
Complexity of some Bisimilarity Problems

between BPP and BPA or Finite-State System

Martin Kot�

Center for Applied Cybernetics, Dept of Computer Science,
Technical University of Ostrava, Czech Republic

martin.kot@vsb.cz

Supervisor(s): Petr Jančar, Technical University of Ostrava
Keywords: Bisimulation Equivalence, Basic Parallel Processes, Basic Process
Algebra, Regularity, Complexity

Abstract. I present my research concerning complexity of bisimilarity
between BPP and other simple process rewrite systems, specifically BPA
and finite-state systems. The results are based on some general notions
introduced by Jančar in [1] where he has shown PSPACE-completeness
of bisimilarity on BPP. Some of presented results are joint work with
Zdeněk Sawa or my supervisor Petr Jančar.

1 Research Area

Failures of some systems may have serious consequences. Hence, designers of
such systems want to ensure the correctness of the design. They perform so called
verification when they check correctness of the implementation with respect to
the given specification. Main approaches that allow to ensure the correctness for
all possible behaviors of the systems are theorem proving, equivalence checking
and model checking.

In equivalence checking we have given two descriptions of systems and the
question is whether they are equivalent with respect to some equivalence. Usually
we want to ensure that the behavior of the system is the same as the behavior
of the specification.

Many types of models are used for the description of systems. The equiva-
lence checking problems are undecidable for models with great expressive power.
Other models do not allow to describe many aspects of the real systems. Many
researchers concentrate on the question which equivalence checking problems are
decidable. Moreover, the exact computational complexity of the decidable prob-
lems plays important role. Due to the complexity, many algorithms may not be
used in practice for real-life instances.

� The author is supported by the Ministry of Education of the Czech Republic,
Project 1M0567.

2 Directions of the work

Mayr defined Process Rewrite Systems (PRS) in [2]. PRS unify many previously
known formalisms. They are defined as follows. Let A = {a, b, c, . . .} be the
(possibly infinite but countable) set of atomic actions and Var = {X, Y, Z, . . .} be
the countable set of process variables. Process terms are defined by the following
abstract grammar

P ::= ε | X | P1.P2 | P1||P2

where ε is the empty term, X is a process variable, ‘.’ denotes sequential compo-
sition and ‘||’ parallel composition. Sequential composition is associative, both
compositions are commutative.

Process rewrite system is a finite set ∆ of rules of the form t1
a−→ t2 where

t1, t2 are process terms and a ∈ A. We can define different types of subclasses
of PRS based on four classes of process terms:

1 - terms consisting of a single process variable
S - terms consisting of ε, a single variable, or a sequential composition of process

variables
P - terms consisting of ε, a single variable, or a parallel composition of process

variables
G - terms without any restrictions

Let α, β ∈ {1,S,P ,G} be classes of terms such that α ⊆ β. (α, β)-PRS is
defined as a finite set ∆ of rules l

a−→ r where the term l is from class α (l �= ε)
and r is from β. (α, β)-PRS form the whole hierarchy. We are interested in three
simple classes at the bottom of the hierarchy: (1, 1)-PRS – finite-state systems,
(1,S)-PRS – Basic Process Algebras and (1,P)-PRS – Basic Parallel Processes.

There are many possible equivalences defined which may be used for equiva-
lence checking. The most important equivalences were organized by van Glabbek
into the hierarchy called linear time – branching time spectrum. One of the most
studied equivalences is bisimulation equivalence because it has found its way into
many practical applications.

