Tutorial 7 - Solutions

Exercise 1

Consider an autonomous elevator which operates between two floors. The requested behaviour of the elevator is as follows:

- The elevator can stop either at the ground floor or the first floor.
- When the elevator arrives at a certain floor, its door automatically opens. It takes at least 2 seconds from its arrival before the door opens but the door must definitely open within 5 seconds.
- Whenever the elevator's door is open, passengers can enter. They enter one by one and we (optimistically) assume that the elevator has a sufficient capacity to accommodate any number of passengers waiting outside.
- The door can close only 4 seconds after the last passenger entered.
- After the door closes, the elevator waits at least 2 seconds and then travels up or down to the other floor.

Your tasks are:

- Suggest a timed automaton model of the elevator. Use the actions $u p$ and down to model the movement of the elevator, open and close to describe the door operation and the action enter which means that a passenger is entering the elevator.
- Timed automaton

- Provide two different timed traces of the system starting at the ground floor with the door open.

$$
\begin{gathered}
(1, \text { enter })(5, \text { close })(7, \text { up })(9.5, \text { open }) \cdots \\
(0.1, \text { enter })(2, \text { enter })(6.7, \text { close }) \cdots
\end{gathered}
$$

Exercise 2

Consider the following timed automata and for each pair decide whether their initial states are (i) timed bisimilar (ii) untimed bisimilar.

(i) The initial states are not timed bisimilar. A winning strategy for the attacker is to play $(A,[x=$ $0]) \xrightarrow{2.5}(A,[x=2.5])$ which clearly can not be matched from $\left(A^{\prime},[x=0]\right)$ due to the invariant.
(ii) The initial states are untimed bisimilar. A bisimulation relating them is for example

$$
\begin{align*}
\mathcal{R}= & \left\{\left((A,[x=d]),\left(A^{\prime},[x=d]\right)\right) \mid d \leq 1\right\} \tag{1}\\
& \cup\left\{\left((A,[x=d]),\left(A^{\prime},\left[x=d^{\prime}\right]\right)\right) \mid d>1 \text { and } 1<d^{\prime} \leq 2\right\} \tag{2}\\
& \cup\left\{\left((B,[x=d]),\left(B^{\prime},[x=d]\right)\right) \mid d \geq 1\right\} \tag{3}
\end{align*}
$$

(i) The initial states are not timed bisimilar. Since timed bisimilarity implies untimed bisimilarity, this can be seen by arguing that they are not untimed bisimilar. See (ii).
(ii) A winning strategy for the attacker is simply to do an $(A,[x=0]) \xrightarrow{a}(A,[x=0])$ which can not be answered from the initial state $\left(A^{\prime},[x=0]\right)$ because of the guard on the a transition.

(i) The initial states are timed bisimilar. A bisimulation relating them is:

$$
\begin{aligned}
\mathcal{R}= & \left\{\left((A,[x=d, y=d]),\left(A^{\prime},[x=d, y=d]\right)\right) \mid d \geq 0\right\} \\
& \cup\left\{\left(\left(B,\left[x=d, y=d^{\prime}\right]\right),\left(A^{\prime},\left[x=d, y=d^{\prime}\right]\right)\right) \mid d \geq 2, d^{\prime} \geq 0\right\}
\end{aligned}
$$

(ii) Since timed bisimilarity implies untimed bisimilarity, by (i) the initial states are also untimed bisimilar.

Exercise 3

Let T be a timed transition system. Let us consider a labelled transition system T^{\prime} where every time-delay action $d \in \mathbb{R}^{\geq 0}$ is replaced with the silent action τ. We now define that two states p and q from the timed transition system T are time abstracted bisimilar if and only if p and q are weakly bisimilar in T^{\prime}.

- Is the notion of time abstracted bisimilarity equivalent to untimed bisimilarity?
- No, see next bullet.
- If yes, prove your claim. If no, give a counter example.
- A counter example is the following timed transition system

Now the initial states are time abstracted bisimilar since they are weakly bisimilar in the following labelled transition system:

On the other hand they can not be untimed bisimilar since $A \xrightarrow{a} A^{\prime}$, but $B \stackrel{a}{\not}$.

