## A concise proof of Commoner's theorem

Petr Jančar Univ. of Ostrava (jancar@osu.cz) Bráfova 7, 701 03 Ostrava, Czech Republic

The accessible proofs of the well-known theorem characterizing liveness in free-choice nets are given in context of technical notions and lemmas, and thus seem a bit long (cf. [1,2]). Here a concise proof avoiding the mentioned technicalities is given.

The proof follows after a brief introduction of notation and definitions (for more details see e.g. [1,2]); the proof is intentionally concise, nevertheless all arguments should be easily verifiable from definitions.

A net N consists of the set  $S_N$  of places, the set  $T_N$  of transitions, and the relation  $F_N \subseteq (S_N \times T_N) \cup (T_N \times S_N)$ . For  $x \in S_N \cup T_N$ ,  $X \subseteq S_N \cup T_N$ , we denote  ${}^{\bullet}x = \{y \mid (y,x) \in F_N\}$ ,  ${}^{\bullet}X = \bigcup_{x \in X} {}^{\bullet}x$ ; similarly for  $x^{\bullet}$ ,  $X^{\bullet}$ . N is a free-choice net iff  $p_1, p_2 \in {}^{\bullet}t \Longrightarrow p_1^{\bullet} = p_2^{\bullet}$  (for any  $p_1, p_2 \in S_N$ ,  $t \in T_N$ ); we suppose in addition that  $p^{\bullet} \neq \emptyset$  for all  $p \in S_N$ .  $X \subseteq S_N$  is a trap (a siphon) iff  $X^{\bullet} \subseteq {}^{\bullet}X$  ( ${}^{\bullet}X \subseteq X^{\bullet}$ ).  $M[t\rangle$  ( $M[T\rangle$ ) denotes that the transition t (some  $t \in T$ ) is enabled in the marking M.  $[M\rangle$  means the set of all markings reachable from M. A transition t is dead in M, denoted by  $t \in D_M$ , iff  $(\forall M' \in [M\rangle) : \neg (M'[t\rangle); t$  is live in M,  $t \in L_M$ , iff  $(\forall M' \in [M\rangle) : t \notin D_{M'}$ . A marked net  $(N, M_0)$  is live iff  $L_{M_0} = T_N$ . By  $M \downarrow_Q$  we mean the restriction of M to the domain Q;  $\mathbf{0}$  denotes the zero mapping (with the appropriate domain).

**Theorem.** (Commoner) Given a free-choice net N, the next conditions are equivalent for any  $M_0$ :  $a/(N, M_0)$  is live, and b/ every nonempty siphon of N contains a trap Q s.t.  $M_0 \downarrow_Q \neq \mathbf{0}$ .

**non-a/**  $\Longrightarrow$  **non-b/**: If  $L_{M_0} \neq T_N$  then there is  $M \in [M_0\rangle$  s.t.  $D_M \cup L_M = T_N$  and  $D_M \neq \emptyset$  (cf. definitions of  $D_M$ ,  $L_M$ ). For any  $t \in D_M$  there is  $p_t \in {}^{\bullet}t$  s.t. M(p) = 0 and  $p \notin (L_M)^{\bullet}$  (cf. free-choice). Hence  $S = \{p_t \mid t \in D_M\}$  is a nonempty siphon, and  $M \downarrow_S = \mathbf{0}$ ; therefore S can not contain a trap Q s.t.  $M_0 \downarrow_Q \neq \mathbf{0}$  ( $M_0 \downarrow_Q \neq \mathbf{0}$  implies  $\forall M \in [M_0 \rangle : M \downarrow_Q \neq \mathbf{0}$ ).

**non-b/** $\Longrightarrow$  **non-a/** follows from the next lemma by noticing that there is no infinite decreasing chain in  $<_P$ : for an ordered subset  $P = \{p_1, p_2, \dots, p_n\}$  of  $S_N$  we put  $M' <_P M$  iff  $M' \downarrow_{\{p_1, p_2, \dots, p_i\}} = M \downarrow_{\{p_1, p_2, \dots, p_i\}}$  and  $M'(p_{i+1}) < M(p_{i+1})$  for some  $i, 0 \le i \le n-1$ .

**Lemma.** Let us have a free-choice net N,  $R \subseteq S_N$ , and Q being the maximal trap (i.e. union of all traps) included in R. Then there is a particular ordering P of places in  $R \setminus Q$  s.t. for any M,  $M \downarrow_Q = \mathbf{0}$ : if  $M[R^{\bullet}\rangle$ , or even if  $R^{\bullet} \not\subseteq D_M$  in case R is a siphon, then there is  $M' \in [M\rangle$  s.t.  $M' \downarrow_Q = \mathbf{0}$  and  $M' <_P M$ .

**Proof of Lemma.** By induction on  $n = |R \setminus Q|$ . The case n = 0 is trivial  $(R^{\bullet} \subseteq D_M)$  when R is a siphon). For n > 0, take  $r \in R \setminus Q$  and  $t_r \in r^{\bullet}$  s.t.  $t_r^{\bullet} \cap R = \emptyset$  (R is not a trap!); then take  $P = \{p_1, p_2, \ldots, p_n\}$  where  $p_n = r$  and  $P' = \{p_1, p_2, \ldots, p_{n-1}\}$  proves Lemma for  $R \setminus \{r\}$ . Suppose now M s.t.  $M \downarrow_Q = \mathbf{0}$  and  $M[R^{\bullet}]$ . Either  $M[(R \setminus \{r\})^{\bullet}]$  – then we can use the induction hypothesis  $(M' <_{P'} M \Longrightarrow M' <_{P} M)$  – or  $M[r^{\bullet}]$  – then  $M[t_r]$  (free choice!) and firing  $t_r$  does it. The case when R is a siphon follows since  $R^{\bullet} \not\subseteq D_M$  implies  $M'[R^{\bullet}]$  for some  $M' \in [M]$ ,  $M' \downarrow_R = M \downarrow_R$  (when  $R \subseteq R^{\bullet}$ , the marking on R can not change until  $R^{\bullet}$  becomes enabled).

- [1] Desel J., Esparza J.: Free Choice Petri Nets; Cambridge Univ. Press, 1995
- [2] Reisig W.: Petri Nets. EATCS Monographs on TCS, Vol. 4, Springer, 1985