
Determinate STG Decomposition
of Marked Graphs�

Mark Schäfer1, Walter Vogler1, and Petr Jančar2,��

1 Institut für Informatik, Universität Augsburg
{mark.schaefer, walter.vogler}@informatik.uni-augsburg.de
2 Centre for Applied Cybernetics, Technical University of Ostrava

petr.jancar@vsb.cz

Abstract. STGs give a formalism for the description of asynchronous
circuits based on Petri nets. To overcome the state explosion problem one
may encounter during circuit synthesis, a nondeterministic algorithm for
decomposing STGs was suggested by Chu and improved by one of the
present authors. To find the best possible result the algorithm might
produce, it would be important to know to what extent nondeterminism
influences the result, i.e. to what extent the algorithm is determinate.

The result of the algorithm clearly depends on the partition of output
signals that has to be chosen initially. In general, it also depends on the
order of computation steps. We prove that for live marked graphs — a
subclass of Petri nets of definite practical importance in the area of cir-
cuit design — the decomposition result depends only on the signal parti-
tion. In the proof, we also characterise redundant places in these marked
graphs as shortcut places; this easy-to-apply graph-theoretic characteri-
sation is of independent interest.

1 Introduction

Signal Transition Graphs (STG) are a formalism for the description of asyn-
chronous circuits. An STG is a labelled Petri net where the labels denote signal
changes between logical high and logical low. Signals are subdivided into input
signals, which are produced by the environment, and output signals, which the
circuit should produce as specified by the STG. The synthesis of circuits from
STGs is supported by several tools, e.g. Petrify [CKK+97], and it often involves
the generation of the reachability graph, which may have a size exponential in
the size of the STG (state explosion). To cope with this problem, Chu suggested
a nondeterministic method for decomposing an STG into several smaller ones
[Chu87]. While there are strong restrictions on the structure and labelling of

� This work was partially supported by the DFG-project ’STG-Dekomposition’
Vo615/7-1.

�� This author is supported by the Czech Ministry of Education, Grant No.
1M6840770004.

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 365–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

366 M. Schäfer, W. Vogler, and P. Jančar

STGs in [Chu87], the improved decomposition algorithm given in [VW02] works
under – comparatively moderate – restrictions on the labelling only.

Roughly, the decomposition algorithm works as follows; see [VW02] for de-
tails. Initially, a partition of the output signals has to be chosen, and for each
set in this partition a component producing the respective output signals is con-
structed. The result clearly depends on this partition, so we will only consider
the case that it has been fixed, and we will concentrate on the construction of
one component. To construct a component, one finds a set of signals that (at
least initially) can be regarded as irrelevant for the output signals under con-
sideration; then, one takes a copy of the original STG and turns each transition
corresponding to an irrelevant signal into an internal (λ-labelled) transition; fi-
nally, one tries to remove all internal transitions by so-called secure transition
contractions and deletions of (structurally) redundant places, resulting in the
final component.

The aim is to find components with small reachability graphs. In principle,
this requires to consider all possible sequences of contractions and deletions;
but if the algorithm is determinate, i.e. nondeterminism does not influences
the result, it is sufficient to consider only one sequence, which greatly increases
efficiency. Our main contribution is a determinacy result for a subclass of STGs,
where a part of the result applies to STGs in general.

In general, one might find during the processing of a component that addi-
tional signals are relevant; then, one has to start anew from a suitably modified
copy of the original STG – which eventually gives a correct component as proven
in [VW02]. Even in simple cases, the order of operations may influence for which
signals this backtracking is performed, resulting in different components as shown
in [VW02–Fig. 7]. Since this does not give much hope for a general determinacy-
result, we will not consider backtracking in this paper; we will mostly concentrate
on the subclass of live marked graphs, for which backtracking is never needed as
already noted in [VW02–p. 178].

Although marked graphs are a rather restricted subclass of Petri nets, our
results for this subclass are non-trivial. Marked graphs are definitely of practical
importance for asynchronous circuit and particularly prominent in benchmark
examples studied in the respective community.

As a result of the above considerations, we can abstract from all signals or
signal changes, and study the problem under which circumstances the following
algorithm is determinate: given an unlabelled Petri net where some transitions
are marked as internal, apply secure transition contractions and redundant place
deletions as long as possible.

We will show that for live marked graphs the algorithm is determinate, i.e. it
produces a unique component (up to isomorphism). Part of this result applies to
general Petri nets, for which we show that secure transition contractions satisfy a
weak diamond property. We give an easy-to-apply graph-theoretic characterisa-
tion of redundant places in marked graphs as so-called shortcut places; our result
is a small generalisation of a result in [CCJS94] and our contribution is a much
simpler proof. This result is an important ingredient to prove our main result.

Determinate STG Decomposition of Marked Graphs 367

The paper is organised as follows. In the next section, Petri nets and their
basic notions are introduced, as well as redundant places and secure transition
contractions. In Section 3, we characterise redundant places in marked graphs
as shortcut places. The other contribution is proven in Section 4. We conclude
with Section 5.

2 Basic Definitions

Definition 1. A Petri net is a 4-tuple N = (P, T,W,MN) with

– P the finite set of places, T the finite set of transitions with P ∩ T = ∅,
– W : P × T ∪ T × P → N0 the weight function,
– MN the initial marking, where a marking is a function P → N0

A Petri net can be considered as a bipartite graph with weighted and directed
edges between its nodes. A marking is a function which assigns a number of
tokens to each place; for a (sub)set Q of places we define M(Q) =

∑
p∈Q M(p)

(where the sum is zero if Q = ∅). A node is a place or a transition. ��

Definition 2. Let N be a Petri net. The preset of a node x is denoted as •x and
defined by •x = {y ∈ P ∪T | W (y, x) > 0}, the postset of a node x is denoted as
x• and defined by x• = {y ∈ P ∪ T | W (x, y) > 0}. We say that there is an arc
from each y ∈ •x to x. We write •x• as shorthand for •x ∪ x•. All these notions
are extended to sets as usual. ��

Whenever a Petri net N,N ′, N1, etc. is introduced, the corresponding tuples
(P, T,W,MN), (P ′, T ′,W ′,MN ′), (P1, T1,W1,MN1) etc. are introduced implic-
itly. In a graphical representation of a Petri net, places are drawn as circles,
transitions as rectangles, the weight function as directed arcs xy (labelled with
W (x, y) if W (x, y) > 1) and a marking of a place as a number or as a set of small
dots drawn in the interior of the corresponding circle. We will regard isomorphic
Petri nets as equal.

