Tutorial 6 - Solutions

Exercise 1*

Consider the set $\{a, b, c\}$ (with three elements). Define some nontrivial function $f: 2^{\{a, b, c\}} \rightarrow 2^{\{a, b, c\}}$ which is monotonic.

For example, we can define f as follows (note that there are many possibilites):

S	$f(S)$
\emptyset	$\{a\}$
$\{a\}$	$\{a\}$
$\{b\}$	$\{a\}$
$\{c\}$	$\{a\}$
$\{a, b, c\}$	$\{a, b\}$
$\{a, b\}$	$\{a, b\}$
$\{a, c\}$	$\{a, b\}$
$\{b, c\}$	$\{a, b\}$

The function f is monotonic which we can verify by a case inspection.

- Compute the greatest fixed point by using directly the Tarski's fixed point theorem.
- According to Tarski's fixed point theorem the greatest fixed point $z_{\max }$ is given by $z_{\max }=\cup A$, where

$$
A=\left\{x \in 2^{\{a, b, c\}} \mid x \subseteq f(x)\right\} .
$$

In our case, by the definition of f we get $A=\{\emptyset,\{a\},\{a, b\}\}$. The union of the sets in A is $\{a, b\}$, so by Tarski's fixed point theorem, the greatest fixed point of f is $\{a, b\}$.

- Compute the least fixed point of f by starting from \emptyset and applying repeatedly the function f until the fixed point is reached.

$$
\begin{aligned}
f(\emptyset) & =\{a\} \\
f(f(\emptyset))=f(\{a\}) & =\{a\}
\end{aligned}
$$

Hence the least fixed point of f is $\{a\}$.

Exercise 2

Consider the following labelled transition system.

Compute for which sets of states $\llbracket X \rrbracket \subseteq\left\{s, s_{1}, s_{2}\right\}$ the following formulae are true.

- $X=\langle a\rangle \# \vee[b] X$
- The equation holds for the following sets of states: $\left\{s_{2}, s\right\},\left\{s_{2}, s_{1}, s\right\}$.
- $X=\langle a\rangle \# \vee([b] X \wedge\langle b\rangle \#)$
- The equation holds only for the set $\left\{s_{2}\right\}$.

Exercise 3*

Consider the following labelled transition system.

Using the game characterization for recursive Hennessy-Milner formulae decide whether the following claims are true or false and discuss what properties the formulae describe:

- $s \models X$ where $X \stackrel{\text { min }}{=}\langle c\rangle \# \vee\langle A c t\rangle X$
- A universal winning strategy for the defender starting from (s, X) is as follows:

$$
\begin{aligned}
(s, X) & \rightarrow(s,\langle c\rangle t t \vee\langle A c t\rangle X) \xrightarrow{D}(s,\langle A c t\rangle X) \xrightarrow{D}\left(s_{1}, X\right) \\
& \rightarrow\left(s_{1},\langle c\rangle \# \vee\langle A c t\rangle X\right) \xrightarrow{D}\left(s_{1},\langle A c t\rangle X\right) \xrightarrow{D}\left(s_{2}, X\right) \\
& \rightarrow\left(s_{2},\langle c\rangle \# \vee\langle A c t\rangle X\right) \xrightarrow{D}\left(s_{2},\langle A c t\rangle X\right) \xrightarrow{D}\left(s_{3}, X\right) \\
& \rightarrow\left(s_{3},\langle c\rangle \# \vee\langle A c t\rangle X\right) \xrightarrow{D}\left(s_{3},\langle c\rangle t\right) \xrightarrow{D}(s, t),
\end{aligned}
$$

where (s, \sharp) by definition is a winning configuration for the defender.

- $s \not \vDash X$ where $X \stackrel{\text { min }}{=}\langle c\rangle \# \vee[A c t] X$
- A universal winning strategy for the attacker is as follows: $(s, X) \rightarrow(s,\langle c\rangle t \in[A c t] X)$ Then if the defender plays $\langle c\rangle t$, he loses since there are no c-transitions from s, thus the defender must play $(s,\langle c\rangle t t \vee[A c t] X) \xrightarrow{D}(s,[A c t] X)$. Then the attacker plays $(s,[A c t] X) \xrightarrow{A}$ $\left(s_{1}, X\right)$. And we have $\left(s_{1}, X\right) \rightarrow\left(s_{1},\langle c\rangle t t \vee[A c t] X\right)$. Now for similar reasons as above the defender must choose to play $\left(s_{1},\langle c\rangle \# \vee[A c t] X\right) \xrightarrow{D}\left(s_{1},[A c t] X\right)$. The attacker plays $\left(s_{1},[A c t] X\right) \xrightarrow{A}\left(s_{1}, X\right)$ which is a configuration we have seen earlier. Thus either the play is infinite, in which case the attacker wins since X is defined as the least fixed-point. Or the play is finite, in which case the attacker also wins.
- $s \models X$ where $X \stackrel{\max }{=}\langle b\rangle X$
- A universal winning strategy for the defender is:

$$
(s, X) \rightarrow(s,\langle b\rangle X) \xrightarrow{D}\left(s_{1}, X\right) \rightarrow\left(s_{1},\langle b\rangle X\right) \xrightarrow{D}\left(s_{1}, X\right) .
$$

Thus the play is infinite, and since X is defined as the greatest fixed-point, the defender wins.

