
Notes on Complexity of Bisimilarity between BPA and BPP
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Abstract

We consider the problem of deciding bisimilarity between a BPA process and a BPP
process. This problem is known to be decidable, but no complexity bound has been
provided so far. Our aim is to clarify the precise complexity and some related questions.
In this short submission we present some preliminary results in this direction.

In particular we present a necessary and sufficient condition for a BPP process to
be bisimilar with some BPA process, which can be checked in polynomial space. In the
positive case, (a modification of) the algorithm can transform the given BPP process
into a special normal form (of exponential size) which can be easily converted into an
equivalent BPA process.

In this way, the problem of bisimilarity between BPA and BPP can be reduced to the
problem of bisimilarity over BPA, which is known to be solvable in double exponential
time.

Keywords: Basic Process Algebra, Basic Parallel Processes, bisimulation equivalence,
complexity

1 Introduction

Bisimilarity is one of the most studied behavioral equivalences in the concurrency theory. De-
cidability and complexity of deciding bisimilarity was studied on different classes of processes,
see [1, 5] for a survey.

One of important classes of processes is the process algebra (PA). The process class BPA
represents the subset of PA involving only sequential composition, while BPP represents the
subset involving only parallel composition.

In the case of BPA, the best known algorithm for deciding bisimilarity is in 2-EXPTIME

[2], and the problem is known to be PSPACE-hard [7], while in the case of BPP the problem
is known to be PSPACE-complete [3, 6]. It is natural to consider the problem of deciding
bisimilarity between a BPA process and a BPP process. It was shown in [8] that the problem
is decidable for normed processes, and then in [4] that it is decidable in general case, but no
complexity bound was provided; the problem was reduced to the problem of bisimilarity for
pushdown processes, relying on the decidability result by Sénizergues. We try to extend the
ideas used in [4] to examine the complexity of the problem and also some related questions.

In this short submission we present some preliminary results in this direction. Instead
of reducing to PDA-bisimilarity, we show that bisimilarity between BPA and BPP can be
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reduced (just) to BPA-bisimilarity. The reduction can be done in exponential time, and thus
the overall upper bound we get is triple exponential. The general strategy of the algorithm is
the following: At first we specify a condition which is necessary and sufficient for a BPP to be
bisimilar to some BPA . We show a polynomial space algorithm for checking whether a given
BPP process satisfies this condition. If it is the case, (the modification of) the algorithm
transforms the BPP process into a special normal form which then can be converted into
a bisimilar BPA process. The constructed BPP process (and corresponding BPA process)
can be of exponential size and the algorithm constructs it in exponential time. This way
the original problem of deciding bisimilarity between a BPA process and a BPP process is
reduced to the problem of deciding bisimilarity between two BPA processes for which a double
exponential algorithm is known. Since we use this algorithm on instance of exponential size,
the (straightforward) overall upper bound we get is triple exponential.

Section 2 contains basic definitions and Section 3 describes the condition for a BPP to be
bisimilar to some BPA. Section 4 mentiones some planned future work. We also provide an
Appendix A which describes the normal form of BPP processes for which a bisimilar BPA
process exists.

2 Basic definitions and notation

A labelled transition system (LTS) is a triple (S,A,−→), where S is a set of states, A is a
finite set of actions, and −→⊆ S ×A× S is a transition relation. We write s

a
−→ s′ instead

of (s, a, s′) ∈−→ and we extend this notation to elements of A∗ in a natural way.
Let (S,A,−→) be an LTS. A binary relation R ⊆ S × S is a bisimulation iff for each

(s, t) ∈ R and a ∈ A we have:

• ∀s′ ∈ S : s
a

−→ s′ ⇒ (∃t′ : t
a

−→ t′ ∧ (s′, t′) ∈ R), and

• ∀t′ ∈ S : t
a

−→ t′ ⇒ (∃s′ : s
a

−→ s′ ∧ (s′, t′) ∈ R).

States s and t are bisimulation equivalent (bisimilar), written s ∼ t, iff they are related by
some bisimulation. We can also relate states of two different LTSs by ∼ by taking their
disjoint union.