Definition 3. Let N be a Petri net. A path w is a sequence x0x1 . . . xn, n ≥ 0
of different nodes such that W (xi, xi+1) > 0 ∀i = 0, . . . , n − 1. A cycle c is
a sequence x0x1 . . . xnx0, n ≥ 1 with x0 . . . xn is a path and W (xn, x0) > 0.
Frequently, we will treat paths and cycles like sets consisting of the respective
nodes. By the marking of a path (cycle resp.) we mean the marking (i.e. the sum
of the tokens) of the set of its places.

Definition 4. Let N be a Petri net. A transition t is enabled under a marking
M if M(p) ≥ W (p, t) ∀p ∈ •t, which is denoted by M [t〉. An enabled transition
can fire or occur yielding a new marking M ′, which is written as M [t〉M ′ if M [t〉
and M ′(p) = M(p) − W (p, t) + W (t, p) ∀p ∈ P .

A transition sequence v = t0t1 . . . tn is enabled under a marking M if
M [t0〉M0[t1〉M1 . . .Mn−1[tn〉Mn, and we write M [v〉, M [v〉Mn resp., v is called

368 M. Schäfer, W. Vogler, and P. Jančar

firing sequence if MN [v〉. The empty transition sequence is written as λ and
enabled under every marking.

M ′ is called reachable from M if a transition sequence v with M [v〉M ′ exists.
The set of all markings reachable from M is denoted by [M〉. For [MN 〉 we just
write reachable markings (of N).

A transition t is called live under a marking M if for every M ′ ∈ [M〉 there
exists an M ′′ ∈ [M ′〉 with M ′′[t〉, t is live if it is live under MN and N is live
if every t ∈ T is live. A transition t is dead under a marking M if there is no
M ′ ∈ [M〉 with M ′[t〉. ��

Definition 5. A place p of a Petri net N is bounded if for some k ∈ N,M(p) ≤ k
holds for every reachable marking M . N is bounded if every place is bounded.

A marking M is a home marking of N if it is reachable from every reachable
marking. N is called reversible if MN is a home marking. ��

Definition 6. A Petri net N is a marked graph (MG) (or T-system) if:

1. ∀p ∈ P. |•p| = 1 = |p•|
2. ∀x, y ∈ P ∪ T.W (x, y) ≤ 1 ��

Due to this, we often identify •p and t if •p = {t}, and analogously for p•.

Definition 7. Let N be a Petri net and p ∈ P . Place p is called implicit if it
can be removed from N without changing the set of firing sequences.

Place p is (structurally) redundant [Ber87] if there is a set of places Q – called
reference set – with p �∈ Q, a valuation V : Q∪{p} → N and some d ∈ N0 which
satisfy the following properties for all transitions t:

1. V (p)MN (p) − ∑
q∈Q V (q)MN (q) = d

2. V (p)(W (t, p) − W (p, t)) − ∑
q∈Q V (q)(W (t, q) − W (q, t)) ≥ 0

3. V (p)W (p, t) − ∑
q∈Q V (q)W (q, t) ≤ d

We call V balanced if, for all transitions t ∈ T , V (p)(W (t, p) − W (p, t)) −∑
q∈Q V (q)(W (t, q) − W (q, t)) = 0 . ��
When constructing a component in our STG decomposition, we would like to

remove implicit places. Implicitness is hard to decide, and therefore we actually
consider only structural redundancy, since checking this does not require to
generate the reachability graph.

Remark: It is well-known that the reachability problem (RP) for Petri nets is
EXPSPACE-hard. This even holds for SPZ-RP (Single-Place-Zero RP) where
we ask if a given place p can be emptied; we can also assume arc-weights to be 1.
Given an instance of SPZ-RP, we can add a fresh t and the arcs (p, t), (t, p), and
observe that p is implicit iff no marking with zero tokens in p is reachable. This
shows EXPSPACE-hardness of the implicitness problem. On the other hand,
redundancy can be solved by linear programming.

Determinate STG Decomposition of Marked Graphs 369

The proof that a redundant place p is indeed implicit argues that initially
the valuated token number of p is at least d greater than the valuated token sum
on Q by the first item, and that this difference can only get greater when firing
transitions by the second item; the third item says that each transition needs at
most d ‘valuated tokens’ more from p than from the places in Q. This shows that
for the enabling of a transition the presence or absence of p does not matter.

Since deletion of p preserves the firing sequences it also preserves liveness.
In general implicitness does not imply redundancy, but we will show that these
notions coincide for live marked graphs.1

Throughout this paper, if a place p (p′, p1, . . .) is considered to be redundant,
a corresponding reference set Q (Q′, Q1, . . .) and valuation function V (V ′, V1,
. . .) are implicitly given. If only some valuation function V is given, the reference
set is implicitly determined as its support by Q = {p ∈ P | V (p) > 0}.

Furthermore, it is useful to distinguish between different types of redundant
places as introduced in the following definition.

Definition 8. Let p be a place of a Petri net N .

– p is an extended duplicate of place p′ ∈ P if ∀t ∈ T. W (p, t) = W (p′, t) ∧
W (t, p) = W (t, p′) and MN (p) ≥ MN (p′).

– p is a loop-only place place if ∀t ∈ T. MN (p) ≥ W (p, t) ≤ W (t, p).
– If N is a marked graph, p is a shortcut place if a path w = •p . . . p• exists

containing at least one place but not p and satisfying p �∈ w and MN (p) ≥
MN (w ∩ P). ��

Definition 9. Let N be a Petri net and t ∈ T . If t is not incident to an arc with
weight greater than 1 and •t∩ t• = ∅, we define the t-contraction of N , denoted
by N

t
or just N , as follows:

T = T − {t} P = {(p, �)|p �∈ •t•} ∪ {(p1, p2)|p1 ∈ •t, p2 ∈ t•}
W ((p1, p2), t′) = W (p1, t

′) + W (p2, t
′)

W (t′, (p1, p2)) = W (t′, p1) + W (t′, p2)
M((p1, p2)) = M(p1) + M(p2)

In this definition � �∈ P ∪ T is a dummy element used to make all places of
N to be pairs; we assume M(�), W (�, t′) and W (t′, �) to be 0.

If more than one contraction is applied to a net N , e.g. N
t1

t2

, this is denoted
by N

t1,t2 .
A t-contraction is called secure iff (•t)• ⊆ {t} or •(t•) = {t}. ��
The rationale for secure transition contractions is explained in [VW02]. In this

paper, arbitrary contractions in general Petri nets are considered in Theorem 20;
otherwise, we consider marked graphs where all contractions are secure.

