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Abstract. Jančar has in 2003 shown that bisimilarity on Basic Parallel
Processes (BPP) can be decided in polynomial space. But bisimilarity
is studied also on various subclasses of BPP. We present summary of
known complexity bounds of some such bisimilarity problems. Moreover
is here shown that deciding regularity of a BPP is PSPACE-complete.
This result was presented at winter school Movep’04 in PhD students
section.
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1 Introduction

Equivalence checking is a well studied theoretical tool for a program verification.
A program and its specification could be compared using some behavioral equiv-
alence. One of the fundamental behavioral equivalences is bisimulation equiva-
lence, also called bisimilarity. A program and a specification can be modeled
using different models. We focus on well known model—basic parallel processes
and some of its special forms. A BPP can model parallel composition of pro-
cesses without synchronization. The superclass of BPP are Petri Nets which can
model parallel composition with synchronization. BPP are useful because many
problems are decidable for BPP and are not decidable for Petri Nets. For prac-
tical use of equivalence checking it is crucial not only to know if the problem is
decidable but also to know how complex the decision procedure is.

A BPP is in general infinite-state model. It may be useful to know whether
a particular BPP is really an infinite-state system or it has only a finite num-
ber of mutually nonbisimilar states and hence is bisimilar to some finite-state
system. A problem of deciding existence of a finite-state system bisimilar to a
given BPP is called Regularity of BPP. This problem was only known to be de-
cidable and PSPACE-hard ([10]). We show an algorithm (published in [6]) work-
ing in PSPACE and hence combined with PSPACE-hardness we get PSPACE-
completeness. We will not construct a bisimilar finite-state system because it
may be in general of exponential size with respect to a given BPP.

In the section 2 we define basic notions. In the section 3 will be summary of
some known results. In section 4 we show that deciding regularity of a BPP is
PSPACE-complete.



2 Basic definitions and notation

A labelled transition system (LTS) is a triple (S,A,−→), where S is a set of
states, A is a finite set of actions, and −→⊆ S ×A× S is a transition relation.
We write s

a−→ s′ instead of (s, a, s′) ∈−→ and we extend this notation to
elements of A∗ in a natural way.

Let (S,A,−→) be an LTS. A binary relation R ⊆ S × S is a bisimulation iff
for each (s, t) ∈ R and a ∈ A we have:

– ∀s′ ∈ S : s
a−→ s′ ⇒ (∃t′ : t

a−→ t′ ∧ (s′, t′) ∈ R), and
– ∀t′ ∈ S : t

a−→ t′ ⇒ (∃s′ : s
a−→ s′ ∧ (s′, t′) ∈ R).

States s and t are bisimulation equivalent (bisimilar), written s ∼ t, iff they are
related by some bisimulation.

A BPP can be defined as a special form of Petri net called communication-free
Petri net. Concretely a BPP is a tuple (P,Tr, pre, F, λ) where P is a finite set
of places, Tr is a finite set of transitions, pre : Tr → P is a function assigning
an input place to every transition, F : (Tr × P ) → N is a function assigning
output places to each transition, and λ : Tr → A is a labeling function. The set
of output places of the transition t we will denote by suc(t) = {p | F (t, p) > 0}.

Let P = {p1, p2, . . . , pk} be a set of places. A marking is a function M : P →
N which assigns number of tokens to each place. We use SΣ to denote the set of
all markings.

A transition t is enabled in a marking M iff M(pre(t)) > 0. Performing
a transition, written M

t−→ M ′, means

M ′(p) =
{

M(p) − 1 + F (t, p) if p = pre(t)
M(p) + F (t, p) otherwise

A BPP is called normed, denoted nBPP, iff from each marking we can reach
an empty marking (i.e., M(pi) = 0 for each pi ∈ SΣ) by performing a sequence
of transitions.

An LTS (S,A,−→) corresponds to a BPP where S = SΣ and M
a−→ M ′ iff

there is some t ∈ Tr such that λ(t) = a and M
t−→ M ′.

A set of places R ⊆ P is a trap iff ∀t : pre(t) ∈ R ⇒ (∃p ∈ R : F (t, p) ≥ 1).
A trap R is called important if M ∼ M ′ implies M |R = 0 ⇔ M ′|R = 0.

A finite state system (FS) is a LTS with finite set of states.
For a LTS (S,A,−→) we define the distance function dist : (S × S) → Nω as

dist(s, s′) = min{length(w) | w ∈ A∗, s w−→ s′}. (We define min ∅ = ω.)
The set of DD-functions introduced in [3] is defined inductively as follows:

– For each a ∈ A the function dda : S → Nω, defined as dda(s) = min
{

dist(s, s′) |
¬∃s′′ : s′ a−→ s′′

}
, is a DD-function.

