
Notes on Modeling of Real-Time Database

System V4DB in Verification Tool Uppaal

Martin Kot⋆

Centre for Applied Cybernetics, Dept. of Computer Science,
Technical University of Ostrava

17. listopadu 15,708 33 Ostrava - Poruba, Czech Republic
martin.kot@vsb.cz

Abstract. Real-time database management systems (RTDBMS) are
subject of an intensive research recent time. An experimental RTDBMS
called V4DB has been created at the Department of measurement and
control of Technical university of Ostrava and is still in further develop-
ment. Now we want to use some formal verification techniques to verify
used algorithms, especially concurrency control ones. In this paper I sug-
gest some ideas, how to model concurrency control algorithms of V4DB
using Uppaal’s nets of timed automata originally supposed to model
real-time reactive systems, not database ones. More precisely a simple
real-time database system with optimistic concurrency control protocol
called Sacrifice will be modeled.

Keywords: real-time database system, V4DB, timed automaton, mod-
eling, verification tool, Uppaal

1 Introduction

Many applications working with a database management system (DBMS) re-
quire response in bounded time today. Traditional DBMS are not able to guar-
antee such bounds on response time. This is the reason why so-called real-time
database management systems (RTDBMS) emerged.

Research in RTDBMS focused on evolution of transaction processing algo-
rithms, priority assignment strategies and concurrency control techniques. But
the research was based especially on simulation studies with many parameters
defined. Hence at the Department of measurement and control of Technical uni-
versity of Ostrava, Václav Król, Jindřich Černohorský and Jan Pokorný decided
to design and implement an experimental real-time database system called V4DB
suitable for study of real time transaction processing. The system is still in fur-
ther development but some important results were obtained already.

Now we have decided to try to use some verification techniques on important
parts and algorithms. To our best knowledge nobody has tried to verify real-time
database algorithms using some verification tool yet. I have chosen the verifica-
tion tool Uppaal. The reason is that this tool is designed for real-time systems.

⋆ Supported by the Ministry of Education of the Czech Republic, Project 1M0567.



But it is supposed to be used on so-called reactive systems, not database ones.
So I need to solve the problem of modeling data stored in the database or some-
how do without such modeled data. Then I would like to check some important
properties of V4DB and used algorithms. For example absence of deadlock when
using an algorithm which should avoid deadlock in transaction processing, pro-
cessing transaction with bigger priority instead of ones with smaller priority and
so on.

In this paper I would like to aim at modeling of some parts of V4DB in
Uppaal, not at verification itself. In the section 2 the RTDBMS V4DB will be
described more closely. The section 3 is devoted to the verification tool Uppaal.
And in the section 4 I will show some possibilities of modeling real-time database
optimistic concurrency control protocol called Sacrifice without model of stored
data.

2 Real-time database system V4DB

The main goal of the V4DB project ([4, 3]) was to design and implement real-time
database system suitable for study of real-time transaction processing. Trans-
action processing is general concept in the area of databases. Its purpose is to
ensure integrity of the system when changing from one consistent state into the
other. Each transaction contains several database operations and only perform-
ing all operations of the transaction ensures consistency of the system.

The system V4DB is implemented as an integrated set of the most important
functional parts of a veritable real-time database system. It enables testing and
performance analysis of different algorithms for particular functional parts to
understand the effect on system performance.

V4DB works under a real-time operating system VxWorks. The database
is stored in memory to eliminate the influence of accesses to hard disk on the
results of tests and analysis. The system consists of several parts working in
parallel. The behavior of those parts could be changed easily by setting before
start. Main executive parts are transaction generator, predispatcher, dispatcher
and transaction execution including concurrency control. Those parts use data
dictionary and database.

To study the database transaction processing, transactions should have known
properties that can be set in advance. Hence, they are generated by an internal
generator. There are two different generators - periodic and random. Periodic
generator creates transactions with predefined period, random generator has
defined minimal and maximal intervals between transactions. Generated trans-
actions contain the following database operations: select, update, insert, delete.

From the generator, the transaction is passed to a predispatcher. This process
avoids system overloading and creates the structure fully describing the transac-
tion. This structure is used by all other functional blocks. The dispatcher then
extracts the transaction parameters and dispatches transactions for execution
according the priority assignment policy.



The transaction scheduled for an execution is parsed into particular com-
mands and then the commands are processed by the command executor. To ob-
tain reasonable performance, multiple transactions must be able to access data
concurrently. Hence there is concurrency control component that synchronizes
access to the stored data. There are many different concurrency control proto-
cols. They divide into two basic groups - optimistic and pessimistic. Optimistic
protocols are based on validation. All operations of a transaction are done and
than the validation phase comes. If a conflict is detected the transaction may
be restarted and changes are taken back. Pessimistic protocols use locks. At
the beginning of transaction execution all respective parts of the database are
locked and no other transaction has access to those parts. Then all operations
are performed and at the end all locks are removed.

The database of V4DB is very simple. There are several tables. Each table
has given number of records and each record is one value of given size.