1 [CCJS94] shows that the second redundancy item characterizes that p is structurally
implicit, i.e. each marking of the other places can be extended to p such that p is
implicit.

370 M. Schäfer, W. Vogler, and P. Jančar

3 Redundant Places in Marked Graphs

This section deals with redundant and implicit places in live marked graphs. The
main result will be that redundant and implicit places coincide in live marked
graphs and furthermore they are either loop-only places or shortcut places.

We start with two propositions about redundant places in general.

Proposition 10.

1. Extended duplicates, loop-only places and shortcut places are redundant.
2. If p is a redundant place of a Petri net N , it is a loop-only place iff some

reference set Q is empty.

Proof. (1) For an extended duplicate p of place p′ set Q = {p′}, V (p) = V (p′) =
1. For a loop-only place p set Q = ∅, V (p) = 1. For a shortcut place p with
corresponding path w, set Q = w ∩ P, V (p) = 1 and V (q) = 1 for q ∈ Q.

(2) The first direction follows from the proof of part (1). Therefore assume
the reference set Q to be empty. Since p is redundant we get immediately ∀t ∈ T :

V (p)MN (p) = d

V (p)(W (t, p) − W (p, t)) ≥ 0
V (p)W (p, t) ≤ d

Dividing by V (p) and combining the first and the last (in)equation yields: ∀t ∈
T.MN (p) ≥ W (p, t), W (t, p) ≥ W (p, t), which is equivalent to the definition of
a loop-only place. ��

The first part of the following proposition was used in an alternative proof
of Theorem 13, and we think that it is of independent interest. The second part
will be applied below.

Proposition 11. 1. Let p be a redundant place of a live Petri net N with at
least one home marking. Then V is balanced.

2. If, in an arbitrary net N , p is redundant under a marking M ∈ [MN 〉 with a
balanced valuation, it is also redundant under MN with the same valuation.
In particular, if p is a shortcut place under M , it is also one under MN .

Proof. 1) Let MH be a home marking of N . Using part 2 of Definition 7, it can be
shown that ∀t ∈ T.M1[t〉M2 ⇒ V (p)M1(p) − ∑

q∈Q V (q)M1(q) ≤ V (p)M2(p) −∑
q∈Q V (q)M2(q) (∗).
Let MH [v1〉M [v2〉MH , such that v1 contains every transition t ∈ T at least

once. Such a sequence v1 exists because N is live, v2 exists because MH is a
home marking. Together with (∗) we get:

V (p)MH(p) −
∑

q∈Q

V (q)MH(q)

Determinate STG Decomposition of Marked Graphs 371

≤ V (p)M(p) −
∑

q∈Q

V (q)M(q)

≤ V (p)MH(p) −
∑

q∈Q

V (q)MH(q)

Since N is live, there exists a marking M1 ∈ [MH〉 for each transition t with
M1[t〉M2 and

V (p)M1(p) −
∑

q∈Q

V (q)M1(q) = V (p)M2(p) −
∑

q∈Q

V (q)M2(q)

Together with M2(s) = M1(s) − W (s, t) + W (t, s) ∀s ∈ P this leads to:

V (p)M1(p) −
∑

q∈Q

V (q)M1(q)

= V (p)(M1(p) − W (p, t) + W (t, p)) −
∑

q∈Q

V (q)(M1(q) − W (q, t) + W (t, q))

= V (p)M1(p) − (∑

q∈Q

V (q)M1(q)
)

+ V (p)(W (t, p) − W (p, t))

−
∑

q∈Q

V (q)(W (t, q) − W (q, t))

⇒ V (p)(W (t, p) − W (p, t)) −
∑

q∈Q

V (q)(W (t, q) − W (q, t)) = 0

This implies directly that V is balanced.
2) Items 2 and 3 of Definition 7 do not depend on the marking and item 1

follows directly from the valuation being balanced. If p is a shortcut place then
the respective path induces a balanced valuation V (as observed in the proof of
10) and, since item 1 can be transferred from M to MN , the marking of this
path is at most the marking of p also under MN . ��

Before we prove the main theorem of this section, we note an easy lemma
about liveness in marked graphs.

Lemma 12. Let c be a cycle of a marked graph N . For every reachable marking
M , M(c) = MN (c). If N is live, c is initially marked.

Proof. Let M [t〉M ′. We show that M(c) = M ′(c). For t ∈ c this is trivially true,
since all edge weights are 1 in marked graphs. Otherwise, t is not adjacent to
any place of c, since N is a marked graph.

The second statement now follows easily; if c is not marked under MN it is
not marked under any reachable marking and therefore no transition of c can
ever fire, a contradiction. ��

Actually, marked graphs are live if and only if every cycle is initially marked,
see e.g. [DE95]. This is a deeper result, which we do not need here. In fact,

372 M. Schäfer, W. Vogler, and P. Jančar

our proof of the next theorem has the advantage that it does not require pro-
found knowledge about marked graphs, and we only proved the above lemma to
demonstrate that our proof of Theorem 13 is indeed elementary.

Theorem 13. Let N be a live marked graph and p ∈ P . The following properties
are equivalent:

1. p is a redundant place
2. p is an implicit place
3. p is a loop-only place or a shortcut place

Proof. ”1→2” even holds for arbitrary Petri nets – as we observed already –,
and ”3→1” follows from Proposition 10.

”2→3”: Let p be an implicit place but not a loop-only one. We define {ti} = •p
and p• = {to}, obviously ti �= to, otherwise MN (p) = 0, which contradicts with
liveness. Let N ′ be the net obtained from N by deleting ti and all incident
arcs. Observe that p is also implicit in N ′, since the set of firing sequence of N ′

coincides with the set of those firing sequences of N which do not contain ti.
In N ′, starting from the initial marking we fire transitions until a maximal

set D of transitions is dead.2 From this marking fire every transition not in D
at least once; we denote the marking reached by M . Observe that (∗) M can be
reached in N by the same firing sequence.

Since to can fire at most MN (p) times in N ′, we must have to ∈ D. Further-
more, there exists a p1 ∈ •to, p1 �= p with M(p1) = 0. If not, p would be the
only place in •to preventing the firing of to, hence would not be implicit in N ′.