My research in the area of equivalence checking is focused on bisimulation
problems on BPP. Deciding bisimilarity of BPP is known to be PSPACE-complete
[1]. But it is worth to study also complexity of bisimilarity with some other
process rewrite systems. Sometimes could be handy to use one model for speci-
fication and some other for implementation. In the section 4 are mentioned the
following results:

– Bisimilarity on normed BPP can be decided in time O(n3) (joint work with
Petr Jančar)

– Bisimulation equivalence of a BPP and a finite-state system can be decided
in polynomial time (joint work with Zdeněk Sawa)

– Regularity (existence of bisimilar finite-state system) of BPP is PSPACE-
complete

– Deciding existence of bisimilar BPA to a given BPP is PSPACE-complete
(joint work with Petr Jančar and Zdeněk Sawa)

2

3 Basic definitions and notation

A labelled transition system (LTS) is a triple (S,A,−→), where S is a set of
states, A is a finite set of actions, and −→⊆ S ×A× S is a transition relation.
We write s

a−→ s′ instead of (s, a, s′) ∈−→ and we extend this notation to
elements of A∗ in a natural way.

Let (S,A,−→) be an LTS. A binary relation R ⊆ S × S is a bisimulation iff
for each (s, t) ∈ R and a ∈ A we have:

– ∀s′ ∈ S : s
a−→ s′ ⇒ (∃t′ : t

a−→ t′ ∧ (s′, t′) ∈ R), and
– ∀t′ ∈ S : t

a−→ t′ ⇒ (∃s′ : s
a−→ s′ ∧ (s′, t′) ∈ R).

States s and t are bisimulation equivalent (bisimilar), written s ∼ t, iff they are
related by some bisimulation. We can also relate states of two different LTSs by
∼ by taking their disjoint union.

A BPA process is given by a context-free grammar in Greibach normal form.
Formally it is a triple G = (V,A, Γ), where V is a finite set variables (nonter-
minals), A is finite set of actions (terminals) and Γ ⊆ V ×A × V ∗ is finite set
of rewrite rules. Again, we write X

a−→ α instead of (X, a, α) ∈ Γ . A BPA G
gives rise to an LTS SG = (V ∗,A,−→) where −→ is given by the rewrite rules
extended with the prefix rewriting rule: if X

a−→ α then Xβ
a−→ αβ for every

β ∈ V ∗.
We can define a BPP as a labelled Petri Net in which each transition has a

unique input place. Formally, it is a tuple N = (P, T, F, A, l) where P is finite
set of places, T is finite set of transitions, F : (P × T ∪ T × P) → N is a flow
function, A is a finite set of labels, and l : T → A is a labelling function. A
marking is a function M : P → N which associates to each place a finite number
of tokens. If M(p) ≥ F (p, t) for each place p then a transition t is enabled at
marking M . An enabled transition t may be fired from M , producing a marking
M ′ defined by M ′(p) = M(p)−F (p, t) + F (t, p). This is denoted by M

t−→ M ′.
We can associate a LTS to a Petri net N where the set of states is the set of all
markings, A is the set of labels, and M

a−→ M ′ iff there is a transition t such
that l(t) = a and M

t−→ M ′.
For a LTS (S,A,−→) we define the distance function dist : (S × S) → Nω as

dist(s, s′) = min{length(w) | w ∈ A∗, s w−→ s′}. (We define min ∅ = ω.)
The set of DD-functions [1] for LTS S = (S,A,−→) is defined inductively as

follows:

– For each a ∈ A the function dda : S → Nω, defined as dda(s) = min
{

dist(s, s′) |
¬∃s′′ : s′ a−→ s′′

}
, is a DD-function.

– Let F = (d1, . . . , dk) be a tuple of DD-functions. For s, s′ ∈ S, such that
s

a−→ s′, we define the change δ = F(s′)−F(s), which is a k-tuple of values
from Nω,−1. (We put ω − ω = ω.) A function dd(a,F ,δ) : S → Nω, defined as
dd(a,F ,δ)(t) = min

{
dist(t, t′) | di(t′) < ω for all i, and F(t′′)−F(t′) �= δ for

all t′ a−→ t′′
}
, is a DD-function.

3

Informally, the value d(s) of DD-function d represents ‘distance’ from s to the
nearest state where certain kind of transitions is disabled, (and d(s) = ω if there
is no such state reachable from s), in particular, dda is the distance to a state
where transitions labelled with a are disabled.

