
Normed BPA vs. Normed BPP Revisited⋆

Petr Jančar, Martin Kot, and Zdeněk Sawa

Center for Applied Cybernetics,
Dept. of Computer Science, Technical University of Ostrava,

17. listopadu 15, 70833 Ostrava-Poruba, Czech Republic.
petr.jancar@vsb.cz, martin.kot@vsb.cz, zdenek.sawa@vsb.cz

Abstract. We present a polynomial-time algorithm deciding bisimilar-
ity between a normed BPA process and a normed BPP process. This
improves the previously known exponential upper bound by Černá,
Křet́ınský, Kučera (1999). The algorithm relies on a polynomial bound
for the “finite-state core” of the transition system generated by the BPP
process. The bound is derived from the “prime form” of the underlying
BPP system (where bisimilarity coincides with equality); we suggest an
original algorithm for the respective transformation.

Key words: verification, equivalence checking, bisimulation equiva-
lence, Basic Process Algebra, Basic Parallel Processes

1 Introduction

Decidability and complexity of bisimilarity on various classes of processes is
a classical topic in process algebra and concurrency theory; see, e.g., [1, 2] for
surveys.

One long-standing open problem is the decidability question for the class PA
(process algebra), which comprises “context-free” rewrite systems using both
sequential and parallel composition. For the subcase of normed PA, a procedure
working in doubly-exponential nondeterministic time was shown by Hirshfeld
and Jerrum [3].

More is known about the “sequential” subclass called BPA (Basic Process Al-
gebra) and the “parallel” subclass called BPP (Basic Parallel Processes). In
the case of BPA, the best known algorithm for deciding bisimilarity seems
to have doubly-exponential upper bound [4, 1]; the problem is known to be
PSPACE-hard [5]. In the case of BPP, the problem is PSPACE-complete [6, 7].
A polynomial-time algorithm for normed BPA was shown in [8] (with an upper
bound O(n13)); more recently, an algorithm with running time in O(n8polylog n)
was shown in [9]. For normed BPP, a polynomial time algorithm was presented

⋆ The authors acknowledge the support by the Czech Ministry of Education, Grant
No. 1M0567.

in [10] (without a precise complexity analysis), based on so called prime decom-
positions ; the upper bound O(n3) was shown in [11] by another algorithm, based
on so called dd-functions.

The most difficult matter in the above mentioned algorithm for normed PA [3]
is the case when (a process expressed as) sequential composition is bisimilar
with (a process expressed as) parallel composition. A basic (sub)problem of this
problem is to analyze when a BPA process is bisimilar with a BPP process.
Černá, Křet́ınský, Kučera [12] have shown that this (sub)problem is decidable
in the normed case; their suggested algorithm is exponential. Decidability in
the general (unnormed) case was shown in [13] (without giving any complexity
bound).

In this paper, we revisit the normed case, and we present a polynomial time
algorithm deciding whether a given normed BPA process α is bisimilar with a
given normed BPP process M . The main idea is to derive a polynomial bound
for the “finite-state core” of the transition system generated by the BPP process
M . To this aim we provide a new algorithm, based on dd -functions, with time
complexity O(n3), which transforms a given normed BPP process into a “prime
form”, where bisimilarity coincides with equality. Such a transformation could
be based on the prime decompositions in [10] but with worse complexity (which
was, in fact, not analyzed in [10]). If the constructed finite-state core exceeds the
derived bound, we answer negatively; otherwise we construct a BPA process α′

which is bisimilar with M , and the final step is to decide if BPA processes α and
α′ are bisimilar. This final step can be handled by referring to [8] or [9]. We also
sketch a simple self-contained algorithm which uses the fact that α′ is close to a
finite-state system. This should lead to a better complexity estimation, though
we provide no analysis here.

As a side result, our approach also shows a clear polynomial time algorithm
testing if there exists a bisimilar BPA process to a given BPP process. This is
an alternative to the respective polynomiality result in [12].

Remark. We hope that the new insight will also help to clarify the general (un-
normed) case BPA vs. BPP. E.g., the problem mentioned in the previous para-
graph seems to be PSPACE-complete in this case.

This paper has the following structure. After basic definitions in Section 2, we
describe a transformation of a normed BPP system into the prime form in Section
3. Section 4 contains the crucial result showing the polynomial bound on the
“finite-state core”. Section 5 finishes the main polynomiality proof.

2 Definitions

We use N = {0, 1, 2, . . .} to denote the set of nonnegative integers, and we put
N−1 = N ∪ {−1}.

For a set X , |X | denotes the size of X , X+ denotes the set of nonempty sequences
of elements of X , and X∗ = X+∪{ε} where ε is the empty sequence. The length
of a sequence x ∈ X∗ is denoted by |x| (|ε| = 0). We use xk (where x ∈ X∗,
k ∈ N) to denote the sequence xx · · ·x where x is repeated k times (in particular
x0 = ε).

