
Selected Topics of Theoretical Computer Science

(Vybrané partie z teoretické informatiky, VPTI, 460-4115)

Petr Jančar
katedra informatiky FEI VŠB-TU Ostrava

6. listopadu 2014

Poznámka k textu. Jedná se o studijní oporu k uvedenému kurzu, speciálně zamýšlenou
pro studenty kombinované formy studia. Text je psán v angličtině, což by v magisterském
studiu informatiky neměl být pro studenty problém. Text má 5 částí (kapitol), které zhruba
odpovídají plánovaným 5 tutoriálům v semestru.

1

Část 1

1 RSA-cryptosystem, and the underlying theory

The aim of this section is to recall the RSA cryptographic method and the necessary theory
showing its correctness, computational complexity, etc.

For a more thorough study, one can use, e.g., [1] and other sources (including, of course, the
Internet . . .)

1.1 Creating an RSA system

RSA (Rivest, Shamir, Adleman) is a particular method which can be used for the public-key
cryptography.

A concrete RSA system is created as follows:

1. Choose randomly two different prime numbers p, q whose binary length is, say, approx.
500 bits (for each of them).

2. Compute n = pq and Φ(n) = (p−1)(q−1). (Notation Φ(n) is clarified later.)

3. Choose some (small, odd) e, 3 ≤ e < Φ(n), such that gcd(e,Φ(n)) = 1 (where gcd
denotes the greatest common divisor).

4. Compute d, 0 < d < Φ(n), such that ed ≡ 1 (mod Φ(n)).

5. Make (e, n) public (this pair is the public key). A (block of a) message is (viewed as) a
number M, 0 ≤ M < n. The encryption function is enc(M) =M e mod n.

6. The secret key is (d, n). The decryption function is dec(C) = Cd mod n.

The following subsections serve for clarifying the notions, feasibility, correctness, etc.

1.2 Size of inputs and cost of arithmetic operations

When dealing with number a (in this text, by numbers we mean integers, elements of Z, or
nonnegative integeres, elements of N, depending on the context), we assume that the size of
its description is β = log a (the binary length; by log we mean the base-2 logarithm; we are
aware of the necessary rounding to integers, which is not directly reflected in our notation).

Performing an arithmetic operation with two large numbers cannot be taken as a single step
when analysing the computational complexity. It is necessary to estimate the number of bit
operations in such a case.

Exercise:

- Show that adding (subtracting) two β-bit integers can be done in time O(β).

- Show that multiplication is in O(β2).

2

- Show that the (integer) division and computing the remainder (the mod -function) are both
in O(β2). (Give a pseudocode of an algorithm.)

Remark. By ‘divide-and-conquer’ one can get for multiplication O(βlog2 3); the (asymptoti-
cally) fastest known algorithm is in O(β log β log log β). Nevertheless, the classical algorithms
are sufficient for practice.

Exercise (optional):

- Suppose that multiplication or division of integers can be performed in time M(β). Show
that the binary-to-decimal conversion can be done in time O(M(β) log β). (You can use a
‘divide-and-conquer’ approach.)

- Show a polynomial algorithm to decide if a given n is a nontrivial power, i.e., if n = ak for
some k > 1.

1.3 Divisibility, primes, gcd, unique factorization (prime decomposition)

We define, for a, b ∈ Z:

a|b (a divides b, or b is divisible by a) iff ∃c ∈ Z : ca = b .

E.g.: 6|18, −6|18, 6|−18, 6 6 | 14, ∀a ∈ Z : a|0 (also 0|0).
Recall the notion of (nonnegative) common divisors of two (or more) numbers, and the notion
of the greatest common divisor ; we put gcd(0, 0) = 0.

Exercise. For a = 50, b = 35 find all elements of the set {ax+ by | x, y ∈ Z} which belong to
the interval −20,−19, . . . , 19, 20. Argue that you have really found all of them.
Theorem: When a, b are not both 0, gcd(a, b) is the smallest positive in the set
{ax+ by | x, y ∈ Z} (of linear combinations of a, b).
Exercise. Prove the theorem. (Hint. Let A = {m | m > 0 ∧ ∃x, y ∈ Z : m = ax + by}, and
let d = gcd(a, b). Since ∀m ∈ A : d|m, the smallest element of A can be written cd for c ≥ 1,
and all ax+ by (x, y ∈ Z) can be written icd for some i ∈ Z (why?). Thus cd|a, cd|b (why?).)
Theorem: If gcd(a, b) = gcd(a, c) = 1 then gcd(a, bc) = 1.

Exercise. Prove the theorem. (Hint. By the previous theorem we have ax1 + by1 = 1, and
ax2 + cy2 = 1. Multiply (the left- and the riht-hand sides of) these two equations.)

We recall that p ≥ 2 is a prime iff there is no a, 1 < a < p, such that a|p (there is no factor,
i.e. a nontrivial divisor, of p).

Theorem. Every number n ≥ 2 has a unique factorization (decomposition to primes), i.e.,
n can be uniquely presented as n = pe11 p

e2
2 · · · pekk for some primes p1 < p2 < · · · < pk and

exponents ei ≥ 1.
Exercise. Can you prove the theorem? (Hint. Derive from a previous theorem that for prime
p we have: p|ab ⇒ (p|a ∨ p|b). Then, for the sake of contradiction, assume the least m =
pe11 p

e2
2 . . . pekk = qb11 q

b2
2 . . . qbℓℓ with two different prime decompositions . . .)

Remark. Despite intensive research effort, no efficient algorithms for factoring an integer
(in particular for finding p, q when given their product n in the RSA system) have been
found. Since no other methods for cracking (enhanced) RSA have been found either, this
cryptographic system is considered secure. (But the system should satisfy further conditions,

3

like not having p, q close to each other etc.; in practice, further improvements of the basic
RSA method, and combinations with other methods, are used.)

Exercise.

- Define gcd(a, b) using the prime decompositions a = pe11 p
e2
2 · · · pekk , b = q

e′
1

1 q
e′
2

2 · · · qe
′

k′

k′ .

- Similarly define the least common multiple lcm(a, b).

- Generalize the notions of gcd and lcm for pairs to finite sets of numbers.

- Show that if there is a polynomial algorithm for some NP-complete problem (i.e., if P=NP)
then there is a polynomial algorithm for factoring integers. (Hint. Note that the problem
“Given n, k, is there a factor of n which is less than k ?” is in NP. We could thus use binary
search for finding a factor.)

1.4 Modular arithmetic, Fermat’s little theorem

We recall the operations ÷ (integer division, div) and mod (remainder of division) as well as
the well-known equation (for a ∈ Z, n > 0):

a = ((a÷ n) · n) + (a mod n)

E.g.: for a = −17, n = 5 we get −17 = −4 · 5 + 3; for a = 17, n = 5 we get 17 = 3 · 5 + 2.
Recall that 0 ≤ a mod n < n.

We recall what
a ≡ b (mod n)

means (we have already used this in the description of RSA); it just means a mod n = b mod n.
E.g. −17, 3, 628 all belong to the same equivalence class of ≡ (mod 5).

We define Zn = {0, 1, . . . , n − 1} for n ≥ 1 (e.g., Z6 = {0, 1, 2, 3, 4, 5}) and recall that the
operations of addition, subtraction, and multiplication are well defined on the equivalence
classes of ≡ (mod n) (the equivalence classes can be represented by the elements of Zn).

Exercise. Show that ab mod n = ((a mod n) · (b mod n)) mod n.
Remark. Observe the problem with division, i.e. the problem that some nonzero elements
a ∈ Zn might not have a multiplicative inverse a−1, where aa−1 = 1. This does not happen
iff n is prime; saying algebraically: Zn is a field iff n is prime.

Exercise:
- Suppose p is a prime and 0 < k < p ; show that p |(pk).
- Deduce that (a+ b)p ≡ ap + bp (mod p) (where p is a prime).

- Then deduce that ap ≡ a (mod p) for all a ∈ Zp. (Use that 2p = (1 + 1)p etc.)

- Derive (the following version of) Fermat’s little theorem:

if p is prime then ap−1 ≡ 1 (mod p) for every a, 1 ≤ a ≤ p− 1.
- Note the other direction: it is impossible that an−1 = 1 + kn when gcd(a, n) = d ≥ 2.

4

1.5 Modular exponentiation (by repeated squaring)

Exercise. Compute 7560 mod 561, with an aim of devising a general efficient algorithm for
computing ab mod n. (After you are done, look at the following algorithm.)

One possibility of a general procedure

Modular−Exponentiation(a, b, n) computing ab mod n :

Suppose b in binary is bkbk−1 . . . b1b0

c := 0; d := 1;

(* invariant: d = ac mod n; variable c is used only for this invariant*)

for i := k downto 0 do

(c := 2c; d := d2 mod n; if bi = 1 then (c := c+ 1; d := d · a mod n))

Exercise.

- What is the binary description of c after j runs of the cycle ?

- Show that the procedure performs O(β) arithmetic operations, and that the overall number
of bit operations is in O(β3).

Remark. Another possibility is to compute a1 mod n, a2 mod n, a4 mod n, a8 mod n, . . .

(using, of course, a2
i+1
mod n = ((a2

i
mod n) · (a2i mod n)) mod n)

and then multiply the computed a2
j
mod n for all j such that bj = 1 in bkbk−1 . . . b1b0.

Remark. We have thus shown that encrypting and decrypting in the RSA system can be
performed efficiently.

1.6 Computing gcd, extended Euclid algorithm

Exercise.

- Show that gcd(a, b) = gcd(b, a mod b) for a ≥ b > 0.

- Recalling gcd(a, 0) = a, devise a recursive algorithm (Euclid’s algorithm) for computing
gcd(a, b) where a, b ≥ 0.
- Suppose that we have x, y ∈ Z such that bx + (a mod b)y = gcd(b, a mod b) (= gcd(a, b)).
Find x′, y′ so that ax′ + by′ = gcd(a, b). (Recall that a mod b = a− (a÷ b) · b.)
- Enhance your algorithm (to the extended Euclid’s algorithm) so that it outputs not only
gcd(a, b) for given a, b but also x, y ∈ Z such that ax+ by = gcd(a, b).

- Show that your algorithm runs in time O(β3).

Remark. By a more detailed analysis we could get O(β2).
It is also interesting to note that Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, . . . are the worst-case
for Euclid’s algorithm. Fk is approximately φk/

√
5 where φ is the golden ratio (1.618. . .)

(Golden ratio (divine proportion): A − − − B − −C : AC/AB = AB/BC = φ.
Removing the maximal square from a golden rectangle 1 : φ we get a smaller
golden rectangle . . .)

5

Exercise.

- Consider steps 3., 4. (choosing e and d) in creating an RSA-system. Suppose you have
chosen e and Extended−Euclid(e,Φ(n)) returned gcd(e,Φ(n)) = 1 = xe + yΦ(n). How you
now (immediately) get d (such that de ≡ 1 (mod Φ(n))) ?
- Devise a way of generating candidates for e which you can prove to guarantee finding some
e with gcd(e,Φ(n)) = 1 quickly.

1.7 The Chinese remainder theorem

Take n = 4 · 5 · 9 = 180. Note that 4, 5, 9 are pairwise relatively prime, i.e., gcd(a, b) = 1 for
each pair where a 6= b. Consider the sets

Z180 = {0, 1, 2, . . . , 179}
Z4 × Z5 × Z9 = {0, 1, 2, 3} × {0, 1, 2, 3, 4} × {0, 1, 2, 3, 4, 5, 6, 7, 8}

Any number m ∈ Z180 can be mapped to the triple (m mod 4,m mod 5,m mod 9) in Z4 ×
Z5×Z9. E.g., 54 is mapped to (2, 4, 0). The important thing is that this mapping is one-to-one,
and thus a bijection between Z180 and Z4 × Z5 × Z9:

Consider a triple (a, b, c) ∈ Z4×Z5 ×Z9. There are 5 · 9 = 45 numbers in Z180 which are ≡ a
(mod 4), namely a, a+4, a+8, We note that a, a+4, a+8, a+12, a+16 are all different
wrt ≡ (mod 5), and that a+i·4, a+i·4+20, a+i·4+2·20, a+i·4+3·20, . . . are all equivalent
modulo 5. We thus get precisely 9 numbers in Z180, located periodically with period 4 ·5 = 20,
which are ≡ a (mod 4) and ≡ b (mod 5). The difference m′−m of two different numbers out
of these 9 is j · 4 · 5 for 0 < j < 9 (hence 9 does not divide the difference); the remainders
mod 9 of these 9 numbers thus fill the whole Z9. So there is precisely one number m ∈ Z180

such that m mod 4 = a, m mod 5 = b, m mod 9 = c.

Theorem. (The Chinese remainder theorem) Let n1, n2, . . . , nk be pairwise relatively prime,
and n = n1n2 . . . nk.
Then the following is a one-to-one correspondence between Zn and Zn1 × Zn2 × . . .Znk

:
a ↔ (a1, a2, . . . , ak) where ai ≡ a (mod ni).

Exercise.

- Prove the theorem by generalizing our considerations in the concrete example above. (Hint.
Show this by induction on k, starting with the case n = n1n2.)

- Define naturally (componentwise) addition and multiplication on the set Zn1×Zn2× . . .Znk
,

and show that the above correspondence between Zn and Zn1×Zn2×. . .Znk
is an isomorphism

wrt addition and multiplication.

- Show the following corollaries of the theorem:

• If n1, n2, . . . , nk are pairwise relatively prime and n = n1n2 . . . nk then the set of equati-
ons x ≡ a1 (mod n1), x ≡ a2 (mod n2), . . . , x ≡ ak (mod nk) has a unique solution
modulo n.

• If n1, n2, . . . , nk are pairwise relatively prime and n = n1n2 . . . nk then for all x, a we
have x ≡ a (mod n1), x ≡ a (mod n2), . . . , x ≡ a (mod nk) iff x ≡ a (mod n) .

6

We note in particular that if n = pq, where p, q are different primes, then for all C ∈ Z:
C ≡ 1 (mod n) iff C ≡ 1 (mod p) and C ≡ 1 (mod q).

1.8 Correctness of encryption-decryption in RSA

We note that the basic requirements which a (commutative) encryption-decryption system
has to satisfy follow for RSA from the equation

(M e)d ≡ M (mod n)

for our n = pq, ed ≡ 1 (mod Φ(n)) where Φ(n) = (p− 1)(q − 1).
We note that ed = 1 + kΦ(n) = 1 + k(p− 1)(q − 1) for some k.
We thus want to show that

M ·Mk(p−1)(q−1) ≡ M (mod pq)

By the Chinese remainder theorem it is sufficient to show both the following equivalences:

M ·Mk(p−1)(q−1) ≡ M (mod p)

M ·Mk(p−1)(q−1) ≡ M (mod q)

We look at the first one (the second being similar). For M ≡ 0 (mod p) this obviously holds.
For M 6≡ 0 (mod p) we have M (p−1) ≡ 1 (mod p) due to Fermat’s little theorem; since
Mk(p−1)(q−1) = (M (p−1))k(q−1), we are done.

Exercise. Write the above proof in more detail.

1.9 Generating random primes, the prime number theorem

The remaining problem in creating an RSA system, is the first step, i.e. generating the (large)
random primes. (These primes will be, of course, odd.)

Using some (pseudo)random generator we can generate a random sequence of (approx.) 500
bits (starting and finishing with 1).

Remark. We do not discuss the (pseudo)random generators (PRG) here, we only recall that
the programming languages usually contain some procedures enabling to accomplish our ge-
nerating task. Of course, one should take into account their varying quality and suitability for
our aims, which is another problem to study. E.g. a class of PRG are linear congruential gene-
rators; such a generator, given a seed x0, produces x1, x2, x3, . . . where xi+1 = (axi+b) mod m
for some constants a, b,m. A famous one was RANDU from 1960s [where a = 216 + 3, b = 0,
m = 231] which turned out to be very bad, in fact [due to tight correlations between the suc-
cessively generated numbers]. There are also hardware generators which convert data from a
physical process into a sequence of (hopefully) random numbers, but we stop discussing this
here . . .

