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Abstract

A recent paper by Jančar (presented at LiCS 2003) demonstrated that bisimilarity
on Basic Parallel Processes (BPP) can be decided in polynomial space. Here we
explore a (more detailed) version of the respective algorithm when applied to the
subclass called normed BPP (nBPP), and show that in this case the algorithm runs
in polynomial time; we provide a complexity analysis yielding the upper bound
O(n3). This strenghtens a result by Hirshfeld, Jerrum and Moller (1996) who showed
a different polynomial-time algorithm for nBPP; they did not analyse the complexity
of their algorithm more precisely but it does not seem to allow the above mentioned
upper bound.
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1 Introduction

Bisimilarity is a fundamental behavioural equivalence on (reactive) concurrent
systems, and its computational complexity is a natural subject of research in
the area of verification. Surveys of this research focusing on infinite-state
systems can be found, e.g., in [1] and [5].

Bisimilarity (i.e., bisimulation equivalence) is defined for labelled transition
systems (LTSs). An LTS can be viewed as a tuple (S, A, { a−→}a∈A) where S
is a (possibly infinite) set of states, A is a set of actions (or transition labels),
and

a−→⊆ S × S for each a ∈ A. We use infix notation r
a−→ r′ and read,

e.g., “state r allows to perform action a resulting in state r′ ” or “r′ is an
a-successor of r” (or similarly).

1 Email: petr.jancar@vsb.cz
2 Email: martin.kot@vsb.cz
3 Both authors supported by the Grant Agency of the Czech Republic, No. 201/03/1161

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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Given an LTS (S, A, { a−→}a∈A), bisimulation equivalence is the maximal sym-
metric relation B on S satisfying: if (r1, r

′
1) ∈ B and r1

a−→ r2 then there is
r′2 such that r′1

a−→ r′2 and (r2, r
′
2) ∈ B. (Informally: Two states are bisimilar

iff any action from one of them can be matched by the same action from the
other so that the resulting states are again bisimilar.)

Basic Parallel Processes (BPP) constitute one of the basic classes of infinite-
state systems; they arise as a natural extension of (nondeterministic) finite
automata with a parallel operator, or, equivalently, as processes generated by
commutative context-free grammars (in Greibach normal form). The respec-
tive LTS, corresponding to a given context-free grammar in Greibach normal
form, has finite sequences of variables (also called nonterminals) as states; a
(grammar) rule

X
a−→ Y1Y2 . . . Yn

allows to perform action a in any state α containing X, which results in the
state β arising from α by replacing one occurrence of X with Y1Y2 . . . Yn.

We easily note that two states (sequences) with the same numbers of (oc-
currences of) each variable (i.e., with the same Parikh images) are bisimilar
and can be identified; so the variables in a ‘sequence’ can be viewed as com-
posed by a (commutative) parallel operator (therefore we used the notion of
commutative context-free grammars).

We now look at the following decision problem, called BPP-problem:

Instance: a BPP-system, i.e., a finite set of Greibach normal form rules
and two states (i.e., sequences of variables) α, β .

Question: are α and β bisimilar (i.e., related by the bisimulation equiva-
lence) ?

A natural subclass of BPP-systems is the class of normed BPP-systems, de-
noted nBPP: a BPP-system is normed iff each variable can derive a terminal
word, i.e., iff any state can reach the empty state (i.e., the empty sequence
ε) by performing a sequence of actions. (E.g., the system {X a−→ X} is not

normed but the system {X a−→ X, X
b−→ ε} is.)

The BPP-problem restricted to nBPP will be called the nBPP-problem.

Christensen, Hirshfeld and Moller [2] showed that the BPP-problem is decid-
able but only a nonprimitive recursive upper bound was deduced from the
respective algorithm. Hirshfeld, Jerrum and Moller [3] then developed a spe-
cific algorithm for nBPP which works in polynomial time; they did not analyse
the degree of the polynomial but it does not seem to fit in O(n3).

Jančar [4] developed another algorithm for the BPP-problem which he showed
to work in polynomial space. (Combined with a result by Srba [6], PSPACE-
completeness of the BPP-problem has thus been established.)

Here we present (a more detailed version of) Jančar’s algorithm in the case of
nBPP, and show that it works in time O(n3). The result holds (even) for the
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case when the numbers of occurrences of variables in the right-hand sides of
rules and in the input states are given in binary.

2 Basic notions and ideas

Here we introduce some necessary notions and sketch the ideas on which the
algorithm is based.