A labelled transition system (LTS) is a triple (S,A,−→), where S is a set of
states, A is a finite set of actions, and −→⊆ S ×A× S is a transition relation.
We write s

a
−→ s′ instead of (s, a, s′) ∈−→ and we extend this notation to

elements of A∗ in the natural way. We write s −→ s′ if there is a ∈ A such that
s

a
−→ s′ and s −→∗ s′ if s

w
−→ s′ for some w ∈ A∗. We write s

w
−→ if there is

some s′ such that s
w

−→ s′.

Let (S,A,−→) be an LTS. A binary relation R ⊆ S × S is a bisimulation iff for
each (s, t) ∈ R and a ∈ A we have:

– ∀s′ ∈ S : s
a

−→ s′ ⇒ (∃t′ : t
a

−→ t′ ∧ (s′, t′) ∈ R), and
– ∀t′ ∈ S : t

a
−→ t′ ⇒ (∃s′ : s

a
−→ s′ ∧ (s′, t′) ∈ R).

Less formally, each transition s
a

−→ s′ can be matched by a transition t
a

−→ t′

where (s′, t′) ∈ R and vice versa.

States s and t are bisimulation equivalent (bisimilar), written s ∼ t, iff they are
related by some bisimulation. We can also relate states of two different LTSs by
taking their disjoint union.

A BPA (system) is given by a context-free grammar in Greibach normal form.
Formally it is a triple Σ = (VΣ ,AΣ , ΓΣ), where VΣ is a finite set of variables
(nonterminals), AΣ is a finite set of actions (terminals) and ΓΣ ⊆ VΣ ×AΣ ×V ∗

Σ

is a finite set of rewrite rules. We will use V,A, Γ for the sets of variables, actions
and rules if the underlying BPA is clear from context. Again, we write X

a
−→ α

instead of (X, a, α) ∈ Γ . A BPA process is a pair (α, Σ) where Σ is a BPA
system and α ∈ V ∗; we often write just α when Σ is clear from context. A BPA
Σ gives rise to the LTS SΣ = (V ∗,A,−→) where −→ is induced from the rewrite

rules by the following (deduction) rule: if X
a

−→ α then Xβ
a

−→ αβ for every
β ∈ V ∗.

A BPP (system) is defined in a similar way, as a triple ∆ = (V∆,A∆, Γ∆). The

only difference is the deduction rule for the associated LTS S∆: if X
a

−→ α then
γXδ

a
−→ γαδ for any γ, δ ∈ V ∗ (thus any occurrence of a variable can be rewrit-

ten, not just the first one). It is easy to observe that BPP processes α, β with
the same Parikh image (i.e., containing the same number of occurrences of each
variable) are bisimilar. Hence BPP processes can be read modulo commutativ-
ity of concatenation and interpreted as multisets of variables; in the rest of the
paper we interpret BPP processes in this way whenever convenient. This also
suggests to identify a BPP system ∆ with a BPP net, a labelled Petri net in
which each place corresponds to a variable and each transition corresponds to
a rewrite rule (and thus has a unique input place); we will freely do this in our
later considerations.

Formally, a BPP net is a tuple ∆ = (P∆,Tr∆, pre∆, F∆,A∆, l∆) where P∆ is a
finite set of places (variables), Tr∆ is a finite set of transitions, pre∆ : Tr∆ → P∆

is a function assigning an input place to each transition, F∆ : (P∆ × Tr∆) → N

is a flow function, A∆ is a finite set of actions, and l∆ : Tr∆ → A∆ is a labelling
function. We will use P,Tr , pre, F,A, l if the underlying BPP net is clear from
context. A rewrite rule p

a
−→ α of ∆ is represented by a transition t ∈ Tr such

that pre(t) = p and F (t, p′) is the number of occurrences of p′ in α, for each
p′ ∈ P .

A BPP process is thus, in fact, a marking, i.e. a function M : P → N which
associates a finite number of tokens to each place. Note that pk represents mark-
ing M where all k tokens are in one place p (M(p) = k and M(p′) = 0 for each
p′ 6= p), p represents marking p1, and ε represents the zero marking (M(p) = 0
for all p ∈ P).

A transition t is enabled at marking M if M(pre(t)) ≥ 1. An enabled transition
t may fire from M , producing a marking M ′ defined by

M ′(p) =

{

M(p) − 1 + F (t, p) if p = pre(t)
M(p) + F (t, p) otherwise

.

This is denoted by M
t

−→ M ′; the notation is extended to M
σ

−→ M ′ for
sequences σ ∈ T ∗. We write M

σ
−→ if M

σ
−→ M ′ for some M ′.

In the above sence, a BPP ∆ gives rise to the LTS S∆ = (M∆,A,−→) where

M∆ is the set of all markings (of the respective BPP net), and M
a

−→ M ′ iff

there is some t ∈ Tr such that l(t) = a and M
t

−→ M ′.

In the rest of the paper we use symbols α, β, . . . for both BPA processes and
BPP processes, and M1, M2, . . . only for the latter.

