Tutorial 6 - Solutions

Exercise 1*

Consider the set $\{a, b, c\}$ (with three elements). Define some nontrivial function $f : 2^{\{a, b, c\}} \to 2^{\{a, b, c\}}$ which is monotonic.

For example, we can define f as follows (note that there are many possibilites):

S	f(S)
Ø	$\{a\}$
$\{a\}$	$\{a\}$
$\{b\}$	$\{a\}$
$\{c\}$	$\{a\}$
$\{a, b, c\}$	$\{a,b\}$
$\{a,b\}$	$\{a,b\}$
$\{a,c\}$	$\{a,b\}$
$\{b,c\}$	$\{a,b\}$

The function f is monotonic which we can verify by a case inspection.

- Compute the greatest fixed point by using directly the Tarski's fixed point theorem.
 - According to Tarski's fixed point theorem the greatest fixed point z_{max} is given by $z_{\text{max}} = \bigcup A$, where

$$A = \{ x \in 2^{\{a,b,c\}} \mid x \subseteq f(x) \}.$$

In our case, by the definition of f we get $A = \{\emptyset, \{a\}, \{a, b\}\}$. The union of the sets in A is $\{a, b\}$, so by Tarski's fixed point theorem, the greatest fixed point of f is $\{a, b\}$.

• Compute the least fixed point of f by starting from \emptyset and applying repeatedly the function f until the fixed point is reached.

$$f(\emptyset) = \{a\}$$
$$f(f(\emptyset)) = f(\{a\}) = \{a\}$$

Hence the least fixed point of f is $\{a\}$.

Exercise 2

Consider the following labelled transition system.

Compute for which sets of states $[X] \subseteq \{s, s_1, s_2\}$ the following formulae are true.

- $X = \langle a \rangle t t \lor [b] X$
 - The equation holds for the following sets of states: $\{s_2, s\}, \{s_2, s_1, s\}$.
- $X = \langle a \rangle t t \lor ([b] X \land \langle b \rangle t)$
 - The equation holds only for the set $\{s_2\}$.

Exercise 3*

Consider the following labelled transition system.

Using the game characterization for recursive Hennessy-Milner formulae decide whether the following claims are true or false and discuss what properties the formulae describe:

- $s \models X$ where $X \stackrel{\min}{=} \langle c \rangle t t \lor \langle Act \rangle X$
 - A universal winning strategy for the defender starting from (s, X) is as follows:

$$\begin{split} (s,X) &\to (s, \langle c \rangle t t \lor \langle Act \rangle X) \xrightarrow{D} (s, \langle Act \rangle X) \xrightarrow{D} (s_1, X) \\ &\to (s_1, \langle c \rangle t t \lor \langle Act \rangle X) \xrightarrow{D} (s_1, \langle Act \rangle X) \xrightarrow{D} (s_2, X) \\ &\to (s_2, \langle c \rangle t t \lor \langle Act \rangle X) \xrightarrow{D} (s_2, \langle Act \rangle X) \xrightarrow{D} (s_3, X) \\ &\to (s_3, \langle c \rangle t t \lor \langle Act \rangle X) \xrightarrow{D} (s_3, \langle c \rangle t) \xrightarrow{D} (s, t), \end{split}$$

where (s, t) by definition is a winning configuration for the defender.

- $s \not\models X$ where $X \stackrel{\min}{=} \langle c \rangle t \lor [Act] X$
 - A universal winning strategy for the attacker is as follows: $(s, X) \rightarrow (s, \langle c \rangle t \lor [Act]X)$ Then if the defender plays $\langle c \rangle t$, he loses since there are no *c*-transitions from *s*, thus the defender must play $(s, \langle c \rangle t \lor [Act]X) \xrightarrow{D} (s, [Act]X)$. Then the attacker plays $(s, [Act]X) \xrightarrow{A} (s_1, X)$. And we have $(s_1, X) \rightarrow (s_1, \langle c \rangle t \lor [Act]X)$. Now for similar reasons as above the defender must choose to play $(s_1, \langle c \rangle t \lor [Act]X) \xrightarrow{D} (s_1, [Act]X)$. The attacker plays $(s_1, [Act]X) \xrightarrow{A} (s_1, X)$ which is a configuration we have seen earlier. Thus either the play is infinite, in which case the attacker wins since X is defined as the least fixed-point. Or the play is finite, in which case the attacker also wins.
- $s \models X$ where $X \stackrel{\text{max}}{=} \langle b \rangle X$
 - A universal winning strategy for the defender is:

$$(s, X) \to (s, \langle b \rangle X) \xrightarrow{D} (s_1, X) \to (s_1, \langle b \rangle X) \xrightarrow{D} (s_1, X).$$