Now we need an efficient algorithm testing if the generated number is a prime. If we have
such an algorithm, we can repeatedly generate random numbers until we finally find a prime.

7

The fact that we should succeed in reasonable time follows from the sufficient density of
primes in the set of numbers, which is captured by the following theorem. By π(n) we denote
the number of primes in the set {2, 3, . . . , n}.
The prime number theorem:

lim
n→∞

π(n)

n/ lnn
= 1

This was conjectured by Gauss but proved later (by involved proofs). It can be shown that
π(n) is really very close to n

lnn .

Remark. For our applications, it is sufficient that there are ‘enough’ primes (and we thus
have a sufficient probability to get a prime in a randomly generated sequence of integers).
A corresponding weaker version of the prime number theorem, still sufficient for our aims,
can be proved by a simpler combinatorial proof. Intuitively: each number can be represented
by its prime factorization, and if the primes were essentially less dense than n/ lnn then we
could represent each integer so concisely that we would get a contradiction with simple facts
about ‘Kolmogorov complexity’ of words in {0, 1}∗. (We cannot represent each sequence of n
bits by a sequence of k bits for k < n.) More details can be found, e.g., in [5].

Exercise. Estimate how many random 500-bit numbers we should generate so that the pro-
bability that a prime is among them is greater than 90%. (You might use that ln 2 ≈ 0.69.)
But do we have an efficient algorithm for primality testing?

Exercise. Explain why the straightforward algorithm testing if there is a (nontrivial) divisor
of n (in the range 2, 3, . . . ,

√
n) can not serve for us.

Recalling Fermat’s little theorem, we can consider the following (pseudoprimality testing):

given n,
if Modular−Exponentiation(2, n−1, n) 6= 1 (* i.e., 2n−1 6≡ 1 (mod n) *)
then return “n is COMPOSITE” (definitely)
else return “n is PRIME” (we hope).

This test is surely efficient (why?) and it works surprisingly well for random numbers but can
be ‘fooled’ by some concrete numbers.
We can, of course, add testing if Modular−Exponentiation(3, n−1, n) 6= 1 and/or
if Modular−Exponentiation(a, n−1, n) 6= 1 for a randomly generated a, 2 ≤ a ≤ n−1 but
this still might not help. (We return to this later.)

In what follows we show the Miller-Rabin randomized primality set which solves our problem
completely. To understand why it works requires a bit deeper look at some results from the
number theory, the group theory, etc. We start by showing the Miller-Rabin test and then
we recall the theory, maybe in a slightly broader manner than is really necessary for showing
‘Miller-Rabin’ correctness.

1.10 The Miller-Rabin randomized primality test

The ‘main procedure’ is the following:

Miller−Rabin(n, s)

8

for j := 1 to s do

(a := Random(1, n − 1);
if Witness(a, n) then return “n is COMPOSITE”);

return “n is PRIME”

Witness(a, n) is a boolean procedure which tells us if a is a witness of compositeness (in the
sense explained below) or not; the answer YES will really guarantee that n is composite. So
‘Miller-Rabin’ can only err by returning “n is PRIME” for a composite n.

Exercise. We shall later show that if n is composite then the number of witnesses in the set
{1, 2, . . . , n−1} is at least (n−1)/2. Assuming this, show that ‘Miller-Rabin’ can be used to
recognize primes beyond any real doubt.

Now we show a pseudocode of procedure Witness. It uses a modification of Modular-
Exponentiation.

procedure Witness(a, n) (* determines if a is a witness of compositeness of n *)

n− 1 in binary: bkbk−1 . . . b1b0;
d := 1;

for i := k downto 0 do

y := d; d := d2 mod n;

if d = 1 and y 6= 1 and y 6= n− 1 then return TRUE;
if bi = 1 then d := d · a mod n;

if d 6= 1 then return TRUE else return FALSE

We note that Witness(a, n) computes an−1 mod n but this can be interrupted when

a nontrivial square root of 1 modulo n

is discovered, i.e., when some number x is found for which x2 ≡ 1 (mod n) but x 6≡ 1 (mod n),
x 6≡ −1 (mod n). As we show shortly, this justifies the answer that n is composite (and a is a
witness in the sense that we discover a nontrivial square root of 1 modulo n when computing
an−1 mod n). If no nontrivial square root of 1 modulo n is found during the computation, the
answer YES in the case an−1 6≡ 1 (mod n) is really justified as we already know (Fermat’s
little theorem).

Exercise. Show that Miller−Rabin(n, s) performs O(sβ3) bit operations (where, of course,
β is the binary length of the input).

1.11 Polynomials; a witness of compositeness

Our ‘pragmatic’ aim in this subsection is to show that nontrivial square roots of 1 modulo n
really witness compositeness of n, i.e., we want to prove the following theorem.

Theorem. If n is a prime then there is no x such that x2 ≡ 1 (mod n), x 6≡ 1 (mod n),
x 6≡ −1 (mod n).

9

Exercise. Verify that there is no nontrivial square root of 1 modulo n for a few primes n. On
the other hand find some nontrivial square roots of 1 modulo n for some composite n.

The theorem can be, as usual, proved in various ways. We use a more general one since it is
useful to recall the notions of polynomials.

Exercise.

- Recall what a polynomial (in one variable) is. In particular consider polynomials over Zp

where p is a prime. (Remark. You might recall that the structure (Zp,+, ·) is a (commutative)
field.)

- Recall what is the degree of a polynomial f(x) and what is a root of the polynomial, or so
called zero of the respective polynomial function.
(Yes, it is a value x0 such that f(x0) = 0, i.e., f(x0) ≡ 0 (mod p) in our case.)

- Show that if f(x) is a polynomial of degree t ≥ 1 (with coefficients from Zp) and a ∈ Zp is
one of its roots (zeros) (i.e., f(a) ≡ 0 (mod p)) then f(x) can be presented as the product

f(x) ≡ (x− a)g(x) (mod p)

for a polynomial g(x) of degree t− 1.
- Deduce that

each nonzero polynomial (not identical with 0) of degree t has at most t distinct roots (also
called ‘zeros’) modulo p (in the field (Zp,+, ·) for p prime).
- Deduce the above Theorem (if n is a prime then there is no nontrivial square root of n).

1.12 Groups, subgroups, modular linear equations, Euler’s phi function

To finish our complete understanding of (RSA and) Miller-Rabin primality testing, we should
show that Witness(a, n) really returns TRUE for at least one half of a ∈ {1, 2, . . . , n−1}
when n is (an odd) composite. To achieve this, we ‘submerge more deeply in algebra’.

Recall a definition of (the algebraic structure) group: it is a set G with a binary operation
(often denoted by ‘+’ or ‘·’) such that . . .
Exercise. Write down a precise definition (consulting some relevant sources, on the Internet
or elsewhere, if needed).

We note that Zn is a group when we take (modular) addition as the group operation; this
(additive) group is denoted by (Zn,+n), or simply by Zn when no confusion can arise.

Exercise.

- Recall what is a subgroup of a given group. Construct the subgroup of Z15 generated by
a = 6 (i.e., the least subgroup of Z15 containing 6). (You surely consider the sequence a, a+a,
a+ a+ a, . . . , i.e., a, 2a, 3a, . . .)

- Derive that if d = gcd(a, n) then the subgroup generated by a is the set

{0, d, 2d, 3d, . . . , ((n/d)−1)d}

of size n/d (where addition modulo n is the group operation).

10

- Modular linear equations. Devise a way to find solutions of ax ≡ b (mod n).
Hint. Note that there are either d = gcd(a, n) distinct solutions (in {0, 1, . . . , n−1}), when
d|b, or no solution. By Extended-Euclid: d = gcd(a, n) = ax′ + ny′; the solutions are
x0 = x′(b/d); x1 = x0 + (n/d), x2 = x0 + 2(n/d), . . .

- Deduce that if gcd(a, n) = 1 then ax ≡ b (mod n) has a unique solution.

When discussing RSA (namely computing e, d) we have already implicitly used the notion of
the multiplicative inverse:

A (unique) solution of ax ≡ 1 (mod n) exists iff gcd(a, n) = 1. (Extended-Euclid providing
1 = gcd(a, n) = ax+ ny gives the multiplicative inverse x of a.)

Exercise. Explain now why Zn is not a group (for n ≥ 2) when we consider (modular)
multiplication as the operation.

Recall that a, b ≥ 0 are relatively prime iff gcd(a, b) = 1. Given n ≥ 2, we define the mul-
tiplicative group (Z∗

n, ∗n), often denoted just Z∗
n for short, as the set of all a ∈ Zn which are

relatively prime to n; the group operation is (modular) multiplication.

Exercise. Verify that Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14} and that it is really a group.

Size of Z∗
n is given by Euler’s phi function (Euler’s totient function)

Φ(n) = n
∏

p|n

(1− 1/p)

where p ranges over primes (which divide n).

E.g. Φ(15) = 15(1 − 1
3)(1− 1

5) = 15(
2
3)(
4
5) = 8,

Φ(45) = 45(1 − 1
3)(1− 1

5) = 45(
2
3)(
4
5) = 24.

We can thus see that n is prime iff Φ(n) = n− 1.
Exercise. Show the validity of Φ(n) for our ‘RSA case’: namely that our Φ(n) = (p−1)(q−1)
coincides with the above definition for n = pq where p, q are different primes, and that Φ(n)
really gives the size of Z∗

n in this case.
Then show that |Z∗

n| = φ(n) = (p− 1)pe−1 in the case n = pe, for p being prime and e ≥ 1.
Exercise. Prove the general formula for Φ(n) by the following application of the combinatorial
approach of inclusion and exclusion (where p1, p2, . . . , pt are the primes dividing n):

Φ(n) = n−
(

n
p1
+ n

p2
+ · · ·+ n

pt

)

+
(

n
p1p2
+ n

p1p3
+ · · ·+ n

pt−1pt

)

(for all pairs)

−
(

n
p1p2p3

+ n
p1p2p4

+ · · ·+ n
pt−2pt−1pt

)

(for all triples)
· · ·
+(−1)t n

p1p2···pt

= n
p1p2···pt

(p1 − 1)(p2 − 1) · · · (pt − 1).

1.13 Lagrange’s theorem, Euler’s theorem

Exercise. Consider Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}. Construct the least subset A of Z∗

15 which
contains elements 4, 8 and is closed wrt the group operation (i.e., wrt multiplication mod 15).
Recall the notion of subgroup of a group, and check if your set A is, in fact, a subgroup of

11

Z
∗
15.

Exercise. Prove the following theorem.

Theorem. A nonempty subset A of a finite group G which is closed wrt the group operation
is a subgroup of G.

Exercise.

- Create all subgroups of Z∗
15 which are generated by one element. (For each a ∈ Z

∗
15, construct

the least subgroup containing a.)

- For the subgroup H = {1, 4} construct the set gH ⊆ Z
∗
15 for each g ∈ Z

∗
15. (We define

gH = {gh | h ∈ H}.) Note that for each g1, g2 ∈ Z∗
15 we have got either g1H = g2H or

g1H ∩ g2H = ∅. {gH | g ∈ G} is thus a partition on the set Z∗
15.

Theorem. (Lagrange): Suppose S is a finite group and S′ is a subgroup of S. Then |S′|
divides |S|. (This implies that if S′ is a proper subgroup then |S′| ≤ |S|/2.)
Proof. (More generally.) Let H be a subgroup of (even an infinite) G. Consider {gH | g ∈ G}.
This is a partition of (the set) G. (ah1 = bh2 implies ah = ah1h

−1
1 h = bh2h

−1
1 h ∈ bH.)

The number |{gH | g ∈ G}| is called the index of subgroup H in group G, denoted [G : H].

Note that for each g we have |H| = |gH| (gh1 = gh2 implies g−1gh1 = g−1gh2 and thus
h1 = h2).

So |G| = [G : H] · |H|. �

Recall how we constructed the subgroup of a finite group S generated by an element a (a,
a+a, a+a+a, . . . in the additive notation, or a, aa, aaa, . . . in the multiplicative notation).

The order of a in S, denoted ord(a), is the least t ≥ 1 s.t. at = e (or ta in the additive
notation), where e is the unit. We can see that ord(a) is equal to the size of the subgroup
generated by a.

Exercise.

- Derive what is a|S| for an element a of a finite group S.

- Derive

Euler’s theorem: for a ∈ Z
∗
n we have a

φ(n) ≡ 1 (mod n) .

- Note that Fermat’s little theorem is, in fact, a corollary of Euler’s theorem.

- Show how we can compute a−1 mod n (for a ∈ Z
∗
n) using Modular-Exponentiation, when

we know φ(n). (Hint. Recall aΦ(n) ≡ 1 (mod n).)

1.14 Enough witnesses in Miller-Rabin, Part 1

We recall that we aim at showing the following theorem.

Theorem: If n is an odd composite number then the number of witnesses (a, for which
Witness(a, n) = TRUE) is at least (n− 1)/2.
We show, in fact, that the number of nonwitnesses is at most (n − 1)/2.
Exercise. Show that every nonwitness a must be an element of Z∗

n (i.e., gcd(a, n) = 1).

The overall strategy is to show that all nonwitnesses are contained in a proper subgroup B

12

of Z∗
n; so (by Langrange’s theorem) their number is less than |Z∗

n|/2, i.e., less than (n− 1)/2.
We are now able to prove easily one (in fact, substantial) subcase.

Case 1: Suppose that ∃x ∈ Z
∗
n s.t. x

n−1 6≡ 1 (mod n). Since

B = {b ∈ Z
∗
n | bn−1 ≡ 1 (mod n)}

is (nonempty and) closed under multiplication, it is a proper subgroup containing all nonwit-
nesses.

Unfortunately, we are not done, since there exist so called Carmichael numbers, which satisfy

an−1 ≡ 1 (mod n) for all a ∈ Z
∗
n.

(They also show why our previous ‘Fermat-based testing’ is not sufficient for testing primality.)
Though these numbers are very rare (561, 1105, 1729, . . .), we have to count with them.

Note that 561 = 3·11·17, and thus the size of Z∗
561 is Φ(561) = 561(1− 13)(1− 1

11)(1− 1
17) = 320.

1.15 Cyclic groups

A group G is called cyclic if it is generated by one element g ∈ G, called a generator of G.
Thus G = {g, g2, g3, . . . } (in the multiplicative notation).
Exercise.

- What is the order of a generator g in G ?

- Find the orders of elements in Z
∗
5 = {1, 2, 3, 4}. Is Z∗

5 cyclic?

- Recall that you constructed all subgroups of Z∗
15 generated by one element. Is Z

∗
15 cyclic?

- Find n ≥ 4 such that n is composite and Z
∗
n is cyclic.

A theorem says:

Z
∗
n (n > 1) is cyclic precisely for those n whose values are 2, 4, pe, or 2pe

where p is any odd prime and e is any positive integer.

We only show the following subcase: for p prime, Z∗
p is cyclic.

Proof.

Claim 1. For x, y ∈ Z∗
p , let ord(x) = m1, ord(y) = m2 where gcd(m1,m2) = 1. Then ord(xy) =

m1m2.

Let ord(xy) = k, so (xy)k ≡ 1 (mod p). Then (xy)km2 = xm2kym2k ≡ 1 (mod p)
and thus xm2k ≡ 1 (mod p) (since ym2 ≡ 1 (mod p)). Hencem1|m2k which means
m1|k (since gcd(m1,m2) = 1). Similarly m2|k, and thus m1m2|k. So k ≥ m1m2.
But (xy)m1m2 ≡ (xm1)m2 · (ym2)m1 ≡ 1 (mod p), and thus k = m1m2.

Claim 2. Let ord(x) = m1, ord(y) = m2. Then there is z such that ord(z) = lcm(m1,m2).

Using prime factorizations of m1,m2 we can easily find a, b such that a|m1,
b|m2, gcd(a, b) = 1, and lcm(a, b) = ab = lcm(m1,m2). Now ord(xm1/a) = a,
ord(ym2/b) = b, so ord(xm1/aym2/b) = ab = lcm(m1,m2) (using Claim 1).

