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Abstract

Jančar has in 2003 shown that bisimilarity on Basic Parallel Processes (BPP)
can be decided in polynomial space. Bisimilarity is studied on various subclasses
of BPP as well. We present summary of known complexity bounds of some such
bisimilarity problems. Moreover is here shown that deciding regularity of a BPP is
PSPACE-complete. So far this problem was only known to be PSPACE-hard.
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1 Introduction

Equivalence checking is well studied theoretical tool for a program verification. A pro-
gram and its specification are compared using some behavioral equivalence. One of the
fundamental behavioral equivalences is bisimulation equivalence, also called bisimilarity. A
program and a specification can be modeled using different models. We focus on well known
model—basic parallel process and some of its special forms. To use equivalence checking
in praxis it is crucial to know if it is possible to decide bisimilarity on used models and
how complex the decision procedure is.

In the section 2 we define basic notions. In the section 3 will be summary of some known
results. In section 4 we show that deciding regularity of a BPP is PSPACE-complete. To
author’s best knowledge this problem is only known to be decidable and PSPACE-hard.
We show an algorithm working in PSPACE and hence combined with PSPACE-hardness
we get PSPACE-completeness.

2 Basic definitions and notation

Bisimilarity (i.e., bisimulation equivalence) is defined for labelled transition systems (LTSs).
An LTS is a tuple (S, A, { a−→}a∈A) where S is a (possibly infinite) set of states, A is a set
of actions (or transition labels), and

a−→⊆ S × S for each a ∈ A. We use infix notation
r

a−→ r′.
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Given an LTS (S, A, { a−→}a∈A), bisimulation equivalence is the maximal symmetric
relation B on S such that for each (r1, r

′
1) ∈ B following conditions hold:

• ∀a, r2 : r1
a−→ r2 ⇒ (∃r′2 : r′1

a−→ r′2 ∧ (r2, r
′
2) ∈ B)

• ∀a, r′2 : r′1
a−→ r′2 ⇒ (∃r2 : r1

a−→ r2 ∧ (r2, r
′
2) ∈ B)

States s1, s2 ∈ S are bisimilar, written s1 ∼ s2, iff there exists a bisimulation B such that
(s1, s2) ∈ B.

A BPP can be defined as a special form of Petri net called communication-free Petri
net. Concretely a BPP is a tuple (P,Tr,pre, F, λ) where P is a finite set of places, Tr is
a finite set of transitions, pre : Tr → P is a function assigning an input place to every
transition, F : (Tr× P ) → N is a function assigning output places to each transition, and
λ : Tr → A is a labeling function. The set of output places of the transition t we will
denote by suc(t) = {p | F (t, p) > 0}.

Let P = {p1, p2, . . . , pk} be a set of places. A marking is a function M : P → N
which assigns number of tokens to each place. Marking M can be viewed as a vector
(x1, x2, . . . , xk) where xi ∈ N and xi = M(pi). We use SΣ to denote the set of all markings.

A transition t is enabled in a marking M iff M(pre(t)) > 0. Performing a transition,

written M
t−→ M ′, means

M ′(p) =

{
M(p)− 1 + F (t, p) if p = pre(t)
M(p) + F (t, p) otherwise

A BPP is called normed, denoted nBPP, iff from each marking we can reach an empty
marking (i.e., M(pi) = 0 for each pi ∈ SΣ) by performing a sequence of transitions.

An LTS (S,A,−→) corresponds to a BPP where S = SΣ and M
a−→ M ′ iff there is

some t ∈ Tr such that λ(t) = a and M
t−→ M ′.

A set of places R ⊆ P is a trap iff ∀t : pre(t) ∈ R ⇒ (∃p ∈ R : F (t, p) ≥ 1). A trap R
is called important if M ∼ M ′ implies M |R = 0 ⇔ M ′|R = 0.

