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Tutorial 3 - Solutions

Exercise 1*
If we can show that R = {(s, t), (s1, t1), (s3, t2), (s4, t2), (s2, t3), (s4, t4)} is a strong bisimulation, then
s ∼ t. Indeed R is a strong bisimulation since:

• Consider (s, t) ∈ R. Transitions from s:

– If s
a−→ s1, match by doing t

a−→ t1, and (s1, t1) ∈ R.

– If s
a−→ s2, match by doing t

a−→ t3, and (s2, t3) ∈ R.

– These are all transitions from s.

Transitions from t:

– If t
a−→ t1, match by doing s

a−→ s1, and (s1, t1) ∈ R.

– If t
a−→ t3, match by doing s

a−→ s2, and (s2, t3) ∈ R.

– These are all transitions from t.

• Consider (s1, t1) ∈ R. Transitions from s1:

– If s1
a−→ s3, match by doing t1

a−→ t2 and (s3, t2) ∈ R.

– If s1
b−→ s4, match by doing t1

b−→ t2 and (s4, t2) ∈ R.

Transitions from t1:

– If t1
a−→ t2, match by doing s1

a−→ s3 and (s3, t2) ∈ R.

– If t1
b−→ t2, match by doing s1

b−→ s4 and (s4, t2) ∈ R.

• Consider (s3, t2) ∈ R. Transitions from s3:

– If s3
a−→ s, match by doing t2

a−→ t and (s, t) ∈ R.

Transitions from t2:

– If t2
a−→ t, match by doing s3

a−→ s and (s, t) ∈ R.

• Consider (s4, t2) ∈ R. Transitions from s4:

– If s4
a−→ s, match by doing t2

a−→ t and (s, t) ∈ R.

Transitions from t2:

– If t2
a−→ t, match by doing s4

a−→ s and (s, t) ∈ R.

• Consider (s2, t3) ∈ R. Transitions from s2:

– If s2
a−→ s4, match by doing t3

a−→ t4 and (s4, t4) ∈ R.

Transitions from t3:

– If t3
a−→ t4, match by doing s2

a−→ s4 and (s4, t4) ∈ R.

• Consider (s4, t4) ∈ R. Transitions from s4:

– If s4
a−→ s, match by t4

a−→ t and (s, t) ∈ R.

Transitions from t4:

– If t4
a−→ t, match by s4

a−→ s and (s, t) ∈ R.

1



SEMANTICS & VERIFICATION 2005

Exercise 2*
Let R = {(P,Q), (P1, Q1), (P,Q2), (P1, Q3)}. We only outline the proof; it follows along the lines as the
proof in Exercise 1. You should complete the details.

• From (P,Q) ∈ R either P or Q can do an a transition.

– In either case the response is to match by making an a transition from the remaining state, so
we end up in (P1, Q1) ∈ R.

• From (P1, Q1) ∈ R we end up in either (P,Q) ∈ R or (P,Q2) ∈ R.

• From (P,Q2) ∈ R we can only end up in (P1, Q3) ∈ R.

• From (P1, Q3) ∈ R we end up in either (P,Q) ∈ R or (P,Q2) ∈ R.

Exercise 3*
In this exercise you are asked to train yourself in the use of the game characterization for strong bisimula-
tion. We therefore give universal winning strategy for the attacker or the defender in order to prove strong
nonbisimilarity or bisimilarity. Let A denote the attacker and D the defender.

• Claim: s 6∼ t. The universal winning strategy for A is as follows.

– In configuration (s, t), A chooses s and makes the move s
a−→ s1.

∗ D’s only possible response is to choose t and make the move t
a−→ t1. The current

configuration is now (s1, t1)

– In configuration (s1, t1), A chooses s1 and makes the move s1
b−→ s2.

Now the winning strategy depends on D’s next move and is as follows. D can only choose the
state t1, but has two possible moves. Suppose D chooses t1

b−→ t1. Then the current configuration
becomes (s2, t1). Now A choose s2 and makes the move s2

a−→ s. Then D looses since there are no
a-transitions from t1. If D uses the other possible move, namely t1

b−→ t2, the current configuration
becomes (s2, t2). But then A chooses s2 and makes the move s2

b−→ s2. Again D looses since there
are no b-transitions from t2.

Remark: there is another winning strategy for the attacker which is easier to describe; try to find it.

• Claim: s ∼ u: The universal winning strategy for D is as follows.

– Starting in (s, u), A has two possible moves. Either (a) s
a−→ s1 or (b) u

a−→ u1.

∗ If A chooses (a), then D takes the move u
a−→ u1, and the current configuration becomes

(s1, u1).
∗ If A chooses (b), then D takes the move s

a−→ s1, and the current configuration again
becomes (s1, u1).

– In configuration (s1, u1), A can choose either (a) s1
b−→ s2, or (b) u1

b−→ u3.

∗ If A chooses (a), then D takes the move u1
b−→ u3, and the current configuration becomes

(s2, u3).

∗ If A chooses (b), then D takes the move s1
b−→ s2, and the current configuration again

becomes (s2, u3).

– In configuration (s2, u3), A can choose either (a) s2
b−→ s2 or (b) s2

a−→ s or (c) u3
a−→ u or

(d) u3
b−→ u2.