13

So there is an element z ∈ Zp such that ord(z) = lcm{ord(1), ord(2), . . . , ord(p−1)}.
Thus all 1, 2, . . . , p−1 are roots (zeros) of the polynomial xord(z) − 1 (modulo p). This poly-
nomial can have at most ord(z) roots so necessarily ord(z) = p−1. �

Remark. The Claims do not use the assumption that p is prime, we need this for bounding
the number of roots.
To complete our later reasoning we would need the generalization “for n = pe (p being an
odd prime), the group Z

∗
n is cyclic”. (More precisely, it would suffice: if n = pe, e ≥ 2, then

there is a ∈ Z
∗
n : a

n−1 6≡ 1 (mod n).)

Exercise.

- Find all generators of Z∗
5. Check if those generators are also generators of Z

∗
25.

- Try to prove that if g is a generator of Z∗
p (p is prime) then g is also a generator for Z

∗
pe (for

e = 2, 3, . . .).

1.16 Discrete logarithm

Discrete logarithm (or index) indn,g(a) is defined as the number z such that gz ≡ a (mod n),
where g is a generator of Z∗

n.

Discrete logarithm theorem:
if g is a generator of Z∗

n, then gx ≡ gy (mod n) iff x ≡ y (mod φ(n)).

Recall that we have shown that there is no (nontrivial square root of 1) x2 ≡ 1 (mod p),
x 6≡ 1 (mod p), x 6≡ −1 (mod p) for p being prime. We illustrate a use of discrete logarithm
on a stronger version:

Theorem: if p is an odd prime and e ≥ 1, then the equation x2 ≡ 1 (mod pe) has only two
solutions, namely 1 and −1.
Proof. Denote n = pe and let g be a generator of Z∗

n.
We have (gindn,g(x))2 ≡ gindn,g(1) (mod n),
so 2 · indn,g(x) ≡ 0 (mod φ(n)) (where φ(n) = pe(1− 1/p) = pe − pe−1 = pe−1(p − 1)),
so gcd(2, φ(n)) = 2, so indn,g(x) can have exactly two values, so also x2 ≡ 1 (mod pe) has
exactly two solutions, namely +1 and −1. �

1.17 Enough witnesses in Miller-Rabin, Part 2

Case 2 (Carmichael numbers) Suppose that ∀x ∈ Z
∗
n : x

n−1 ≡ 1 (mod n).

We can not have n = pe for e > 1 where p is a prime. Otherwise Z∗
n contains a generator g s.t.

ord(g) = |Z∗
n| = φ(n) = (p− 1)pe−1, and gn−1 ≡ 1 (mod n). But then the discrete logarithm

theorem implies n−1 ≡ 0 (mod φ(n)), i.e., (p−1)pe−1 | pe−1; but this is impossible for e > 1.
So we can write n = n1n2 so that n1, n2 > 1 are relatively prime (and we recall the Chinese
remainder theorem).

Let n−1 = u2t where u is odd (n−1 in binary finishes with t zeros). For any a (in
{1, 2, . . . , n−1}) consider the last t + 1 steps of Modular−Exponentiation(a, n−1, n), com-
puting au, a2u, a2

2u, . . . , a2
tu modulo n.

Note that (−1)20u ≡ −1 (mod n); let j ∈ {0, 1, . . . , t} be the maximal such that there is v

14

s.t. v2
ju ≡ −1 (mod n); we fix such v.

Let B = {x ∈ Z
∗
n | x2ju ≡ 1 (mod n) or x2

ju ≡ −1 (mod n)}.
Exercise. Show that B is a subgroup of Z∗

n and that every nonwitness must be an element
of B.

It is thus sufficient to show that there is some w ∈ Z
∗
n − B; we do this by an application of

the Chinese remainder theorem to our n = n1n2 :

Since v2
ju ≡ −1 (mod n), we have v2

ju ≡ −1 (mod n1).

There is some w satisfying

w ≡ v (mod n1) and

w ≡ 1 (mod n2) .

Therefore

w2
ju ≡ −1 (mod n1) and

w2
ju ≡ 1 (mod n2) .

This means that we can not have w2
ju ≡ 1 (mod n), neither w2

ju ≡ −1 (mod n) (by a
corollary of the Chinese remainder theorem). Thus w 6∈ B.

Since v ∈ Z
∗
n (gcd(v, n) = 1), we have gcd(v, n1) = 1, so gcd(w,n1) = 1 (and gcd(w,n2) = 1),

and thus w ∈ Z
∗
n. �

Remark. By a more detailed analysis one can show that the number of nonwitnesses is at
most (n− 1)/4, which really happens for some numbers.

15

Část 2

2 A randomized communication protocol; fingerprinting

(Based on [5].)

Suppose two copies of the same database (e.g., containing genome sequences) are maintained
at two distant computers C1, C2; the database is of size approx. 1016 bits.

We want to suggest a communication protocol between C1 and C2 which (from time to time)
has to verify that the two database copies are really the same.

An obvious solution is that one computer, say C1, sends all n = 1016 bits to C2 and C2 verifies
that the achieved bit sequence coincides with its copy.

Exercise

- Is this procedure a trivial task in practice?

- Do you think that we have some substantially better possibility when we want to be 100%
sure that the copies are really the same?

In reality, we never need to be 100% sure, something like 99.999999999999% certainty is surely
sufficient for us. (In fact, when sending n = 1016 bits as suggested above, we cannot be 100%
sure that they arrive safely (without flipping a bit) anyway .. .)

But then the following simple protocol works for us:

• The content of the database at C1 is x = b1b2 . . . bn, where bi are bits (elements of
{0, 1}); we suppose (i.e., easily arrange) that we always have b1 = 1.

• C1 chooses randomly a prime p from interval 2, 3, . . . , n2. (We recall that we have dis-
cussed how to generate random primes.)

• C1 computes s = Number(x) mod p (where Number(x) is the number presented as
b1b2 . . . bn in binary).

• C1 sends the pair (p, s) to C2.

• C2 computes q = Number(y) mod p for its database copy y. If s = q then C2 announces
“OK, our copies are the same”, otherwise C2 announces “Oops, our copies differ!”.

Exercise
- Estimate the numbers of bits in binary presentation of p, s (and q), and compare the practi-
cal task of communicating p, s with the task of sending the whole x = b1b2 . . . bn.
- Why is the operation of choosing a random prime p and computing s manageable on nowa-
days machines? (Recall also the prime number theorem: limn→∞

π(n)
n/ lnn = 1.)

We now want to verify that the probability of the right answer is high for every given input
(not only for random inputs).

Exercise
- Characterize the situation when the protocol errs.
- Give an upper bound on the number of primes in the (prime) factorization of

16

|Number(x)−Number(y)|.
- Deduce (a bound on) the probability that the protocol errs, for general n, and for concrete
n = 1016.
- Suggest an improvement of the protocol if you want to still decrease the error-probability.

Fingerprinting

The previous example of comparing two databases (two long sequences of bits) can naturally
remind us about fingerprints. (The complex objects, like people, can be sufficiently represented
by small objects - fingerprints.)

Exercise. Try to formulate some form of a general method for comparing complex objects
which is based on ‘fingerprinting’.

As another example we consider comparing two polynomials. For simplicity we restrict our-
selves to polynomials with one variable (a generalization for polynomials with more variables
is in the next subsection).

So given two polynomials p1(x), p2(x) (with integer coefficients), we should decide if they are
the same, i.e. if their normal forms (see below) are the same (i.e., if the values p1(a), p2(a)
are the same for any given a in any interpretation). An example of polynomials appearing in
the problem instances is

p1(x) = (2x2 − x)5 · (x4 + 3x2 − 5)12 − (−3x7 + 2x5 − 4x+ 17)24,
p2(x) =

Important is that p1(x), p2(x) are not required to be in normal form (which is a sum of
monomials with different degrees cdxd + cd−1x

d−1 + · · ·+ c2x
2 + c1x+ c0).

Exercise. Comparing two polynomials in normal form is easy (why?). But show that trans-
forming a polynomial in general form (as exemplified above) into normal form can mean
exponential computation.

There is a much faster method of comparing p1(x), p2(x) than transforming them into normal
form; roughly speaking, we can do the following:

Take a random a and evaluate p1(a) and p2(a). If p1(a) 6= p2(a) then return “p1, p2
are not the same”, otherwise (when p1(a) = p2(a)) return “p1, p2 are the same”.

From where we take the random a ? And how can we guarantee that the probability of an
incorrect answer “p1, p2 are the same” is (very) small?

Exercise. If we want to have an efficient (i.e., polynomial probabilistic) algorithm to compare
p1, p2, the (binary description of the) generated a has to have a polynomial size. On the other
hand, it must be guaranteed that the probability of p1(a) = p2(a) is very small when p1 6= p2.
Recall what we know about polynomials over finite fields (like Zp where p is prime) and
suggest how to solve our task by using this knowledge.
(Hint. Note that p1(a) ≡ p2(a) (mod m) iff q(a) ≡ 0 (mod m) for the polynomial q = p1−p2.
Compute an upper bound on the degree of q [in the size of the problem instance]; this gives
an upper bound on the number of roots of q when m is prime. Choose a sufficiently large (but
feasible) prime m . . .)

17

Comparing polynomials with more variables (optional)

Imagine we compare polynomials p1(x1, . . . , xn), p2(x1, . . . , xn) over the finite field Zp, for p
a prime. Let d be the maximum of degrees of particular variables in p1, p2.

So we ask if Q(x1, . . . , xn) = p1(x1, . . . , xn)−p2(x1, . . . , xn) is identical to the zero polynomial
0 (modulo p).

Supposing Q 6≡ 0, we want to bound the number of roots (a1, . . . , an) ∈ (Zp)n of Q. When
n = 1 (we have only one variable) then we know that there are at most d roots.

Now we try to arrive at an inductive formula f(n, d, p) bounding the number of roots when
n > 1. (We have shown f(1, d, p) = d.)

We note that Q(x1, . . . , xn) can be written in the form

Q0(x2, . . . , xn) + x1 ·Q1(x2, . . . , xn) + x21 ·Q2(x2, . . . , xn) + · · · + xd1 ·Qd(x2, . . . , xn)

for some polynomials Qi(x2, . . . , xn), i = 0, 1, 2, . . . , d, of degree ≤ d (for all particular varia-
bles).

We observe that (a1, . . . , an) is a root of Q iff

- either (1): (a2, . . . , an) is a root for all Qi, 0 ≤ i ≤ d,

- or (2): a1 is a root of the one-variable nonzero polynomial

Q0(a2, . . . , an) + x1 ·Q1(a2, . . . , an) + x21 ·Q2(a2, . . . , an) + · · ·+ xd1 ·Qd(a2, . . . , an).

Exercise.

- Show that there can be at most p · f(n−1, d, p) n-tuples satisfying (1).
- Show that there can be at most d · pn−1 n-tuples satisfying (2).
- Conclude that we can take f(n, d, p) = d · pn−1 + f(n−1, d, p) · p.
- From the sequence f(1, d, p) = d, f(2, d, p) = d·p+f(1, d, p)·p, f(3, d, p) = d·p2+f(2, d, p)·p,
. . . , derive a direct (nonrecursive) definition of f(n, d, p).
(Result: n · d · pn−1.)
- How big must p be wrt n, d when we want a guarantee that, for Q 6≡ 0, the probability that
Q(a1, . . . , an) = 0 for (uniformly) randomly chosen (a1, . . . , an) is at most 1/2 ?

3 Interactive protocols

(For this topic, we mainly use [8].)

We recall that for any instance of a problem from NP there is a short proof (“witness”,
verifiable in polynomial time) showing that the answer is YES if it is really the case.

Exercise. Recall some NP-complete problems like SAT, . . . and show how such witnesses look
like in these concrete cases.

For the negative case, e.g. for showing that a cnf-boolean formula φ is unsatisfiable, the
existence of such short witnesses is not clear at all. But one of interesting and maybe surprising
results is that there are so called interactive protocols, between Prover and Verifier, that show
that even for any problem from PSPACE there is a possibility how one can get convinced
about the right answer for any given instance after doing only a polynomial computation.

18

(This result is known as IP=PSPACE.)

We shall first demonstrate the princip on the G-NONISO (the graph nonisomorpism problem),
and then on the (counting) problem #SAT.

Recall that G-ISO (the graph isomorphism problem) is in NP but not known to be in P or
to be NP-complete. It is obvious how somebody can convince you that two graphs G1, G2
(with thousands of nodes, say) are isomorphic: if you get a bijection between the sets of nodes
(we can assume the set of nodes being {1, 2, . . . , n} in both cases, the bijection then being
just a permutation of {1, 2, . . . , n}) then you can easily verify (by a computer program, say)
whether the bijection is an isomorphism .. .

But how can somebody, named Prover, convince you that G1, G2 (both with the set
{1, 2, . . . , n} of nodes) are not isomorphic? Imagine you secretly choose a random i ∈ {1, 2},
a random permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} (how you can do this in your favourite
programming language?) and you show H = π(Gi) (i.e., the graph H arising from Gi by
renaming its nodes according to π) to Prover. If he now rightly guesses your secret i, and he
is able to successfully repeat such right guessing 50 times, say, you should be convinced that
G1, G2 are not isomorphic. (Remark. It is not a matter of our discussion how Prover finds his
answers; you are just supposed to be sure that he cannot see your secret actions.)

Exercise. Analyze and explain why you would be sure (more precisely, with what probability
you can be fooled).

Now we come to a more difficult problem #SAT; this problem can be defined as the language

#SAT = {(φ, k) | φ is a cnf-boolean formula with precisely k satisfying assignments}.

We can imagine that Prover has, e.g., the exponentially big truth-table at his disposal (as a
proof that φ has precisely k satisfying assignments) but our task is to suggest a communi-
cation protocol between Prover and Verifier during which Verifier performs only a polynomial
computation and will be finally convinced that (φ, k) is in #SAT, though Prover can give him
only very limited (polynomial) information. Of course, by ‘convinced’ we mean ‘convinced by
objective arguments’, not e.g. by trusting Prover. So a malicious Prover who tries to persuade
Verifier about a wrong answer must not succeed.

Remark. We do not care how Prover creates his messages, similarly as we did not care how a
witness (satisfying assignment) for SAT can be found when we discussed its existence. (In this
sense, Prover can be viewed as having unlimited computational power, not only exponential.)
Another remark is that probability will again play a crucial role. It is sufficient that Verifier
gets convinced with 99.99999% certainty . . .

An interactive protocol for #SAT

Prover (P) and Verifier (V) get a cnf-boolean formula φ(x1, . . . , xm); as a running example
we consider

φ(x1, x2, x3) = (x1 ∨ ¬x2) ∧ (x2 ∨ x3) .

Exercise. Show that there are precisely 4 assignments (a1, a2, a3) ∈ {0, 1}3 (for boolean
variables x1, x2, x3) which satisfy φ.

Let fi(a1, . . . , ai) (0 ≤ i ≤ m) denote the number of satisfying assignments of φ which must
assign x1 := a1, . . . , xi := ai.

19

In our example: f0() = 4, f1(0) = 1, f1(1) = 3, f2(1, 0) = 1, f3(0, 1, 0) = 0, f3(1, 0, 1) = 1,

Exercise.

- Compute all values fi(a1, . . . , ai) for our φ.

- Note that generally (for i < m): fi(a1, . . . , ai) = fi+1(a1, . . . , ai, 0) + fi+1(a1, . . . , ai, 1).

With our example φ we associate the polynomial

p(x1, x2, x3) = (1− (1− x1)(1− (1− x2))) · (1− (1− x2)(1 − x3)) .

Exercise.

- Verify that for boolean arguments a1, a2, a3 we have p(a1, a2, a3) = 1 iff (a1, a2, a3) satisfies
φ and p(a1, a2, a3) = 0 otherwise.