This implies •p1 ∈ D; otherwise p1 would have been marked when every
transition not in D fired once. Now there is an unmarked place p2 in •(•p1) and
so on. This leads either to a cycle not containinig any tokens, which is by (∗)
a contradiction to N being live (cf. Lemma 12); or ends up in a place p′ with
an empty preset in N ′, hence p′ ∈ ti

• and so we have constructed an unmarked
path from ti to to not containing p. Therefore p is a shortcut place under M in
N , cf. (∗), and we are done by Proposition 11.2. ��
Remark: Javier Esparza pointed out to us that a weaker version of this theorem
could be proved as follows. Assume p is a redundant place of a live and bounded
marked graph N (or more generally: free-choice net N); then the removal of p
results again in a live and bounded marked graph N ′, which is (roughly speak-
ing) strongly connected by [Bes87]; in particular the transitions •p and p• are
connected by a path in N ′. This result is close to the above theorem, but it is
in fact not useful for the purpose of the present paper, since it does not make
any statements about the marking of such a path; the pure existence of a path
is not sufficient for a place to be redundant.

A result very close to Theorem 13 can be found in [CCJS94]. The differ-
ence is that strong connectedness is assumed there – an assumption that we do

2 D does not neccessarily contain all transitions, since we do not assume boundedness
or connectedness.

Determinate STG Decomposition of Marked Graphs 373

not need. Furthermore, the proof in [CCJS94] makes heavy use of deep results
about marked graphs, while our direct proof only needs elementary knowledge.
[CCJS94] also considers some form of decomposition of marked graphs; we will
discuss the relationship to our approach at the end of the next section.

To determine whether a place is structurally redundant, one can set up an
instance of linear programming [STC98]. Our theorem leads to a more efficient
algorithm for live marked graphs as already noted in [CCJS94]: to check whether
place p is structurally redundant, regard each place p1 as an edge from •p1 to p•1,
weighted according to the initial marking. Remove the edge corresponding to p
and determine the shortest path from •p to p•; if its length (i.e. its cumulated
weight) is at most MN (p), p is redundant. With the basic version of Dijkstra’s
algorithm, this takes time O(n2), where n is the number of transitions.

Actually, in [CCJS94] the addition of implicit places is considered; for decid-
ing whether a given place is redundant we note the following improvement.

Dijkstra’s algorithm determines all distances from •p in increasing order;
hence, the algorithm can already be finished with a negative answer, if all tran-
sitions with a distance of no more than MN (p) have been found and if p• is not
among them. If MN (p) = 0, one can delete all edges corresponding to initially
marked places, and simply check for a path from •p to p• in the remainder e.g.
with depth first search in time linear in the number of transitions and places.

4 Determinacy of Petri Net Operations

In this section the determinacy of the decomposition method — with its opera-
tions of secure transition contraction and redundant place deletion — is studied.
For this we view these Petri net operations as a terminating reduction system,
such that determinacy is related to confluence and local confluence.

The notion ’reduction system’ comes from the field of term rewriting. The
following definition and lemma are taken from [BN98], where a detailed intro-
duction can be found.

Definition 14. Let A be a nonempty set with a, a′, . . . ∈ A.

1. A reduction system is a pair (A,→) with →⊆ A × A. The relation → is
called reduction or reduction rule; →∗ denotes the reflexive and transitive
closure of →, and →= the reflexive closure.

2. A reduction →
(a) is terminating if there exists no infinite chain a0 → a1 → a2 . . .
(b) is confluent if a →∗ a1, a →∗ a2 implies a1 →∗ a′, a2 →∗ a′ for some a′

(c) is locally confluent if a → a1, a → a2 implies a1 →∗ a′, a2 →∗ a′ for some
a′

(d) has the diamond property if a → a1, a → a2 implies a1 → a′, a2 → a′

3. An element a is
(a) in normal form if ¬∃a′. a → a′

(b) a normal form of a′ if a′ →∗ a and a is in normal form. ��

374 M. Schäfer, W. Vogler, and P. Jančar

Lemma 15.

1. A terminating relation is confluent iff it is locally confluent.
2. If → is terminating and confluent, every element has a unique normal form.

Next, we model the behaviour of the decomposition algorithm as a reduction
system. As explained in the introduction, we can restrict ourselves to the pro-
cessing of one net, where repeatedly structurally redundant places are removed
and transitions from a distinguished set are securely contracted. Also, we con-
centrate on live marked graphs, although the reduction rules below are actually
defined for general nets; Theorem 20 gives a result for general Petri nets.

Definition 16. Let MGR := {(N,Λ)|N is a live marked graph, Λ ⊆ T}, where
Λ denotes the set of internal transitions to be contracted. We define the following
reduction rules on MGR.

1. (N,Λ) →stc (N
t
, Λ − {t}), where secure contraction of t ∈ Λ is applied.

2. (N,Λ) →rpd (N ′, Λ) if N ′ is obtained from N by deleting a redundant place.
3. →red = →stc ∪ →rpd ��

These reductions are well-defined according to the following proposition.

Proposition 17. Applying →red preserves the marked graph properties (Defi-
nition 6) as well as liveness.

Proof. Deleting a redundant place does not change the firing sequences of the
net and therefore liveness is preserved. Since the other places are not affected,
the marked graph properties remain valid.

Let p′ = (p1, p2) be a place resulting from a secure transition contraction.
Since p1 has exactly one transition in its preset, so has p′, and analogously for the
postset. Since the contraction of a transition t shortens each cycle c containing
t but leaves MN (c) unchanged, the cycles of N

t
still contain at least one token

each, and thus N
t

is live. ��
Furthermore, →red is a terminating reduction, as noted in [VW02] for general

Petri nets: only finite nets are considered, →stc reduces the number of transitions,
this stays the same under →rpd, and →rpd reduces the number of places.

Each normal form of (N,Λ) ∈ MGR is a possible result of the decomposition
algorithm; thus, by Lemma 15, it suffices to show that →red is locally confluent
in order to prove decomposition to be determinate, because in this case every
element of MGR has a unique normal form; recall that we regard isomorphic
nets as equal.

To show the local confluence of →red, we need to show the local confluence
for every of the three combinations of →stc and →rpd.

Local Confluence of →stc

We will show now the local confluence for secure transition contractions in live
marked graphs. Before that, a result for arbitrary transition contractions in
arbitrary Petri nets similar to local confluence is given, namely Theorem 20,
which is something like a weak diamond property.

