It is expected that only the POA will invoke these methods, in the context of servin
CORBA request. Invoking these methods in other circumstances may lead to
unpredictable results.
1-42 C Language Mapping August 1997

1

An example of a DSI-based servant is shown below:

/* C */

/* This function serves as the DIR */
void my_invoke(PortableServer_Servant servant,

CORBA_ServerRequest req)
{

/* details omitted */
}

CORBA_RepositoryId my_primary_intf(
PortableServer_Servant svt,
PortableServer_ObjectId id,
PortableServer_POA poa,

CORBA_Environment* env)
{

/* details omitted */
}

/* Application-specific DSI servant type */
typedef struct MyDSIServant {

POA_DynamicImpl base;
/* other application-specific data members */

} MyDSIServant;

PortableServer_ServantBase__epv base_epv = {
NULL, /* ignore ORB private data */
NULL, /* no servant-specific finalize */
NULL, /* use base default_POA function */

};
PortableServer_DynamicImpl__epv dynimpl_epv = {

NULL, /* ignore ORB private data */
my_invoke, /* invoke() function */
my_primary_intf, /* primary_interface() function */

};
PortableServer_DynamicImpl__vepv dynimpl_vepv = {

&base_epv, /* ServantBase EPV */
&dynimpl_epv, /* DynamicImpl EPV */

};

MyDSIServant my_servant = {
/* initialize PortableServer_DynamicImpl */
{

NULL, /* ignore ORB private data */
&dynimpl_vepv /* DynamicImpl vector of EPVs */

};
/* initialize application-specific data members */

};
C Language Mapping Mapping of the DSI to C Aug. 1997 1-43

1

of

hich

 If a
Registration of the my_servant data structure via the
PortableServer_POA_set_servant() function on a suitably initialized POA
makes the my_invoke DIR function available to handle DSI requests.

1.28 ORB Initialization Operations

ORB Initialization

The following PIDL specifies initialization operations for an ORB; this PIDL is part
the CORBA module (not the ORB interface) and is described in version 2.3 of The
Common Object Request Broker: Architecture and Specifications, ORB Interface
chapter, ORB Initialization section.

// PIDL
module CORBA {

typedef string ORBid;
 typedef sequence <string> arg_list;

 ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);
};

The mapping of the preceding PIDL operations to C is as follows:

/* C */
typedef char* CORBA_ORBid;
extern CORBA_ORB CORBA_ORB_init(int *argc,

char **argv,
CORBA_ORBid orb_identifier,
CORBA_Environment *env);

The C mapping for ORB_init deviates from the OMG IDL PIDL in its handling of the
arg_list parameter. This is intended to provide a meaningful PIDL definition of the
initialization interface, which has a natural C binding. To this end, the arg_list
structure is replaced with argv and argc parameters.

The argv parameter is defined as an unbound array of strings (char **) and the
number of strings in the array is passed in the argc (int*) parameter.

If an empty ORBid string is used then argc arguments can be used to determine w
ORB should be returned. This is achieved by searching the argv parameters for one
tagged ORBid, e.g., -ORBid "ORBid_example." If an empty ORBid string is used and
no ORB is indicated by the argv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init ,
the argv arguments are examined to determine if any ORB parameters are given.
non-empty ORBid string is passed to ORB_init , all -ORBid parameters in the argv
are ignored. All other -ORB<suffix> parameters may be of significance during the
ORB initialization process.
1-44 C Language Mapping August 1997

1

led

er or
er to
he
For C, the order of consumption of argv parameters may be significant to an
application. In order to ensure that applications are not required to handle argv
parameters they do not recognize that the ORB initialization function must be cal
before the remainder of the parameters are consumed. Therefore, after the ORB_init
call the argv and argc parameters will have been modified to remove the ORB
understood arguments. It is important to note that the ORB_init call can only reord
remove references to parameters from the argv list; this restriction is made in ord
avoid potential memory management problems caused by trying to free parts of t
argv list or extending the argv list of parameters. This is why argv is passed as a
char** and not a char*** .
C Language Mapping ORB Initialization Operations Aug. 1997 1-45

1

1-46 C Language Mapping August 1997

Index
Symbols
_major 1-27

A
any type 1-11
Argument/Result Passing 1-23
Arguments 1-21
attribute

mapping to programming languages 1-5
attributes 1-5

B
BadCall exception 1-27
Basic Data Types 1-3
basic data types

mapped from OMG IDL to C 1-10
mapped to programming languages 1-3

basic object adapter
mapped to C 1-41

boolean types
mapped to C 1-10

C
C

_major field 1-27
and is_nil operation 1-7
any type 1-11
attribute mapping examples 1-8
BadCall exception 1-27
basic data type mapping 1-10
boolean types 1-10
global name 1-5
inheritance of operations 1-8
ORB initialization 1-44
signature of Dynamic Implementation Routine 1-41
underscore characters in mapping 1-9