- Along the lines of the example, suggest a general procedure constructing a polynomial pφ
to a boolean formula φ which has this “boolean values property”.

- Moreover, check that the polynomial pφ has degree ≤ n where n = length(φ) (by the degree
we mean the maximum of exponents of each individual variable, in the normal form).

- Check also that pφ has the “boolean values property” also when interpreted over a finite
field Zq, for q being a prime.

- Verify that the normal form of our example polynomial (presented as the sum of different
monomials) is

p(x1, x2, x3) = −x1x
2
2x3 + x1x2x3 + x1x

2
2 + x22x3 − x22 − 2x2x3 + x2 + x3 .

We now view the above functions fi as polynomials fi(x1, x2, . . . , xi):

fi(x1, . . . , xi) =
∑

ai+1,...,am∈{0,1}

p(x1, . . . , xi, ai+1 . . . , am) .

Exercise.
- Check that we have fi(r1, . . . , ri) = fi+1(r1, . . . , ri, 0) + fi+1(r1, . . . , ri, 1) for all numbers
r1, . . . , ri.
-Check that in our example

• f0() = 4,

• f1(x1) = 2x1 + 1,

• f2(x1, x2) = x1x
2
2 + x1x2 − x22 + 1,

• f3(x1, x2, x3) = p(x1, x2, x3) = −x1x
2
2x3+x1x2x3+x1x

2
2+x22x3−x22− 2x2x3+x2+x3.

Now we show a protocol where Prover aims at convincing Verifier that φ(x1, . . . , xm) has
precisely k satisfying assignments. We shall also demonstrate this protocol on our concrete
instance φ(x1, x2, x3) = (x1 ∨ ¬x2) ∧ (x2 ∨ x3) and k = 4.

Let us recall that Verifier can only perform a polynomial work (thus also the communicated
messages between P and V can only be of polynomial size), and the protocol should be
complete (this means that P has a possibility to convince V with 100% certainty when his
claim is indeed correct) and sound (which means that P can fool V, i.e. convince him that an

20

incorrect answer is correct, only with negligible probability.)
(Remark. Later we return to these definitions in more detail.)

We note that the normal form of p(x1, x2, . . . , xn), can be of exponential size (can you show
an example?), and we thus cannot ask P to send, e.g., the normal form of polynomials f0(),
f1(x1), f2(x1, x2), . . . to V. The idea is to ask P to send successively the normal forms of one-
variable polynomials f0(), f1(x1), f2(r1, x2), f3(r1, r2, x3), . . . , fn(r1, r2, . . . , rn−1, xn) where
the random numbers r1, r2, . . . will be chosen by V. Of course, these numbers will be chosen
from a finite domain, namely from a field Zq for a (sufficiently large but feasible) prime q.
But let us look at the protocol:

• P sends to V some prime q > 2n (of polynomial size in n = length(φ)) and a value
(which he claims to be) f0().

V checks that really q > 2n and q is a prime, and that f0() = k; he rejects if something
fails. (Remark. Verifying that q is prime can be done by a randomized polynomial
algorithm [or a less efficient deterministic polynomial algorithm]. Another possibility
would be to require that Prover sends a (short) witness that q is a prime [stemming
from a former proof (by Pratt) that the primality problem is in NP].)

In our example, assuming length(φ) = 7, P sends, say, q = 131 and (claims)
f0() = 4.

• P sends V (the coefficients of the one-variable) polynomial f1(z). V checks that the
degree is ≤ n and evaluates f1(0), f1(1) and checks that f0() = f1(0) + f1(1). If OK, V
chooses a random r1 ∈ Zq and sends to P. (For later use) he also computes f1(r1).

In our example, P sends f1(z) = 2z + 1. V evaluates f1(0) = 1, f1(1) = 3,
and finds that really f0() = 4 = f1(0) + f1(1). He chooses, say, r1 = 38. He
computes f1(38) = 77.

• P sends V (the coefficients of the one-variable) polynomial f2(r1, z). V checks that
the degree is ≤ n and evaluates f2(r1, 0), f2(r1, 1) and checks that f1(r1) = f2(r1, 0) +
f2(r1, 1). Then V chooses a random r2 ∈ Zq and sends to P. He also computes f2(r1, r2).

In our example, P sends f2(38, z) = 38z2 + 38z − z2 + 1 = 37z2 + 38z + 1.
V evaluates f2(38, 0) = 1, f2(38, 1) = 76, and finds that really f1(38) = 77 =
f2(38, 0)+f2(38, 1). He then chooses, say, r2 = 105. He computes f2(38, 105) =
37 · 1052 + 38 · 105 + 1 = 52 (modulo 131).

• P sends V (the coefficients of the one-variable) polynomial f3(r1, r2, z). V checks that
the degree is ≤ n and evaluates f3(r1, r2, 0), f3(r1, r2, 1) and checks that f2(r1, r2) =
f3(r1, r2, 0) + f3(r1, r2, 1). Then V chooses a random r3 ∈ Zq and sends to P. He also
computes f3(r1, r2, r3).

In our example, P sends

f3(38, 105, z) = −38 · 1052z + 38 · 105z + 38 · 1052 + 1052z − 1052 − 2 · 105z +
105 + z = 122z + 96 (modulo 131).

21

V evaluates f3(38, 105, 0) = 96, f3(38, 105, 1) = 87, and finds that really
f2(38, 105) = 52 = f3(38, 105, 0) + f3(38, 105, 1).
He then chooses, say, r3 = 17. He computes f3(38, 105, 17) = 122·17+96 = 74
(modulo 131).

• . . .

• The last phase follows after r1, r2, . . . , rm have been chosen. V compares
fm(r1, r2, . . . , rm) with pφ(r1, r2, . . . , rm); he rejects when the values differ but he is
convinced that (φ, k) ∈ #SAT when the values are the same. (Remark. Note that V
constructs pφ(x1, . . . , xm) quickly from φ(x1, . . . , xm). He does not need to transform pφ
into the normal form; this might be useful for P but we do not care how P computes
his messages.)

In our example (m = 3) V has computed f3(38, 105, 17) = 74, and now
constructs p(x1, x2, x3) = (1− (1− x1)(1− (1− x2))) · (1− (1− x2)(1− x3))
and then checks p(38, 105, 17) = 74.

Exercise.

- Check that Verifier performs only polynomial computation (in the size of the input (φ, k)).

- Show that if (φ, k) ∈ #SAT then there is a (strategy of the) Prover which results in
convincing Verifier.

- Now suppose that a (malicious) Prover wants to convince Verifier that (φ, k) ∈ #SAT
though it is not true. It is clear that P must start with sending (the claim that) f0() = k
though it is not true (for ‘the correct’ f0 determined by φ); let us say that P thus sends a
wrong f̄0(). Later P must send (the coefficients of) polynomial f1(z); if he sends the correct
f1(z) then V finds f1(0) + f1(1) 6= k though P claimed f0() = k. So P must continue lying
and sends some wrong f̄1(z) (which satisfies f̄1(0) + f̄1(1) = k) instead. (Note that this
means that f1(r) = f̄1(r) for at most n elements out of {0, 1, 2, . . . , q−1} [which contains
more than 2n elements].) If V now (randomly) chooses r1 such that f1(r1) 6= f̄1(r1) then P
must continue lying when sending f2(r1, z): if he sends the correct f2(r1, z), V finds that the
value f2(r1, 0) + f2(r1, 1) (which is the correct f1(r1)) differs from the previously computed
f̄1(r1). So P must send some wrong f̄2(r1, z) instead . . . Continue in this reasoning and derive
a bound on the probability that P convinces V that (φ, k) ∈ #SAT though it is not the case.

22

Část 3

4 Zero-knowledge proofs

(E.g. in [7], [4].)

When we prove a (mathematical) assertion, the proof usually contains more information (and
provides a deeper insight) than the plain fact that the assertion is true; this is also (usually)
desirable. But there are contexts where a party, say Peggy [or Prover], should show to another
party, say Victor [Verifier], that she has a secret piece of knowledge (like a password allowing
an access to a source) but she does not want to disclose any additional information to him.
(V should only get convinced that P is entitled to the access but he should not learn anything
about P’s password . . .)

The described situation is modeled by special Interactive Protocols, called Zero-Knowledge
(ZK) Interactive Protocols (together with the fact that the assertion holds, V gets the zero
additional knowledge . . .)

Graph isomorphism

A famous example is a ZK-protocol for problem GI (Graph-Isomorphism) (which is a problem
in NP, with an unclear complexity status).

Exercise. Define GI precisely and show that it belongs to NPTIME.

Suppose P and V are given two graphs G1, G2 (both with n nodes andm edges . . .), and P also
knows an isomorphism b : G1 → G2; we can view b as a permutation on {1, 2, . . . , n} (why?).
P wants to convince V that G1, G2 are isomorphic but without disclosing any information
about a respective isomorphism. They perform the following protocol:

• P randomly chooses i ∈ {1, 2} and a permutation π of {1, 2, . . . , n}, computes the graph
H = π(Gi) and sends H to V.

• V (randomly) selects j ∈ {1, 2} and sends j to P.

• P determines a permutation σ such that σ(Gj) = H and sends σ to V.

• V checks if really σ(Gj) = H; in the positive case V accepts, and otherwise rejects.

Exercise.

- How can P compute σ? Note that this can be done in polynomial time when P knows
b : G1 → G2.

- Check completeness of the protocol, which means that V surely accepts when G1
iso
= G2

and P follows (correctly) the protocol.

- Imagine G1, G2 are not isomorphic but a malicious P’ tries to convince V that they are.
Give a bound on the probability that P’ succeeds.

- Use the standard trick (amplification by repeating) guaranteeing soundness, i.e., that any
(malicious) P’ can convince V about a wrong answer only with negligible probability.

23

Remark. It is not necessary to assume that P possesses b : G1 → G2; P has generally un-
bounded computational power and she could thus compute such isomorphism b. But the
assumption is useful here when we have practical implementations in mind - the Prover’s
work is then also polynomial.

The above given (P,V)-protocol for GI satisfies the following (strong) version of (a formal
attempt to define) the zero-knowledge property:

Definition. A (P,V)-protocol (for showing A ∈ IP) is a zero-knowledge protocol if there is a
polynomial-time probabilistic Turing machine M which for any input x ∈ A outputs a tuple
(y1, y2, . . . , yk) of possible messages appearing on the communication channel when P and V
work on x, and in such a way that the (probabilistic) distribution of the tuples in M(x) (i.e.
of the possible outputs ofM working on x) is the same as the distribution of the tuples really
appearing in the communication when P and V work on x.

In other words, if V gets convinced that x ∈ A (by the correct P) then the information he gets
from the interchanged messages is the same as would be provided by running ‘the simulator’
M on x.

Exercise. Suggest a simulator M which proves that the above protocol for GI is a zero-
knowledge protocol.

Remark. In fact, the requirement that the probabilistic distributions (of the P-V communi-
cations and of the outputs of M) are the same is often weakened to a sort of computational
indistinguishability.

Quadratic residues

(Based on an Internet text by Boaz Barak . . .)

Here we show another example of a ZK-protocol.

For n ∈ N, x ∈ Z
∗
n is a quadratic residue modulo n if there is s (0 ≤ s < n) such that s2 ≡ x

(mod n).

Exercise.

- Show that s ∈ Z
∗
n when s2 ≡ x (mod n) for x ∈ Z

∗
n.

- Show that the set QRn of the quadratic residues modulo n is a subgroup of Z∗
n.

- Deduce that if x is a (fixed) residue and y a random residue then xy is a random residue.

Protocol QR:

• P and V share an input x, n, gcd(x, n) = 1,
and P also knows (private) w such that w2 ≡ x (mod n).

• P chooses random u ∈ Z
∗
n and sends y = u2 mod n to V.

• V chooses random b ∈ {0, 1} and sends to P.

• If b = 0 then P sends z = u, otherwise P sends z = wu mod n.

• If b = 0 then V accepts iff z2 ≡ y (mod n), and if b = 1 then V accepts iff z2 ≡ xy
(mod n).

24

The analysis is left (as an option) for the reader.

We just note that computing a square root s for a given x modulo n is (tightly related
to factoring integers and thus also) believed to be computationally intractable (i.e., it is
believed that every probabilistic polynomial time algorithm would succeed only with negligible
probability).

Hamiltonian cycle

Imagine now that P and V have a graph G, with nodes {1, 2, . . . , n} and with m edges, and
P wants to convince V that G has a Hamiltonian cycle. We can imagine that P knows the
apropriate permutation (i1, i2, . . . , in) of {1, 2, . . . , n}
(where all pairs (i1, i2), (i2, i3), . . . , (in−1, in), (in, i1) are edges of G).

Consider the following (‘physical’) protocol:

• P randomly chooses a permutation π of {1, 2, . . . , n}, computes the graph H = π(G),
and puts m paper pieces with edges of H upside down on the table. V can verify that
the number of pieces is m but he does not see what is written on the pieces. (We say
that P has made a commitment, she cannot change the pieces now.)

• V (randomly) selects one of two requests: “Show me that H is isomorphic to G” or
“Show me that H has a Hamiltonian cycle”.

• In the first case P turns over all pieces and shows the permutation π so that V can
verify that H really is isomorphic to G. In the second case P turns over only pieces
with edges (π(i1), π(i2)), (π(i2), π(i3)), . . . , (π(in−1), π(in)), (π(in), π(i1)) so that V can
verify that H really contains a (simple) cycle with n nodes. (If V finds the P’s answer
correct, he accepts, otherwise he rejects.)

Exercise.

- Check the completeness and the soundness of the protocol (when repeated sufficiently many
times).

- Argue why it is a zero-knowledge protocol.

- In fact, this protocol would not obey a formal definition defining P and V as communicating
Turing machines. Suppose we want to implement it in such a way; specify where a substantial
problem arises.

Before returning to the problem you noticed, we look more carefully at the notion of soundness
of an Interactive Protocol. We have defined it as the property that P can convince V that
x ∈ A though, in fact, x 6∈ A only with negligible probability. This is made more precise by
the following definition:

A (P,V)-protocol for a set A (A ∈ IP) must satisfy

• completeness: for every x ∈ A, V always accepts when interacting with (the correct
strategy) P;

• soundness: there is a polynomial p such that for every x 6∈ A and every (potential, even
malicious, strategy) P’, V rejects with probability at least 1/p(|x|) (when interacting
with P’). (We say that V rejects with non-negligible probability.)

25

Exercise.

- Why is such a definition of soundness sufficient, i.e., how can we then achieve that the
probability of accepting a wrong input is really negligible? (Recall that we have to maintain
that V performs only polynomial computation.) (We call a function f : N → R

≥0 negligible
if for every polynomial p(y) there is x0 such that ∀x ≥ x0 : f(x) < 1/p(x).)

- Recalling that the problem HC (Hamiltonian cycle) is NP-complete, it should be clear that
the problem 3-COL (is a given graph 3-colourable?) [which is in NP, why?] has a (‘physical’)
zero-knowledge protocol. Explain.

- Suggest a direct simple (‘physical’) zero-knowledge protocol for 3-COL. (Recall that it is
sufficient to get the soundness in the above defined sense.)

Commitment schemes; one-way functions

(See, e.g. [2].)

Now we come to the problem you have certainly noticed above, namely to the problem of
commitment schemes. We have easily implemented them in ‘physical’ protocols (where we can
have ‘sealed non-transparent envelopes’) but it is not trivial to implement them in ‘electronic
communication setting’ (i.e., in the model when P and V are (probabilistic) Turing machines
communicating by messages on a special tape).

We can easily see that the basic problem can be formulated as the bit commitment problem:
we need a way how P can choose a bit b ∈ {0, 1} and be further bound to that choice (she
can not change it later), so she surely must send a message C to V at that point; the message
(commitment) C must determine b but V must not be able to learn b from C. Later (when
required by the protocol) P can send a key which enables V to open (the ‘locked box’) C and
read b.

To really work, such a scheme must satisfy several properties. We just touch on this subject
in the following exercise.

Exercise.