We say that a BPA system Σ (a BPP net ∆) is normed iff α −→∗ ε for each
state α of SΣ (S∆). We will use nBPA (nBPP) for normed BPA (normed BPP).

Our central problem, denoted nBPA-nBPP-BISIM, is defined as follows:

Instance: A normed BPA-process (α0, Σ), a normed BPP-process (M0, ∆).
Question: Is α0 ∼ M0 (in the disjoint union of SΣ and S∆) ?

As the size n of an instance of nBPA-nBPP-BISIM we understand the num-
ber of bits needed for its (natural) presentation; in particular we consider the
numbers F (t, p) in ∆ and the numbers in M0 to be written in binary.

In the rest of this section we assume a fixed nBPA Σ and a fixed nBPP ∆. By
a state we generally mean a state in the disjoint union of SΣ and S∆.

Let α be a state (of SΣ or S∆). Norm of α, denoted ‖α‖, is the length of the

shortest w ∈ A∗ such that α
w

−→ ε. Note that this also defines norm ‖X‖ for
each variable (place) X . We now note some obvious properties of norms.

– If α 6= ε then ‖α‖ > 0 for any state α.

– In each nBPA (or nBPP), there is at least one variable (place) with norm 1.

– If X
a

−→ α is used for a transition β
a

−→ β′ then ‖β′‖ − ‖β‖ = ‖α‖ − ‖X‖.
– ‖αβ‖ = ‖α‖ + ‖β‖ (for BPP-net representation it induces ‖M1 + M2‖ =

‖M1‖ + ‖M2‖ where marking M = M1 + M2 is defined componentwise).
– If α ∼ β then ‖α‖ = ‖β‖.

– Let α1 ∼ α2, w ∈ A∗ and α1
w

−→ α′
1. There must be a matching sequence

α2
w

−→ α′
2 such that α′

1 ∼ α′
2 (and thus also ‖α′

1‖ = ‖α′
2‖).

Finally we note that all norms ‖X‖, ‖p‖ for X ∈ VΣ , p ∈ P∆ can be easily
computed in polynomial time (O(n3)) and written in polynomial space (O(n2)).

For two states α1, α2 we write α1 −→R α2 if α1 −→ α2 and ‖α2‖ = ‖α1‖ − 1.
Such a step is called a norm-reducing step and the respective rule (transition)
is also called norm reducing. We write α1 −→∗

R α2 if there is a sequence (called
norm reducing sequence) of norm reducing steps leading from α1 to α2. For
each variable (place) X there is at least one norm-reducing rule (transition)
X −→R α.

We finish by a few notions concerning the BPP net ∆.

For a marking M and a set Q ⊆ P we define ‖M‖Q as the length of the shortest

w ∈ A∗ such that M
w

−→ M ′ where M ′(p) = 0 for all p ∈ Q.

A place p ∈ P is unbounded in (M0, ∆) iff for each c ∈ N there is a marking M ′

such that M0 −→∗ M ′ and M ′(p) > c.

We define Tok(M) =
∑

p∈P M(p) and Car (M) = {p ∈ P | M(p) ≥ 1}.

A place p is called a single final place, an SF-place, if all transitions that take a
token from p are of the form p

a
−→ pk (i.e., they can only put tokens back to p).

It is easy to see that ‖p‖ = 1 for every SF-place p (since ∆ is normed). We say
that p is a non-SF-place if it is not an SF-place.

3 Normed BPP Systems in the Prime Form

We say that a BPP system ∆ is in the prime form iff bisimilarity coincides with
identity on the generated LTS, i.e., M ∼ M ′ iff M = M ′.

One way to transform a normed BPP system ∆ into an equivalent ∆′ in the prime
form can be based on the algorithm in [10] which computes certain prime decom-
positions of BPP-variables (i.e., BPP-net places); it is a polynomial algorithm
whose precise complexity has not been analyzed. We use another transformation,
which is based on the dd -functions and is achieved by an algorithm with time
complexity in O(n3).

In [11], the algorithm from [6] was applied to normed processes. Given a normed
BPP system ∆ = (P,Tr , pre, F,A, l), the algorithm finishes in time O(n3) and
constructs a partition {T1, T2, . . . , Tm} of the set of transitions such that

M ∼ M ′ iff di(M) = di(M
′) for all i = 1, 2, . . . , m

where di(M) is the distance to disabling Ti (i.e., the length of the shortest w

such that M
w

−→ M ′ and in M ′ all t ∈ Ti are disabled). Moreover, each class
Ti is characterized by the pair (ai, δi) where ai is the label of all t ∈ Ti and
δi = (δi1, δi2, . . . , δim) is a vector in (N−1)

m such that the following holds for
any M, M ′:

if M
t

−→ M ′ for t ∈ Ti then d(M ′) = d(M) + δi

where d(M) denotes the vector (d1(M), d2(M), . . . , dm(M)). The type (ai, δi)
determines Ti since (ai, δi) 6= (aj , δj) for i 6= j. For convenience, we will say
transition (of the type) ti when meaning any transition t ∈ Ti.