A BPA process is given by a context-free grammar in Greibach normal form. Formally it
is a triple G = (V,A, Γ), where V is a finite set variables (nonterminals), A is finite set of
actions (terminals) and Γ ⊆ V ×A×V ∗ is finite set of rewrite rules. Again, we write X

a
−→ α

instead of (X, a, α) ∈ Γ. A BPA G gives rise to an LTS SG = (V ∗,A,−→) where −→ is given
by the rewrite rules extended with the prefix rewriting rule: if X

a
−→ α then Xβ

a
−→ αβ for

every β ∈ V ∗.
A BPP process is defined in the same way, but for BPP elements of V ∗ are read mod-

ulo commutativity of concatenation, so they are interpreted as multisets of variables. (Any
occurence of variable can be rewritten, not just the first one.)

We use N = {0, 1, 2, . . .} to denote the set of nonnegative integers, Nω = N∪ {ω} where ω

denotes the first infinite ordinal, and Nω,−1 = Nω ∪ {−1}.
Let (S,A,−→) be an LTS. For a LTS we define the distance function dist : (S ×S) → Nω

as dist(s, s′) = min{length(w) | w ∈ A∗, s
w

−→ s′}. (We define min ∅ = ω.)
The set of DD-functions [3] is defined inductively as follows:

• For each a ∈ A the function dda : S → Nω, defined as dda(s) = min { dist(s, s′) | ¬∃s′′ :
s′

a
−→ s′′ }, is a DD-function.
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• Let F = (d1, . . . , dk) be a tuple of DD-functions. For s, s′ ∈ S, such that s
a

−→ s′, we
define the change δ = F(s′) − F(s), which is a k-tuple of values from Nω,−1. (We put
ω − ω = ω.) A function dd(a,F ,δ) : S → Nω, defined as

dd(a,F ,δ)(t) = min { dist(t, t′) | di(t
′) < ω for all i, and F(t′′) −F(t′) 6= δ for all t′

a
−→ t′′ },

is a DD-function.

We use DD to denote the set of DD-functions. Informally, the value d(s) of d ∈ DD represents
‘distance’ from s to the nearest state where certain kind of transitions is disabled, (and
d(s) = ω if there is no such state reachable from s), in particular, dda is the distance to a
state where transitions labelled with a are disabled.

It can be shown that in the case of finite-branching systems (which include BPA and
BPP), s ∼ s′ iff d(s) = d(s′) for each d ∈ DD. It was shown in [3], that for BPP the set DD

is always finite and can be effectively constructed.
For BPA or BPP, the norm of a state α ∈ V ∗, denoted |α|, is the length of a shortest

path to the empty process ε: |α| = dist(α, ε). For a BPA, the transition Xβ
a

−→ γβ is a
pn-reducing step iff |γ| = |X|−1 < ω. Let d ∈ DD. Transition s

a
−→ s′ is a d-reducing step iff

d(s) < ω and d(s′) = d(s)− 1. For a BPA G, a function d ∈ DD is prefix-encoded iff there is a
constant C ∈ N such that for every state α of G such that C < d(α) < ω, the d-reducing steps
are exactly the pn-reducing steps. It was proved in [4], that for any BPA, each DD-function
is prefix encoded.

3 Condition for a BPP to be bisimilar to some BPA

Let as assume we have some BPP process Σ, and we want to know if there is some bisimilar
BPA process ∆. For Σ we compute the corresponding set of DD-functions DD, and ∆ must
agree with Σ on each d ∈ DD.

We say that d, d′ ∈ DD grow independently in Σ if they can be arbitrarily big (but finite)
with an arbitrary big difference between them, i.e., for every C ∈ N there is a reachable state
α of Σ such that C < d(α), d′(α) < ω and |d(α) − d′(α)| > C. As follows from the fact, that
for any BPA every DD-function is prefix encoded, if there are some d, d′ ∈ DD that grow
independently, there is no BPA equivalent with Σ. Here is a simple example of such BPP:

S
c

−→ AS S
c

−→ BS A
a

−→ ε B
b

−→ ε

So the condition that there are no d, d′ that grow independently is necessary for an exis-
tence of a bisimilar BPA, but it is not sufficient as the following example shows:

S
c

−→ AB B
b

−→ ε

A
a

−→ AA A
a

−→ ε

B

b

AB
a

a

b

AAB
a

a

b

AAAB
a

a

b

a

ε A
a

a AA
a

a
AAA

a

a a

Suppose that there is a bisimilar BPA ∆. If dda (number of occurrences of A) is big, ∆
must store the value of this function in the prefix of the configuration. But ∆ also have to
remember if b is enabled. This could change in one step hence BPA must store this information
in first variable of configuration. Then decreasing of dda leads inevitably to the loss of the
information about the value of ddb. Hence a bisimilar BPA does not exist.
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We say that d ∈ DD overgrows d′ ∈ DD in Σ if the difference between them can be
arbitrary big while d′ is nonzero (i.e., for every C ∈ N there is a reachable state α of Σ such
that 0 < d′(α) < d(α) < ω and d(α) − d′(α) > C), d′ can be changed without setting d to ω,
and d can be decreased without setting d′ to ω.