A finite state system (FS) is a LTS with finite set of states.
Let us have a LTS (S,A,−→). We can define a distance function dist : (S × S) → Nω

as follows: dist(s1, s2) = min({|w||w ∈ W} ∪ {ω}), where W = {w ∈ A∗ | s1
w−→ s2}.

A crucial notion, introduced in [3] and used in section 4, is the notion of DD-functions.
They are defined inductively. For every transition label a a function dda which, for ev-
ery place s, gives the “distance to disabling” transitions with label a is a DD-function.
Formally, dda is defined as dda(s) = min { dist(s, s′) | ¬∃s′′ : s′

a−→ s′′ }. Given a tu-
ple of DD-functions F = (d1, d2, . . . , dk), each transition s

a−→ s′ determines a change
F(s′) − F(s), denoted δ, which is a k-tuple of values from {−1} ∪ Nω ∪ {ω} . For each
triple (a,F , δ), the function dd(a,F ,δ) (distance to disabling the action a causing the change
δ of F) is also a DD-function, defined by

dd(a,F ,δ)(s) = min { dist(s, s′) | ∀s′′ : if s′
a−→ s′′ then F(s′′)−F(s′) 6= δ }.

All DD-functions are bisimulation invariant, i.e., if s and s′ are bisimilar then d(s) =
d(s′) for all DD-functions d. So equality of the values of all DD-functions is a necessary
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condition for two places being bisimilar. In the case of BPP this condition is also sufficient.
In [3] was shown that, for any BPP, DD-functions coincide with so called ‘norms’:

Given Q ⊆ SΣ, we define function normQ by

normQ(M) = min { dist(M, M ′) | M ′(p) = 0 for each p ∈ Q }.

Each normQ is a linear function, i.e, for each p ∈ P there is cp ∈ Nω such that normQ(M) =∑
p cp ·M(p)
For all bisimulation invariant linear functions L(M) =

∑
p cp ·M(p) (and hence for all

DD-functions) the set RL = {p|cp = ω} is an important trap.
We define relation � on the set of all markings SΣ as follows. For markings M =

(x1, x2, . . . , xk) and M ′ = (x′1, x
′
2, . . . , x

′
k) it holds M � M ′ iff x1 ≤ x′1∧x2 ≤ x′2∧ . . .∧xk ≤

x′k. This relation is reflexive and transitive hence it is quasi-order. Obviously for every
infinite sequence M1, M2, . . . of markings there exist i < j ∈ N such that Mi � Mj hence
the relation is well-quasi-ordering. In an obvious manner is defined relation ≺.

3 Known results related to bisimilarity on BPP

Let us first define three known problems concerning bisimilarity on BPP.
Problem Bisimilarity on BPP

Instance: BPPs ∆1, ∆2 together with initial markings MI1 , MI2

Question: Is MI1 ∼ MI2?

Problem Bisimilarity of BPP and FS

Instance: BPP ∆ with initial marking MI and FS Σ with initial state sI

Question: Is MI ∼ sI?

Problem Regularity of BPP

Instance: BPP ∆ together with initial marking MI

Question: Does a FS with initial state sI exist such that MI ∼ sI?

Similar problems can be defined for normed BPP by replacing each BPP in instances
by a nBPP.

The table 1 shows best currently known complexity bounds for our three problems on
BPP and nBPP. It is partially obtained from [9] and updated.