Remark. Space O(n) is sufficient for writing each element of a vector δi. There
are O(n) such elements in δi and O(n) vectors. It follows that space O(n3) is
sufficient for writing all pairs (ai, δi) in binary.

Due to normedness, for every class Ti there is at least one transition tj which
decreases di (whenever enabled in M , which also entails di(M) > 0); this is
concisely captured by the next proposition.

Proposition 1. ∀i∃j : δji = −1.

We say that ti is a key transition if it decreases some component of d, i.e. some
dj . Formally we define

KEY = {i | δij = −1 for some j} .

Proposition 2. ∀i ∈ KEY : δii = −1.

Proof. If ti (an element of Ti) decreases some dj then for each M there is the

greatest ℓ such that M
(ti)

ℓ

−→. The last firing of ti necessarily decreases di. Hence
δii = −1. ⊓⊔

Thus for each i ∈ KEY, di(M) is the greatest ℓ such that M
(ti)

ℓ

−→. (A shortest
way to disable ti is to fire it as long as possible.)

We say that ti reduces tj iff δij = −1. Formally we define the following relation
RED on KEY:

for i, j ∈ KEY we put i RED j iff δij = −1 .

Proposition 3. RED is an equivalence relation.

Proof. Reflexivity follows from Proposition 2.

To show symmetricity, assume i, j ∈ KEY (so δii = δjj = −1) such that δij = −1
but δji ≥ 0. Then firing tj from M with di(M) > 0 as long as possible results

in M ′ with dj(M
′) = 0 and di(M

′) > 0. Thus M ′ ti−→, which is a contradiction
since dj can not be decreased.

Transitivity follows similarly: Suppose i RED j and j RED k but ¬(i RED k).
So all δii, δjj , δkk, δij , δji, δjk, δkj are −1 but δik ≥ 0. Starting from M with
dk(M) > 0, we fire ti as long as possible and thus get M ′ with di(M

′) =

dj(M
′) = 0 and dk(M ′) > 0. Thus M ′ tk−→, which is a contradiction since dj can

not be decreased. ⊓⊔

Theorem 4. There is an algorithm, with time complexity in O(n3), which trans-
forms a given normed BPP system ∆ into ∆′ in the prime form, and any given
state (marking) M of ∆ into M ′ of ∆′ such that M ∼ M ′.

Proof. In the first phase we compute the partition {T1, T2, . . . , Tm} as discussed
above. We put Qi = pre(Ti) (where pre(Ti) = {pre(t) | t ∈ Ti}) and note that
di(M) = ‖M‖Qi

. We now easily verify that Qi = Qj for i, j ∈ KEY iff i RED j

(and so j RED i).

The crucial idea is that ∆′ will have a place pC for each class C of the equivalence
RED. For any M of ∆, the number M ′(pC) will be equal to ‖M‖Qi

for each
i ∈ C.

For every i ∈ KEY we add a transition t′i in ∆′ such that pre(t′i) = pC where
i ∈ C; t′i is labelled with ai and it realizes the (nonnegative) change on the other
places pC′ according to δi (restricted to KEY).

A non-key transition ti (with δi ≥ (0, 0, . . . , 0)) is enabled precisely when a (key)
transition decreasing di is enabled (recall Proposition 1). Thus for each pC where
C contains j with δji = −1 we add a transition t with label ai and pre(t) = pC

which (gives a token back to pC and) realizes the change δi (restricted to KEY).
⊓⊔

In the following text we only consider BPP systems in the prime form.

4 A Bound on the Number of the “Not-all-in-one-SF”

Markings

In this subsection we prove the following theorem.

Theorem 5. Assume a normed BPA system Σ, with the set V of variables,
and a normed BPP system ∆ in the prime form, with the set P of places. The
number of markings M of ∆ such that α ∼ M for some α ∈ V + and M does
not have all tokens in one SF-place is at most 4n2, where n = max{|V |, |P |}.

We start with a simple observation and then we bound the total number of
tokens in the markings mentioned in the theorem.

Proposition 6. If Aα ∼ M where α ∈ V ∗ and |Car (M)| ≥ 2 then ‖A‖ ≥ 2.

Proof. From M with |Car (M)| ≥ 2 we can obviously perform two different
norm-reducing steps resulting in two different, and thus nonbisimilar, markings.
On the other hand, any Aα with ‖A‖ = 1 has a single outcome (namely α) of
any norm-reducing step. ⊓⊔

Proposition 7. If |Car (M)| ≥ 2 and α ∼ M for α ∈ V + then Tok(M) ≤ |V |.

Proof. In fact, we prove a stronger proposition. To this aim, we order the vari-
ables from V into a sequence A1, A2, . . . , A|V | so that ‖Ai‖ ≤ ‖Aj‖ for i ≤ j. We
now show the following claim: if Aiα ∼ M , where |Car (M)| ≥ 2 (and α ∈ V ∗),
then Tok (M) ≤ i.

