A concise proof of Commoner’s theorem

Petr Jančar
Univ. of Ostrava (jancar@osu.cz)
Bráfova 7, 701 03 Ostrava, Czech Republic

The accessible proofs of the well-known theorem characterizing liveness in free-choice nets are given in context of technical notions and lemmas, and thus seem a bit long (cf. [1,2]). Here a concise proof avoiding the mentioned technicalities is given.

The proof follows after a brief introduction of notation and definitions (for more details see e.g. [1,2]); the proof is intentionally concise, nevertheless all arguments should be easily verifiable from definitions.

A net N consists of the set S_N of places, the set T_N of transitions, and the relation $F_N \subseteq (S_N \times T_N) \cup (T_N \times S_N)$. For $x \in S_N \cup T_N$, $X \subseteq S_N \cup T_N$, we denote $\mathbf{x} = \{ y \mid (y, x) \in F_N \}$, $\mathbf{X} = \bigcup_{x \in \mathbf{x}} \mathbf{x}$; similarly for x^*, X^*. N is a free-choice net iff $p_1, p_2 \in \mathbf{x} \implies p_1^* = p_2^*$ (for any $p_1, p_2 \in S_N$). We suppose in addition that $\mathbf{p} \neq \emptyset$ for all $p \in S_N$. $X \subseteq S_N$ is a trap (a siphon) iff $X^* \subseteq \mathbf{X}$ ($\mathbf{X} \subseteq X^*$). $M(t) (M[T])$ denotes the transition t (some $t \in T$) is enabled in the marking M. $[M]$ means the set of all markings reachable from M. A transition t is dead in M, denoted by $t \in D_M$, iff $(\forall M' \in [M]) : \neg (M'[t])$; t is live in M, $t \in L_M$, iff $(\forall M' \in [M]) : t \notin D_M$. A marked net (N, M_0) is live iff $M_{L_0} = T_N$. By $\downarrow Q$ we mean the restriction of M to the domain Q; \emptyset denotes the zero mapping (with the appropriate domain).

Theorem. (Commoner) Given a free-choice net N, the next conditions are equivalent for any M_0:

a/ (N, M_0) is live, and b/ every nonempty siphon of N contains a trap Q s.t. $M_0 \downarrow Q \neq \emptyset$.

non-a/implies non-b: If $M_{L_0} \neq T_N$ then there is $M \in [M_0]$ s.t. $D_M \cup L_M = T_N$ and $D_M \neq \emptyset$ (cf. definitions of D_M, L_M). For any $t \in D_M$ there is $p \in \mathbf{x} t$ s.t. $M(p) = 0$ and $p \notin (L_M)^*$ (cf. free-choice). Hence $S = \{ p \mid t \in D_M \}$ is a nonempty siphon, and $M \downarrow S = \emptyset$; therefore S cannot contain a trap Q s.t. $M_0 \downarrow Q \neq \emptyset$ (hence for any $M \in [M_0] : M \downarrow Q \neq \emptyset$).

non-b/implies non-a/ follows from the next lemma by noticing that there is no infinite decreasing chain in \prec_P: for an ordered subset $P = \{ p_1, p_2, \ldots, p_n \}$ of S_N we put $M' \prec_P M$ iff $M' \downarrow (p_1, p_2, \ldots, p_i) = M \downarrow (p_1, p_2, \ldots, p_i)$ and $M'((p_{i+1}) < M((p_{i+1})$ for some i, $0 \leq i \leq n - 1$.

Lemma. Let us have a free-choice net N, $R \subseteq S_N$, and Q being the maximal trap (i.e. union of all traps) included in R. Then there is a particular ordering P of places in $R \setminus Q$ s.t. for any $M, M \downarrow Q = \emptyset$; if $M[R^*]$, or even if $R^* \not\subseteq D_M$, in case R is a siphon, then there is $M' \in [M]$ s.t. $M' \downarrow Q = \emptyset$ and $M' \prec_P M$.

Proof of Lemma. By induction on $n = |R \setminus Q|$. The case $n = 0$ is trivial ($R^* \subseteq D_M$ when R is a siphon). For $n > 0$, take $r \in R \setminus Q$ and $r' \in r^*$ s.t. $r^* \cap R = \emptyset$ (R is not a trap!); then take $P = \{ p_1, p_2, \ldots, p_n \}$ where $p_n = r$ and $P' = \{ p_1, p_2, \ldots, p_{n-1} \}$ proves Lemma for $R \setminus \{ r \}$. Suppose now $M \succeq M[R^*]$. Either $M[(R \setminus \{ r \})^*] \prec_P M[R^*]$ then we can use the induction hypothesis ($M' \prec_P M \implies M' \prec_P M' \prec_M [R^*]$) - then we can use the induction hypothesis ($M' \prec_P M \implies M' \prec_P M'$) (free choice!) and firing t_r does it. The case when R is a siphon follows since $R^* \not\subseteq D_M$ implies $M'[R^*]$ for some $M' \in [M], M' \downarrow R = M \downarrow R$ (when $R^* \subseteq R^*$, the marking on R can not change until R^* becomes enabled).