- How would you formulate the binding property? (P is bound by her choice . . .). You can
confine yourself to the so called unconditional (perfect) binding. [There is also a version of
computational binding.]

- How would you formulate the hiding property? (The value chosen by P is hidden so that V
cannot learn it . . .) Do it in both the unconditional sense and the computational sense.

- Why we can not have a scheme which is both unconditionally biding and unconditionally
hiding?

- Suggest a way how you can use RSA to create a bit commitment scheme which is unconditio-
nally binding and (believed to be) computationally hiding. (You can use the [nonobvious] fact
that computing the least significant bit of m from the value me mod n (in the RSA scheme)
is ‘as hard as’ computing m.)

- Find definitions of so-called one-way functions and discuss their relations to commitment
schemes.

26

5 Probabilistically Checkable Proofs (PCP)

(E.g., in [9], [6].)

Now we look at special interactive protocols, which play an important role in showing lower
bounds for approximation algorithms (discussed later in our course).

We start with an important example. Recall that 3SAT is in NP (is NP-complete, in fact).
Given a boolean formula φ(x1, x2, . . . , xn), in cnf with 3 literals in each clause, we can use (a
description of) a truth assignment (to the variables x1, x2, . . . , xn) which makes φ true as a
proof of its satisfiability. A standard way to verify the correctness of this proof is to read the
whole proof, substitute the given values into φ and verify that φ is true for this assignment.

Consider now a special subproblem, for some (fixed) ε > 0:

Problem: ε-robust 3SAT

Instance: a formula φ(x1, x2, . . . , xn) as in 3SAT, with m clauses, which is either
satisfiable or each nonsatisfying assignment does not satisfy at least εm clauses.

Question: Is φ satisfiable?

Remark. We do not care now how to guarantee that the instances have the mentioned pro-
perty; we just have the task to suggest a way of proof-verifying which will work for such
instances.

Again, a truth assignment (for variables x1, x2, . . . , xn) can serve as a proof. But it is now
not necessary to read the whole proof:

Verifier can choose a clause randomly (for which O(logm) bits are sufficent) and then ask the
values of 3 bits in the proof, namely the truth values of the variables in the selected clause.
If the clause is not satisfied, V rejects; if the clause is satisfied, V repeats choosing a clause
randomly, etc. . . . when he finds log1−ε

1
2 times that the chosen clause is satisfied, V accepts.

Remark. V can thus wrongly accept only with probability ≤ 1
2 . As usual, repeating the whole

process, say, 50 times, we get this probability below 1
250
.

We have thus shown that the problem ε-robust 3SAT has a probabilistically checkable proof
where the Verifier uses O(log n) random bits (here n means the size of input) and asks for
O(1) (i.e., a constant number of) bits from a proof. In a succint notation, ε-robust 3SAT
belongs to PCP (log n, 1).

Generally, PCP (r(n), q(n)) denotes the class of problems (sets, languages) where for each L
in the class there is an interactive protocol which can be presented as follows:

For each x ∈ L, P can be viewed as a string (a proof of the fact that x ∈ L) which determines
the answers to Verifier’s queries. Verifier can only use O(r(size(x))) random bits and ask
O(q(size(x))) queries (and altogether works in polynomial time). (This allows to put an
upper bound 2O(r(size(x)) ·O(q(size(x))) on the length of the proof.)
As usual, we require that for any x ∈ L there is P such that (P,V) always accepts x (i.e., with
probability 1), and for x 6∈ L and any P’ the protocol (P’,V) accepts x with probability ≤ 1

2 .

From the definition we easily get:

PCP (0, 0) = P

PCP (poly(n), 0) = co−RP

27

PCP (0, poly(n)) = NP

Remark. By PCP (poly(n), 0) we mean the union of all PCP (r(n), 0) where r is a polynomial
function, etc.
Recall also that RP is the class of problems (languages) such that for each L ∈ RP there
is a polynomial time randomized (probabilistic) algorithm such that x ∈ L is accepted with
probability ≥ 1

2 and x 6∈ L is rejected with probability 1.

The main results regarding PCP were shown during 1990s. One of them says that

PCP (poly(n), poly(n)) = NEXPTIME.

Exercise. Show that PCP (r(n), q(n)) ⊆ NTIME(poly(n) · 2O(r(n))), and derive that
PCP (log n, poly(n)) = NP and PCP (log n, 1) ⊆ NP .

The following result, also known as the PCP-theorem, came as a surprise and has a nontrivial
technical proof:

NP = PCP (log n, 1).

Exercise. Prove the PCP theorem when assuming that ε-robust 3SAT is NP-complete (for
some ε > 0).

In fact, ε-robust 3SAT really is NP-complete but the known proof of this fact uses the PCP
theorem (which is thus proved in another way, of course).

Ideas of a proof of a weaker version of the PCP theorem

The PCP theorem says that NP = PCP (log n, 1). We sketch the ideas for the following
weaker version: NP ⊆ PCP (n3, 1); this is equivalent to the following claim.

Claim. 3-Sat ∈ PCP (n3, 1).

We start with the arithmetization (of formulas = instances of 3-SAT) illustrated on the
following example:

To the formula φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4)
(with clauses c1, c2, . . . , cm for m = 2, and variables x1, x2, . . . , xn for n = 4)

we construct the polynomial pφ = p1 + p2 = (1− x1) · x2 · (1− x3) + x1 · x2 · (1− x4)

(which is equivalent to
x2 − x1x2 − x2x3 + x1x2x3 + x1x2 − x1x2x4 = x1x2x3 − x1x2x4 − x2x3 + x2).

Note that generally the degree of p is 3 (here the degree of a term is the sum of the degrees
of its variables) and there are m = O(n3) clauses (and thus m = O(n3) polynomials pi) when
we have n variables x1, x2, . . . , xn (we do not allow repeating of clauses).

We will be computing in the field Z2 = ({0, 1},+ mod 2, · mod 2); then, e.g., our pφ above is
equivalent to x1x2x3 + x1x2x4 + x2x3 + x2.

Suppose now a (truth) assignment a = (a1, a2, . . . , an) ∈ {0, 1}n. The following exercise
presents an important idea.

Exercise. Show that for a random r = {r1, r2, . . . , rm} ∈ {0, 1}m we have that the probability
Prob(r · p(a) = r1p1(a) + r2p2(a) + · · · + rmpm(a) = 0) is 1 when a satisfies φ and 1/2 when
a does not satisfy φ.

This suggest a way for V (Verifier) how to convince himself that a satisfies φ (if it is the

28

case) but he needs to know the whole a = (a1, a2, . . . , an) for evaluation. We now look for an
encoding of a which enables the needed evaluation by just reading a few bits of the encoding
(i.e, of the proof).

For a = (a1, a2, . . . , an) we define the following linear functions

La
1 : Z

n
2 → Z2; La

1(y1, . . . , yn) =
∑

1≤i≤n aiyi

La
2 : Z

n2
2 → Z2; La

2(y1,1, . . . , yn,n) =
∑

1≤i,j≤n aiajyi,j

La
3 : Z

n3
2 → Z2; La

3(y1,1,1, . . . , yn,n,n) =
∑

1≤i,j,k≤n aiajakyi,j,k

(Example. In the case n = 3, a = (1, 0, 1) we get

La
1(y1, y2, y3) = y1 + y3

La
2(y1,1, . . . , y3,3) = y1,1 + y1,3 + y3,1 + y3,3

La
3(y1,1,1, . . . , y3,3,3) = y1,1,1 + y1,1,3 + · · ·)
The desired proof (encoding) for a will consist of the function tables for La

1, L
a
2, L

a
3 (and will

thus have length 2n + 2n
2

+ 2n
3

).

Now, when V wants to compute r · p(a), he can transform the polynomial q = r · p into the
normal form,

in our example, for r = (1, 1) we get q11 = x1x2x3 + x1x2x4+ x2x3 + x2, for r = (0, 1) we get
q01 = x1 · x2 · (1− x4) = x1x2 + x1x2x4 (recall that we work over Z2), etc.,

and computes the appropriate characteristic vectors of the subpolynomials of degrees 0,1,2,3,
denoted v0 ∈ Z2, v1 ∈ Z

n
2 , v2 ∈ Z

n2
2 , v3 ∈ Z

n3
2 ; in the case of the above q11 we get v0 = 0,

v1 = (0, 1, 0, 0), since the subpolynomial of degree 1 is x2, v2 contains one 1 at position (2, 3),
since the subpolynomial of degree 2 is x2x3, and v3 contains two 1’s at positions (1, 2, 3),
(1, 2, 4) since the subpolynomial of degree 3 is x1x2x3 + x1x2x4.

Exercise. Formalize this process and show that V thus can use just three bits of the proof
for computing q(a), since q(a) = v0 + La

1(v1) + La
2(v2) + La

3(v3).

In fact, the work of V must be enhanced to cope with wrong proofs. He has to verify (with
sufficient certainty) that the given proof really contains tables of linear functions (which satisfy
f(a+ b) = f(a) + f(b)) and that they are consistent (i.e., contain tables La

1, L
a′
2 , L

a′′
3 for the

same a = a′ = a′′). There is also a subtle point that the tested L can be only “almost linear”
and V does not find this; he handles this by a certain “correcting the proof” . . . One has to
do some technical work, involving a detailed computation of probabilities, to show that these
tasks are really realizable and thus that there really is an appropriate protocol using O(n3)
random bits and a constant number of proof-queries.

Remark There would be a lot of work to finish our proof and then to strengthen it to really
yield the PCP theorem. Let us just note that a more direct proof has been found by Irit
Dinur [3].

29

Část 4

6 Approximation algorithms

Optimization problems

We recall what is an algorithmic problem (a problem for short): it is defined by

• a description of the set of allowable inputs, with their representation as finite sequences
over a finite alphabet (sequences of bits, i.e., elements of {0, 1}∗ in particular),

• a description of a function that maps each (allowable) input to a non-empty set of
correct outputs (answers, results, solutions), each of which is also a finite sequence over
a finite alphabet (like {0, 1}).

In decision problems each input is mapped to an element of {0, 1} (i.e. {false, true}). In
optimization problems the desired outputs satisfy some optimality criterion (an example is
searching for a shortest path between two nodes in a graph), in approximation problems the
outputs can just approximate an optimal solution.

An algorithm solving a particular problem is required to output just one of the prescribed
solutions (answers), not to list all of them.

Remark. We can also speak about evaluation problems when the required output is the value
of a cost function (like the length of a shortest path), etc.

MinSpanTree is in P (=PTIME) [or in PO]

Exercise. Recall the problem MinSpanTree (the task is to construct a minimal spanning
tree for an edge-labelled graph), and a polynomial algorithm for solving the problem. (A
greedy approach works in this case. Can you prove this?)

Remark. We thus say that MinSpanTree is in PTIME, though we usually view PTIME as
a set of decision problems (i.e., a set of languages). More precise is to use the notation like
PO (the class of optimization problems solvable in polynomial time) or so . . .

TSP is NP-equivalent

Recall the problem TSP (Travelling Salesman Problem), which is also an optimization pro-
blem where a minimal solution (a solution with the minimal value of a cost function) is
searched. (You can construct an example showing that the greedy approach does not work in
this case.)

Recall the class NP (i.e., NPTIME) and the notions of NP-hardness and NP-completeness.
In the definitions, the notion of polynomial reduction ≤P is used.

Exercise. E.g., recall the construction showing Sat ≤P IndSet where Sat is the problem of
satisfiability of boolean formulas (in cnf, conjunctive normal form) and IndSet is the decision
variant of the optimization problem MaxIndSet of searching a maximal independent set
(anticlique) in a graph.

30

IndSet can be further reduced to the problem HamCycle (Hamiltonian cycle in undirected
graphs). (It is useful to use the analogous problem for directed graphs as an intermediate
step.) HamCycle can be then used to show that TSPdec, the decision version of TSP, is
NP-complete.

Polynomial reductions (≤P) are a special case of more general Turing reductions (≤T). We
have P1 ≤T P2 if there is a polynomial algorithm which solves P1 by using some calls of
an oracle (a hypothetical procedure) for P2; the procedure for P2 is viewed as returning the
answer immediately, i.e., its call costs just one unit of time.

Remark. In fact, Turing reductions are generally used in computability theory without the
polynomiality assumption. If a confusion might arise, we can write ≤p

T to stress this polyno-
miality assumption. Here we implicitly assume polynomiality.

We can easily observe that ≤P is indeed a special case of ≤T : P1 ≤P P2 iff there is a polynomial
algorithm solving P1 which calls (an oracle for) P2 just once, at the end, and returns the
answer provided by this call of P2. Polynomial reductions are useful for getting a finer view of
complexity classes but it is sometimes sufficient and convenient to consider (the more general)
Turing reductions.

When we say that a general problem (e.g., an optimization problem) O is C-hard (where
C is a class of problems, like, e.g., NP) we mean ∀P ∈ C : P ≤T O. O is C-easy when
∃P ∈ C : O ≤T P . O is C-equivalent when O is C-easy and C-hard.
Remark. Thus, e.g., UnSat (the complement of Sat) is NP-equivalent when we assume
Turing reductions, since every decision problem (i.e., every language) is Turing-reducible to
its complement. (How?) Of course, when we say that UnSat is coNP-complete, we implicitly
refer to polynomial reductions. (The type of considered reductions must be specified when a
misunderstanding can arise.)

Exercise. Explain why isTSP, i.e. TSPopt (the optimization variant), NP-equivalent. (Recall
that HamCycle ≤P TSPdec.)

TSP is not in APX (even not in APX(2n))

If we have an optimization problem which is NP-hard (often NP-equivalent), a polynomial
algorithm can only approximate an optimal solution, when we assume the general (though
unproven) belief that P6=NP.
Remark. In fact, we can also think about polynomial probabilistic algorithms for approxi-
mation. (Later we show an example.) But this does not seem to help substantially: the class
BPP (the set of problems solvable by probabilistic polynomial algorithms with bounded error
probability), which is a ‘still practical’ superset of P, is also believed not to contain any
NP-hard problem.

Let us have an optimization problem P , which attaches a set of feasible solutions FS(x)
to each input x and specifies a cost function v(x, s) (where s ∈ FS(x)) which should be
minimized (or maximized). We say that A is an approximation algorithm for P if it is a
(deterministic) polynomial algorithm and for each input x returns a solution sA(x) ∈ FS(x).
We say that A has the approximation ratio (at most) rA(n) (where rA : N → N) if

• v(x,sA(x))
vopt(x)

≤ r(size(x)) in the case of minimization, and

31

• vopt(x)
v(x,sA(x))

≤ r(size(x)) in the case of maximization.

(As expected, vopt(x) denotes the value v(x, s) of an optimal solution s.)

By
APX(r(n))

we denote the class of optimization problems for which there are approximation algorithms
with the approximation ratio ≤ r(n). By

APX

we denote the union of all classes APX(c) where c ∈ N (the approximation ratio is bounded
by a constant). The next claim implies that TSP is not in APX if P 6=NP.
Claim. If P 6=NP then there is no (polynomial) approximation algorithm for TSP with the
approximation ratio ≤ 2n.
This is shown by using a gap technique:

Given the NP-complete problem HamCycle, we want to show a polynomial algorithm which,
given an instance G of HamCycle, constructs an instance G′ of TSP such that:

• if there is a Hamiltonian cycle in G then the (value of the) optimal solution in G′ is
‘small’ (≤ n in our case, where n is the number of vertices of G′),

• if there is no Hamiltonian cycle in G then the (value of the) optimal solution in G′ is
‘large’ (> n2n in our case).

An approximation algorithm with ratio ≤ 2n could thus be used to decide HamCycle (how?).
The construction with the above properties is simple: G′ arises from G by giving each edge
value 1, and by completing with the edges nonpresent in G, these with value n2n.

This rather negative result does not hold for TSP∆, the (frequent) subproblem of TSP where
the distances satisfy the triangle inequality. We can easily show that TSP∆ is in APX(2): we
construct a minimal spanning tree and return the nodes in the order in which they are visited
by the depth-first search of this tree. (In fact, it is known that TSP∆ belongs to APX(32).)