For the sake of contradiction, suppose a counterexample Aiα ∼ M , Tok(M) ≥
i+1, for minimal i. Proposition 6 shows that ‖Ai‖ ≥ 2, hence also i ≥ 2 (since
necessarily ‖A1‖ = 1); therefore Tok (M) ≥ i+1 ≥ 3. There is thus a norm-
reducing step M −→R M ′ such that |Car (M ′)| ≥ 2, Tok (M ′) ≥ i. This step is
matched by Aiα −→R Ajβα, Ajβα ∼ M ′, where necessarily ‖Aj‖ < ‖Ai‖ and
thus j < i. This is a contradiction with the minimality of our counterexample.

⊓⊔

Since a token from any non-SF-place can be moved to another place (with the
total number of tokens non-decreasing), we get the following corollary.

Corollary 8. If α ∼ M then M(p) ≤ |V | for every non-SF-place p.

We now partition the markings in the theorem into four classes:

Class 1. Markings M with all tokens in one (non-SF) place (|Car (M)| = 1).
Class 2. Markings M with |Car (M)| ≥ 2 where at least two different places with

norm 1 are reachable; this necessarily means M −→∗ M ′ for some M ′

satisfying M ′(p1) ≥ 1, M ′(p2) ≥ 1 for some p1 6= p2 and ‖p1‖ = ‖p2‖ =
1.

Class 3. Markings M with |Car (M)| ≥ 2 and with exactly one reachable
(“sink”) place p with norm 1, where p is a non-SF-place.

Class 4. Markings M with |Car (M)| ≥ 2 and with exactly one reachable
(“sink”) place p with norm 1, where p is an SF-place.

We will show that each class contains at most n2 markings by which we prove
the theorem. (In fact, our bound is a bit generous, allowing to avoid some tech-
nicalities.)

Proposition 9. The number of markings in Class 1 is bounded by |V |·|P | ≤ n2.

Proof. According to Corollary 8 there can be at most |V | tokens in any non-SF-
place and there are at most |P | non-SF-places. It follows that Class 1 contains
at most |V | · |P | ≤ n2 markings. ⊓⊔

Proposition 10. If α ∼ M for M from Class 2 then α = A for some A ∈ V .
Thus the number of markings in Class 2 is at most |V | ≤ n.

Proof. For the sake of contradiction, suppose Aα ∼ M where α ∈ V + and M is
from Class 2. We take a counterexample with the minimal length ℓ of a sequence
v such that M

v
−→ M ′ where M ′(p1) ≥ 1, M ′(p2) ≥ 1 for two different p1, p2

with norm 1. We note that ‖A‖ ≥ 2 by Proposition 6, and first suppose ℓ > 0.
It is easy to verify that there is a move M −→ M ′′, matched by Aα −→ Bβα,
Bβα ∼ M ′′, where |Car (M ′′)| ≥ 2 and the respective length ℓ decreased; this
would be a contradiction with the assumed minimality. Thus ℓ = 0, which means
M(p1) ≥ 1, M(p2) ≥ 1. But then M certainly allows M −→∗

R M1, M −→∗
R M2

where ‖M1‖ = ‖M2‖ = ‖α‖ ≥ 1 and M1 6= M2, and thus M1 6∼ M2. On the
other hand, Aα can offer only α as the result of matching such sequences; hence
Aα 6∼ M . ⊓⊔

Proposition 11. If Aα ∼ M for α ∈ V + and M from Class 3 or 4 then
M −→∗

R p‖α‖ where p is the sink place. Thus α ∼ p‖α‖.

Proof. We prove the claim by induction on the norm ‖A‖. Suppose Aα ∼ M as
in the statement. Proposition 6 implies ‖A‖ ≥ 2. M necessarily has a token in
a place p′ 6= p with the least norm greater than 1. Performing a norm-reducing
transition with this token corresponds to some M −→R M ′, and this must be
matched by Aα −→R Bβα, Bβα ∼ M ′, where ‖B‖ < ‖A‖. Either |Car(M ′)| =
1, in which case necessarily M ′ = p‖Bβα‖, or |Car (M ′)| ≥ 2, and then M ′ −→∗

R

p‖βα‖ due to the induction hypothesis. Since obviously p‖Bβα‖ −→∗
R p‖βα‖ −→∗

R

p‖α‖, we are done. ⊓⊔

Proposition 12. If Aα ∼ M where ‖α‖ ≥ 2 and M is from Class 3 or 4 then
the sink place p is an SF-place. Hence M is from Class 4.

Proof. For the sake of contradiction, suppose Aα ∼ M with ‖α‖ ≥ 2, M from
Class 3, the sink place p thus being a non-SF-place, and assume ‖A‖ minimal
possible; ‖A‖ ≥ 2 by Proposition 6.