It can be shown that in the case of finite-branching systems (which include
BPA and BPP), s ∼ s′ iff d(s) = d(s′) for each DD-function d. It was shown
in [1], that for BPP the set of DD-functions is always finite and can be effectively
constructed.

4 Achieved results

In 2003 Jančar presented a PSPACE algorithm deciding bisimilarity on BPP [1].
He has shown, that the set of all DD-functions for BPP may be computed in
PSPACE and that two BPP processes are bisimilar if and only if all DD-functions
give the same values on those processes.

4.1 Bisimilarity on normed Basic Parallel processes

In the case of normed BPP, a polynomial time algorithm was presented in [3]
but authors did not analyze the complexity of their algorithm more precisely.
When applied to the normed BPP, Jančar’s algorithm from [1] also works in
polynomial time.

The problem nBPP-bisim can be formulated as follows: Given a normed BPP
system and two markings M, M ′, is M ∼ M ′ ?

In [4] we have expressed Jančar’s algorithm more precisely in the version
only for normed BPP. Then we provided a complexity analysis yielding the
upper bound O(n3).

Our algorithm performs a stepwise decomposition of the set T of transitions.
It starts with the (initial) decomposition according to the transition labels. Each
step of the algorithm refines current decomposition of T according to the changes
which the rules cause on the functions normpre(T ′), for all current decomposi-
tion classes T ′.

This algorithm surely finishes, with a decomposition denoted decomp(T).
Then M and M ′ are bisimilar iff normpre(T ′)(M) = normpre(T ′)(M ′) for
each class T ′ in decomp(T). The decomposition problem is crucial for us because
nBPP-bisim problem can be easily reduced to the decomposition.

At most 2l − 1 different decomposition classes could appear in a stepwise
decomposition of a set with the size l. Hence in our case the number of decom-
position classes is in O(n). According each decomposition class T we compute
coefficients of linear function normpre(T), then we compute changes on this
function caused by transitions and we refine our decomposition. All mentioned
steps are done sequentially O(n) times. Computing coefficients, changes, as well
as refining decomposition can be done in O(n2). It follows that the whole algo-
rithm is in O(n3).

4

4.2 Bisimilarity of a BPP and a finite state system

In this section we will mention the result from [5] which shows that so called
BPP-FS-bisim problem can be solved in polynomial time, concretely in O(n5).

The problem BPP-FS-bisim is formulated as follows: Given a BPP Σ together
with an initial marking M and a FS ∆ with an initial state s, is M ∼ s?

The algorithm which solves BPP-FS-bisim problem works on the disjoint
union of Σ and ∆. The DD-functions D1, D2, . . . are computed. To those func-
tions correspond equivalences ≡0,≡1,≡2, . . . on the set of states S of correspond-
ing LTS where s ≡i s′ iff Dj(s) = Dj(s′) for each 1 ≤ j ≤ i. There is only a
finite number of different functions we can add during the computation. Hence
we can find a fixpoint ≡i on sequence of equivalences satisfying ≡i=≡j for every
j > i. It could be shown that M ∼ s iff M ≡i s.

Analyzing the complexity we get that the algorithm runs in O(n5).

4.3 Regularity of BPP

The problem BPP-regularity is formulated as follows: Given a BPP Σ together
with an initial marking M , is there some FS ∆ with an initial state s such that
M ∼ s?

In [6] I have shown an algorithm deciding BPP-regularity problem in poly-
nomial space. This problem was known to be PSPACE-hard hence PSPACE-
completeness was achieved.

The algorithm looks for a cycle in the BPP-net such that it generates tokens
to a place with finite positive coefficient of some DD-function d. Moreover, the
cycle must be markable without setting d to infinity and transition in the cycle
may not set d to infinity.

4.4 Bisimilarity between BPA and BPP

Currently, I’m working on some problems related to bisimilarity between BPA
and BPP. It is a joint work with Jančar and Sawa. The results mentioned here
were not published yet.