A use of (de)randomization; Max-3-Sat is in APX(8/7)

Let us consider the problem Max-3-Sat. An instance is a boolean formula φ(x1, . . . , xn) in
cnf, where each clause contains 3 literals; the task is to find a truth-assignment (for variables
x1, . . . , xn) which satisfies the maximal number of clauses. We assume φ = c1 ∧ c2 ∧ · · · ∧ cm;
so m denotes the number of clauses.

Exercise. Show that Max-3-Sat is NP-equivalent. (NP-hardness can be easily shown by
Sat ≤T Max-3-Sat; but can you also show Max-3-Sat ≤T Sat ?)

There is a simple approximation algorithm A for Max-3-Sat with rA ≤ 2 (so Max-3-Sat
belongs to the class APX(2)):

Evaluate the number of satisfied clauses for the truth assignments (0, 0, . . . , 0) and
(1, 1, . . . , 1) and return the one which satisfies more.

32

The desired property follows from the observation that if clause ci is not satisfied by
(0, 0, . . . , 0) then it is surely satisfied by (1, 1, . . . , 1); hence one of the assignments satisfies at
least ⌈m2 ⌉ clauses, which guarantees
⌈m2 ⌉ ≤ v(φ, sA(φ)) ≤ vopt(φ) ≤ m, and thus vopt(φ)

v(φ,sA(φ))
≤ 2.

Remark.We have thus also illustrated a frequent scheme for estimating approximation ratios.
In the case of maximization problems, we try to find a suitable upper bound for the optimal
value (since we seldom are able to express this value exactly) and a lower bound for the
computed approximation value. In the minimization problems, we look for a suitable lower
bound for the optimum and an upper bound for the approximation.

Let us note that if we take a (uniformly distributed) random truth assignment (for
x1, x2, . . . , xn) in φ, where we assume that all three variables in each clause are different, then
the expected value E(Y) of (the random variable counting) the number of satisfied clauses is
7
8m (why?). (Hint. Recall that the expected value is linear, so E(Y) = E(Y1+Y2+ · · ·+Ym) =
E(Y1)+E(Y2)+ · · ·+E(Ym) where E(Yi) is the expected value of the random variable which
is 1 if the clause ci is satisfied and 0 if ci is not satisfied.)

Exercise. Try to derandomize the probabilistic algorithm based on this observation, i.e.,
suggest a deterministic polynomial algorithm approximating Max-3-Sat with the ratio ≤ 8

7 .
(Hint. Use the fact that E(Y) = 1

2 · E(Y |x1 = 0) + 12 · E(Y |x1 = 1), and thus necessarily at
least one of the values E(Y |x1 = 0), E(Y |x1 = 1) is ≥ 7

8m.)

MinVertexCover is in APX(2)

Another NP-equivalent problem is the vertex cover problem MinVertexCover: given an
(undirected) graph G = (V,E), find a minimal set C ⊆ V of vertices such that each edge
(v, v′) ∈ E is ‘covered’, i.e., has at least one vertex in C ({v, v′} ∩ C 6= ∅).
Remark. Note that C̄ = V − C is an independent set (i.e., an anticlique; there is no edge
between two nodes in C̄). For later use you can show that IndSet ≤p VertexCover (where
VertexCover is the decision version of MinVertexCover).

Exercise. Show that the following greedy approach for MinVertexCover, “repeatedly
choose a vertex which covers the maximal number of sofar uncovered edges”, does not have
the approximation ratio ≤ 2; you can even show that the ratio is not ≤ c for any c ∈ N.

There is the following 2-approximation algorithm A for MinVertexCover:

construct a maximal matching, i.e. a maximal set of pairwise disjoint edges; the
set of vertices incident with those edges constitute a vertex cover which is at
most 2 times bigger than a minimal one. (Why? You will probably show that
z ≤ vopt(G) ≤ v(G, sA(G)) ≤ 2z for some z.)

MinSetCover is in APX(1 + lnn)

The set covering problem MinSetCover is formulated as follows.

Informally: we have a set of skills to be covered, and a set of people, each of which has some
skills. Find a minimal ‘committee’ covering all skills (supposing there is some).

33

More formally, we have a set X (of ‘skills’), a set F of subsets of X (elements of F are ‘people’)
such that the union of all elements of F is X.
Exercise. Show that MinSetCover can be easily viewed as a generalization of
MinVertexCover but we have no good analogue of the above ‘maximal matching’ ap-
proximation algorithm in this case.

The greedy heuristics,

repeatedly select a set (element of F) covering the maximum number of the sofar
uncovered elements of X

gives an approximation ratio O(log n).

Exercise. Show this claim; you can elaborate the approach hinted below.
The approximation ratio can be shown bounded by H(max{|S|;S ∈ F}), where H(n) =
∑n

i=1
1
i is the n-th harmonic number.

(Recall that H(n) < 1 + lnn [using the fact
∫

1
xdx = lnx].)

The greedy algorithm constructs a cover C = {S1, S2, . . . }; each newly added set can be viewed
as adding cost 1 to the solution (whose cost is |C|). We spread this cost on the newly covered
elements: each element x which is first covered by Si has cost cx = 1/|Si−(S1∪S2∪· · ·∪Si−1) |.
So |C| =∑

x∈X cx; this is ≤
∑

S∈C∗

∑

x∈S cx, where C∗ is an optimal solution.

So we will be done when we show that ∀S ∈ F :∑x∈S cx ≤ H(|S|)
(since then |C| ≤ |C∗| ·H(max{|S|;S ∈ F})).
So fix some S ∈ F and let ui = |S − (S1 ∪ S2 ∪ · · · ∪ Si) |.
Due to the greedeness: ui−1 ≤ |Si − (S1 ∪ S2 ∪ · · · ∪ Si−1) |.
Let k be the smallest s.t. uk = 0.
∑

x∈S cx =
∑k

i=1(ui−1 − ui) · 1
|Si−(S1∪S2∪···∪Si−1) |

≤ ∑k
i=1(ui−1 − ui) · 1

ui−1
.

Since (b− a) · 1b ≤ ∑b
i=a+1

1
i = H(b)−H(a), we have

∑

x∈S cx ≤ ∑k
i=1(H(ui−1)−H(ui)) .

Telescoping sum .. . = H(u0)−H(0) = H(u0) = H(|S|)) .
(The above proof is a straightforward but a bit technical calculation. Less technical can be to
proceed by induction on |S| [or by supposing a counterexample which has the minimal |S|];
it can be also useful to strengthen the claim: ∀S ∈ F : ∀S′ ⊆ S :

∑

x∈S′ cx ≤ H(|S′|) [where
we put H(0) = 0].)

A use of linear programming; MinWeightVertexCover is in APX(2)

Given G = (V,E) and a weight function w : V → N+, we search for a vertex cover C ⊆ V
such that

∑

v∈C w(v) is minimal. This is a generalization of MinVertexCover (why?), let
us denote this problem as MinWeightVertexCover.

Exercise. Show that an approach analogous to the previous 2-approximation algorithm for
MinVertexCover can give results which are far from optimal. (It is also not clear how a
randomization could help.)

Let us reformulate our problem. In fact, we are searching for a certain function (or a |V |-
dimensional vector) x : V → {0, 1}, defining a set C ⊆ V by v ∈ C ⇔ x(v) = 1.

34

We are thus solving the following integer linear programming problem:

we search for an integer solution x satisfying

∀v ∈ V : 0 ≤ x(v) ∧ x(v) ≤ 1, and
∀(v, v′) ∈ E : x(v) + x(v′) ≥ 1
which minimizes

∑

v∈V x(v)w(v) .

Of course, the IntLinProg (integer linear programming) problem is also NP-hard (NP-
equivalent, in fact) but when we relax the ‘integer’ requirement, i.e., we search for an optimal
real (in fact, rational) solution, we get an instance of LinProg (linear programming) which
is solvable in polynomial time.

Remark. The algorithms for LinProg used in practice are based on the so-called simplex
method, and have exponential worst-case complexity (for artificially composed instances, not
for those arising in practice). The question of polynomiality of LinProg was a long-standing
open problem until answered positively by Khachiyan in 1979.

Our algorithm thus finds an optimal solution x̄ (of the LinProg-instance), and then it rounds
the components to 0,1, i.e., puts v ∈ V into C iff x̄ ≥ 1/2.
Exercise. Show that the resulting algorithm is indeed a 2-approximation algorithm for
MinWeightVertexCover.

Remark. (The nontrivial result on polynomiality of) LinProg is a convenient tool to show
that MinWeightVertexCover is in APX(2). Nevertheless, one can suggest direct 2-
approximation algorithms, without using LinProg.
Student Martin Šustek reported [in Nov 2009] the following algorithm.
Process all edges (of the given graph G = (V,E)) successively: to each edge e attach the
maximal weight w′(e) so that you maintain the invariant that w(v), for each v ∈ V , is greater
or equal to the sum of weights of the (processed) edges incident with v. Finally return the set
V ′ of the “saturated” vertices (i.e., those v ∈ V for which w(v) is equal to the sum of weights
of the incident edges).

Fully polynomial approximation scheme for MaxSubsetSum

Recall the problem MaxKnapsack: given a set {1, 2, . . . , n} of objects, each i with utility
u(i) and weight w(i), and a weight limit W , find a subset I ⊆ {1, 2, . . . , n} of objects so that
∑

i∈I u(i) is maximal on condition that
∑

i∈I w(i) does not exceed W .

Exercise. Show a pseudopolynomial algorithm solving this problem. I.e., given a polynomial
p(n), suggest a polynomial algorithm working on instances x in which the (values of the)
given numbers are bounded by p(size(x)).

SubsetSum is a special case of the decision version of Knapsack: given positive numbers
a1, a2, . . . , an and a limit t, we ask if there is a subset I ⊆ {1, 2, . . . , n} such that∑i∈I ai = t.

Exercise. Show that SubsetSum is NP-complete. (You can use 3-Sat for reduction.)

Remark. Note that the numbers in the SubsetSum-instances you constructed when showing
3-Sat ≤p SubsetSum are not polynomial (in the size of instance). (Otherwise you would
have shown P=NP. Why?) The problems which are NP-complete even when restricted to
instances with polynomially bounded numbers are sometimes called strongly NP-complete.
Thus SubsetSum (or Knapsack) are not stronly NP-complete; on the other hand, e.g.,

35

TSP is strongly NP-complete. (Why?)

We now show that MaxSubsetSum (an optimization version of SubsetSum; we search
for the largest sum

∑

i∈I ai not exceeding t) belongs to APX, but not only that: we show
that MaxSubsetSum belongs to APX(c) for all c > 1 (i.e., to the class sometimes denoted
APX∗). In fact, our result will be still stronger: we show that MaxSubsetSum belongs to
the class

PTAS (⊆ APX∗)

of the optimization problems which have polynomial-time approximation schemes (ptas for
short).

A ptas for an optimization problem O is an algorithm A which gets as input an instance
x of O and a rational ε > 0; it computes a (feasible) solution sA(x, ε) guaranteeing the
approximation ratio ≤ (1 + ε).

(I.e., v(x,sA(x,ε))
vopt(x)

≤ (1 + ε) in the case of a minimization problem, and vopt(x)
v(x,sA(x,ε))

≤ (1 + ε) in

the case of a maximization problem.)
Moreover, for any fixed ε, (the resulting restriction of) A must be polynomial (in size(x)).

To broaden our view, we will show a ptas for the following problem which is tightly related
to MaxSubsetSum. We denote it MinLoadScheduling (for 2 identical processors): an
instance x is a list of tasks 1, 2, . . . , n with times (durations) d1, d2, . . . , dn and we want to
distribute them to 2 processors so that the computation time is minimal. In other words, we
search for a subset I ⊆ {1, 2, . . . , n} such that ∑i∈I di is minimal but satisfies

∑

i∈I di ≥ ℓ
2

where (the overall load) ℓ = d1 + d2 + · · ·+ dn. (The tasks from I are then scheduled for one
processor, the rest is scheduled for the other processor.)

Exercise. Formulate precisely how is this problem related to MaxSubsetSum.

We suggest the following ptas A for MinLoadScheduling. The algorithm A, given
d1, d2, . . . , dn and ε, classifies all tasks with di ≥ εℓ as large (where ℓ = d1 + d2 + · · · + dn);
the tasks with di < εℓ are small. We note that there are at most ⌊1ε⌋ large tasks.
A then checks successively each of the at most 2⌊

1

ε
⌋ distributions of large tasks (to 2 pro-

cessors); each particular distribution is completed by distributing small tasks ‘greedily’, i.e.,
each small task is then successively scheduled for the currently less loaded processor. A best
solution is finally returned as the result.

Exercise. Check that the complexity of A is O(2⌊
1

ε
⌋ ·n), and that the approximation ratio is

≤ (1+ε). (Hint. An optimal solution distributes large tasks in a certain way, and this way was
also considered by A. Either all small tasks are in that case scheduled for one processor whose
load is not greater than the load of the other, and A has thus found an optimal solution, or
ℓ
2 ≤ vopt(x) ≤ v(x, sA(x, ε)) ≤ ℓ

2 +
εℓ
2 = (1 + ε) ℓ2 .)

The appearance of 1ε in an exponent is unpleasant. Can we do better? In this case yes; we
switch back to MaxSubsetSum and show that the problem belongs even to

FPTAS,

the class of the optimization problems which have fully polynomial-time approximation sche-
mes (fptas for short).

An fptas is a ptas whose complexity is polynomial both in the size of the input (size(x)) and
in (the value) ⌊1ε⌋. (E.g., the case O((1ε)2(size(x))3) falls in this category.)

36

To show that MaxSubsetSum has a fptas B, we need to use additional ideas (and technical
calculations). Consider an instance a1, a2, . . . , an and t; we search for a subset I ⊆ {1, 2, . . . , n}
such that

∑

i∈I ai is maximal but ≤ t.

Recalling the strategy of the pseudopolynomial algorithm forMaxKnapsack, it is clear that
we can perform a cycle for i = 1, 2, . . . , n and maintain an ordered list L = 〈y1, y2, . . . 〉
of values ≤ t so that after the ith run L contains all possible values

∑

j∈I aj for subsets
I ⊆ {1, 2, . . . , i}. We can do this by performing Li := merge(Li−1, Li−1 + ai), where L + a
arises from L by adding a to all elements of L; we omit the values > t in our case.
Since now we have no polynomiality assumption on the values t and a1, a2, . . . , an, this algo-
rithm can be exponential. The key idea of the algorithm B is to trim L after each run of the
cycle, in the following way: if we include y0 to Li then we do not include further elements z
in the range y0 < z ≤ (1 + ε

2n)y0 (if any); after including the first y1 > (1 +
ε
2n)y0, we do not

include elements z in the range y1 < z ≤ (1 + ε
2n)y1, etc.

Exercise. Show that the suggested algorithm B is indeed a fptas for MaxSubsetSum. (It
might be useful to note that (1+ a

n)
n < ea [a ≥ 0, e is Euler’s number, i.e., the base of natural

logarithm; in fact, limn→∞(1 +
a
n)

n = ea]. For a ≤ 1 we also have 1 + a ≤ ea ≤ 1 + a+ a2.)

Approximation algorithms - some additional words

Let us survey some known results about the approximation ratios obtainable for some pro-
blems (by polynomial approximation algorithms); we have touched on some of them.

• O(n
log2 n

) for MaxClique

• O(log n) for MinSetCover

• 2 for MinVertexCover

• 3
2 for MinTSP∆

• 8
7 for Max-3-Sat

• PTAS for MinVertexCoverplanar
• FPTAS for MaxKnapsack

These results provide some upper bounds.

Remark. These upper bounds relate to the worst-case aproximation ratio; sometimes the
asymptotic worst-case approximation ratio is a better measure, but we do not discuss this
topic here.

As a lower bound, we have shown

• MinTSP is not in APX(2n) (if P 6=NP).