If there was a step M −→R M ′ with |Car (M ′)| ≥ 2, the matching Aα −→R Bβα

would lead to a contradiction with minimality of ‖A‖. Since |Car (M)| ≥ 2,
the only remaining possibility is the following: Tok(M) = 2, M(p) = 1 and
M(p′) = 1 where p′ −→R pk for k = ‖A‖ + ‖α‖ − 2 ≥ 2.

Since the sink place p is a non-SF-place, it must be in a cycle C with at least two
places. Moving a token along C cannot generate new tokens, due to Corollary 8,

so p′ is not in C. On the other hand, C contains some p′′ with ‖p′′‖ = 2. Starting
in M , we can move the token from p to p′′, the norm being greater than ‖M‖ =
‖Aα‖ along the way. For the resulting M ′ we obviously have M ′ −→∗

R M ′′

for M ′′ satisfying M ′′(p′′) = 1 and ‖M ′′‖ = ‖α‖. Aα can match this only by
reaching α but α ∼ p‖α‖ according to Proposition 11 and thus α 6∼ M ′′. ⊓⊔

We can thus have Aα ∼ M for M from Class 3 only when ‖α‖ ≤ 1, and it is
thus easy to derive the following corollary.

Corollary 13. The number of markings in Class 3 is at most |V |2 ≤ n2.

Proposition 14. The number of markings in Class 4 is at most |V | · |P | ≤ n2.

Proof. Let Aα ∼ M for M from Class 4, p being the respective SF-sink place.
Using Proposition 11, we derive α ∼ Ik where k = ‖α‖ and I ∈ V , I ∼ p (such
I must exist since M −→∗ p). Thus AIk ∼ M but AIk 6∼ Im for any m since
Im ∼ pm and pm 6∼ M (note that pm 6= M and ∆ is in the prime form).

Since M −→∗
R pm for some m, there must be a (shortest) norm-reducing sequence

A
w

−→ Bβ where β ∼ I‖β‖, B 6∼ I‖B‖ but all norm-reducing transitions B
a

−→ γ

satisfy γ ∼ I‖γ‖. The sequence Aα
w

−→ Bβα (where Bβα ∼ BI‖βα‖) must be

matched by some M
v

−→ M ′ where M ′ does not have all tokens in p but every
norm-reducing transition from M ′ results in M ′′ with all tokens in p ; it follows
that M ′ has a single token (so we have at most |P | possibilities for M ′).

This easily implies that there are at most |V | · |P | ≤ n2 markings in Class 4.

⊓⊔

5 Problem nBPA-nBPP-BISIM is in PTIME

We first note that if moving a token along a cycle C in a BPP system ∆ gener-
ates new tokens in a place p and C is reachable (markable) from M0 then p is
primarily unbounded (in M0). Any place which is unbounded is either primarily
unbounded, or secondarily unbounded, which means reachable from a primarily
unbounded place. Thus any unbounded place has at least one corresponding
pumping cycle.

We now characterize when there is no nBPA bisimilar with a given nBPP. We
say that SF-place p is growing if there is a transition p

a
−→ pk for k ≥ 2.

Lemma 15. For (M0, ∆), ∆ being a normed BPP in the prime form, there is
no normed BPA process (α0, Σ) such that α0 ∼ M0, iff one of the following
conditions holds:

1. a non-SF-place is unbounded,

2. M0 −→∗ M with |Car (M)| ≥ 2 and M(p) ≥ 1 for some growing SF-place p,
3. a non-growing SF-place p is unbounded.

Proof. If 1. is satisfied then we cannot have α ∼ M0 (for any Σ with a [finite]
variable set V) due to Corollary 8. If 2. or 3. is satisfied then, for any c ∈ N,
M0 −→∗ M with |Car(M)| ≥ 2 and Tok (M) > c. (Any pumping cycle for p in
3. contains p′ 6= p.) Hence we cannot have α ∼ M0 due to Proposition 7.

If none of 1.,2.,3. is satisfied, an appropriate (α, Σ) can be constructed as de-
scribed below. ⊓⊔

We note that the conditions in Lemma 15 can be checked by straightforward
standard algorithms, linear in the size of ∆.

5.1 Construction

Suppose now that a given (M0, ∆) satisfies none of the conditions 1., 2., 3. in
Lemma 15. Thus only growing SF-places can be unbounded. Moreover, if some
growing SF-place is reachable from M0 then Tok(M0) = 1 and each transition
sequence reaching p just moves the token into p without creating new tokens on
the way.

We can construct the usual reachability graph for M0, with the exception that the
“all-in-one-SF” markings pk are taken as “frozen” – we construct no successors
for them. The thus arising basic LTS is necessarily finite, and we can view its
states as BPA-variables; each unfrozen marking M is viewed as a variable AM ,
with the obvious rewriting rules.

To finish the construction, we introduce a variable Ip for each SF-place p together
with appropriate rewriting rules.