Bisimilarity between BPA and BPP is known to be decidable. But no com-
plexity bound was provided. Actually we have an algorithm working probably
in 3-EXPTIME. But we are trying to improve this complexity bound.

We can also define a problem called BPA-ity as follows: Given a BPP Σ
together with an initial marking M , is there some BPA ∆ with an initial con-
figuration α such that M ∼ α?

We have shown that the problem is PSPACE-complete. The PSPACE-hardness
can be proved by reduction from the problem of regularity of a BPP which is
known to be PSPACE-hard. The algorithm deciding BPA-ity problem checks in
PSPACE two conditions that are necessary and sufficient for a BPP to have a
bisimilar BPA.

Suppose an LTS S = (S,A,−→) with an initial state s. We say that DD-
functions d, d′ are independently large iff for every C ∈ N there is a reachable

5

state r ∈ S such that C < d(r) < ω, C < d′(r) < ω and there is a transition
r

a−→ q into some state q such that d(q) − d(r) �= d′(q) − d′(r).
The first condition for existence of bisimilar BPA is the following: Given a

LTS S corresponding to a BPP, there is no pair of independently large DD-
functions.

We say that DD-function d overgrows DD-function d′ if ∀C1, C2 ∈ N there is
a reachable state q such that all the following conditions holds: C1 < d(q) < ω,
there is a transition leading from q to some state p and changing d and not
setting d′ to infinity, from q and p can be done C2 times d-reducing step not
changing d′.

The second condition for existence of bisimilar BPA is the following: Given a
LTS S corresponding to a BPP, there is not any pair of DD-functions d, d′ such
that d overgrows d′.

Our 3-EXPTIME algorithm deciding bisimilarity between BPA and BPP uses
the algorithm for BPA-ity problem as a subroutine. We check if there is a bisim-
ilar BPA to the BPP. In the positive case we can construct a BPA in a normal
form bisimilar to the given BPP. Then we can use a standard algorithm for
checking bisimilarity on BPA. Our algorithm is better than previously known
one from [7] which used as subroutine more complex algorithm checking bisimi-
larity on PDA. But we would like to avoid using general algorithm for checking
bisimilarity on BPA and in this way to improve the complexity bound.

In the similar way as BPA-ity we can define BPP-ity. Given a BPA we ask if
there is a bisimilar BPP. We have shown that this problem is also PSPACE-hard
by reduction from the problem of regularity of BPA. But we do not have any
algorithm deciding the BPP-ity problem yet.

References

1. Jančar, P.: Strong bisimilarity on basic parallel processes is PSPACE-complete. In:
Proc. 18th LiCS, IEEE Computer Society (2003) 218–227

2. Mayr, R.: Process rewrite systems. Information and Computation 156(1) (2000)
264–286

3. Hirsfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding
bisimulation equivalence of normed basic parallel processes. Mathematical Struc-
tures in Computer Science 6 (1996) 251–259

4. Jančar, P., Kot, M.: Bisimilarity on normed basic parallel processes can be decided in
time O(n3). In Bharadwaj, R., ed.: Proceedings of the Third International Workshop
on Automated Verification of Infinite-State Systems – AVIS 2004. (2004)

5. Kot, M., Sawa, Z.: Bisimulation equivalence of a BPP and a finite-state system can
be decided in polynomial time. ENTCS 138 (2005) 49–60 Proceedings of INFIN-
ITY’04.

6. Kot, M.: Regularity of BPP is PSPACE-complete. In: Proceedings of the 3rd annual
workshop WOFEX 2005, VŠB-TUO FEECS (2005) 393–398

7. Jančar, P., Kučera, A., Moller, F.: Deciding bisimilarity between BPA and BPP
processes. In: Proceedings of CONCUR 2003. Volume 2761 of LNCS., Springer-
Verlag (2003) 159–173

6