- $s \models X$ where $X \stackrel{\max }{=}$
$\langle b\rangle t t \wedge[a] X \wedge[b] X$
- Universal winning strategy for the defender: We have $(s, X) \rightarrow(s,\langle b\rangle \# \wedge[a] X \wedge[b] X)$. Now if the attacker plays $(s,\langle b\rangle t \mathbb{} \wedge[a] X \wedge[b] X) \xrightarrow{A}(s,\langle b\rangle \#)$ he loses since the defender can then play $(s,\langle b\rangle \#) \xrightarrow{D}\left(s_{1}, \#\right)$. Furthermore if the attacker plays $(s,\langle b\rangle t \in[a] X \wedge[b] X) \xrightarrow{A}(s,[a] X)$, then he also loses since he is stuck in the configuration $(s,[a] X)$. The third option for the attacker is to choose $(s,\langle b\rangle \psi \wedge[a] X \wedge[b] X) \xrightarrow{A}(s,[b] X) \xrightarrow{A}\left(s_{1}, X\right)$.
Expanding X we get $\left(s_{1}, X\right) \rightarrow\left(s_{1},\langle b\rangle t \wedge[a] X \wedge[b] X\right)$. From here if the attacker plays $\left(s_{1},\langle b\rangle t t \wedge[a] X \wedge[b] X\right) \xrightarrow{A}\left(s_{1},\langle b\rangle t\right)$ he loses since the defender can play $\left(s_{1},\langle b\rangle t t\right) \xrightarrow{D}$
$\left(s_{1}, t\right)$. If the attacker plays $\left(s_{1},\langle b\rangle \# \wedge[a] X \wedge[b] X\right) \xrightarrow{A}\left(s_{1},[b] X\right)$, then the only possible next move is $\left(s_{1},[b] X\right) \xrightarrow{A}\left(s_{1}, X\right)$ which is a previously encountered configuration. The last option for the attacker is to play $\left(s_{1},\langle b\rangle t t \wedge[a] X \wedge[b] X\right) \xrightarrow{A}\left(s_{1},[a] X\right) \xrightarrow{A}\left(s_{2}, X\right)$. Expanding the encoding we get $\left(s_{2}, X\right) \rightarrow\left(s_{2},\langle b\rangle t \in[a] X \wedge[b] X\right)$. Again if the attacker plays $\left(s_{2},\langle b\rangle \# \wedge[a] X \wedge[b] X\right) \xrightarrow{A}\left(s_{2},\langle b\rangle t\right)$ he loses by the defenders move $\left(s_{2},\langle b\rangle t t\right) \xrightarrow{D}\left(s_{3}, t\right)$. If the attacker plays $\left(s_{2},\langle b\rangle \# \wedge[a] X \wedge[b] X\right) \xrightarrow{A}\left(s_{2},[a] X\right)$ he loses since he is stuck. Finally he can play $\left(s_{2},\langle b\rangle\right.$ tt $\left.\wedge[a] X \wedge[b] X\right) \xrightarrow{A}\left(s_{2},[b] X\right) \xrightarrow{A}\left(s_{3}, X\right)$.
Expanding X we obtain $\left(s_{3}, X\right) \rightarrow\left(s_{3},\langle b\rangle t t \wedge[a] X \wedge[b] X\right)$. Now playing $\left(s_{3},\langle b\rangle t \mathbb{} \wedge[a] X \wedge\right.$ $[b] X) \xrightarrow{A}\left(s_{3},\langle b\rangle t t\right)$ he loses by the defenders move $\left(s_{3},\langle b\rangle t\right) \xrightarrow{D}\left(s_{3}, t\right)$. If the attacker plays $\left(s_{3},\langle b\rangle t t \wedge[a] X \wedge[b] X\right) \xrightarrow{A}\left(s_{3},[a] X\right)$ he is stuck. Finally the attacker can play $\left(s_{3},\langle b\rangle \# \wedge[a] X \wedge[b] X\right) \xrightarrow{A}\left(s_{3},[b] X\right) \xrightarrow{A}\left(s_{3}, X\right)$ which is a previously encountered configuration.
Thus either the attacker loses in a finite play, or the play is infinite in which case the defender wins since X is defined as the greatest fixed-point.