Determinate STG Decomposition of Marked Graphs 375

Table 1. Structures of possible places after two transition contractions. This table
is obtained from all syntactically possible places by omitting cases which contains a
leading �, e.g. (�, (p, �)). Here, p is only a placeholder for an arbitrary place; in Table 2
all possible allocations are considered

Group Structure

1 ((p, �), �)

2 ((p, p), �)

3 ((p, �), (p, �))

4 ((p, �), (p, p))

5 ((p, p), (p, �))

6 ((p, p), (p, p))

Definition 18. Let N be a Petri net and N ′ a Petri net obtained from N
by arbitrary transition contractions. Each p′ ∈ P ′ is a structured tuple with
components from P ∪ {�}. MN ′

N (p′) is defined as the multi-set of those places
p ∈ P occurring in p′. ��

As an example: Let N be a Petri net with P = {p1, p2, . . . , pn}, then
MN ′

N (((((p1, �), (p2, �)), �), (((p1, �), (p3, p4)), �))) = {2 · p1, p2, p3, p4}.
Lemma 19. Let N be a Petri net, N ′ = N

t1,t2 and p′1, p
′
2 ∈ P ′. If N

t2,t1 is
defined as well, MN ′

N (p′1) = MN ′
N (p′2) implies p′1 = p′2.

Proof. This proof works with the Tables 1 and 2. In the first one, all possibilities
for the structure of a place after two transition contractions are listed. In the
latter one these 6 cases are instantiated resulting in 30 combinations of places
from the original net.

As indicated in Table 2 many of the combinations are actually not posssible
for simple reasons. For example, if (p1, p1) is part of the place then p1 ∈ •t1
and p1 ∈ t1

•, a contradiction since a contraction of a transition with a loop is
not defined. As another example, case 23 drops out, because p1 belongs to the
preset of t1 due the occurrence of (p1, p2), and on the other hand p1 is element
of its postset, due to the occurrence of (p2, p1). Therefore p1 forms a loop with
the first contracted transition. With the same argumentation cases 24 and 28
are impossible.

The remaining impossible cases 25, 27, and 30 are considered in more detail.
Case 25 leads either to a loop after contracting t1 or to an arc with weight

2 after contracting t2, see Figure 1. Case 27 is very similar to the previous one,
only the pre- and postsets of t1 are exchanged.

At last case 30 remains which is more complicated but nevertheless turns out
to be impossible, see Figure 2.

In summary, it sufficies to consider the cases 1, 3, 5, 10 and 15 (also shown
in Table 3, middle column, the last column is used later). We distinguish three
cases for MN ′

N (p′1).

1. MN ′
N (p′1) = {p1} = MN ′

N (p′2). This is only possible if both p′1 and p′2 are in
the form of case 1 which implies p′1 = p′2.

376 M. Schäfer, W. Vogler, and P. Jančar

Table 2. All combinatory possible places (up to isomorphism) after contraction of t1
and then t2. This table is obtained from Table 1 by instantiating p. The places pi are
pairwise different. The places which have an ’type error’-entry are not possible, since
a place is treated as being and at the same time as not being adjacent to a contracted
transition; ’initial loop’ means that there is a loop at one of the transitions initially.
Rows with a leading � are considered in greater detail in the text

No. Group # Places Example Possible If not, why?

� 1 1 1 ((p1, �), �) •
2 2 1 ((p1, p1), �) - initial loop p1 − t1

� 3 2 2 ((p1, p2), �) •
4 3 1 ((p1, �), (p1, �)) - initial loop p1 − t2

� 5 3 2 ((p1, �), (p2, �)) •
6 4 1 ((p1, �), (p1, p1)) - type error

7 4 2 ((p1, �), (p1, p2)) - type error
8 4 2 ((p1, �), (p2, p1)) - type error
9 4 2 ((p2, �), (p1, p1)) - initial loop p1 − t1

� 10 4 3 ((p1, �), (p2, p3)) •
11 5 1 ((p1, p1), (p1, �)) - type error

12 5 2 ((p1, p1), (p2, �)) - initial loop p1 − t1
13 5 2 ((p1, p2), (p1, �)) - type error
14 5 2 ((p2, p1), (p1, �)) - type error

� 15 5 3 ((p1, p2), (p3, �)) •
16 6 1 ((p1, p1), (p1, p1)) - initial loop p1 − t1
17 6 2 ((p1, p1), (p1, p2)) - initial loop p1 − t1
18 6 2 ((p1, p1), (p2, p1)) - initial loop p1 − t1
19 6 2 ((p1, p2), (p1, p1)) - initial loop p1 − t1
20 6 2 ((p2, p1), (p1, p1)) - initial loop p1 − t1
21 6 2 ((p1, p1), (p2, p2)) - initial loop p1 − t1 and p2 − t1
22 6 2 ((p1, p2), (p1, p2)) - loop after contracting t1
23 6 2 ((p2, p1), (p1, p2)) - initial loop p1 − t1
24 6 3 ((p1, p2), (p3, p1)) - initial loop p1 − t1

� 25 6 3 ((p1, p2), (p1, p3)) - loop after contracting t1 or
weight 2 after contracting t2
first

26 6 3 ((p1, p1), (p2, p3)) - initial loop p1 − t1
� 27 6 3 ((p2, p1), (p3, p1)) - loop after contracting t1 or

weight 2 after contracting t2
first

28 6 3 ((p2, p1), (p1, p3)) - initial loop p1 − t1
29 6 3 ((p2, p3), (p1, p1)) - initial loop p1 − t1

� 30 6 4 ((p1, p2), (p3, p4)) - loop or weight 2 after contract-
ing t2 first

2. MN ′
N (p′1) = {p1, p2} = MN ′

N (p′2). Hence, p′1, p
′
2 ∈ {((p1, p2), �), ((p2, p1), �),

((p1, �), (p2, �)), ((p2, �), (p1, �))}. If a fixed p′1 from this set occurs in the net
N

t1,t2 it is not possible that a different element from this set occurs, too;

Determinate STG Decomposition of Marked Graphs 377

(a)

������
������
������
������

������
������
������
������

1

2 3

1 2

(b)

�������
�������
�������
�������

������
������
������
������

1

2 3

1 2

Fig. 1. Case 25 - p′ = ((p1, p2), (p1, p3)). p1 has to be an element of •t1 p2 and p2, p3

have to be elements of t1
•. Then there are 4 cases: 1) p1 ∈ •t2, p3 ∈ t2

•: loop after
contracting t1, see (a) 2) p1 ∈ •t2, p1 ∈ t2

•: initial loop p1−t1 3) p2 ∈ •t2, p1 ∈ t2
•:

loop after contracting t1 4) p2 ∈ •t2, p3 ∈ t2
•: weight 2 after contracting t2, see (b)

1

2

3

4

1 2������
������
������
������

������
������
������
������

1

2

3

4

1 2������
������
������
������

������
������
������
������

(a) (b)

Fig. 2. Case 30 - ((p1, p2), (p3, p4)). p1 and p3 have to be in the preset of the first
transition to be contracted (t1), p2 and p4 in the postset. For the connection to t2 there
are several possibilities; all of them satisfy that p1 or p2 (or both) are in the preset and
p3 or p4 (or both) are in the postset, which leads to 9 sub-cases. Exemplarily two of
them are considered. (a) leads to an arc with weight 2 when t2 is contracted first and
(b) leads to a loop. The other cases are similar to these ones or contain them

for example: if p′1 = ((p1, p2), �) there is no place p′′1 = ((p2, p1), �), since the
existence of p′1 implies that p1 is an element of •t1 but the existence of p′′1
implies p1 is an element of t1

•; a contradiction, since the contraction was pos-
sible. With similar argumentations one can exclude the other combinations.
Hence, MN ′

N (p′1) = MN ′
N (p′2) implies p′1 = p′2 for this case.