Relations
a−→ are naturally extended to relations

w−→ for sequences of actions
w. Given an LTS (S, A, { a−→}a∈A), we define the distance from state s to state
t by

dist(s, t) = min { length(w) | w ∈ A∗ and s
w−→ t }.

We stipulate min ∅ = ω, using ω as a symbol for infinite amount; we put
ω− n = ω for each n ∈ N∪ {ω} (where N denotes the set of natural numbers
{0, 1, 2, . . .}).
A crucial notion (introduced in [4]) is the notion of DD-functions ; they are
defined inductively. First, for every action a we define a function dda which,
for every state s, gives the “distance to disabling” the action a :

dda(s) = min { dist(s, t) | ¬∃t′ : t
a−→ t′ }.

Given a tuple of (so far defined) DD-functions F = (d1, d2, . . . , dk), we observe
that each transition s

a−→ t determines a change of F , denoted F(t)− F(s),
which is a k-tuple of values from {−1} ∪ N ∪ {ω} :

F(t)−F(s) = (d1(t)− d1(s), d2(t)− d2(s) . . . , dk(t)− dk(s)) .

For each triple (a,F , δ), where a is an action, F is a k-tuple of DD-functions,
and δ is a k-tuple of values from {−1}∪N∪{ω}, the function dd(a,F ,δ) (distance
to disabling the action a causing the change δ of F) is also a DD-function,
defined by

dd(a,F ,δ)(s) = min { dist(s, t) | ∀r : if t
a−→ r then F(r)−F(t) 6= δ }.

It can be easily confirmed that all DD-functions are bisimulation invariant,
i.e., if s and t are bisimilar then d(s) = d(t) for all DD-functions d. So
equality of the values of all DD-functions is a necessary condition for two
states being bisimilar; it is not hard to see that in the case of image-finite
LTSs this condition is also sufficient. (An LTS is image-finite iff each state
has only finitely many a-successors for each a ; LTSs corresponding to BPP-
systems are clearly image-finite.)

A crucial point in [4] shows that, for any BPP-system (with var as the set of
variables), DD-functions coincide with certain special functions called (rela-
tive) ‘norms’:

Given Q ⊆ var, we define function normQ by

normQ(α) = min { dist(α, β) | β does not contain any variable from Q }.
3
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Moreover, each normQ is a linear function, i.e, for each X ∈ var there is
cX ∈ N such that

normQ(α) =
∑
X

cX · |α|X

where |α|X denotes the number of occurrences of X in α. (Surely, cX = 0 iff
X 6∈ Q.)

Remark. For general BPP-systems, some cX can be ω; but this is not the case
for nBPP.

We note that the change of (the value of) such a linear function caused by
using a rule (transition) r : X

a−→ γ does not depend on the state in which
the rule r is used; such a change is always

−cX +
∑
Y

cY · |α|Y

Our main algorithm performs a stepwise decomposition of the set T of rules
(also called transitions), i.e., it constructs a sequence of decompositions of T ,
where each new decomposition refines the old one.

For each subset (a decomposition class) T ′ ⊆ T , notation Pre(T ′) is used for
the set {X | X is lhs of a rule in T ′} (lhs abbreviates left-hand side).

The process starts with the (initial) decomposition according to action labels:
transitions X1

a1−→ γ1, X2
a2−→ γ2 are in the same class iff a1 = a2.

The iterated step of the main algorithm refines a current decomposition of T
according to the changes which the rules cause on the functions normPre(T ′),
for all current decomposition classes T ′. (For the initial decomposition we can
observe that normPre(T ′) is dda for the respective action a.)

This surely finishes, with a decomposition denoted decomp(T ). Results of [4]
guarantee that α and β are bisimilar iff normPre(T ′)(α) = normPre(T ′)(β) for
each class T ′ in decomp(T ).

It is useful to realize that the decomposition problem is the crucial problem
for us; the bisimilarity problem can be easily reduced to it:

Having a BPP system and two states α, β we can add two fresh variables A, B
and rules rA = A

a−→ α, rB = B
a−→ β (for any chosen action a). It is clear

that α ∼ β (∼ denoting the bisimulation equivalence) in the original system
iff A ∼ B in the new system. Moreover, it can be readily verified that A ∼ B
iff rA, rB are in the same class of decomp(T ).

In later analysis, we use the following general fact, which puts a limit on
the number of decomposition classes which can appear during the process of
stepwise decomposition.

Proposition 2.1 In a stepwise decomposition of (nonempty) T , at most |T |−
1 subsets with more than one element can appear.

Proof. We proceed by induction on the cardinality of T .
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For |T | = 1, the claim is obvious (a singleton has no subsets with more than
one element).