Author of this paper cooperated on two most recent results [5] and [7].
In [3] Jančar announced that his polynomial space algorithm for BPP when applied on

nBPP should provide polynomial time bound of a ‘reasonable’ degree like O(n6). In [5] we
took his algorithm and more precisely explored application on nBPP. We have presented
more detailed version of the algorithm and deduced an upper bound O(n3).
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BPP nBPP
Bisimilarity ∈ PSPACE [3] ∈ P [2] (O(n3) [5])

PSPACE-hard [10] P-hard [1]
Bisimilarity with FS ∈ P (O(n4)) [7] ∈ P [2] (O(n3) [5])

P-hard [1] P-hard [1]
Regularity decidable [4] ∈ NL [8]

PSPACE-hard [10] NL-hard [10]

Table 1: Known complexity bounds of problems concerning bisimilarity on BPP

In [7] a general technique from [3] was taken and modified for deciding bisimilarity on
BPP and FS. We presented an algorithm and explored its complexity. The upper bound
of this algorithm obtained in [7] was O(n4) but it seems that analysing the algorithm more
precisely may lead to O(n3). Formerly, only algorithm working in PSPACE was known
(see [6]).

4 The regularity of a BPP is PSPACE-complete

As shown in table 1 regularity of BPP system is known to be decidable and PSPACE-hard.
Using some methods from [3] we show an algorithm running in polynomial space for this
problem. Hence we get that regularity of BPP is PSPACE-complete.

We have given a BPP Σ = (P,Tr,pre, F, λ) and initial marking MI . The question
is whether there is a FS ∆ bisimilar with Σ. In the case of positive answer we will not
construct existing ∆ (this can be exponential to the size of Σ).

In [3] an algorithm is presented which given a BPP Σ constructs in polynomial space
a mapping CΣ. Two markings M1, M2 of Σ are bisimilar iff CΣ(M1) = CΣ(M2). Moreover
CΣ is n-tuple (L1, L2, . . . , Ln) of linear functions. Each Li is a DD-function and in fact the
norm of some set of places of Σ.

Claim 4.1 A BPP Σ is regular iff there is finite number of mutually nonbisimilar mark-
ings.

Proof: ‘⇐’ Let the number of mutually nonbisimilar markings be finite. We can define
a LTS ∆ = (S, A, { a−→}a∈A) where S = {[M ]∼ | M is a marking of Σ} and transitions
are defined in obvious manner — [M1]∼

a−→ [M2]∼ if there are markings M ′
1 ∈ [M1]∼,

M ′
2 ∈ [M2]∼ and a transition t such that M ′

1
t−→ M ′

2, λ(t) = a. Then ∆ is a finite state
system bisimilar with Σ. It follows that Σ is regular.

‘⇒’ Now let the number of mutually nonbisimilar markings be infinite. Now we can not
construct a FS which has one state for each equivalence class on markings. If two markings
are nonbisimilar they can not be both bisimilar with the same state of finite state system.
Hence there is not any FS bisimilar with Σ and Σ is not regular. �
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Because CΣ(M1) = CΣ(M2) for M1 ∼ M2 system is regular iff we have a finite number
of different possible values of CΣ on reachable markings of Σ. An infinite number of values
of CΣ is possible iff at least one of the functions Li has an infinite number of the possible
values.

Claim 4.2 Norm function L has infinite number of different values on markings of Σ
iff there are two sequences of places p0, p1, . . . pn−1 and p′0, p

′
1, . . . p

′
m−1 for n,m ∈ N, n ≥

1, m ≥ 1 such that following conditions hold:

1. pi ∈ (P\RL) for 0 ≤ i < n and p′k ∈ (P\RL) for 0 ≤ k < m

2. pi 6= pj for i 6= j, 0 ≤ i < n, 0 ≤ j < n and p′k 6= p′l for k 6= l, 0 ≤ k < m, 0 ≤ l < m

3. for each pi, 0 ≤ i < n, there is ti ∈ Tr such that pre(ti) = pi, p(i+1)mod n
∈ suc(ti)

and for each p′k, 0 ≤ k < m−1, there is t′k ∈ Tr such that pre(t′k) = p′k, p
′
k+1 ∈ suc(t′k)

4. (∪n−1
i=0 suc(ti)) ∩RL = ∅ and (∪m−1

k=1 suc(t′k)) ∩RL = ∅

5. for some ti it holds |suc(ti)\R| > 1, p′1 ∈ suc(ti) or F (ti, p(i+1)mod n
) > 1, p′1 =

p
(i+1)mod n

6. 0 < cp′m < ω

7. there is a marking M such that MI
w−→ M for some w ∈ A∗, M |RL

= 0 and
M |{p0,...,pn−1} 6= 0

Proof: ‘⇒’ We suppose a BPP Σ such that there is an infinite number of different values
of function L on reachable markings. L is a linear function, i.e, for each p ∈ P there is
cp ∈ Nω such that L(M) =

∑
p cp ·M(p).

