As $|wx| > 0$, $yw^{i}ux^{i}$ cannot equal $yw^{i}ux^{j}$ if $i \neq j$. Thus the grammar generates an infinite number of strings.

Conversely, suppose the graph has no cycles. Define the rank of a variable A to be the length of the longest path in the graph beginning at A. The absence of cycles implies that the rank of A is finite. We also observe that if $A \rightarrow BC$ is a production, then the rank of B and C must be strictly less than the rank of A, because for every path from B or C, there is a path of length one greater from A. We show by induction on r that if A has rank r, then no terminal string derived from A has length greater than 2^r.

Basis $r = 0$. If A has rank 0, then its vertex has no edges out. Therefore all A-productions have terminals on the right, and A derives only strings of length 1.

Induction $r > 0$. If we use a production of the form $A \rightarrow a$, we may derive only a string of length 1. If we begin with $A \rightarrow BC$, then as B and C are of rank $r - 1$ or less, by the inductive hypothesis, they derive only strings of length 2^{r-1} or less. Thus BC cannot derive a string of length greater than 2^r.

Since S is of finite rank r_S, and in fact, is of rank no greater than the number of variables, S derives strings of length no greater than 2^r. Thus the language is finite.

Example 6.6 Consider the grammar

$$
S \rightarrow AB \\
A \rightarrow BC | a \\
B \rightarrow CC | b \\
C \rightarrow a
$$

whose graph is shown in Fig. 6.7(a). This graph has no cycles. The ranks of $S, A, B,$ and C are 3, 2, 1, and 0, respectively. For example, the longest path from S is $S \rightarrow BCB \rightarrow CCCB \Rightarrow CCCCB \Rightarrow aaaaa.$

If we add production $C \rightarrow AB$, we get the graph of Fig. 6.7(b). This new graph has several cycles, such as A, B, C, A. Thus we can find a derivation $A \Rightarrow x_1ABx_2$, in particular $A \Rightarrow BC \Rightarrow CCC \Rightarrow CABC$, where $x_1 = C$ and $x_2 = BC$. Since $C \Rightarrow a$ and $BC \Rightarrow b$, we have $A \Rightarrow aAb$. Then as $S \Rightarrow Ab$ and $A \Rightarrow a$, we now have $S \Rightarrow a(a(bu)b)$ for every i. Thus the language is infinite.

Membership

Another question we may answer is: Given a CFG $G = (V, T, P, S)$ and string x in T^*, is x in $L(G)$? A simple but inefficient algorithm to do so is to convert G to $G' = (V', T, P, S)$, a grammar in Greibach normal form generating $L(G)$ - [c]. Since the algorithm of Theorem 4.3 tests whether $S \Rightarrow x$, we need not concern ourselves with the case $x = c$. Thus assume $x \neq c$, so x is in $L(G')$ if and only if x is in $L(G)$. Now, as every production of a GNF grammar adds exactly one terminal to the string being generated, we know that if x has a derivation in G', it has one with exactly $|x|$ steps. If no variable of G' has more than k productions, then there are at most k^n leftmost derivations of strings of length $|x|$. We may try them all systematically.

However, the above algorithm can take time which is exponential in $|x|$. There are several algorithms known that take time proportional to the cube of $|x|$ or even a little less. The bibliographic notes discuss some of these. We shall here present a cubic time algorithm known as the Cocke-Younger-Kasami or CYK algorithm. It is based on the dynamic programming technique discussed in the solution to Exercise 3.23. Given x of length $n \geq 1$, and a grammar G, which we may assume is in Chomsky normal form, determine for each i and j and for each variable A, whether $A \Rightarrow x_{ij}$, where x_{ij} is the substring of x of length j beginning at position i.

We proceed by induction on j. For $j = 1$, $A \Rightarrow x_{ij}$ if and only if $A \Rightarrow x_j$ is a production, since x_{ij} is a string of length 1. Proceeding to higher values of j, if $j > 1$, then $A \Rightarrow x_{ij}$ if and only if there is some production $A \rightarrow BC$ and some k, $1 \leq k < j$, such that B derives the first k symbols of x_j and C derives the last $j - k$ symbols of x_j. That is, $B \Rightarrow x_{ik}$ and $C \Rightarrow x_{i+k,j-k}$. Since k and $j - k$ are both less than j, we already know whether each of the last two derivations exists. We may thus determine whether $A \Rightarrow x_{ij}$. Finally, when we reach $j = n$, we may determine whether $S \Rightarrow x_{nn}$. But $x_{nn} = x$, so x is in $L(G)$ if and only if $S \Rightarrow x_{nn}$.

To state the CYK algorithm precisely, let V_i be the set of variables A such that $A \Rightarrow x_{ij}$. Note that we may assume $1 \leq i \leq n - j + 1$, for there is no string of length greater than $n - i + 1$ beginning at position i. Then Fig. 6.8 gives the CYK algorithm formally.

