
Complexity of deciding bisimilarity of nBPP and
bisimilarity of BPP with finite-state system

Martin Kot

Department of Computer Science, FEI, Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

martin.kot@vsb.cz

Abstract. Jančar has recently shown that bisimilarity on Basic Parallel
Processes (BPP) can be decided in polynomial space (presented at LiCS
2003). In this paper are summarized two results which use general tech-
niques from Jančar’s paper. First result by Kot and Jančar (presented at
AVIS 2004) shows that bisimilarity on normed basic parallel processes
can be decided in O(n3). The second result by Kot and Sawa (submitted
to Infinity 2004) shows that bisimilarity of given BPP and finite-state
system can be decided in polynomial time, concretely in O(n5).

Keywords: basic parallel process, normed basic parallel process, finite state sys-

tem, bisimilarity, bisimulation equivalence, polynomial complexity.

1 Introduction

Bisimulation equivalence, also called bisimilarity, is one of fundamental behav-
ioral equivalences studied in the area of formal verification. Up-to-date overview
of results of research concerning decidability and complexity of bisimilarity for
various models is in [7]. We focus on well known model—basic parallel process
and its special form—normed BPP.

Jančar has shown in [3] that the problem of deciding bisimilarity on BPP is
in PSPACE which combined with previous results ensures that the problem is
PSPACE-complete. In the case of normed BPP, there are algorithms for deciding
bisimilarity in polynomial time. First was presented in [2]. Jančar’s algorithm
from [3] when applied to normed BPP is in polynomial time too. This was shown
in [4] and complexity bound O(n3) was suggested. Some basic ideas from this
will be in section 3.

Other problem in the area of formal verification is to decide whether a process
from a given class of systems is bisimilar to a given finite-state system. In the
case of BPP, in [1] was shown that this problem is P-hard and in [5] that it is
in PSPACE. The most recent paper [6] shows that this problem can be decided
in polynomial time, concretely in O(n5). Basic ideas from this paper will be
discussed in section 4.

In section 2 will be some definitions and notations needed for understanding
both sections 3 and 4.

2 Basic definitions and notation

Bisimilarity (i.e., bisimulation equivalence) is defined for labelled transition sys-
tems (LTSs). An LTS is a tuple (S, A, { a−→}a∈A) where S is a (possibly infinite)
set of states, A is a set of actions (or transition labels), and a−→⊆ S×S for each
a ∈ A. We use infix notation r

a−→ r′.
Given an LTS (S, A, { a−→}a∈A), bisimulation equivalence is the maximal sym-

metric relation B on S satisfying: if (r1, r
′
1) ∈ B and r1

a−→ r2 then there is r′2
such that r′1

a−→ r′2 and (r2, r
′
2) ∈ B. States s1, s2 ∈ S are bisimilar, written

s1 ∼ s2, iff there exists a bisimulation R such that (s1, s2) ∈ R.
A BPP can be defined as a tuple (P,Tr,pre, F, λ) where P is a finite set of

places, Tr is a finite set of transitions, pre : Tr → P is a function assigning an
input place to every transition, F : (Tr×P) → N is a function assigning output
places to each transition, and λ : Tr → A is a labelling function. The set of
output places of the transition t we will denote by σ(t) = {p | F (t, p) > 0}.

Let P = {p1, p2, . . . , pk} be a set of places. A marking is a function M : P →
N which assigns number of tokens to each place. Marking M can be viewed as
a vector (x1, x2, . . . , xk) where xi ∈ N and xi = M(pi). We use SΣ to denote the
set of all markings.

A transition t is enabled in a marking M iff M(pre(t)) > 0. Performing
a transition, written M

t−→ M ′, means

M ′(p) =
{

M(p)− 1 + F (t, p) if p = pre(t)
M(p) + F (t, p) otherwise

A BPP is called normed, denoted nBPP, iff from each marking we can reach
en empty marking (i.e., M(pi) = 0 for each pi ∈ SΣ) by performing a sequence
of transitions. An LTS (S,A,−→) corresponds to a BPP where S = SΣ and
M

a−→ M ′ iff there is some t ∈ Tr such that λ(t) = a and M
t−→ M ′.