3 Verification tool Uppaal

Uppaal ([1, 2]) is verification tool for real-time systems jointly developed by
Uppsala University and Aalborg University. It is designed to verify systems that
can be modeled as networks of timed automata extended with some further
features such as integer variables, structured data types, user defined functions,
channel synchronization and so on.

A time automaton is a finite-state automaton extended with clock variables.
A dense-time model is used where clock variables have real number values and
all clocks progress synchronously. In Uppaal, several such automata in parallel
compose network of timed automata and communicate using channels and vari-
ables. A state of the system is defined by the locations of all automata and the
values of clocks and discrete variables. The state can be changed in two ways
- passing of time (increasing values of all clocks) and firing an edge of some
automaton (possibly synchronizing with another automaton).

Automaton has locations and edges. Location has optional name and invari-
ant. Invariant is a conjunction of side-effect free expressions of the form x < e or
x ≤ e where x is a clock variable and e evaluates to an integer. Each automaton
has exactly one initial location. Some locations may be marked as committed. If
at least one automaton is in a committed location, time passing is not possible
and the next change of the state must involve an outgoing edge of at least one
of the committed locations.

Each edge may have a guard, a synchronization and an assignment. Guard
is a side-effect free expression that evaluates to a boolean. The guard must
be satisfied when the edge is fired. Synchronization label is in the form Expr!
or Expr? where Expr evaluates to a channel. An edge with c! synchronizes
with another edge (of another automaton in the network) with label c?. Both
edges have to satisfy all firing conditions before synchronization. Assignment is
a comma separated list of expressions with a side-effect. It is used to reset clocks
and set variable values.



On the Figure 1 is shown how the described notions are represented graphi-
cally in Uppaal. There are 3 locations named A, B and C. Location A is initial and
B is committed. Moreover A has an invariant x<=15 with the meaning that the
automaton could be in this location only when the value of the clock variable x

is less or equal 15. The edge between A and B has the guard x>=5 && y==0. It
can be fired only when the value of the clock variable x is greater or equal 5 and
the integer variable y has the value 0. The edge has also synchronization label
synchr! and an assignment x=0, y=1 reseting the clock variable x and setting
the value 1 to the integer variable y.

CBA

x<=15
x>=5 && y==0

synchr!
x=0, y=1

Fig. 1. Graphical representation of a timed automaton in Uppaal

Uppaal has some other useful features. Templates are automata with pa-
rameters. These parameters are substituted for a given argument in the process
declaration. This enables easy construction of several alike automata. Besides we
can use bounded integer variables (with defined minimal and maximal value), ar-
rays and user defined functions. These are defined in declaration sections. There
is one global declaration section where channels, constants, user data types etc.
are specified. Each automaton template has own declaration section where local
clocks, variables and functions are specified. And finally, there is a system dec-
laration section where global variables are declared and automata are created
using templates.

Uppaal’s query language for requirement specification is a simplified version
of CTL. It enables to express common properties such as reachability, safety
and liveness. This paper is focused on modeling hence I will not describe this
language in detail.

4 Model of a database management system in Uppaal

In this section we will show some ideas on modeling real-time database man-
agement system in Uppaal. The model presented here consists of several timed
automata. It represents important parts of V4DB with an optimistic protocol
called Sacrifice chosen for concurrency control. Using this protocol, all opera-
tions of the transaction are executed. If a conflict is detected in validation phase
and validating transaction has smaller priority, it is restarted. All changes of data
should be taken back but not in V4DB because data are generated randomly
and concrete values do not play any role.

First automaton on the Figure 2 represents random generator. The con-
stants MIN_INTERVAL and MAX_INTERVAL determine minimal and maximal time



between two consecutive transactions. In the case that both constants have the
same value, the automaton represents a periodic generator. Generated trans-
action should have given operations. But as they are chosen in random, we
can afford in the model to choose particular operations randomly at execution.
Hence, the generation of the transaction is only represented by synchronization
with automaton representing dispatcher through the channel called generate.

Wait

a <= MAX_INTERVAL
a >= MIN_INTERVAL
generate!

Fig. 2. Generator automaton

In V4DB, there is a maximal count of active transactions. Predispatcher
avoids overload of the system so that transactions beyond the limit are put into
buffer and executed when the execution of some other transactions terminates.
Hence we can model each active transaction as one automaton. We use the tem-
plate shown on Figure 3. In system declaration several copies of this automaton
are created, each with an unique integer identification value stored in the variable
id.

Validation

InConflict

Working
x <= MaxOT

BetweenOp

Free

op>0
conflict?

t2=id, val=false

t1==id && val==true
solved?

conflict!
t1=id, val=true

end_tran!
t=id, op=0

ccconflict!

conflict?
t2=id, val=false

t1==id
restart?
op=0

t1==id && val==false
solved?

x >= MinOT
op++

x=0

begin_tran!
t=id

Fig. 3. Transaction automaton



An automaton representing transaction starts in the state Free. The edge to
the state BetweenOp synchronizes with dispatcher automaton. This can ensure
that only when some transaction is waiting for an execution the transaction au-
tomaton gets active. The assignment t=id passes identification of the automaton
to dispatcher using the integer variable t.