We have (a little bit technical) proof of the following lemma, which we do not show here
due to space limitations.

Lemma 1 A BPP is bisimilar to some BPA iff there is no pair of DD-functions that grow
independently and there is nor pair of DD-functions where one overgrows the other.

Theorem 2 There is a polynomial space algorithm that decides for a given BPP whether
there is some equivalent BPA.

Proof idea: The algorithm nondeterministically guesses the run of the BPP that shows that
the condition specified in Lemma 1 is violated. ¤

It can be shown that if a BPP does not violate the condition, it can be transformed into
a special normal form. See Appendix A for an example of a transformation of a BPP into
the normal form.

Theorem 3 There is an algorithm running in exponential time that for a given BPP checks
if there exists a bisimilar BPA, and if it is the case, then it constructs a BPP in the normal
form (of exponential size).

A BPP in a normal form can be easily converted to a BPA of the same size.

Theorem 4 There is an algorithm with triple exponential running time deciding bisimilarity
between BPA and BPP.

Proof idea: The algorithm tries to convert the given BPP into an equivalent BPA, and if
it fails, stops with the answer NO, otherwise runs the algorithm for deciding bisimilarity on
BPA on the constructed BPA and the BPA from the instance. ¤

4 Final remarks

We present a work in progress. The triple exponential complexity seems to be still an “over-
shot”, which we hope to improve after clarifying a necessary and sufficient condition for a
BPA to be bisimilar with some BPP.

Another related question is the possibility of extending these results to bisimilarity be-
tween PDA and BPP.
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A Normal form of a BPP

In this section we describe normal form of a BPP bisimilar to original BPP.
Suppose that a BPP system Σ is bisimilar to some BPA system ∆. The set of states of

Σ can be divided into stages, where one stage represents the subset of states with the same
subset of DD-functions which are set to ω.

We will illustrate the transformation on the following example:

S
a

−→ C C
a

−→ D C
a

−→ EG D
d

−→ DD D
d

−→ ε E
e

−→ F

F
f

−→ E G
g

−→ GG G
g

−→ H H
e

−→ H H
f

−→ H
In the normal form, for each stage we have a special set of variables. Variables Ai represent

the beginning of the stage when BPP acts as a finite-state system. In our example A1
a

−→ A2

where A1 resp. A2 represents configurations S resp. C.
Then BPP system can choose which DD-function (or more DD-functions with the same

values on reachable configurations) will be able to grow unlimitedly. For each such possible
set Q of DD-functions, in the normal form are: variable Zi and possibly empty set of variables
X1,i, X2,i, . . . , Xki,i. For each d ∈ Q it holds d(Zi) = 1. Hence the value of d we represent by
the number of occurrences of Zi.

In the example we need Z1 for the function ddd and Z2 for ddg. We get A2
a

−→ Z1,

Z1
d

−→ Z1Z1 and Z1
d

−→ ε as a representation of rules C
a

−→ D, D
d

−→ DD, D
d

−→ ε.
As long as the value of some DD-function d grows, there could be more nonbisimilar states

with the same value of d. This we represent using variables X. In the example GiE ≁ GiF

for all i. After first decrease of d, only one state for each value of d can exist. This is done
by setting all DD-functions different on such nonbisimilar states to ω. Hence the set R has
changed and the system is in the next stage.

In the example after first use of G
g

−→ H (decreasing ddg), it holds GiE ∼ GiF for all
i because dde and ddf are set to ω. Hence the normal form for the BPP from the example
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must contain furthermore following rules: A2
a

−→ X1,2Z2, X1,2
e

−→ X2,2, X2,2
f

−→ X1,2,

Z2
g

−→ Z2Z2, Z2
g

−→ X ′
1,1, X ′

1,1
e

−→ X ′
1,1, X ′

1,1
f

−→ X ′
1,1.

When a DD-function, which can grow unlimitedly, is set to ω, the BPP enters the next
stage. In configurations, there can be variables from previous stages which are unimportant
with respect to bisimilarity because they increase only DD-functions already set to ω.
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