More formally, for (M0, ∆) we could construct nBPA system Σ′ = (F ∪I,A, Γ ′)
where F = {AM | M ∈ Muf } (where Muf = {M1, M2, . . . , Mm} is the set
of unfrozen markings reachable from M0), I = {Ip | p ∈ PSF} (where PSF =
{p1, p2, . . . , pℓ} is the set of SF-places of ∆), and Γ ′ contains corresponding
rewriting rules.

Note that each rule in Γ ′ is of one of the following three forms: AM
a

−→ AM ′ ,
AM

a
−→ (Ip)

k, or Ip
a

−→ (Ip)
k where AM , AM ′ ∈ F , Ip ∈ I, and k ∈ N (this

includes also rules of the form AM
a

−→ ε and Ip
a

−→ ε). Configuration α′
0

corresponding to M0 will be AM0
(or (Ip0

)k when all k tokens in M0 are in one
SF-place p0). Note that each configuration α reachable from α′

0 is either of the
form AM or (Ip)

k, and we have (α′
0, Σ

′) ∼ (M0, ∆).

Note that the size of (α′
0, Σ

′) can be exponential with respect to the size of
(M0, ∆), so we will not construct it explicitly in the algorithm.

Assume an instance of nBPA-nBPP-BISIM, i.e., nBPA (α0, Σ) and nBPP
(M0, ∆). The polynomial algorithm for nBPA-nBPP-BISIM works as follows.

It first transforms (M0, ∆) to bisimilar (M ′
0, ∆

′) where ∆′ is in the prime form;
recall Theorem 4. Then it starts to build the nBPA Σ′ for (M ′, ∆′) as described
above by building the set Muf of unfrozen states. If it founds out that the number
of elements of Muf exceeds 4n2, where n is the maximum of {|VΣ |, |P∆′ |}, then
the algorithm stops with the answer α0 6∼ M0; this is correct due to Theorem 5.

If the number of elements of Muf does not exceed 4n2, the algorithm finishes
the construction of Σ′. However, it does not construct Σ′ explicitly but rather
a succinct representation of it where right hand sides of rules of the form (Ip)

k

are represented as pairs (Ip, k) where k is written in binary. (It can be easily
shown that the number of bits of every possible k is in O(n2) where n is the size
of (M ′

0, ∆
′).)

Our aim is to apply the polynomial time algorithm from [8] or [9] to decide
if α0 ∼ α′

0. However, there is a small technical difficulty since this algorithm
expects “usual” nBPA, not nBPA in the succinct form described above. This
can be handled by adding special variables I1

p , I2
p , I4

p , I8
p , . . . I2m

p for each Ip ∈ I
and sufficiently large m (in O(n2)); the rules are adjusted in a straightforward
way (note that there will be at most O(m) variables on the right hand side of
each rewriting rule after this transformation).

The size of the constructed nBPA is surely polynomial with respect to the size
of the original instance of the problem and the algorithm from [8] or [9] can be
applied.

So we obtained our main theorem:

Theorem 16. There is a polynomial-time algorithm deciding whether (α0, Σ) ∼
(M0, ∆) where Σ is a normed BPA and ∆ a normed BPP.

Since (α′
0, Σ

′) is in a very special form (it is a finite state system (FS) extended
with “SF-tails”), it is in fact not necessary to use the above mentioned gen-
eral algorithms. Instead we can use a specialized (and probably more efficient)
algorithm sketched in the next subsection.

5.2 Specialized Algorithm

The presented algorithm is an adaptation of the standard technique for deciding
bisimilarity for a given BPA (or PDA) and a finite-state system used for example
in [14, 15].

Assume we have nBPAs (α0, Σ) and (α′
0, Σ

′) where (α0, Σ) is the nBPA from
the instance of nBPA-nBPP-BISIM and (α′

0, Σ
′) is the nBPA described in the

previous subsection (with VΣ′ = F ∪I) stored using the succinct representation
described above (right hand sides of the form (Ip)

k are stored as pairs (Ip, k)
with k represented in binary). Let Vall = VΣ ∪ VΣ′ .

At first we note that the set of configurations from V ∗
all bisimilar with (Ip)

k where
Ip ∈ I can be easily characterized. For each Ip ∈ I we construct a set Class(Ip)

as the maximal subset of Vall such that each X ∈ Class(Ip) can perform exactly
the same actions with the same changes on norm as Ip, and can be rewritten

only to variables from Class(Ip) (i.e., X
a

−→ β implies β ∈ (Class(Ip))∗, and

Ip
a

−→ (Ip)
k iff X

a
−→ β for some β ∈ (Class(Ip))

∗ such that ‖β‖−‖X‖ = k−1).

The classes Class(Ip) for Ip ∈ I can be easily computed in polynomial time. It
is not difficult to show that for any α ∈ V ∗

all and Ip ∈ I we have α ∼ (Ip)
k iff

α ∈ Class(I)∗ and ‖α‖ = k. Using this fact and precomputed classes Class(Ip),
we have a fast (polynomial) test for α ∼ (Ip)

k.