3. MN ′
N (p′1) = {p1, p2, p3} = MN ′

N (p′2). Analogous to the second case we obtain
twelve possible structures for p′1, p

′
2 resp. which all exclude each other as

places of P ′, see the following table.

1 ((p1, p2), (p3, �)) 7 ((p1, �), (p2, p3))
2 ((p1, p3), (p2, �)) 8 ((p1, �), (p3, p2))
3 ((p2, p1), (p3, �)) 9 ((p2, �), (p1, p3))
4 ((p2, p3), (p1, �)) 10 ((p2, �), (p3, p1))
5 ((p3, p1), (p2, �)) 11 ((p3, �), (p1, p2))
6 ((p3, p2), (p1, �)) 12 ((p3, �), (p2, p1))

378 M. Schäfer, W. Vogler, and P. Jančar

Without loss of generality, assume p′1 = ((p1, p2), (p3, �)) (case 1) or p′1 =
((p3, �), (p1, p2)) (case 11). (p3, �) implies that p3 is not adjacent to t1, and
therefore the existence of such a place excludes the existence of places 2,4-10.
The remaining cases 3 and 12 can be excluded, since (p2, p1) implies p1 ∈ t1

•

whereas p′1 implies p1 ∈ •t1; in this case p1 would be a loop place which is
a contradiction. Case 1 cannot coexist with case 11, since the latter implies
(p1, p2) ∈ t2

• whereas the former case implies (p1, p2) ∈ •t2 after contracting
t1, also a contradiction. ��

Table 3. Possible places after two transition contractions. In the middle column one can
find the places from Table 2 which turned out to be possible according to Definition 9.

In each case there exists a place in N
t2,t1 which uses the same places from N as the

one in the middle column. This place is shown in the last column; for line 4 and 5 there
are two possibilities, but only one of them exists

No. N
t1,t2 N

t2,t1

1 ((p1, �), �) ((p1, �), �)

2 ((p1, p2), �) ((p1, �), (p2, �))

3 ((p1, �), (p2, �)) ((p1, p2), �)

4 ((p1, �), (p2, p3)) ((p1, p2), (p3, �)) / ((p2, �), (p1, p3))

5 ((p1, p2), (p3, �)) ((p1, �), (p2, p3)) / ((p1, p3), (p2, �))

Theorem 20. Let N be a Petri net and t1, t2 ∈ T . If both N
t1,t2 and N

t2,t1 are
defined then they are isomorphic (even if the contractions are not secure).

Proof. For this proof Table 3 is used again; the last column shows the place of
N2 = N

t2,t1 , which uses the same places from N as the place from N1 = N
t1,t2

in the middle column. If there are two possibilities, only one of them exists. For
lines 1-3, it is quite clear that these places exist in N2, for line 4 see Figure 4:
since the place ((p1, �), (p2, p3)) exists in N

t1,t2 , N must contain the net fragment
(a); observe that exactly one of the dotted arcs exists but not both (in this case
contracting t1 would generate an arc with weight 2). Depending on which arc
exist in N

t2,t1 , exactly one of the places in the last column exists. Line 5 is
analogous.

We define a relation f ⊆ P1 × P2 ∪ T1 × T2 by f |T1×T2 = Id and (p′1, p
′
2) ∈

f ⇔ MN1
N (p′1) = MN2

N (p′2). We will show that f is an isomorphism.
a) f is a partial function: (p′1, p

′
2), (p

′
1, p

′′
2) ∈ f ⇒ MN2

N (p′2) = MN2
N (p′′2).

Lemma 19 implies p′2 = p′′2 .
b) f is total (surjective): After two contractions each place p′1 ∈ P1 has a

structure shown in Table 3, middle column, and MN1
N (p′1) = MN2

N (p′2) holds for
the corresponding place p′2 in the last column. Analogous for surjective.

c) f is injective: f(p′1) = f(p′′1) ⇒ MN1
N (p′1) = MN1

N (p′′1). From Lemma 19
follows p′1 = p′′1 .

Determinate STG Decomposition of Marked Graphs 379

1

2

3

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������2

1

1 1

(3,*)

(1,2) (2,*)

(1,3)

a

b

(a) (b) (c)

Fig. 3. For line 4 from Table 3. Since the place ((p1, �), (p2, p3)) exists in N
t1,t2 , N

must contain the net fragment (a); observe that exactly one of the dotted arcs exists
but not both (in this case contracting t1 would generate an arc with weight 2). If arc a,
b resp. exists, contracting t2 first results in (b), (c) respectively; the next contraction
results in ((p1, p2), (p3, �)), ((p2, �), (p1, p3)) resp. as it is written in the last column

d) f preserves the structure, i.e. W1(p′1, t) = W2(f(p′1), f(t)), W1(t, p′1) =
W2(f(t), f(p′1)) ∀p′1 ∈ P1, t ∈ T1. This follows from the definition of tran-
sition contraction. Since the weight of an arc incident to a composite place
is the sum of the related weights of the component places, we derive that
W1(p′1, t1) =

∑
p∈M

N1
N (p′

1)
W (p, t1) =

∑
p∈M

N2
N (f(p′

1))
W (p, t1) = W2(f(p′1), f(t1)).

Observe that for every place p′1 of N1 shown in Table 3, MN1
N (p′1) is a set. Anal-

ogous for the second case. ��

The proof for the following lemma uses Theorem 20; if this is not applica-
ble, we show that – since N ∈ MGR – in N1 and N2 loop-only places can be
deleted such that the contraction of t2 and t1 resp. is applicable afterwards. Af-
ter the contraction, extended duplicates can be deleted such that the results are
isomorphic.

Lemma 21. For (N,Λ) ∈ MGR, let (N,Λ) →stc (N1, Λ1) and (N,Λ) →stc

(N2, Λ2). Then, there exists (N ′, Λ′) ∈ MGR with (N1, Λ1) →∗
red (N ′, Λ′) and

(N2, Λ2) →∗
red (N ′, Λ′).