This result was easy but it is generally more difficult to get some nontrivial lower bounds. For
many optimization problems we can get at least weak inapproximability (i.e., lower bound)
results in the following way.

37

Let us say that an optimization problem O has small solution values if the values of solutions
are positive integers bounded by a polynomial in the length of the input. (Examples are
scheduling problems, covering problems, clique problems, and also problems like MinTSP,
MaxKnapsack when we restrict ourselves to the instances with number values bounded by
a polynomial in the input size.)

Theorem. If P 6=NP then no NP-hard problem with small solution values belongs to FPTAS.
Proof. (By contradiction.) Suppose an NP-hard problem O with small solution values, boun-
ded by a polynomial p(n), and with an fptas A. The algorithm A′ which on input x sets
ε := 1

p(size(x)) and then computes A(x, ε) is a polynomial approximation algorithm for O with

the approximation ratio rA′(n) ≤ 1+ 1
p(n) (why?). Since we assume P 6=NP, A′ does not com-

pute the optimal solutions for all inputs; but any returned nonoptimal solution (for an input

of size n) shows rA′(n) ≥ p(n)
p(n)−1 = 1 +

1
p(n)−1 > 1 +

1
p(n) , which is a contradiction. �

Theorem. If P 6=NP, and for a minimization problem O with integer solution values it is
NP-hard to decide whether vopt(x) ≤ k (for a fixed k) then O does not belong to APX(r(n))
for any r(n) < 1 + 1k ; let us write APX(< 1 +

1
k) for short.

Similarly for a maximization problem O and deciding whether vopt(x) ≥ k + 1.

Proof. Suppose an algorithm A which shows that O ∈ APX(< 1 + 1
k). Given some x with

vopt(x) ≤ k, the algorithm A cannot output a solution s with v(x, s) ≥ k + 1 since v(x,s)
vopt(x)

≥
k+1
k = 1+

1
k > rA′(size(x)); A can thus be used to decide whether vopt(x) ≤ k (how?), which

contradicts with P 6=NP. �

As a corollary, we can derive, e.g.,

• MinGraphColour is not in APX(< 4
3) (if P 6=NP).

(It is not the best known lower bound for MinGraphColour, though.)

Recall the polynomial reductions ≤p among the decision problems. It is possible to suggest
finer reductions ≤PTAS among the optimization problems, guaranteeing that if P ≤PTAS Q
and Q ∈ PTAS (Q ∈ APX) then P ∈ PTAS (P ∈ APX).
We will not give a technical definition but only mention that one can show that

• Max-3-Sat ≤PTAS MaxClique

• MaxClique ≡PTAS MaxIndSet (where A ≡PTAS B iff A ≤PTAS B and B ≤PTAS A)

by using the analogues of the standard polynomial reductions for the decision versions.

Exercise. Recall (or suggest) the straightforward polynomial reduction IndSetdec ≤p

VertexCoverdec (noting that C ⊆ V is a vertex cover in G = (V,E) iff V−C is an
independent set). Though we have not defined ≤PTAS precisely, argue that this polyno-
mial reduction cannot serve to show MaxIndSet ≤PTAS MinVertexCover. (Though
MinVertexCover ∈ APX(2), the reduction can not be used to deduceMaxIndSet ∈ APX
(why?).)

We just note that by using the notion of ≤PTAS-reductions we can define NPO-complete
problems, APX-complete problems, PTAS-complete problems, . . . Here NPO is the class of

38

“nondeterministic polynomial-time optimization problems”; a problem A belongs to NPO if
we can decide in polynomial time for a given (x, s) if s is a solution of x and compute v(x, s)
in the positive case. It is reasonable to restrict APX, PTAS, . . . to problems in NPO; then we
have FPTAS ⊆ PTAS ⊆ APX ⊆ NPO.
An example NPO-complete problem isMaxWeightSat: its instance is a cnf boolean formula
φ(x1, x2, . . . , xn) with nonnegative integer weights of variables, w : {x1, x2, . . . , xn} → N; the
value v(φ, a) for a non-satisfying assignment a is 1, and v(φ, a) = max{ 1 , ∑i,a(xi)=1

w(xi) }
for a satisfying assignment a.
Also MinTSP is NPO-complete.

We have already mentioned that the PCP-theorem enables to show that ε-robust-3-Sat is
NP-complete, for some ε > 0. In more detail, there is a polynomial algorithm which allows
for the use of the gap technique: it transform any 3-SAT formula φ into a 3-SAT formula φ′ so
that the following holds: if φ is satisfiable then also φ′ is satisfiable, and if φ is not satisfiable
then each assignment satisfies less than (1−ε)m clauses in φ′ wherem is the number of clauses
in φ′.

This result has enabled to show other lower bounds for approximability. In particular we can
deduce that

• Max-3-Sat does not belong to PTAS, when P 6=NP.

Moreover, it can be even shown that Max-3-Sat is APX-complete.

It can be also shown that

• MaxClique does not belong to APX, when P 6=NP.

Let us at least sketch the use of the gap technique for showing the last claim MaxClique 6∈
APX. (Recall that we used the gap technique when showing TSP 6∈ APX; to find a direct
construction for MaxClique, which would do the job, seems much more difficult, but with
the PCP theorem it is easy, as we shall see.)

Let us consider the problem 3-SAT and the respective polynomial program (protocol) P
guaranteed by the PCP theorem. Thus our program P takes a 3-cnf boolean formula φ as
an input, let n = size(φ), generates (and uses) c log n random bits and asks for k proof-bits
(where c, k are fixed constants). We know that if φ is satisfiable then there is a proof(string)
such that P accepts φ with certainty; if φ is not satisfiable then any proof can make P to
accept with probability 1/2 at most.

We suggest the following construction. Given φ, we construct a graph G where each node
corresponds to a particular bit string r of length c log n and a particular bit string q of length
k for which P accepts. (There are at most 2c logn ·2k, i.e. O(nc), such nodes, for each of which
we can check in polynomial time whether P accepts.) Now we put an edge between two nodes
v, v′ of G iff they correspond to different vectors r, r′ with compatible proof-strings (if the
address of the asked bit q(i) is the same in both cases v, v′ then this bit must have the same
value in both cases).

It is now easy to check that if φ is satisfiable then there is a clique in G of size nc, and if φ is
not satisfiable then any clique has the size at most nc

2 .

Finally, we recall that we can achieve that accepting a nonsatisfiable φ can happen with the
probability at most 1/d for any fixed constant d (by repeating P g-times where 2g ≥ d), and

39

thus the result MaxClique 6∈ APX easily follows (when assuming P 6=NP, of course).

40

Část 5

7 Automata and logic on infinite words

As a motivating example, we describe briefly one method in the area of model checking, which
is a part of the broader area of (automated) verification.

Peterson’s mutual exclusion protocol

For concreteness, recall Peterson’s protocol solving the mutual exclusion problem. We imagine
two processes A,B running in parallel. (An abstraction of) process A performs the infinite
loop

while true do
(noncritA;
flagA := true; turn := B; waitfor (flagB = false) ∨ (turn = A); critA; flagA := false)

and process B performs

while true do
(noncritB;
flagB := true; turn := A; waitfor (flagA = false) ∨ (turn = B); critB ; flagB := false) .

A global state of our system S = A‖B (processes A,B running in parallel; they communicate
by shared variables) can be described by the values of a few (boolean) variables, i.e., by a
(column) vector from {0, 1}k for some fixed k. Our system S thus determines (can be equated
with) a (finite) transition system (G,→) where G is the set of all global states and→⊆ G×G
is the generated (unlabelled) transition relation, describing how a global state can change in
one step; a concrete g0 ∈ G is the initial state. (E.g., the vector from {0, 1}k which corresponds
to the global state with noncritA = true, noncritB = true, flagA = false, flagB = false,
turn = A, . . . can be the initial state.)

Exercise. You can draw at least a part of the graph of S = (G,→).
Each run of our system can be seen as a (potentially infinite) sequence g0, g1, g2, . . . such that
gi → gi+1 for all i. The system thus determines the set of its infinite runs, which is a language
of infinite words, i.e. a subset of Σω

(so w ∈ Σω is a function w : {0, 1, 2, . . . } → Σ, i.e., an infinite sequence a0a1a2 . . .
where ai = w(i))

where Σ = {0, 1}k in our case. (Thus a letter is a [column] vector of k 0’s and/or 1’s.)
Remark. If there is a global state g with no successor (there is no g′ such that g → g′) then
we can assume that there is a loop g → g, by which we make all maximal runs infinite. This
is usually the case at so called Kripke structures, which are, in fact, nothing else than the
transition systems as described above. (We have a set of atomic propositions, like “turn = B”,
“critA”, etc., which are either true or false in each given [global] state.)

41

Model checking (safety and liveness properties)

In our example system S = A‖B we can be naturally interested in checking if the following
property, an example of a so-called safety property, is satisfied: (starting from the initial
state,) the processes can never be in the critical section simultaneously, i.e., the global state
g satisfying (critA ∧ critB) is not reachable; in other words, the states on each run satisfy
¬critA ∨ ¬critB. Another desirable property, an example of a so-called liveness property, is
that whenever process A wants to enter the critical section, i.e., sets flagA := true, it will
eventually enter that section, i.e., a global state in future will satisfy critA.

One general method for checking if a given property φ is satisfied in (the initial state of)
system S is to construct an automaton accepting all runs that violate φ, let us denote this
automaton B¬φ; this automaton will be combined with the (transition) system S, yielding an
automaton B(S,φ), and we will ask if B(S,φ) accepts an (infinite) word. If yes then S allows a
run which violates φ, if not, i.e., if Lω(B(S,φ)) = ∅ [the language of all infinite words accepted
by B(S,φ) is empty], then S satisfies φ (i.e., all runs of S satisfy φ).

Büchi automata

What kind of automata do we have in mind when speaking about B¬φ, B(S,φ)? We mean
Büchi automata; a Büchi automaton is, in fact, the usual nondeterministic finite automaton,
only the acceptance condition is different (dealing with infinite words, not the finite ones).
Given a (nondeterministic finite) automaton B = (Q,Σ, δ, q0, F) (where δ ⊆ Q×Σ×Q is the
transition relation and F ⊆ Q is the set of accepting states) we denote

Lω(B) = {w ∈ Σω | there is a run of B on w which goes through F infinitely often}.

As expected, a run of B on w = a0a1a2 . . . is a sequence σ = q0, q1, q2, . . . such that qi
ai→ qi+1

(i.e., (qi, ai, qi+1) ∈ δ) for all i = 0, 1, 2, By Infin(σ) we denote the set of those states
q ∈ Q which appear infinitely often (i.e., infinitely many times) in σ. Hence Lω(B) = {w ∈ Σω |
there is a run σ of B on w such that Infin(σ) ∩ F 6= ∅}.
It is easy to construct B¬φ1 where φ1 is the above safety property. We can take
({q0, q1},Σ, δ, q0, {q1}) where Σ = {0, 1}k as discussed above, and δ contains the triples (the
transitions) q0

x→ q0 for all x ∈ Σ which represent the global states satisfying ¬critA∨¬critB,
q0

y→ q1 for all y ∈ Σ which represent the global states satisfying critA ∧ critB , and q1
z→ q1

for all z ∈ Σ.
Remark. Our automaton is, in fact, deterministic. A certain disadvantage of Büchi automata,
discussed also later, is that the nondeterministic version is more powerful than the determi-
nistic one (unlike the case for finite automata accepting languages of finite words). This is
demonstrated in the next exercise.

Exercise. Construct a (nondeterministic) Büchi automaton B such that Lω(B) = {w ∈
{0, 1}ω | w contains only finitely many 1’s}. There is no deterministic Büchi automaton
accepting this language; can you prove this?

Exercise. Construct B¬φ2 where φ2 is the above liveness property.

We now look how to create the above mentioned automaton B(S,φ), which is a combination
of the transition system S (like the one generated by our “Peterson’s system”) and the Büchi

42

automaton B = B¬φ. In principle, we will do the usual product construction (which synchro-
nizes the runs of S and B); we just have to overcome the technical problem that the states of
S are, in fact, the letters for B. But this problem is easy: we can introduce a special “starting
state” qstart and add a special “exit state” eg to each g ∈ S; now the original states g ∈ S are
handled as letters (edge-labels), and we put qstart

g0→ eg0 , and eg
g′→ eg′ for all g → g′. Then

we can define B(S,φ) = AS ×B¬φ, where AS is the (nondeterministic finite) automaton arising
from S as discussed above.
Exercise. Give a precise definition of A× B.
There are more variants how to define the accepting states of the product automaton. In our
discussed case, AS has no accepting states, and the accepting states of AS ×B¬φ will be the
pairs (q1, q2) with q2 ∈ F , where F is the set of accepting states of B¬φ. (Why?)

Recall that our general (model checking) method finally checks whether Lω(B(S,φ)) = ∅.
Exercise. Suggest a method how to decide whether Lω(B) = ∅ for a given (description of a)
Büchi automaton B.
Note that if Lω(B(S,φ)) 6= ∅ then you can provide a counterexample, i.e., (a description of) a
run of the (original) system S (like the “Peterson’s system”) which violates the property φ.

Monadic second order logic S1S

Now we are interested in characterizing what kind of properties φ allow to construct the
appropriate Büchi automata Bφ (or B¬φ). It turns out that they are precisely those expressible
in the monadic second-order logic of one successor, briefly denoted as S1S.

Recall what is the first order logic: the language contains (symbols for) variables x, y, z, . . . ,
logical connectives like ¬,∨,∧,→,↔, quantifiers ∃,∀, usually also the special predicate = (ob-
ligatorily interpreted as the equality), and “nonlogical” symbols, i.e., some function symbols
f, g, . . . (with their arities) and/or some predicate symbols P,Q, . . . (with their arities).

Exercise. Recall the syntactic rules for creating terms, atomic formulas, formulas (including
the “syntactic sugar” like parantheses), free and bound occurences of variables, etc., and the
interpretation of terms and formulas in concrete (mathematical) structures.

Remark. Also recall that we can “narrow” the logical symbols to ¬, ∨, ∃, and handle the
other connectives and ∀ as derived. For expressing statements it is useful to have the “broad”
logic, for proving things about the logic it is useful to keep it “narrow”.

Logic S1S has all ingredients of the first order logics, with only one nonlogical symbol: the
unary function symbol s (“successor”). Moreover, it is a second-order logic, so it also has
variables X,Y,Z, . . . for predicates but it is monadic, i.e., these variables only range over
unary predicates, i.e., sets. Finally, we have a special predicate ∈ ; as expected, its type only
allows to use it in atomic formulas of the form t ∈ X where t is a (1st order) term (so
t = ss . . . sx for some (maybe zero) number of occurences of s).

We have a concrete structure in mind, in which we interpret logic S1S, namely the structure
(N, s,∈), with the usual interpretation (s(n) = n+1, n ∈ C iff number n is an element of set
C).

Remark. Note that we follow the usual practice and use the same typographical symbols s,∈
for both the symbols in the logic and for denoting one concrete function and one concrete

43

predicate in the structure N. It is also useful to note that here N = {0, 1, 2, . . . } serves
primarily for modelling (discrete) time (rather than for arithmetics).

We will naturally need to express that a time point x is initial, i.e., x = 0. The constant 0 is
not in the logic S1S (for keeping the logic as “narrow” as possible) but x = 0 can be expressed
by the formula ∀y¬(x = sy). In fact, even “=” is not included in S1S since t1 = t2 can be
expressed by ∀X(t1 ∈ X ↔ t2 ∈ X), and X = Y can be expressed by ∀x(x ∈ X ↔ x ∈ Y).
It is certainly also useful to express that a time point x is earlier than y, i.e. x < y.

Exercise. Find an S1S-formula expressing x < y (in our intended structure (N, s,∈)).
Also find S1S-formulas expressing “X is finite” and “X is infinite”.

Remark. As mentioned above, it is usual (and convenient) to use the symbols 0, 1 (= s0), 2,
. . . , =, <, ≤, ⊆ (for X ⊆ Y) as if they belonged to S1S, while we are aware that they are, in
fact, just “abbreviations”.