– Let F = (d1, . . . , dk) be a tuple of DD-functions. For s, s′ ∈ S, such that
s

a−→ s′, we define the change δ = F(s′)−F(s), which is a k-tuple of values
from Nω,−1. (We put ω − ω = ω.) A function dd(a,F ,δ) : S → Nω, defined as
dd(a,F ,δ)(t) = min

{
dist(t, t′) | di(t′) < ω for all i, and F(t′′)−F(t′) �= δ for

all t′ a−→ t′′
}
, is a DD-function.



Informally, the value of DD-function d(s) represents ‘distance’ from s to the
nearest state where certain kind of transitions is disabled, (and d(s) = ω if there
is no such state reachable from s), in particular, dda is the distance to a state
where transitions labelled with a are disabled.

All DD-functions are bisimulation invariant, i.e., if s and s′ are bisimilar then
d(s) = d(s′) for all DD-functions d. So equality of the values of all DD-functions
is a necessary condition for two places being bisimilar. In the case of BPP (and
all other finite-branching systems) this condition is also sufficient. Hence s ∼ s′

iff d(s) = d(s′) for each DD-function d. In [3] was shown that, for any BPP,
DD-functions coincide with so called ‘norms’:

Given Q ⊆ SΣ , we define function normQ by

normQ(M) = min
{

dist(M, M ′) | M ′(p) = 0 for each p ∈ Q
}
.

Each normQ is a linear function, i.e, for each p ∈ P there is cp ∈ Nω such that
normQ(M) =

∑
p cp · M(p)

For all bisimulation invariant linear functions L(M) =
∑

p cp · M(p) (and
hence for all DD-functions) the set RL = {p|cp = ω} is an important trap.

We define relation 
 on the set of all markings SΣ as follows. For markings
M = (x1, x2, . . . , xk) and M ′ = (x′

1, x
′
2, . . . , x

′
k) it holds M 
 M ′ iff x1 ≤

x′
1 ∧ x2 ≤ x′

2 ∧ . . . ∧ xk ≤ x′
k. This relation is reflexive and transitive hence it is

quasi-order. Obviously for every infinite sequence M1, M2, . . . of markings there
exist i < j ∈ N such that Mi 
 Mj hence the relation is well-quasi-ordering. In
an obvious manner is defined relation ≺.

3 Known results related to bisimilarity on BPP

Let us first define three known problems concerning bisimilarity on BPP.

Bisimilarity on BPP – Given BPPs Σ1, Σ2 together with initial markings
MI1 , MI2 , is MI1 ∼ MI2?

Bisimilarity of BPP and FS – Given BPP Σ with initial marking MI and
FS ∆ with initial state sI , is MI ∼ sI?

Regularity of BPP – Given BPP Σ together with initial marking MI , does a
FS with initial state sI exist such that MI ∼ sI?

Similar problems can be defined for normed BPP by replacing each BPP in
instances by a nBPP.

The table 1 shows best currently known complexity bounds for our three
problems on BPP and nBPP. It is partially obtained from [9] and updated.

Author of this paper cooperated on two most recent results [5] and [7].

4 The regularity of a BPP is PSPACE-complete

The regularity of BPP was known to be decidable and PSPACE-hard. Using
some methods from [3] we show an algorithm running in polynomial space for
this problem. Hence we get that regularity of BPP is PSPACE-complete.



BPP nBPP

Bisimilarity ∈ PSPACE [3] ∈ P [2] (O(n3) [5])
PSPACE-hard [10] P-hard [1]

Bisimilarity with FS ∈ P (O(n4)) [7] ∈ P [2] (O(n3) [5])
P-hard [1] P-hard [1]

Regularity decidable [4] ∈ NL [8]
PSPACE-hard [10] NL-hard [10]

Table 1. Known complexity bounds of problems concerning bisimilarity on BPP

We have given a BPP Σ = (P,Tr, pre, F, λ) and initial marking MI . The
question is whether there is a FS ∆ bisimilar with Σ. In the case of positive
answer we will not construct existing ∆ (this can be exponential to the size of
Σ).

In [3] an algorithm is presented which given a BPP Σ constructs in polyno-
mial space a mapping CΣ . Two markings M1, M2 of Σ are bisimilar iff CΣ(M1) =
CΣ(M2). Moreover CΣ is n-tuple (L1, L2, . . . , Ln) of linear functions. Each Li is
a DD-function and in fact the norm of some set of places of Σ.

Lemma 1. A BPP Σ is regular iff there is finite number of mutually nonbisim-
ilar markings.