In the induction step we assume |T | ≥ 2. It is obvious that for achieving the
maximal number of subsets appearing in a stepwise decomposition we start
with the one-class decomposition {T} and then continue with some (‘best’)
decomposition {T1, T2, . . . , Tk}; we note k ≥ 2 and |T1|+ |T2|+ . . .+ |Tk| = |T |.
In this way we can get, using the inductive hypothesis, at most

1 + |T1| − 1 + |T2| − 1 + . . . + |Tk| − 1 = 1 + |T | − k

subsets. Since k ≥ 2, we thus get at most |T | − 1 subsets as required. 2

For complexity analysis, we have to make precise the way of presenting (normed)
BPP-systems and determining their size w.r.t. which the complexity is mea-
sured. We will generally assume that a (normed) BPP-system has m variables
var = {A1, A2, . . . , Am} and is presented by ` (ordered) rules

r1 : X1
a1−→ α1

r2 : X2
a2−→ α2

. . .
r` : X`

a`−→ α`

We further assume that each sequence α on the right-hand sides of rules is
presented as a sequence of pairs of positive numbers (j1, e1), (j2, e2), . . . , (jp, ep)
in binary where 1 ≤ j1 < j2 < . . . < jp ≤ m. It means to represent the
sequence (Aj1)

e1(Aj2)
e2 . . . (Ajp)

ep where Ae stands for e occurrences of A. We
note that the set {Aj1 , Aj2 , . . . , Ajp} equals to the carrier of α where we define
carrier(α) = {X | |α|X ≥ 1}.
By the size n of a given BPP-system we mean the number of bits in which
the above presentation can be written.

Convention. In what follows, symbol eij (1 ≤ i ≤ `, 1 ≤ j ≤ m) means |αi|Aj

(eij = 0 iff Aj 6∈ carrier(αi)). We also use numbers kij: for eij = 0 we put
kij = 0, and for eij > 0 we take kij to be the size (number of bits) of the
binary presentation of eij; for technical reasons, we assume the first bit in this
presentation of eij to be 0. Imposing this assumption increases the size n of a
BPP-system to less than 2n, and is harmless for our results.

3 Computing norms is in O(n2)

Based on the scheme sketched in [4], we show an algorithm which, given an
nBPP-system with a set of variables var and a subset Q ⊆ var, computes the
coefficients of the (linear) function normQ.

For each X ∈ var, the algorithm will compute the respective coefficient cX .
In fact, to each X ∈ Q, the algorithm will also attach an (optimal) rule rX

with lhs X.
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The algorithm uses the following data structures, with the intended meanings

DV ... a set of determined variables (all X with determined cX)

UV ... a set of undetermined variables, i.e., of all X for which cX has not yet
been determined; only a temporary (candidate) value dX is attached

MIN ... contains an element X of UV with minimal dX

RUL ... a set of unprocessed rules (with lhs in UV but with dr not determined)

Algorithm 1 Computing coefficients of normQ

UV := Q; for each X ∈ UV do dX := ω
DV := var−Q; for each X ∈ DV do cX := 0
{ for each rule r with lhs not in Q, we can deem dr = 0}
RUL := { all rules with lhs in Q }
while UV 6= ∅ do

let MIN refer to some Z ∈ UV with minimal dZ

for each rule r = X → α in RUL with carrier(α) ⊆ DV do
dr := 1 +

∑
Y ∈carrier(α) cY · |α|Y

if dr < dX then dX := dr

if dr < dMIN then MIN := X
remove r from RUL

remove MIN from UV and add it to DV
cMIN := dMIN

remove all rules with lhs MIN from RUL

Computing all

dr := 1 +
∑

Y ∈carrier(α)

cY · |α|Y(1)

takes a crucial portion in the running of the algorithm. Below we shall show
that the sizes of presentations of numbers dr (and hence also cX) are in O(n).
Assuming this, it is a technical routine to check that the time of the compu-
tation without counting the time of performing (1) is in O(n2).

So now we show that dr can be written in O(n) bits and that the aggregated
complexity of performing all instructions (1) is in O(n2).

For the aim of notationally convenient analysis (and without any loss of gener-
ality), we assume that the ordering of variables A1, A2, . . . , Am coincides with
the order in which the above algorithm adds the variables to DV . Moreover,
we consider the rules in the order

r1 : A1
a1−→ α1, r2 : A2

a1−→ α1, . . ., rm : Am
am−→ αm, rm+1, rm+2, . . ., r`

where for i = 1, 2, . . . ,m each ri is optimal for Ai (hence dri
= cAi

).