We define a finite state system (FS) as a special type of a BPP where
is exactly one token which can not be duplicated or removed. We use S∆ =
{s1, s2, . . . , sk} to denote set of markings (states) of FS.

Let us have an LTS (S,A,−→) and some set R ⊆ S. We can define a distance
function DR : S → Nω as follows: Let W = {w ∈ A∗ | s w−→ s′ ∧ s′ ∈ R}. Then
DR(s) = min({|w| | w ∈ W} ∪ {ω}).

A crucial notion, introduced in [3] and used in both following sections, is
the notion of DD-functions. They are defined inductively. For every transition
label a a function dda which, for every place s, gives the “distance to dis-
abling” transitions with label a is a DD-function. Formally, dda is defined as
dda(s) = min

{
dist(s, s′) | ¬∃s′′ : s′

a−→ s′′
}
. Given a tuple of DD-functions

F = (d1, d2, . . . , dk), each transition s
a−→ s′ determines a change F(s′)−F(s),

denoted δ, which is a k-tuple of values from {−1} ∪ Nω ∪ {ω} . For each triple
(a,F , δ), the function dd(a,F,δ) (distance to disabling the action a causing the
change δ of F) is also a DD-function, defined by

dd(a,F,δ)(s) = min
{

dist(s, s′) | ∀s′′ : if s′
a−→ s′′ then F(s′′)−F(s′) 6= δ

}
.

All DD-functions are bisimulation invariant, i.e., if s and s′ are bisimilar then
d(s) = d(s′) for all DD-functions d. So equality of the values of all DD-functions
is a necessary condition for two places being bisimilar. In the case of BPP this
condition is also sufficient. In [3] was shown that, for any BPP, DD-functions
coincide with so called ‘norms’:

Given Q ⊆ SΣ , we define function normQ by

normQ(M) = min
{

dist(M,M ′) | M ′(p) = 0 for each p ∈ Q
}
.

Each normQ is a linear function, i.e, for each p ∈ PΣ there is cp ∈ Nω such that

normQ(M) =
∑

p

cp ·M(p)

3 Bisimilarity on normed Basic Parallel Processes can be
decided in time O(n3)

In this section will be shown that so called nbpp-bisim problem can be solved in
O(n3). This result was published in [4] and presented on AVIS 2004—Third In-
ternational Workshop on Automated Verification of Infinite-state Systems which
took place in Barcelona as affiliated workshop of ETAPS 2004 (European Joint
Conferences of Theory And Practice of Software). The proceedings will be pub-
lished electronically on ENTCS.

Problem nbpp-bisim can be formulated as follows: Given a normed BPP
system and two markings M,M ′, is M ∼ M ′ ?

Our algorithm which solves nbpp-bisim problem performs a stepwise decom-
position of the set Tr of transitions, i.e., it constructs a sequence of decomposi-
tions of Tr, where each new one refines the old one. We start with the (initial)
decomposition according to the transition labels. Each step of our algorithm re-
fines current decomposition of Tr according to the changes which the rules cause
on the functions normpre(T ′), for all current decomposition classes T ′.

This algorithm surely finishes, with a decomposition denoted decomp(Tr).
Then M and M ′ are bisimilar iff normpre(T ′)(M) = normpre(T ′)(M ′) for
each class T ′ in decomp(T). The decomposition problem is crucial for us because
nbpp-bisim problem can be easily reduced to decomposition.

We assume that instance of our problem is encoded as lists of places and
transitions where encoding of each transition t contains a list of all pairs of the
form (p, F (t, p)) where where F (t, p) > 0. We assume that numbers are encoded
in binary. By n we will denote the size in bits of an instance in such encoding.

Now we will show time complexity of our algorithm. At first, we need know
how many times our decomposition can be refined. Using mathematical induc-
tion, it can be easily shown that at most 2l − 1 different decomposition classes
could appear in a stepwise decomposition of a set with the size l. Hence in our
case the number of decomposition classes is in O(n). According each decom-
position class T we compute coefficients of linear function normpre(T), then
we compute changes on this function caused by transitions and we refine our

decomposition. All mentioned steps are done sequentially O(n) times. In follow-
ing paragraphs we show that computing coefficients, changes, as well as refining
decomposition can be done in O(n2). It follows that the whole algorithm is in
O(n3).