The crucial observation used in the algorithm is the following. Suppose we want
to check if α ∼ AM for some α ∈ V ∗

all and AM ∈ F where α = Xα′ for some
X ∈ Vall . If Xα′ ∼ AM then any norm reducing sequence Xα′ −→∗

R α′ must
be matched by some norm reducing sequence AM −→∗

R β such that α′ ∼ β.
Obviously, β is either of the form AM ′ (for some AM ′ ∈ F) or (Ip)

k (for some
Ip ∈ I). Suppose β = AM ′ (the case β = (Ip)

k is similar). Then α′ ∼ AM ′ . Since
∼ is a congruence, we have XAM ′ ∼ AM . On the other hand, if we know that
XAM ′ ∼ AM and α′ ∼ AM ′ , we know that Xα′ ∼ AM .

By repeating the same approach we can reduce the problem if α ∼ AM to
subproblems of testing if XAM ′ ∼ AM , resp. X(Ip)

k ∼ AM . Since ‖α‖ 6= ‖β‖
implies α 6∼ β, in testing if X(Ip)

k ∼ AM we can consider only those cases where
k = ‖AM‖ − ‖X‖. It is obvious that the total number of such subproblems is
polynomial with respect to the size of the instance.

The algorithm works by computing the solution for all these subproblems. It
approximates from above the set of all such pairs (α, β), where α ∼ β, by com-
puting a fixpoint. It starts with the set of all possible pairs where ‖α‖ = ‖β‖ and
refines it by checking for each pair if it satisfies expansion, i.e., if each transition
possible in α is matched by the corresponding transition in β (with respect to the
current approximation) and vice versa. (In this checking it also uses the above
mentioned test for α ∼ (Ip)

k.)

Obviously the fixed point is reached after polynomial number of iterations. It
is not difficult to check that the resulting fixpoint represents the correct set of
pairs which then can be used for computing the answer to the original question
if α0 ∼ AM0

.

References

1. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In Bergstra, J., Ponse, A., Smolka, S., eds.: Handbook of Process Algebra. Elsevier
Science (2001) 545–623

2. Srba, J.: Roadmap of infinite results. In: Current Trends In Theoretical Computer
Science, The Challenge of the New Century. Volume 2: Formal Models and Seman-
tics., World Scientific Publishing Co. (2004) 337–350 (See an updated version at
http://www.brics.dk/˜srba/roadmap/).

3. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process
algebra. In: Proceedings of 26th International Colloquium on Automata, Languages
and Programming (ICALP’99). LNCS 1644, Springer-Verlag (1999) 412–421

4. Burkart, O., Caucal, D., Steffen, B.: An elementary decision procedure for arbitrary
context-free processes. In: Proceedings of the 20th International Symposium on
Mathematical Foundations of Computer Science (MFCS’95). LNCS 969, Springer-
Verlag (1995) 423–433

5. Srba, J.: Strong bisimilarity and regularity of Basic Process Algebra is PSPACE-
hard. In: Proceedings of the 29th International Colloquium on Automata, Lan-
guages and Programming (ICALP’02). LNCS 2380, Springer (2002) 716–727

6. Jančar, P.: Strong bisimilarity on Basic Parallel Processes is PSPACE-complete.
In: Proc. 18th LiCS, IEEE Computer Society (2003) 218–227

7. Srba, J.: Strong bisimilarity and regularity of Basic Parallel Processes is PSPACE-
hard. In: Proc. STACS’02. LNCS 2285, Springer (2002) 535–546

8. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimi-
larity of normed context-free processes. Theoretical Computer Science 158 (1996)
143–159

9. Lasota, S., Rytter, W.: Faster algorithm for bisimulation equivalence of normed
context-free processes. In: Proc. MFCS’06. LNCS 4162, Springer-Verlag (2006)
646–657

10. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding
bisimulation equivalence of normed Basic Parallel Processes. Mathematical Struc-
tures in Computer Science 6 (1996) 251–259

11. Jančar, P., Kot, M.: Bisimilarity on normed Basic Parallel Processes can be decided
in time O(n3). In Bharadwaj, R., ed.: Proceedings of the Third International
Workshop on Automated Verification of Infinite-State Systems – AVIS 2004. (2004)

12. Černá, I., Křet́ınský, M., Kučera, A.: Comparing expressibility of normed BPA
and normed BPP processes. Acta Informatica 36 (1999) 233–256

13. Jančar, P., Kučera, A., Moller, F.: Deciding bisimilarity between BPA and BPP
processes. In: Proceedings of CONCUR 2003. LNCS 2761, Springer-Verlag (2003)
159–173

14. Kučera, A., Mayr, R.: Weak bisimilarity between finite-state systems and BPA or
normed BPP is decidable in polynomial time. Theoretical Computer Science 270

(2002) 667–700
15. Kučera, A., Mayr, R.: A generic framework for checking semantic equivalences

between pushdown automata and finite-state automata. In: IFIP TCS, Kluwer
(2004) 395–408