∗ If A chooses (a), then D takes the move u3
b−→ u2 and the current configuration becomes

(s2, u2).
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∗ If A chooses (b), then D takes the move u3
a−→ u and the current configuration becomes

(s, u) which is exactly the start configuration.
∗ If A chooses (c), then D takes the move s2

a−→ s and the current configuration becomes
(s, u) which is the start configuration.

∗ If A chooses (d), then D takes the move s2
b−→ s2 and the current configuration becomes

(s2, u2) as when the attacker played (a). Hence from now we only need to consider games
form the state (s2, u2).

Now we can argue that D has a winning strategy. From (s2, u2), D’s response to any move
from A will be to take the same transition. This means that the next configuration is either
(s2, u2) or (s, u). The game will be infinite, and hence D is the winner.

• Claim: s 6∼ v: The universal winning strategy for A is as follows.

– In configuration (s, v), A makes the move s
a−→ s1.

∗ Now D must make the move v
a−→ v1 and the current configuration becomes (s1, v1).

– In configuration (s1, v1), A chooses v1
b−→ v2.

∗ D must make the move s1
b−→ s2. The current configuration is (s2, v2).

Now A wins since from (s2, v2) as he can choose to make the move s2
b−→ s2. Since there are

no b-transitions from v2, D looses.

Exercise 4
The general idea in this exercise is that in order to prove that P ∼ Q you define some binary relation R
such that (P,Q) ∈ R, and then proceed to prove that R is indeed a strong bisimulation.

• Define R = {(P |Nil, P ) | P is a CCS process}. We show that R is a strong bisimulation.

– Suppose for some α ∈ Act that P |Nil
α−→ P ′|Nil. We now have to find some process P̃ such

that P
α−→ P̃ and (P ′|Nil, P̃ ) ∈ R. Now use the transition relation. The only rule that could

have been used is the COM1-rule.

P
α−→ P ′

P |Nil
α−→ P ′|Nil

.

Now set P̃ = P ′. Then we are finished since we now know that P
α−→ P ′ and by the definition

of R, (P ′|Nil, P̃ ) = (P ′|Nil, P ′) ∈ R.

– Symmetrically we must prove that when P
α−→ P ′, then some P̃ exists so that P |Nil

α−→ P̃
and (P̃ , P ′) ∈ R. But this is easy. By using the COM1-rule we have

P
α−→ P ′

P |Nil
α−→ P ′|Nil

.

So we simply let P̃ = P ′|Nil. And again by definition of R, we have that (P̃ , P ′) =
(P ′|Nil, P ′) ∈ R. This proves that R, is a bisimulation. And since (P |Nil, P ) ∈ R, this
means that P |Nil ∼ P .

• This time we show that P + Nil ∼ P by giving a universal winning strategy for the defender.
Remember that the game is played on the LTS, so we will just denote the states of the LTS by the
CCS-expression. If the attacker chooses P + Nil, then the only possible moves are those of P since
Nil has no transitions. So if P

a−→ P ′, the attacker can make the move P + Nil
a−→ P ′. But then

the defender can make the move P
a−→ P ′. The current configuration is now (P ′, P ′). From now on

the defenders strategy is do to the same as the attacker. Either the game is infinite, in which case the
defender wins. Or the game is finite. But then the defender wins, since the attacker cannot make any
move because both processes are stuck. Similarly if the attacker plays P

a−→ P ′. Then the defender
moves P + Nil

a−→ P ′, and the configuration again becomes (P ′, P ′).
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• We show now that R = {(P |Q,Q|P ) | P,Q are CCS-expressions} is a strong bisimulation. We
only give an outline of the proof, the method is the same as in the first bullet. Suppose P |Q a−→
P ′|Q′.

– If COM3-rule was applied, we can argue as follows:

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′

But then since a = a we can use the same rule to derive:

Q
a−→ Q′ P

a−→ P ′

Q|P τ−→ Q′|P ′
.

And by the definition of R, we know that (P ′|Q′, Q′|P ′) ∈ R.

– If COM1 or COM2 rule was used, we do the following analysis. Suppose the COM1-rule was
the one used. Then we know that

P
a−→ P ′

P |Q a−→ P ′|Q
.

Again one can now apply the COM2-rule and derive

P
a−→ P ′

Q|P a−→ Q|P ′
,

and (P ′|Q,Q|P ′) ∈ R. In order to finish the proof we need to argue for the symmmetric case
(i.e. when the rule COM2 was used from P |Q). The argument for this case is similar as before.

The case when Q|P a−→ Q′|P ′ is completely symmetric.

Exercise 5
Assume that s ∼ t. We will show both trace inclusions as follows.

• Traces(s) ⊆ Traces(t): Let w = a1a2 . . . an be a trace from Traces(s). The attacker will play the
sequence w in n-rounds of the strong bisimulation game, always from the left processes s. As s ∼ t,
the defender has to be able to answer to such an attack and hence he has to be able to do the same
sequence w from the right process t. This means that w ∈ Traces(t).

• Traces(t) ⊆ Traces(s): The argument is completely symmetric, the attacker plays the whole se-
quence from the right process t and the defender has to be able to match it in the left process.

This implies that Traces(s) = Traces(t).

Exercise 6
The answer is no for all the cases and the relation R of strong bisimulation from Exercise 1 can serve as a
counter example for reflexivity and symmetry.
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