Norm of the set Q means how many transitions are at least needed to remove
all tokens from the set Q. Coefficient of linear function for each place means the
length of some sequence of transitions which removes from set Q one token
located in this place. In fact, for each place we look for ‘optimal’ transition
which is first in such sequence.

Places out of the set Q have obviously coefficients 0. In the case of normed
BPP, all coefficients are finite. There must be at least one transition which does
not have any output place at all or has each output place out of Q. Input places
of all such transitions have coefficients 1.

For each transition t which removes a token from a place with unknown
coefficient and adds tokens only to places with known coefficients we can compute
a candidate dt for coefficient cpre(t). The minimal among already computed
candidates dti

is declared as final coefficient cpre(ti). We repeat this process
and stop it when we know coefficients for all places.

Now we show that number of bits needed for representation of each coefficient
of normQ is in O(n). Without loss of generality we can suppose that coefficients
are indexed according to order in which are computed and corresponding places
and ‘optimal’ transitions have the same indexes. Other transitions are indexed
in arbitrary order. Hence c1 = 1 and the size of c1 in bits is obviously less than
the size of used ‘optimal’ transition t1.

Now we use mathematical induction. Suppose that the size of each dti in bits
is less then the size of representation of transitions t1 to ti. Using this we will
show, that the size of dti+1 in bits is less then the size of the representation of
transitions t1 to ti+1. Let size(x) be the size in bits of representation of x.

From our algorithm follows that each cj has to be known and finite when we
compute

dti+1 = 1 +
∑

pj∈σ(ti+1)

cj · F (ti+1, pj)

Hence each cj is one from c1 to ci. Each F (ti+1, pj) · cj could be written in
size(F (ti+1, pj)) + size(cj) bits. The sum of all such products can be written in
the size of maximal of them plus some number less then their count (overflow
caused by addition). This size is less then

size(max{cj |1 ≤ j ≤ min{i, |SΣ |}}) +
min{i,|SΣ |}∑

j=1

size(F (ti+1, pj))

bits. The second summand (the sum) is less then count of bits of representation
of (i + 1)-th transition. Using induction hypothesis, maximal cj can be written
in the count of bits needed for first i transitions. Therefore di+1 (and hence ci+1

too) could be written in the space needed for representations of transitions 1 to
i + 1, thus in O(n) bits.

Now we can show that all coefficients of normQ are computed together in
O(n2). In our algorithm doing this, the most time-consuming step is computing
all di. In computation of this, multiplications are more time-consuming than
additions. Hence, it suffices to show that aggregated complexity of all multipli-
cations is in O(n2). Note that computing of x · y is in O(size(x) · size(y)).

In our algorithm, each di is computed only once. During computation of di

we need to determine all products F (ti, pj) ·cj where j goes over places to which
ti gives at least one token. We know that each cj is in O(n) bits. Hence one
product is computed in O(n · size(F (ti, pj))). If we sum complexities of such
products for all transitions and places to which transitions give tokens, we get
the aggregated complexity of all multiplications

O(
∑
i,j

(n · size(F (ti, pj)))) = O(n ·
∑
i,j

size(F (ti, pj))) = O(n2)

.
Changes δt are computed using very similar expression as computing coeffi-

cients of norm. Hence, it can be similarly shown that computing all δt for one
norm can be done in time O(n2). The overall size of all δt have to be in O(n2)
too. It follows that the decomposition according to δt can be done in O(n2).

4 Bisimulation equivalence of a BPP and a finite state
system can be decided in polynomial time

In this section we show that so called bpp-fs-bisim problem can be solved in
polynomial time, concretely in O(n5). This result is described in paper [6] which
is submitted to Infinity 2004—affiliated workshop of Concur 2004. Hence it was
neither presented nor published yet.