Thus the play is infinite, and since X is defined as the greatest fixed-point, the defender wins.

- $s \models X$ where $X \stackrel{\text{max}}{=} \langle b \rangle t \land [a] X \land [b] X$
 - Universal winning strategy for the defender: We have $(s, X) \to (s, \langle b \rangle t \land [a] X \land [b] X)$. Now if the attacker plays $(s, \langle b \rangle t \land [a] X \land [b] X) \xrightarrow{A} (s, \langle b \rangle t)$ he loses since the defender can then play $(s, \langle b \rangle t) \xrightarrow{D} (s_1, t)$. Furthermore if the attacker plays $(s, \langle b \rangle t \land [a] X \land [b] X) \xrightarrow{A} (s, [a] X)$, then he also loses since he is stuck in the configuration (s, [a] X). The third option for the attacker is to choose $(s, \langle b \rangle t \land [a] X \land [b] X) \xrightarrow{A} (s, [b] X) \xrightarrow{A} (s_1, X)$.
 - Expanding X we get $(s_1, X) \to (s_1, \langle b \rangle t \land [a] X \land [b] X)$. From here if the attacker plays $(s_1, \langle b \rangle t \land [a] X \land [b] X) \xrightarrow{A} (s_1, \langle b \rangle t)$ he loses since the defender can play $(s_1, \langle b \rangle t) \xrightarrow{D}$

 (s_1, t) . If the attacker plays $(s_1, \langle b \rangle t \land [a]X \land [b]X) \xrightarrow{A} (s_1, [b]X)$, then the only possible next move is $(s_1, [b]X) \xrightarrow{A} (s_1, X)$ which is a previously encountered configuration. The last option for the attacker is to play $(s_1, \langle b \rangle t \land [a]X \land [b]X) \xrightarrow{A} (s_1, [a]X) \xrightarrow{A} (s_2, X)$.

Expanding the encoding we get $(s_2, X) \to (s_2, \langle b \rangle t \land [a] X \land [b] X)$. Again if the attacker plays $(s_2, \langle b \rangle t \land [a] X \land [b] X) \xrightarrow{A} (s_2, \langle b \rangle t t)$ he loses by the defenders move $(s_2, \langle b \rangle t t) \xrightarrow{D} (s_3, t)$. If the attacker plays $(s_2, \langle b \rangle t \land [a] X \land [b] X) \xrightarrow{A} (s_2, [a] X)$ he loses since he is stuck. Finally he can play $(s_2, \langle b \rangle t \land [a] X \land [b] X) \xrightarrow{A} (s_2, [b] X) \xrightarrow{A} (s_3, X)$.

Expanding X we obtain $(s_3, X) \to (s_3, \langle b \rangle t \land [a] X \land [b] X)$. Now playing $(s_3, \langle b \rangle t \land [a] X \land [b] X) \xrightarrow{A} (s_3, \langle b \rangle t$ he loses by the defenders move $(s_3, \langle b \rangle t) \xrightarrow{D} (s_3, t)$. If the attacker plays $(s_3, \langle b \rangle t \land [a] X \land [b] X) \xrightarrow{A} (s_3, [a] X)$ he is stuck. Finally the attacker can play $(s_3, \langle b \rangle t \land [a] X \land [b] X) \xrightarrow{A} (s_3, [b] X) \xrightarrow{A} (s_3, X)$ which is a previously encountered configuration.

Thus either the attacker loses in a finite play, or the play is infinite in which case the defender wins since X is defined as the greatest fixed-point.