Further we abridge dri
to di and cAi

to ci. We note that c1 ≤ c2 ≤ . . . ≤ cm.

We also recall our conventions about numbers eij and kij.
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Proposition 3.1 The size (in bits) of each di (and hence each ci) which is
greater than 1 is at most ∑

i≥p>q≥1

kpq

Hence this size is in O(n).

Proof.

It is clear that d1 (and c1) is at most 1.

Suppose now di+1 > 1. When we are performing (1) for computing di+1, only
Aj with j < i + 1 can be in the carrier of the right-hand side (of ri+1).

So

di+1 ≤ 1 +

min{i,m}∑
j=1

ei+1,jcj(2)

We note that each nonzero summand ei+1,jcj can be written either in ki+1,j−1
bits (when cj = 1) or in ki+1,j−1+

∑
j≥p>q≥1 kpq bits (by induction hypothesis).

From this observation we can readily verify that the whole sum surely can be
written in ∑

i+1>q≥1

ki+1,q +
∑

i≥p>q≥1

kpq =
∑

i+1≥p>q≥1

kpq

bits. 2

Proposition 3.2 The aggregated complexity of all multiplications in comput-
ing coefficients performed in 1) is in O(n2).

Proof. Complexity of the product of two numbers x and y is in O(size(x) ·
size(y)) (size referring to the number of bits).

The products we are interested in are eij · cj.

From Proposition 3.1 we know that cj (> 1) can be written in∑
j≥p>q≥1

kpq

bits. Thus the complexity of the product eij · cj, denoted complex(i, j), is in

O(kij ·
∑

i≥p>q≥1

kpq) = O(
∑

i≥p>q≥1

kij · kpq)

The aggregated complexity of multiplications is∑
1≤i≤`,1≤j≤m

complex(i, j)

which is surely dominated by the sum of the products kpq ·kp′q′ for all 1 ≤ p ≤ `,
1 ≤ p′ ≤ `, 1 ≤ q ≤ m, 1 ≤ q′ ≤ m.
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So the aggregated complexity is in

O( (
∑

1≤i≤`,1≤j≤m

kij)
2 )

which is obviously in O(n2). 2

Lemma 3.3 Given a normed BBP system and a set Q of variables, the coeffi-
cients of the (linear) function normQ are computable (by the above algorithm)
in O(n2).

Proof. In view of the previous propositions, it remains to show that the
amount of time needed for additions in (1) is in O(n2). But it is obvious that
the algorithm O(n) times adds two numbers with O(n) bits. 2

4 Decomposition problem is in O(n3)

We already sketched (in Section 2) the ideas of the main algorithm decom-
posing the set T of rules (transitions). The algorithm uses the following data
structures, with the intended meanings

T ... a decomposition of the set T of all rules

UIS ... a set of unprocessed (important) sets of variables (the norms of such
sets correspond to DD-functions)

PIS ... a set of processed (important) sets of variables (for each Q here,
the current decomposition T already separates each two rules which cause
different changes on normQ)

Algorithm 2 The decomposition algorithm

Compute T = {T1, T2, . . . Tp} as the decomposition of the set T
according to the action labels.

Let UIS contain all (different) sets Pre(T1), Pre(T2), . . . , Pre(Tp)
PIS := ∅
while UIS 6= ∅ do

For each Q ∈ UIS do
compute all coefficients cY of normQ

for each rule r = X → α appearing in a nonsingleton class of T do
δ(r) := −cX +

∑
Y ∈carrier(α) cY |α|Y

decompose each (nonsingleton) class in T
according to the computed values δ(r)

let T refer to the newly arisen decomposition
PIS := PIS ∪ UIS
UIS := ∅
for each (newly arisen) class T ′ of T do

if Pre(T ′) 6∈ PIS then UIS := UIS ∪ {Pre(T ′)}
8
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Theorem 4.1 The decomposition algorithm for normed BBPs runs in O(n3).
(Hence bisimilarity for nBPP is decidable in O(n3).)

Proof. Proposition 2.1 implies that at most 2` − 1 subsets of T can appear
in the stepwise decomposition performed by the algorithm. This means that
only O(n) subsets Q of variables are processed (and put in PIS).

By Lemma 3.3, coefficients of each normQ can be computed in O(n2). For
each normQ, the aggregated complexity of computing the changes δ(r) and
the respective refinement of decomposition T can be also shown to be in
O(n2) (similarly as in Section 3).

We can thus readily derive that the decomposition algorithm runs in time
O(n3). 2
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