Expressing properties of runs in S1S

Let us look how we can express properties of runs, like our safety property φ1 and our liveness
property φ2, in S1S. Imagine a run ρ of (e.g., “Peterson’s”) system S, and recall that ρ can
be viewed as a sequence of column vectors a0a1a2 . . . (ai ∈ {0, 1}k); we can say that in time
i ∈ N the run goes through the (global) state ai. Run ρ thus determines a k-track tape with
cells 0, 1, 2, Each track j is (filled with) an infinite sequence of 0’s and 1’s (an element
of {0, 1}ω), and thus can be viewed as the characteristic sequence of a set T ρ

j ⊆ N: i ∈ T ρ
j

iff the value in Track j in the cell (time point) i is 1. In our example, one of the tracks, say
Track 1, determines the set T ρ

1 of time points where critA holds; another track, say Track 2,
determines the set T ρ

2 , the set of time points where critB holds.

So we have seen how a sequence ρ ∈ ({0, 1}k)ω determines the k-tuple of sets T ρ
1 , T

ρ
2 , . . . , T

ρ
k .

On the other hand, each k-tuple T1, T2, . . . , Tk of subsets of N determines one ρ ∈ ({0, 1}k)ω
such that T ρ

j = Tj (for j = 1, 2, . . . , k).

It is thus clear that the S1S formula Φ1(X1,X2, . . . ,Xk) defined as ∀i : i ∈ X1 → i 6∈ X2
can be naturally viewed as an expression of the safety property φ1, since Φ1(T1, T2, . . . , Tk) is
true precisely for those k-tuples of sets T1, T2, . . . , Tk ⊆ N which correspond to sequences of
(potential) global states of S which do not contain any “forbidden” state, i.e., the state with
critA ∧ critB .

Remark. Φ1(X1,X2, . . . ,Xk) thus determines all “safe sequences” from ({0, 1}k)ω, where not
all of them necessarily correspond to real runs of system S. But we have that system S has
(i.e., all runs of system S have) the property φ1 iff Φ1(T ρ

1 , T
ρ
2 , . . . , T

ρ
k) holds for all runs ρ of

S; in other words, iff there is no run ρ of S for which ¬Φ1(T ρ
1 , T

ρ
2 , . . . , T

ρ
k).

Exercise. Suggest a formula Φ2(X1,X2, . . . ,Xk) so that S has the above defined liveness
property φ2 iff for all runs ρ of S we have Φ2(T ρ

1 , T
ρ
2 , . . . , T

ρ
k).

Equivalence of S1S and Büchi automata

Now we want to show the equivalence (wrt the expressive power) between S1S and Büchi
automata. The following exercise deals with the easier direction.

Exercise. Assume a Büchi automaton B = (Q, {0, 1}, δ, q0 , F) and suggest an S1S formula

44

ΦB(X) such that ΦB(T) for T ⊆ N iff charseq(T) ∈ Lω(B). (Here charseq(T) ∈ {0, 1}ω is the
characteristic sequence of T .)
Sketch how you would generalize the result for alphabet {0, 1}k .
Now assume a S1S formula Φ(x1, x2, . . . , xm,X1,X2, . . . ,Xk). We want to construct a Büchi
automaton BΦ, over the alphabet {0, 1}m+k such that Φ(t1, t2, . . . , tm, T1, T2, . . . , Tk) (for ti ∈
N, Ti ⊆ N) is true iff BΦ accepts the infinite word ρ ∈ ({0, 1}m+k)ω where T ρ

1 = {t1}, . . . , T ρ
m =

{tm}, T ρ
m+1 = T1, . . . , T

ρ
m+k = Tk.

We proceed by induction on the structure of Φ.

Exercise. Show how to construct an equivalent automaton for atomic formula ss . . . sx ∈ X.

Exercise. Show how to construct an equivalent automaton for the formula Φ1(x,X) ∨
Φ2(x,X) when we already have the respective automata B1,B2 for Φ1(x,X), Φ2(x,X). (x
is a shorthand for x1, . . . , xm and X is a shorthand for X1, . . . ,Xk.)

Exercise. Show how to construct an equivalent automaton for the formula
∃x1Φ(x1, . . . , xm,X) [with free variables x2, . . . , xm,X] when we already have an auto-
maton B equivalent with Φ(x1, . . . , xm,X). (Hint. Use nondeterministic guessing of a
[nonpresent] track content.) Generalize for the case ∃X1Φ(x,X1, . . . ,Xk).

Complementation; Muller automata

We can see that it only remains to handle the case ¬Φ(x,X), when having B for Φ(x,X).
(Other logical connectives and the universal quantifier are expressible by those handled.)

We note that even in the case when B = (Q,Σ, δ, q0, F) is deterministic, the construction (of
B′ accepting the complement of Lω(B)) is not immediate. (We could not just replace F with
Q−F ; why?) This problem could be solved by using (deterministic) Muller automata. Such
an automatonM = (Q,Σ, δ, q0,F) differs in that F ⊆ 2Q, i.e., there is a set of accepting sets
of states (instead of a set of accepting states); the language is then defined

Lω(M) = {w ∈ Σω | there is a run σ ofM on w such that Infin(σ) ∈ F}.

Exercise. Show how, given a Büchi automaton B, we can construct a Muller automatonM
so that Lω(M) = Lω(B); moreover, if B is deterministic thenM is deterministic.

Exercise. Show how to construct an equivalent Muller automaton for the formula ¬Φ(x,X)
when we have a deterministic Muller automatonM equivalent with Φ(x,X).

Unfortunately, Büchi automata cannot be generally determinized, as we already noted. Muller
automata can be determinized, as we shall show. The next exercise thus shows that non-
deterministic Muller automata, deterministic Muller automata, and nondeterministic Büchi
automata are equally expressive.

Exercise. Show how, given a (nondeterministic) Muller automaton M, we can construct a
(nondeterministic) Büchi automaton B so that Lω(B) = Lω(M).

Rabin automata

Hence we will be done when we show how a nondeterministic Büchi automaton can be trans-
formed to an equivalent deterministic Muller automaton. As a convenient intermediate step,

45

we introduce Rabin automata:

A Rabin automaton R is defined by (Q,Σ, δ, q0) and some pairs (G1, R1), . . . , (Gm, Rm); where
Gi, Ri ⊆ Q (think of G as “green light” and R as “red light”); the accepted language is now
defined as follows:

Lω(R) = {w ∈ Σω | there is a run σ of R on w such that for some i we have
Infin(σ) ∩Gi 6= ∅ and Infin(σ) ∩Ri = ∅}.

(A green light is on infinitely often while the respective red light is on only finitely often.)

Exercise. Show that a Rabin automaton R can be transformed to an equivalent Muller
automatonM; moreover, if R is deterministic thenM is deterministic.

Safra’s construction (nondet-Büchi → det-Rabin)

The crucial point is a construction due to Safra; we now explain its basic ideas.

Assume a given nondeterministic Büchi automaton B = (Q,Σ, δ, q0, F) over alphabet Σ, with
n states; we will construct an equivalent deterministic Rabin automaton R (thus Lω(B) =
Lω(R)), with 2O(n logn) states.
Consider a word w = a1a2a3 · · · ∈ Σω, and imagine the respective “determinized token-run”
on the graph of B: we start with a token on the initial state q0, and move (and duplicate and
remove) the tokens so that after processing a1a2 . . . at the tokens are precisely on the states
which are reachable from q0 by a1a2 . . . at.

Exercise. Recall the construction of a deterministic finite automaton equivalent to a given
nondeterministic finite automaton; this is, in fact, the above idea.

It is clear that if there is an infinite run of B on w then the tokens can never completely
disappear from the “board” in our “token-game” when processing w. (Why?) The other
direction needs a moment of thought:

Exercise. Show that if the tokens never completely disappear from the board in our token-
game when processing w then there is an infinite run of B on w.
(Hint. Note that each state q which has a token after processing the prefix a1a2 . . . at (t ≥ 1)
can be reached by at from a state q′ (a “predecessor”) which had a token after processing
a1a2 . . . at−1; we can imagine an appropriate edge from “vertex” (q′, t−1) to vertex (q, t). This
idea leads to an infinite tree which is finitely branching (i.e., each vertex has finitely many
outgoing edges). We can thus apply the well-known König’s Lemma which tells us that every
infinite tree which is finitely branching has an infinite branch. [Can you prove this lemma?])

But the above determinization is not sufficient for us.

Exercise. Show that when we just declare the sets (the token distributions) Q′ ⊆ Q such
that Q′ ∩F 6= ∅ as the accepting states of the constructed deterministic Büchi automaton B′,
it can not be guaranteed that Lω(B′) = Lω(B).
If we want, e.g., that the configuration Ct, i.e. the distribution of tokens after processing
a1a2 . . . at, provides for each state q not only information if q is reachable (from q0 by
a1a2 . . . at) but also if it is reachable via F , we can enhance our token-game as follows:

We imagine that the basic tokens mentioned sofar are white, and we also have a source of
blue tokens. If a white token is placed on some (accepting state) q ∈ F , we put a blue token

46

on top of it; thus a “stack” (white, blue) with height 2 arises (its bottom being on the left in
our presentation), and we handle this stack as a unit in the following moving (and duplicating

and removing); moreover, when there is a conflict, i.e., when in performing step Ct
at+1→ Ct+1

some state q can get both the stack (white) and the stack (white, blue), the conflict is resolved
in favour of (white, blue).

Exercise. Verify that this modified token game serves to the announced aim (Ct provides
information about the reachable states and also about those reachable via F). But show
that even if the (white, blue)-stacks are present in all Cj , Cj+1, Cj+2, . . . (for some j) when
processing w, this does not necessarily mean that there is an accepting run of B on w.

We have to go more deeply. Note that to each q which has a token in Ct we can attach
(maybe several) vectors of the type (i1, i2, . . . , ir) with 0 ≤ i1 < i2 < · · · < ir ≤ t presenting
information that q is reachable from q0 by a1a2 . . . at by a path visiting F at “time points”
i1, i2, . . . , ir. Given two such vectors (i1, i2, . . . , ir), (j1, j2, . . . , js) we can compare them wrt
the following (modified lexicographic) order: (i1, i2, . . . , ir) ≺ (j1, j2, . . . , js) (where x ≺ y can
be read as “x is better than y”) iff i1 = j1, i2 = j2, . . . , im = jm, and (im+1 < jm+1 or
(m = s and r > s)), for some m ≤ min{r, s}. The quality of q in Ct can be defined as the
best appropriate vector (i1, i2, . . . , ir) (the least wrt ≺); if q is reachable by a1a2 . . . at but not
via F then its quality is the empty vector () (which is worse than any nonempty vector); if q
is not reachable by a1a2 . . . at then we can define its quality (in Ct) as ⊥, which is viewed as
worse than any vector.

You can now contemplate how to implement a program which should process (reading from
left to right) an input word a1a2a3 . . . while being able to compare all the states of B wrt their
qualities – after each prefix a1a2 . . . at. For this task it is not necessary that your program
always stores the current values of the qualities; finite memory should be sufficient. Hopefully
you would finally come up with something like the construction described below; it uses
more colours and bigger stacks of coloured tokens. We also add some “(green and red) light
effects”, to make explicitly clear that the resulting program is, in fact, a deterministic Rabin
automaton. (So it would be now really useful if you think a while before reading further.)

Our program starts just with a white token, i.e. a (white)-stack, on q0; this is configuration
C0.

Generally, configuration Ct will consist of stacks of coloured tokens on states of B, and also
contain information about which colour has its green and/or red light on, and information
about the current “age-order” of colours (some tokens of) which are present on the board;
c < c′ is read as “c is older than c′” (i.e., last introducing of c on the board happened earlier
than last introducing of c′).

Having Ct, the program (automaton) reads at+1 and constructs Ct+1 as follows:

• It moves (and duplicates and/or removes) all token-stacks along the arrows labelled with
at+1; the conflicts are resolved in favour of stacks which are the least wrt the modified
lexicographic order ≺ ; the stack (c1, c2, . . . , cr) on q in Ct satisfies c1 < c2 < · · · < cr
and can be viewed as a substitute of the quality of q in Ct.
Each colour which thus disappears (i.e., all tokens of this colour disappear) from the
board, has its red light on in Ct+1.

• Each stack which now lies on (a state from) F gets a new token on top; for all such stacks

47

of the same type we use the tokens of the same colour which is currently not present on
the board, and is thus (newly) introduced on the board. The order of introducing these
(youngest) colours, for all types of stacks lying on F , is arbitrary.

• Any colour c (there can be more of them) which is present on the board but invisible
from top (since all the tokens of that colour are covered by other tokens) will have its
green light on in Ct+1; moreover, all tokens above the c-tokens are removed – the colours
which disappear in this way will also have their red light on in Ct+1.

Remark. Note that some colour can have both its green light and its red light on in Ct+1.

Exercise. Check that it is sufficient to use n colours, and thus stacks of height ≤ n (where n
is the number of states of B).
Also verify the following properties: 1/ any two tokens of the same colour (in Ct) have the
same (sub)stacks below; 2/ the tokens removed because of invisibility of some colour(s) all
belong to the colours which completely disappear in this way.
Derive an upper bound on the number of states of the Rabin automaton, i.e. on the size of
the program finite memory, showing that it is in 2O(n logn) (as announced).
Try to define the pairs (Gi, Ri) to finish the definition of the Rabin automaton R. (Compare
with the following correctness proof.)

We still need to show the correctness, i.e. that Lω(R) = Lω(B).
Suppose first that w = a1a2a3 . . . is accepted by B, i.e., there is a run ρ = q0

a1→ q1
a2→ q2

a3→ · · ·
of B on w which goes through F infinitely often; let σ(t) denotes the stack which lies on
qt when R has processed a1a2 . . . at. Let now m ∈ N be such that for some t0 we have
∀t ≥ t0 : height(σ(t)) ≥ m and height(σ(t)) = m infinitely often. (Why must such m exist?)
The bottom part (c1, c2, . . . , cm) of σ(t) can change for t = t0, t0 + 1, t0 + 2, . . . because of
possible replacing with a stack which is lesser wrt ≺ ; but this cannot happen infinitely often.
(Why?) So for some t′0 ≥ t0 we have that the bottom parts of height m of all σ(t), t ≥ t′0, are
the same (c1, c2, . . . , cm). This must mean that the green light of cm is on infinitely often but
its red light is on only finitely often. (Why?)

Now suppose that when R processes w = a1a2a3 . . . , some colour c has its green light on
infinitely often but its red light is on only finitely often. This also means that from some t0
on colour c is present on the board and never removed. Let t1 < t2 < t3 < · · · be the time
points (bigger than t0) when c has its green light on; this also means that in each Ctj there
are stacks with a c-token on top.

Exercise. Show that each state q which has a stack with a c-token on top in Ctj+1 can be
reached by atj+1atj+2 . . . atj+1 via F from some q

′ which has a stack with a c-token on top in
Ctj . Then use König’s Lemma to deduce that there is an accepting run of B on w.

48

Reference

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein. Introduction
to Algorithms, Second Edition. MIT Press, 2001.

[2] Ivan Damg̊ard. Commitment schemes and zero-knowledge protocols. In Lectures on Data
Security, volume 1561 of Lecture Notes in Computer Science, pages 63–86. Springer, 1999.

[3] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[4] Oded Goldreich. Zero-knowledge twenty years after its invention,
(www.wisdom.weizmann.ac.il/˜oded/ps/zk-tut02v4.ps, accessed oct 14, 2008). Technical
report, 2004.

[5] Juraj Hromkovič. Theoretical Computer Science. Springer, 2004.

[6] Dexter C. Kozen. Theory of Computation. Springer, 2006.

[7] Uwe Schöning and Randall Pruim. Gems of Theoretical Computer Science. Springer,
1998.

[8] Michael Sipser. Introduction to the theory of computation, Second Edition. Thomson,
2006.

[9] Ingo Wegener. Complexity Theory. Springer, 2005.

49