The state Working represents execution of one database operation. We could
have more states for different operations but from our actual point of view all op-
erations are similar. We use constants MinOT and MaxOT as bounds for execution
time of an operation. The integer variable op is used as a counter of executed
operations.

After any number of executed operations the edge to the location Validation

may be used. This corresponds to a fact that any number of operations could
be generated into the transaction and after the execution of all of them vali-
dation phase comes. Database records accessed by operations of a transaction
are chosen randomly by the generator. Hence it is in fact random situation that
two transactions access the same record and a conflict occurs. In our automaton
we have two edges to represent both situations. The edge to Free means that
validation was successful. Synchronization through channel end_tran with dis-
patcher automaton is used to notify dispatcher of the fact that the transaction
has terminated. The automaton may be used to represent next transaction.

The other edge from Validation represents conflict situation. Conflict oc-
curs only when some other, not yet validated, transaction accessed the same
record. Hence in our model there has to be some transaction automaton in the
location Working or BetweenOp with nonzero count of executed operations. It
is ensured using synchronization through the channel conflict. The validating
transaction automaton passes its identification to concurrency control manager
(CCMan) automaton using the variable t1 and sets boolean variable val to
true. The conflicting transaction passes its identification using the variable t2

and sets boolean variable val to false. Only one synchronization is permitted for
an edge and we need not only to synchronize two transaction automata but as
well CCMan automaton. Therefore a committed location is used and the edge
synchronizing with CCMan through the channel ccconflict is fired without
any time delay.

CCMan sends its responses through channels solved and restart. In the
variable t1 is identification of the automaton for which the response is intended.
Synchronization through solved means that conflict was successfully solved
and transaction can continue validation or execution. Synchronization through
restart means that transaction will be restarted. In this case op is reseted
because all operations should be executed again.

Dispatcher automaton depicted on Figure 4 is quite simple. The edge with
synchronization label generate? synchronizes with generator automaton. The
variable waiting counts transactions in buffer waiting for an execution.

The edge with the label begin_tran? synchronizes with some transaction
automaton. In the variable trans_id it gets transaction identifier. The function
register() saves transaction identifier into an array and increases the value of



Ready

count<MAX_TRANS
begin_tran?

register(trans_id), waiting--

generate?
waiting++

end_tran?
unregister(trans_id)

Fig. 4. Dispatcher automaton

the variable count. The number of waiting transactions is decremented. The edge
with the label end_tran? synchronizes with transaction automaton too. It means
that the transaction has terminated. Hence its identification is removed from the
array and the variable count is decremented using the function unregister.

Last automaton of our simple model is concurrency control manager de-
picted on the Figure 5. We model sacrifice protocol, hence transaction with
smaller priority is sacrificed (restarted) when conflict occurs. In V4DB, priori-
ties are randomly set by generator. In model, we could choose priority randomly
when transaction automaton begins simulation of the execution. But particular
automaton is chosen nondeterministically and it has unique identification num-
ber. Hence we can consider identification to be the priority. Bigger identification
number means bigger priority.

Solving

WithoutConflict restart!

solved!
t1 = pom

t1 <= t2

pom = t1, t1 = t2

restart!

solved!
t1 = t2

t1 > t2

ccconflict?

Fig. 5. Concurrency control manager automaton

CCMan automaton synchronizes with validating transaction through the
channel ccconflict. When this synchronization occurs, in the variable t1 is
identification of validating transaction and in t2 is identification of conflict-



ing transaction. CCMan sets the bigger of those identification to t1 and fires
solved! synchronization and then sets the smaller identification to t1 and fires
restart! synchronization. Hence one transaction is restarted and one continues
in the execution. All three edges between locations Solving and WithoutConflict

are fired without any time delay because of committed locations.

5 Conclusion

In the previous section, several timed automata were shown. They form a model
of a simple real-time database management system inspired by V4DB with op-
timistic concurrency control protocol sacrifice. The purpose was to show that
some important aspects of the database system such as concurrency control can
be modeled without modeling stored data.

I have prepared more models of the V4DB. They capture different concur-
rency control protocols as well as different priority assignment algorithms. Now
I am identifying crucial properties that could be expressed using query language
of Uppaal and verified by this tool. This will be my future work in this area. The
purpose is to identify problems of used algorithms and protocols and possibly
suggest some improvements for V4DB.

References

1. Behrmann, G., David, A., Larsen, K. G.: A Tutorial on Uppaal. Available on-
line at http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
(September 7, 2007)

2. David, A., Amnell, T.: Uppaal2k: Small Tutorial. Available on-line at
http://www.it.uu.se/research/group/darts/uppaal/tutorial.ps (September 7, 2007)

3. Król, V.: Metody ověřováńı vlastnost́ı real-time databázového systému s použit́ım
jeho experimentálńıho modelu. Disertation thesis. VSB - Technical university of
Ostrava, 2006.

4. Król, V., Pokorný, J., Černohorský, J.: The V4DB project - support platform for
testing the algorithms used in real-time databases. WSEAS Transactions on Infor-
mation Science & Applications, Issue 10, Volume 3, October 2006.