C++
arglist 1-44
ORB_init operation 1-44, 1-45

compliance iv
Constants 1-3
constants

mapping to programming languages 1-3
Constructed Data Types 1-3
constructed data types

mapping to programming languages 1-3
CORBA

contributors iv
general language mapping requirements 1-2

core, compliance iv

D
Dynamic Implementation Routine

C signature 1-41
mapped to C 1-41

Dynamic Skeleton Interface 1-39
Dynamic Skeleton interface

mapping to C 1-40

E
Exceptions 1-26
exceptions 1-4

mapped to programming languages 1-4

F
fixed-length 1-11

G
global name 1-5

I
Inheritance 1-8
Initialization Operations 1-44
interoperability, compliance iv
interworking

compliance iv

M
Mapping Considerations for Constructed Types 1-11
Mapping for Arrays 1-19
Mapping for Attributes 1-8
Mapping for Basic Data Types 1-10
Mapping for Constants 1-9
Mapping for Exception Types 1-20
Mapping for Fixed 1-18
Mapping for Interfaces 1-6
Mapping for Object Implementations 1-30
Mapping for Sequence Types 1-13
Mapping for Strings 1-16
Mapping for Structure Types 1-12
Mapping for Union Types 1-12
Mapping for Wide Strings 1-17
Mapping of Dynamic Implementation Routine to C 1-41
Mapping of ServerRequest to C 1-40
Mapping of the DSI to C 1-39

O
object

mapping to programming languages 1-3
objects 1-3
Operation 1-8
operation

mapping to programming languages 1-4
operation invocation 1-4
ORB initialization

mapped to C 1-44
ORB interface

mapping to programming languages 1-5
ORB Interfaces 1-5
ORB_init operation 1-45

mapped to C++ 1-44

R
Return Result 1-22

S
Scoped Names 1-5
scoping

and C language mapping 1-6
ServerRequest

mapped to C 1-40
ServerRequest pseudo interface

mapped to C 1-40
Signatures 1-28
C Language Mapping Index-1

Index
T
test 1-3

U
unbounded sequence 1-11

unbounded string 1-11

V
variable-length 1-11
Index-2 C Language Mappings

	0.1 About CORBA Language Mapping Specifications
	0.1.1 Alignment with CORBA

	0.2 Definition of CORBA Compliance
	0.3 Acknowledgements
	0.4 References
	C Language Mapping
	1.1 Requirements for a Language Mapping
	1.1.1 Basic Data Types
	1.1.2 Constructed Data Types
	1.1.3 Constants
	1.1.4 Objects
	1.1.5 Invocation of Operations
	1.1.6 Exceptions
	1.1.7 Attributes
	1.1.8 ORB Interfaces

	1.2 Scoped Names
	1.3 Mapping for Interfaces
	1.4 Inheritance and Operation Names
	1.5 Mapping for Attributes
	1.6 Mapping for Constants
	1.7 Mapping for Basic Data Types
	1.8 Mapping Considerations for Constructed Types
	1.9 Mapping for Structure Types
	1.10 Mapping for Union Types
	1.11 Mapping for Sequence Types
	1.12 Mapping for Strings
	1.13 Mapping for Wide Strings
	1.14 Mapping for Fixed
	1.15 Mapping for Arrays
	1.16 Mapping for Exception Types
	1.17 Implicit Arguments to Operations
	1.18 Interpretation of Functions with Empty Argument Lists
	1.19 Argument Passing Considerations
	1.20 Return Result Passing Considerations
	1.21 Summary of Argument/Result Passing
	1.22 Handling Exceptions
	1.23 Method Routine Signatures
	1.24 Include Files
	1.25 Pseudo-objects
	1.25.1 ORB Operations

	1.26 Mapping for Object Implementations
	1.26.1 Operation-specific Details
	1.26.2 PortableServer Functions
	1.26.3 Mapping for PortableServer::ServantLocator::Cookie
	1.26.4 Servant Mapping
	1.26.5 Interface Skeletons
	1.26.6 Servant Structure Initialization
	1.26.7 Application Servants
	1.26.8 Method Signatures

	1.27 Mapping of the DSI to C
	1.27.1 Mapping of ServerRequest to C
	1.27.2 Mapping of Dynamic Implementation Routine to C

	1.28 ORB Initialization Operations