Let’s assume that there is not any reachable marking M1 from which we can reach a
marking M2 such that M1 ≺ M2, L(M1) < L(M2) and important trap is not marked. It
means that from each marking M ′

1 we can reach only

• incomparable marking

• strictly smaller marking

• the same marking

• a marking M ′
2 such that M ′

1 ≺ M ′
2 and L(M1) ≥ L(M ′

2)

• marking with token in an important trap

Given a marking M , there is only finite number of reachable incomparable and strictly
smaller markings. This easily follows from the fact that the relation � is well-quasi-
ordering on the set of all markings, from properties of a BPP and from our assumption.
Because we can reach only finite number of markings, we have finite number of different
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values of function L. But we can reach also markings greater than M1. The value of
function L on such markings is smaller or equal L(M1) and there is only finite number of
values smaller or equal L(M1). There is only one value of L for all markings with tokens
in important trap. Hence we get contradiction with the fact that we can reach infinite
number of markings with different value of L.

It follows that, for Σ, a reachable marking M1 exist from which we can reach a marking
M2 such that M1 ≺ M2, L(M1) < L(M2) and an important trap is not marked. The
sequence of transitions leading from M1 to M2 can be repeated infinite times generating
greater and greater markings. This means that in BPP is something like cycle which can
get a token and generate infinite number of tokens without marking an important trap.
This is described in conditions of claim 4.2.

‘⇐’ Places p0, . . . , pn−1 together with transitions t0, . . . , tn−1 related in point 3 form a
‘cycle’ which repeating causes generation of tokens. We consider only cycles containing
each place only once (point 2). Other cycles can be divided into smaller ones. There is at
least one transition in this cycle which has more than one output place or gives more then
one token to its output place (point 5). This transition ensures generation of at least one
token in each repetition of the cycle.

There are sequences of places (p′0, p
′
1, . . . p

′
m−1) and transitions between them (t′0, . . . t

′
m−1

in point 3) which transports generated tokens into some place (rm−1) with finite positive
coefficient of function L (point 6). Point 4 ensures that an important trap can not be
marked. From the point 7 follows that there is a possibility to get a token to some place
of our cycle from initial marking without marking an important trap.

Hence we can generate infinite number of token into place with positive finite constant
in function L. This means that we can reach infinite number of markings with different
values of function L. �

Theorem 4.3 The regularity of a BPP is in PSPACE and hence is PSPACE-complete.

Proof: Using algorithms from [3] we can compute CΣ = (L1, L2, . . . , Ln) and important
traps in polynomial space.

We have finite number of places and transitions. We can check all possible subsets of
places if they are in the cycle according the conditions from claim 4.2 and in the case of
positive answer we can check existence of sequence transporting tokens to some place with
finite coefficient on some of functions Li. This can be done obviously in polynomial space
(it is even in NP). If a desired cycle and a sequence are found, the BPP system is not
regular. In the other case the system is regular. �

5 Future work

As the table 1 together with section 4 suggests there are known quite proper complexity
bounds for all problems concerning bisimilarity on BPP and its subclasses. But many
problems are open in the case of so called weak bisimilarity where we allow silent actions.
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It is not known whether weak bisimilarity on BPP and even on nBPP is decidable or not.
Jančar in [3] remarked that his method can be useful in the case of weak bisimilarity. But
this is not so straightforward and we will work on it.
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