Steps (1) and (2) handle the case $j = 1$. As the grammar G is fixed, step (2) takes a constant amount of time. Thus steps (1) and (2) take $O(n)$ time. The nested for-loops of lines (3) and (4) cause steps (5) through (7) to be executed at most n^2 times, since i and j range in their respective for-loops between limits that are at
begin
1) for i := 1 to n do
2) \(V_i := \{ A | A \rightarrow a \text{ is a production and the } i\text{th symbol of } x \text{ is } a \} \);
3) for j := 2 to n do
4) for i := 1 to n - j + 1 do
5) \(V_{ij} := \emptyset \);
6) for k := 1 to j - 1 do
7) \(V_{ij} := V_{ij} \cup \{ A | A \rightarrow BC \text{ is a production, } B \text{ is in } V_k \text{ and } C \text{ is in } V_{i+k,j-k} \} \)
end

Fig. 6.8. The CYK algorithm.

most \(n \) apart. Step (5) takes constant time at each execution, so the aggregate time spent at step (5) is \(O(n^3) \). The for-loop of line (6) causes step (7) to be executed \(n \) or fewer times. Since step (7) takes constant time, steps (6) and (7) together take \(O(n) \) time. As they are executed \(O(n^2) \) times, the total time spent in step (7) is \(O(n^3) \). Thus the entire algorithm is \(O(n^3) \).

Example 6.7 Consider the CFG

\[
S \rightarrow AB | BC \\
A \rightarrow BA | a \\
B \rightarrow CC | b \\
C \rightarrow AB | a
\]

and the input string \(baaba \). The table of \(V_{ij} \)'s is shown in Fig. 6.9. The top row is filled in by steps (1) and (2) of the algorithm in Fig. 6.8. That is, for positions 1 and 4, which are \(b \), we set \(V_{11} = V_{41} = \{ B \} \), since \(B \) is the only variable which derives \(b \).

Similarly, \(V_{21} = V_{31} = V_{51} = \{ A, C \} \), since only \(A \) and \(C \) have productions with \(a \) on the right.

To compute \(V_j \) for \(j > 1 \), we must execute the for-loop of steps (6) and (7). We must match \(V_k \) against \(V_{i+k,j-k} \) for \(k = 1, 2, \ldots, j - 1 \), seeking variable \(D \) in \(V_k \) and \(E \) in \(V_{i+k,j-k} \) such that \(DE \) is the right side of one or more productions. The left sides of these productions are adjoined to \(V_j \). The pattern in the table which corresponds to visiting \(V_k \) and \(V_{i+k,j-k} \) for \(k = 1, 2, \ldots, j - 1 \) in turn is to simultaneously move down column \(i \) and up the diagonal extending from \(V_j \) to the right, as shown in Fig. 6.10.

Fig. 6.10 Traversal pattern for computation of \(V_{ij} \).

For example, let us compute \(V_{24} \), assuming that the top three rows of Fig. 6.9 are filled in. We begin by looking at \(V_{21} = \{ A, C \} \) and \(V_{31} = \{ B \} \). The possible right-hand sides in \(V_{21} \) are \(AB \) and \(CB \). Only the first of these is actually a right side, and it is a right side of two productions \(S \rightarrow AB \) and \(C \rightarrow AB \). Hence we add \(S \) and \(C \) to \(V_{24} \). Next we consider \(V_{22} V_{12} = \{ B \} \{ S, A \} = \{ BS, BA \} \). Only \(BA \) is a right side, so we add the corresponding left side \(A \) to \(V_{24} \). Finally, we consider \(V_{23} V_{13} = \{ B \} \{ A, C \} = \{ BA, BC \} \). \(BA \) and \(BC \) are each right sides, with left sides \(A \) and \(S \), respectively. These are already in \(V_{24} \) so we have \(V_{24} = \{ S, A, C \} \). Since \(S \) is a member of \(V_{13} \), the string \(baaba \) is in the language generated by the grammar.

EXERCISES

6.1 Show that the following are not context-free languages
 a) \(\{ a^i b^j | i < j < k \} \)
 b) \(\{ a^i b^j | j = i^2 \} \)
 c) \(\{ a^i \} | i \text{ is a prime} \)
 d) the set of strings of \(a \)'s, \(b \)'s, and \(c \)'s with an equal number of \(a \), \(b \), and \(c \)
 e) \(\{ a^i b^i c^m | n \leq m \leq 2n \} \)

6.2 Which of the following are CFL's?
 a) \(\{ a^i b^j | i \neq j \text{ and } i \neq 2j \} \)
 b) \(\{ (a + b)^* - \{ (a + b)^n | n \geq 1 \} \}
 c) \(\{ w^m x^n | w \text{ is in } (a + b)^* \}
 d) \(\{ b_i \neq b_{i+1} | b_i \text{ is } i \text{ in binary, } i \geq 1 \} \)