Tutorial 1 - Solutions

Exercise 1

The possible values stored in the variable x are 1 or 6 . Note that there are four different executions.

Exercise 2

Since $R \cup E$ is indeed a reflexive relation and contains R, it suffices to show that $R \cup E$ is minimal. Suppose $R^{\prime \prime}$ is a binary relation such that (i) $R \subseteq R^{\prime \prime}$ and (ii) $R^{\prime \prime}$ is reflexive. We will show that $R \cup E \subseteq R^{\prime \prime}$. Let $(x, y) \in R \cup E$. Then at least one of the following must hold. Either $(x, y) \in R$ or $(x, y) \in E$. If $(x, y) \in R$, then $(x, y) \in R^{\prime \prime}$ because of (i). If $(x, y) \in E$, then $x=y$ so $(x, y) \in R^{\prime \prime}$ because of (ii). Hence $R \cup E \subseteq R^{\prime \prime}$.

Exercise 3

- Let $(x, y) \in R \cup R^{-1}$. If $(x, y) \in R$ then by the definition of $R^{-1},(y, x) \in R^{-1}$, which establishes that $(y, x) \in R \cup R^{-1}$. If $(x, y) \in R^{-1}$ then by the definition of $R^{-1},(y, x) \in R$, which establishes that $(y, x) \in R \cup R^{-1}$.
- Arguing that $R \cup R^{-1}$ is a symmetric closure of R is done similarly to Exercise 2. Let $R^{\prime \prime}$ be a binary relation that contains R and is symmetric. Then it is easy to see that $R \cup R^{-1} \subseteq R^{\prime \prime}$ by arguing as in Exercise 2.

Exercise 4*

- - Proc $=\left\{s, s_{1}, s_{2}, s_{3}\right\}$

$$
\begin{aligned}
& \text { - Act }=\{a\} \\
& \text { - } \xrightarrow{a}=\left\{\left(s, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{3}\right),\left(s_{3}, s\right)\right\}
\end{aligned}
$$

In the following three diagrams the dotted arrows indicate the pairs of states that must be added to the relation \xrightarrow{a} in order to obtain the indicated closures.

- Reflexive closure

- Symmetric closure

- Transitive closure

Example 5

For example like this:

$$
\mathrm{CM}, \stackrel{\text { def }}{=} \operatorname{coin} .\left(\overline{\text { coffee }} . \mathrm{CM}^{\prime}+\mathrm{CM}^{\prime}+\overline{\text { fail }} . \mathrm{Nil}\right)+\overline{\text { fail }} . \mathrm{Nil}
$$

Example 6

- Yes, there are at most $|P r o c|^{2}$ elements in \xrightarrow{a}.
- An LTS with four states and two actions (you probably have a different one).

- CCS description of the LTS

$$
\begin{aligned}
& S_{1} \stackrel{\text { def }}{=} a \cdot S_{2} \\
& S_{2} \stackrel{\text { def }}{=} a \cdot S_{3}+b \cdot S_{1} \\
& S_{3} \stackrel{\text { def }}{=} b \cdot S_{4} \\
& S_{4} \stackrel{\text { def }}{=} a \cdot S_{4}
\end{aligned}
$$

- Describing a finite LTS using CCS can be done as follows. For each $S \in$ Proc add a (possibly recursive) definition of a new process constant S as follows:
- If $S \nrightarrow$ then add the defining equation $S \stackrel{\text { def }}{=} N i l$, otherwise
- let $S \xrightarrow{a_{1}} S_{1}, S \xrightarrow{a_{2}} S_{2}, \ldots, S \xrightarrow{a_{n}} S_{n}$ be all the transitions going out of S. Then add the following defining equation $S \stackrel{\text { def }}{=} a_{1} \cdot S_{1}+a_{2} \cdot S_{2}+\cdots+a_{n} \cdot S_{n}$.