Proof. Let the contractions concern transition t1 and t2. If both N
t1,t2 and N

t2,t1

are defined, Theorem 20 implies that the results are isomorphic. In this case even
the diamond property is fulfilled.

Therefore assume that w.l.o.g. N
t1,t2 is not defined. Since N1 = N

t1 is defined
by hypothesis, the contraction of t2 is not possible in N1, although it is possible
in N . Since N1 is a marked graph — in particular no arc weight becomes greater
than 1 —, the contraction of t1 in N must have generated a loop place adjacent to
t2, because t1 and t2 form a cycle with two places in N . Since N is a live marked
graph, this cycle contains at least one token making the loop place redundant.

This situation is schematically shown in Figure 4(a): each place represents a
set of places connected to t1 and t2 in the same way, e.g. places of type 1 are in
the preset of t1 and not adjacent to t2. Figure 4(b) and (c) depict the results of

380 M. Schäfer, W. Vogler, and P. Jančar

(a)

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

1 2 3

4 5 6

1 2

(1,4)

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

2

(1,5)

(2,4) (3,*)

(6,*)

(2,5)

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

1

(1,*)

(4,*)

(5,2) (6,3)

(5,3)

(6,2)

(b) (c)

Fig. 4. (a) Scheme of a net fragment where contraction generates a loop (b) After
t1-contraction (c) After t2-contraction

contracting t1 and t2 resp. in the same way, e.g. places of type (2, 4) are pairs
(p, p′) with p of type 2 and p′ of type 4.

Places of type (2, 5) and (5, 2) are loop-only places, which can be removed
as noted above; afterwards, the other transition contraction becomes possible.
These contractions give places of types ((1, 4), ∗), ((1, 5), (3, �)), ((1, 5), (2, 4)),
((6, ∗), (2, 4)), ((6, ∗), (3, ∗)) in the first case and ((1, ∗), (4, ∗)), ((1, ∗), (5, 3)),
((6, 2), (5, 3)), ((6, 2), (4, ∗)), ((6, 3), ∗) in the second. We will argue that the re-
sulting nets are isomorphic after removal of some redundant places.

As noted in the proof of Theorem 20, the connections of these places to the
remaining transitions are determined by their at most four components, and
analogously for the initial marking. In particular, places of type ((1, 5), (2, 4))
are connected in the same way as places of type ((1, 4), ∗) in the first case – since
t1 and t2 are not present anymore – and they carry even more tokens, since at
least one of a type-2 and a type-5 place is marked in N . Therefore, places of type
((1, 5), (2, 4)) are extended duplicates, and so are places of type (6, 2), (5, 3)); we
remove them in the two nets.

For the other types, we find a matching between ((1, 4), ∗) and ((1, ∗), (4, ∗)),
((1, 5), (3, ∗)) and ((1, ∗), (5, 3)) etc., which matches each place of type ((1, 4), ∗)
to the place of type ((1, ∗), (4, ∗)) with the same component-places etc. By the
above, this gives an isomorphism between the remaining nets when the above
extended duplicates are removed. ��

Local Confluence of →rpd

We will now proceed to the next part of the local confluence proof. Although
the local confluence of redundant place deletion might seem rather obvious, in
fact some effort is already needed to prove it at least for marked graphs.

Determinate STG Decomposition of Marked Graphs 381

p1

p2q1
1 q1

m

q2
nq2

1

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Fig. 5. Two redundant places p1, p2 with p1 �∈ Q2, p2 ∈ Q1

Let p1, p2 be redundant places of N ∈ MGR with p1 �= p2. If one of them,
lets say p1, is a loop-only place, then p2 �∈ Q1 = ∅ and p1 �∈ Q2, because p1 is
only adjacent to one transition. This case obviously fulfils the diamond property,
since the deletion of one of the redundant places does neither affect the other
one nor its reference set.

Due to Theorem 13 we can now assume that p1 and p2 are shortcut places
and the reference sets consist of the places of the corresponding paths.

We will distinguish three cases: 1) p1 �∈ Q2, p2 �∈ Q1, 2) p1 �∈ Q2, p2 ∈ Q1

(w.l.o.g.) and 3) p1 ∈ Q2, p2 ∈ Q1.
The first case is treated as above. For the second case take a look at Figure

5. Since p1 is not a loop-only place, p2 lies on a Q1-path w1 = •p1q
1
1 . . . qm

1 p1
•.

Since p2 is not a loop-only place either, a Q2-path w2 = •p2q
1
2 . . . qn

2 p2
• ex-

ists. This implies that there is a path w connecting •p1 and p1
• and using only

places from q1
1 . . . qm

1 excluding p2 and from q1
2 . . . qn

2 . MN (p1) ≥ ∑m
i=1 MN (qi

1)
and MN (p2) ≥ ∑n

i=1 MN (qi
2) (Definition 7(1)) directly imply that MN (p1) ≥∑m

i=1 MN (qi
1) − MN (p2) +

∑n
i=1 MN (qi

2); hence, w also shows that p1 is redun-
dant; the corresponding reference set does not contain p2 and we are done by
case (1).

The last case p1 ∈ Q2, p2 ∈ Q1 is impossible, because it implies

MN (p1) ≥
∑

q∈Q1\{p2}
MN (q) + MN (p2) MN (p2) ≥

∑

q∈Q2\{p1}
MN (q) + MN (p1)

From this we get immediately:

MN (p1) = MN (p2) and
∑

q∈Q1\{p2}
MN (q) =

∑

q∈Q2\{p1}
MN (q) = 0 (∗)

Since p1 ∈ Q2, there are Q2-paths •p2 . . . •p1 and p1
• . . . p2

• not using p1, and
analogously there are Q1-paths •p1 . . . •p2 and p2

• . . . p1
• not using p2. Therefore,

either a cycle c using only places from (Q1∪Q2)\{p1, p2} exists which contradicts
N being live by Lemma 12, since (∗) implies MN (c) = 0; or (Q1∪Q2)\{p1, p2} =
∅. In the latter case, p1 and p2 are extended duplicates of each other with the
same initial marking; thus, removing either of them gives the same net up to
isomorphism.

Altogether the following lemma holds.

382 M. Schäfer, W. Vogler, and P. Jančar

Lemma 22. Let (N,Λ) →rpd (N1, Λ1) and (N,Λ) →rpd (N2, Λ2) for some
(N,Λ) ∈ MGR. Then an (N ′, Λ′) ∈ MGR exists with (N1, Λ1) →=

rpd (N ′, Λ′)
and (N2, Λ2) →=

rpd (N ′, Λ′).