Proof. ‘⇐’ Let the number of mutually nonbisimilar markings be finite. We
can define a LTS ∆ = (S, A, { a−→}a∈A) where S = {[M ]∼ | M is a marking
of Σ} and transitions are defined in obvious manner — [M1]∼

a−→ [M2]∼ if
there are markings M ′

1 ∈ [M1]∼, M ′
2 ∈ [M2]∼ and a transition t such that

M ′
1

t−→ M ′
2, λ(t) = a. Then ∆ is a finite state system bisimilar with Σ. It

follows that Σ is regular.
‘⇒’ Now let the number of mutually nonbisimilar markings be infinite. We

can not construct a FS which has one state for each equivalence class on mark-
ings. If two markings are nonbisimilar they can not be both bisimilar with the
same state of finite state system. Hence there is not any FS bisimilar with Σ
and Σ is not regular. �

Because CΣ(M1) = CΣ(M2) for M1 ∼ M2 system is regular iff we have a
finite number of different possible values of CΣ on reachable markings of Σ. An
infinite number of values of CΣ is possible iff at least one of the functions Li has
an infinite number of the possible values.

Lemma 2. Norm function L has infinite number of different values on markings
of Σ iff in the BPP Σ, there is a subnet of the form as on the figure 1 (in Σ
places and transitions can have more output arcs and places also input arcs) such
that:

1. n ≥ 1 (in the case that n = 1, F (t1, p1) = 1)
2. pi �= pj for i �= j, 1 ≤ i, j ≤ n
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Fig. 1. Cycle possibly causing unregularity of a BPP

3. (∪n
i=1suc(ti)) ∩ RL = ∅

4. It is possible that p0 = pi for some 1 ≤ i ≤ n but also that p0 �= pi for all
1 ≤ i ≤ n

5. 0 < cp0 < ω or there is a sequence of transitions which takes token from p0,
gives token to some place p (0 < cp < ω) and does not mark RL

6. there is a marking M reachable from initial marking MI such that L(M) < ω
and M(pi) > 0 for some 1 ≤ i ≤ n

Proof. ‘⇒’ We suppose a BPP Σ such that there is an infinite number of different
values of function L on reachable markings. L is a linear function, i.e, for each
p ∈ P there is cp ∈ Nω such that L(M) =

∑
p cp · M(p).

The BPP is finitely branching hence in the unfolding of Σ must be at least one
infinite sequence of markings M1, M2, . . . such that the sequence L(M1), L(M2), . . .
contains infinitely many different values. Now we can take an infinite subse-
quence M ′

1, M
′
2, . . . such that L(M ′

1), L(M ′
2), . . . is strictly growing. The relation


 is well-quasi-ordering hence there are M ′
i , M ′

j in our sequence such that i < j,
M ′

i 
 M ′
j . From the fact that L(M ′

i) < L(M ′
j) and that L is linear function

follows M ′
i ≺ M ′

j . The sequence of transitions leading from M ′
i to M ′

j could be
repeated infinitely often which corresponds to the transitions t1, . . . , tn on the
figure 1. Moreover each repetition have to generate at least one new token hence
there is the arc from t1 to p0 on the figure.

From the fact that L(M1), L(M2), . . . contains infinitely many different values
follows, that the trap RL is not marked in any marking M1, M2, . . .. L(M ′

i) <
L(M ′

j) hence it have to be possible to find p0 such that 0 < cp0 < ω or transport
token form p0 to p (0 < cp < ω) without marking RL.

‘⇐’ If the structure depicted on figure 1 exist in the BPP and all conditions
from our lemma are satisfied then then we can reach (without marking a trap
RL) a marking from which it is possible to repeat the sequence of transitions
t1, t2, . . . , tn infinitely many times. Moreover the value of L stays finite and is
growing. This means that L can reach infinitely many different values. �

Theorem 1. The regularity of a BPP is in PSPACE and hence is PSPACE-
complete.



Proof. A BPP has a finite number of places and transitions. We can check all
possible subsets of places if they correspond the structure depicted on figure 1.
This can be obviously done in polynomial space. If such a structure is found
we can check for each DD-function L the conditions from lemma 2. This can
be done in polynomial space using algorithms from [3] for computation of all
DD-functions and important traps. If a cycle fulfilling all conditions is found,
the BPP system is not regular. In the other case the system is regular. �

5 Future work

As the table 1 together with section 4 suggests there are known quite proper
complexity bounds for all problems concerning bisimilarity on BPP and its sub-
classes. But it is worth to study also bisimilarity between two different models.
Recent time we are working on bisimilarity algorithm deciding whether a given
BPP is bisimilar to a given Basic Process Algebra (BPA). BPA can model only
sequential composition. We also try to describe a class of infinite-state systems
which can be modeled using the parallel composition only as well as using the
sequential composition only. Some preliminary results will be presented on Ex-
press’05 - an affiliated workshop of Concur’05.
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