The problem bpp-fs-bisim is formulated as follows: Given a BPP Σ together
with a marking M ∈ SΣ and a FS ∆ with a state s ∈ S∆, is M ∼ s?

Let a BPP Σ = (PΣ ,TrΣ ,preΣ , FΣ , λΣ), a FS ∆ = (P∆,Tr∆,pre∆, F∆, λ∆)
and a pair of their markings from SΣ and S∆ be an instance of bpp-fs-bisim.
A BPP (P,Tr,pre, F, λ) will be a disjoint union of Σ and ∆ and S = SΣ ∪ S∆.

Our algorithm deciding bpp-fs-bisim works in following way. Assume that
norm functions D1, D2, . . . , Di−1 are constructed (at the beginning we have an
empty list of functions). We choose s ∈ S∆ and t ∈ Tr. For the chosen s we
define I as maximal set of functions Di which are finite on s. We can find the
set Q of markings of Σ which give infinite values on functions from I. Then
we partition the set of transitions Tr according to ‘change’ values on functions
from I. The partition we will denote by T .

Let T ∈ T be the equivalence class containing the transition t chosen at
the beginning of the step. We define the function Di as a distance to the set of
markings where every t′ ∈ T is disabled and where every Dj ∈ I has a finite
value. This can be computed as norm of Q ∪ pre(T).

In this way we create functions D1, D2, To those functions correspond
equivalences ≡0,≡1,≡2, . . . on the set S where s ≡i s′ iff Dj(s) = Dj(s′) for

each 1 ≤ j ≤ i. When computing Di, we have given T and Q. We don’t add two
functions with the same T and Q because both refine our partition in the same
way. Since the T and Q are subsets of finite sets, there is only a finite number
of different functions we can add. Hence we can find a fixpoint ≡i on sequence
of equivalences satisfying ≡i=≡j for every j > i. It could be shown that M ∼ s
iff M ≡i s and we have solution of bpp-fs-bisim problem.

Now we show the complexity of presented algorithm. For each s ∈ S∆ we
can compute the sequence of distance functions. In every step of our algorithm
norm is computed for some Q and T . The set Q can only grow and the partition
of transitions can be only refined during run of algorithm. At least one of them
must be different when we add new norm function. We can do at most |Tr| steps
when the value of Q remain unchanged. Since Q ⊆ P and every partition has
at most |Tr| classes, we obtain the result the complexity O(|P∆| · |Tr| · (|P |)).
This is surely in O(n3). So we O(n3) times compute norm function and do
the decomposition. Similarly as in section 3, it could be shown that each norm
function and changes on norm function caused by transitions can be computed
in O(n2). It follows that our algorithm runs in O(n5).

5 Conclusion

We have shown that complexity of deciding bisimilarity for normed BPP is in
O(n3) and that bisimilarity of BPP and finite-state system can be decided in
polynomial time (in O(n5)). In future work we want to prove that regularity of
BPP (given a BPP, is there some finite-state system bisimilar with BPP?) is
PSPACE-complete. Now it is only known to be decidable and PSPACE-hard.

References

1. J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is p-complete. Formal
Aspects of Computing, 4(6A):638–648, 1992.

2. Y. Hirsfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisim-
ulation equivalence of normed basic parallel processes. Mathematical Structures in
Computer Science, 6:251–259, 1996.

3. P. Jančar. Strong bisimilarity on basic parallel processes is PSPACE-complete. In
Proc. 18th LiCS, pages 218–227. IEEE Computer Society, 2003.

4. P. Jančar and M. Kot. Bisimilarity on normed basic parallel processes can be decided
in time O(n3). In Proceedings of the Third International Workshop on Automated
Verification of Infinite-State Systems – AVIS 2004.

5. P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equivalences with
finite-state processes. Theoretical Computer Science, 258(1-2):409–433, 2001.

6. M. Kot and Z. Sawa. Bisimulation equivalence of a BPP and a finite state system
can be decided in polynomial time. Submited to Infinity 2004.

7. J. Srba. Roadmap of infinite results. In Bulletin of EATCS, volume 78, pages 163–
175, October 2002. See updated version at http://www.brics.dk/̃srba/roadmap/.