Observe that two steps of →rpd fulfil the diamond property or lead to iso-
morphic results; in particular we have not used →stc.
Local Confluence of →stc and →rpd

Lemma 23. Let (N,Λ) →rpd (N1, Λ1) and (N,Λ) →stc (N2, Λ2) for some
(N,Λ) ∈ MGR. Then, there exists an (N ′, Λ′) ∈ MGR with (N1, Λ1) →∗

red

(N ′, Λ′) and (N2, Λ2) →∗
red (N ′, Λ′).

Proof. Let p be the redundant place and t the transition to be contracted. In
live marked graphs p is either a loop-only place or a shortcut place.

In the first case t and p are not adjacent because the contraction of t is possible
for (N,Λ), i.e. p forms a loop with another transition and the operations can be
performed independently.

If p is a shortcut place, there are the following possibilities: 1) t is neither
adjacent to p nor part of the path making p redundant; then both operations are
independent of each other again. 2) t is part of the path but not adjacent to p.
The contraction of t shortens the path but does not interrupt it, and also the sum
of the markings remains unchanged; hence, the two operations are independent.
3) t is adjacent to the path and p – leading to two sub-cases, one of them shown
in Figure 6(a). In the other one, analogously the path starts from t and p ∈ t•.

We will only consider the case depicted in (a), with the results of contraction
and deletion shown in (b) and (c) resp. Each place (ps, pxi) in (b) is a shortcut

3

n

x1 xk

x1 xk

1

1

s

2

n+1

n

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

3x1 xk

1

(1,*)

n

2

(n,xk)

(s,xk)

(n,x1)

(s,x1)

������
������
������
������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

3

x1 xk

x1 xk

1

n+1

n

1

2

n

������
������
������
������

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

(a) (b) (c)

Fig. 6. Confluence of shortcut place deletion and transition contraction. (a) p ≡ ps is
a shortcut place of {p1, . . . , pn} and t ≡ tn+1 is the transition to be contracted. The
net in (b) is obtained by contracting tn+1, (c) by deleting ps

Determinate STG Decomposition of Marked Graphs 383

place of {(p1, ∗), . . . , (pn−1, ∗), (pn, pxi)} because they give a path and the ini-
tially marking of this path as well as MN (ps) are increased by the same value
MN (xi). Therefore, these shortcut places can be deleted yielding a Petri net
which also results from (c) when contracting t. ��

Altogether, our results can be collected in the central theorem of this section.

Theorem 24. The reduction rule →red is confluent and terminating for live
marked graphs.

Corollary 25. The STG-decomposition algorithm of [VW02] is determinate for
live marked graphs.

In [CCJS94] a decomposition of strongly connected live marked graphs into
two components is considered. In this approach the nets are unlabelled, while our
STG decomposition is directed by the labelling with signal transitions; therefore
the decomposition of [CCJS94] is not applicable in our setting.

What is interesting is that in the decomposition of [CCJS94] a whole sub-
net is removed and this could be used in our setting to remove several internal
transitions together. A result of [CCJS94] implies that this removal preserves
the language, but this does not immediately imply that subnet removal can be
used to determine correct STG decompositions in the sense of [VW02]. In fact,
the correctness criterion of [VW02] is of bisimulation type, but does not imply
language equivalence. Furthermore, redundant place deletion and secure transi-
tion contractions always lead to a correct decomposition while subnet removal
presupposes liveness and strong connectedness. Liveness is a precondition for
determinacy of STG decomposition but not for its correctness.

Nevertheless subnet removal might be closely related to redundant place dele-
tion and secure transition contractions. If one could show some sort of coinci-
dence this might lead to an alternative proof of our determinacy result. Such a
result would not imply that subnet removal is more efficient; the latter involves
solving an all-pairs shortest paths problem, which takes time of O(n3) where n
is the number of removed internal transitions plus the number of ”neighbouring”
non-internal transitions.

5 Conclusion

We have shown that the STG decomposition algorithm presented in [VW02] is
determinate if applied to live marked graphs, a subclass of considerable interest
in the area of circuit design. The proof of this result is based on several state-
ments, and only one of them could be shown for general Petri nets. It would be
clearly interesting to generalise some other partial results to other net classes. We
currently look at nets where the marked-graph requirements are only violated ‘in
a few places’; such nets also turn up often in circuit design. A problematic point
is that our proofs rely several times on the liveness characterisation of marked
graphs via the markings of cycles.

384 M. Schäfer, W. Vogler, and P. Jančar

Related to the determinacy result, but also of independent interest, is the
conceptionally and algorithmically easy characterisation of redundant places in
live marked graphs, for which we provided a new easy proof. Again, we would like
to generalise this result; it is clear that in S-Systems [DE95] — which coincide
with finite automata — no place can be redundant if every place has at least one
transition in its postset, and we currently consider a generalisation to free-choice
nets, which is not obvious at all.

Acknowledgement: We thank the anonymous referees for their comments
which helped to improve the paper.

References

[Ber87] G. Berthelot. Transformations and decompositions of nets. In W. Brauer
et al., editors, Petri Nets: Central Models and Their Properties, Lect. Notes
Comp. Sci. 254, 359–376. Springer, 1987.

[Bes87] E. Best. Structure theory of Petri nets: The free choice hiatus. In
W. Brauer et al., editors, Petri Nets: Central Models and Their Properties,
Lect. Notes Comp. Sci. 254, 168–205. Springer, 1987.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, Cambridge, 1998.

[CCJS94] J. Campos, J. M. Colom, H. Jungnitz, and M. Silva. Approximate through-
put computation of stochastic marked graphs. In IEEE Transactions on
Software Engineering 20, pages 526–535, 1994.

[Chu87] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, MIT, 1987.

[CKK+97] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers. IEICE Trans. Information and
Systems, E80-D, 3:315–325, 1997.

[DE95] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University
Press, Cambridge, 1995.

[STC98] M. Silva, E. Teruel, and J.M. Colom. Linear algebraic and linear pro-
gramming techniques for the analysis of place/transition net systems. In
Lectures on Petri Nets I; Basic Models, LNCS 1491, 309–373. Springer,
1998.

[VW02] W. Vogler and R. Wollowski. Decomposition in asynchronous circuit de-
sign. In J. Cortadella et al., editors, Concurrency and Hardware Design,
Lect. Notes Comp. Sci. 2549, 152 – 190. Springer, 2002.

	Introduction
	Basic Definitions
	Redundant Places in Marked Graphs
	Determinacy of Petri Net Operations
	Conclusion
	References

