Tutorial 8 - Solutions

Exercise 1

Let $C = \{x, y\}$ be a set of clocks such that $c_x = 2$ and $c_y = 2$.

• Draw a picture with all regions for the clocks x and y.

- There are 9 corner points, 22 line segments, and 13 area regions.
- Select four regions (corner point, line, two areas) and describe them by extended clock constraints.
 - Solution (for example): $[x = 0 \land y = 0], [0 < x < 1 \land 1 < y < 2 \land x + 1 = y], [0 < x < 1 \land 0 < y < 1 \land x < y], and <math>[1 < x < 2 \land 0 < y < 1 \land x > y + 1].$
- A formula describing the number of regions for two clocks and maximal constants c_x and c_y :

 $(c_x + 1)(c_y + 1) + 5c_xc_y + 3(c_x + c_y) + 3$

Exercise 2*

Draw a region graph of the following timed automaton.

$$x{:=}0{,}y{:=}0 \underbrace{ \begin{pmatrix} 0 < x \leq 1 \\ \ell_0 \end{pmatrix}}_{b \ x=1 \land y=1}^{a} y{:=}0$$

All symbolic states contain ℓ_0 , so ℓ_0 is omitted in the figure; we also omit the arrows $\stackrel{\varepsilon}{\Longrightarrow}$ implied by reflexivity and transitivity. Moreover, we construct only the states (regions) which are reachable from the initial state.

- (ℓ_0, v) where v(x) = 0.7 and v(y) = 0.61
 - Solution: Yes, since the symbolic state

$$(\ell_0, [v]) = (\ell_0, 0 < x < 1 \land 0 < y < 1 \land x > y)$$

is reachable from the initial symbolic state $(\ell_0, x = y = 0)$ of the region graph.

- (ℓ_0, v) where v(x) = 0.2 and v(y) = 0.41
 - Solution: No, since the symbolic state
 - $(\ell_0, [v]) = (\ell_0, 0 < x < 1 \land 0 < y < 1 \land x < y)$

is *not* reachable from the initial symbolic state $(\ell_0, x = y = 0)$ of the region graph.

Exercise 3

Consider the following network of timed automata from the lecture.

- Give an example of a timed trace in the network above.
 - A timed trace could be as follows:

$$(20, \tau)(40, \tau)(60, \tau)(60, \tau)\cdots$$

An example of a sequence of states could be:

 $\begin{array}{l} \left((\text{free,rest,up}), [x = 0, y = 0, z = 0]\right) \xrightarrow{\tau} \left((\text{busy,work,up}), [x = 0, y = 0, z = 0]\right) \xrightarrow{20} \\ \left((\text{busy,work,up}), [x = 20, y = 20, z = 20]\right) \xrightarrow{\tau} \left((\text{busy,work,half}), [x = 0, y = 20, z = 20]\right) \\ \xrightarrow{40} \left((\text{busy,work,half}), [x = 40, y = 60, z = 60]\right) \xrightarrow{\tau} \left((\text{busy,work,down}), [x = 0, y = 60, z = 60]\right) \xrightarrow{\tau} \left((\text{free,rest,down}), [x = 0, y = 60, z = 60]\right) \xrightarrow{\tau} \left((\text{free,rest,up}), [x = 0, y = 60, z = 60]\right) \end{array}$

- Which of the following properties are true?
 - A[] (W.rest $\lor z \le 100$) : True
 - $E\langle\rangle$ (W.rest \wedge H.busy) : False
 - $A\langle\rangle$ W.rest : **True**
 - E[] H.busy : False
 - W.work -- > W.rest : **True**