
Modeling Real-Time Database Concurrency Control
Protocol Two-Phase-Locking in Uppaal

Martin Kot
Center for Applied Cybernetics

Dept. of Computer Science,
Technical University of Ostrava

17. listopadu 15,708 33 Ostrava - Poruba, Czech Republic
Email: martin.kot@vsb.cz

Abstract—Real-time database management systems (RT-
DBMS) are recently subject of an intensive research. Model
checking algorithms and verification tools are of great concern
as well. In this paper we show some possibilities of using a
verification tool Uppaal on some variants of pessimistic concur-
rency control protocols used in real-time database management
systems. We present some possible models of such protocols
expressed as nets of timed automata, which are a modeling
language of Uppaal.

I. I NTRODUCTION

Many real-time applications need to store some data in a
database. It is possible to use traditional database management
systems (DBMS). But they are not able to guarantee any
bounds on a response time. This is the reason why so-called
real-time database management systems (RTDBMS) emerged.

Research in RTDBMS focused on evolution of transaction
processing algorithms, priority assignment strategies and con-
currency control techniques. But the research was based espe-
cially on simulation studies. Hence at Technical university of
Ostrava, V́aclav Kŕol, Jinďrich Černohorsḱy and Jan Pokorńy
designed and implemented an experimental real-time database
system called V4DB [6], which is suitable for study of real
time transaction processing. The system is still in further
development but some important results were obtained already.

Formal verification is of great interest recently and finds
its way quickly from theoretical papers into a real live. It can
prove that a system (or more exactly a model of a system) has
a desired behavior. The difference between testing and formal
verification is that during testing only some possible computa-
tions are chosen. Formal verification can prove correctnessof
all possible computations. A drawback of formal verification
is that for models with high descriptive power are almost
all problems undecidable. It is important to find a model
with an appropriate descriptive power to capture a behavior
of a system, yet with algorithmically decidable verification
problems.

In this paper we consider so called model checking (see
e.g. [3], [8]). This form of verification uses a model of a
system in some formalism and a property expressed usually in
the form of formula in some temporal logic. Model checking

Author acknowledges the support by the Czech Ministry of Education,
Grant No. 1M0567.

algorithm checks whether the property holds for the model of
a system. There are quite many automated verification tools
which implement model checking algorithms. Those tools
use different modeling languages or formalisms and different
logics.

The idea of the research described in this paper came
from authors of V4DB. They were interested in using a
verification tool on their system. They would like to verify
and compare different variants of algorithms and protocols
used in RTDBMS. To our best knowledge, there are only rare
attempts of automated formal verification of real-time database
system. In fact we know about one paper ([9]) only where
authors suggested a new pessimistic protocol and verified it
using Uppaal. They presented two small models covering only
their protocol.

There is not any verification tool intended directly for
real-time database systems. We have chosen the tool Uppaal
because it is designed for real-time systems. But, it is supposed
to be used on so-called reactive systems, which are quite
different from database systems. So we need to solve the
problem of modeling data records of the database and some
other problems. Then we would like to check some important
properties of used protocols and algorithms, for example:
absence of a deadlock when using an algorithm which should
avoid deadlock in the transaction processing, processing trans-
action with bigger priority instead of transactions with smaller
priority and so on.

Big problem of verification tools is so called state space
explosion. Uppaal is not able to manage too detailed models.
On the other hand, too simple models can not catch important
properties of a real system. So we need to find a suitable level
of abstraction.

One of the most important and crucial parts of RTDBMS
is concurrency control. There were many different concur-
rency control protocols suggested. In this paper, we will
concentrate on variants of a pessimistic protocol called two-
phase-locking (2PL). First variant is basic 2PL protocol, then
slightly modified version where deadlines are used to abort
waiting transactions and finally 2PL – high priority where a
transaction with higher priority can restart a transactionwith
a smaller priority. We will show that it is possible to model
those protocols, to some level of abstraction, using modeling

language of Uppaal. These examples will show possibilitiesof
modeling other similar pessimistic protocols and even some
other parts of RTDBMS. The models are inspired by the
RTDBMS system V4DB in some way. V4DB is experimental
so it has some simplifications which we can use to obtain
simpler models yet with important behavior covered (as V4DB
has). But it is possible to use ideas shown in this paper for
verification of concurrency control algorithms in general.

We will also mention a few simple formula with an Uppaal’s
answer to show model checking possibilities on suggested
models.

II. V ERIFICATION TOOL UPPAAL

Uppaal ([2], [4]) is a verification tool for real-time systems.
It is jointly developed by Uppsala University and Aalborg
University. It is designed to verify systems that can be modeled
as networks of timed automata extended with some further
features such as integer variables, structured data types,user
defined functions, channel synchronization and so on.

A timed automaton is a finite-state automaton extended with
clock variables. A dense-time model, where clock variables
have real number values and all clocks progress synchronously,
is used. In Uppaal, several such automata working in parallel
form a network of timed automata.

An automaton has locations and edges. Each location has
an optional name and invariant. An invariant is a conjunction
of side-effect free expressions of the formx < e or x ≤ e

where x is a clock variable ande evaluates to an integer.
Each automaton has exactly one initial location.

Particular automata in the network synchronize using chan-
nels and values can be passed between them using shared
variables. A state of the system is defined by the locations of
all automata and the values of clocks and discrete variables.
The state can be changed in two ways - passing of time
(increasing values of all clocks) and firing an edge of some
automaton (possibly synchronizing with another automatonor
other automata).

Some locations may be marked as committed. If at least
one automaton is in a committed location, time passing is not
possible, and the next change of the state must involve an
outgoing edge of at least one of the committed locations.

Each edge may have a select, a guard, a synchronization
and an assignment. Select gives a possibility to choose non-
deterministically a value from some range. Guard is a side-
effect free expression that evaluates to a boolean. The guard
must be satisfied when the edge is fired. Synchronization label
is of the formExpr! or Expr? whereExpr evaluates to a
channel. An edge withc! synchronizes with another edge (of
another automaton in the network) with labelc?. Both edges
have to satisfy all firing conditions before synchronization.
There are urgent channels as well – synchronisation through
such a channel have to be done in the same time instant
when it is enabled (it means, time passing is not allowed
if a synchronisation through urgent channel is enabled). An
assignment is a comma separated list of expressions with a
side-effect. It is used to reset clocks and set values of variables.

CBA

x<=15

z:int[0,5]
x>=5 && y==0

synchr!
x=0,y=z

Fig. 1. Graphical representation of a timed automaton in Uppaal

Figure 1 shows how the described notions are represented
graphically in Uppaal. There are 3 locations namedA, B and
C. LocationA is initial andB is committed. MoreoverA has an
invariantx<=15 with the meaning that the automaton could be
in this location only when the value of the clock variablex is
less or equal15. The edge betweenA and B has the select
z:int[0,5] – it nondeterministically chooses an integer
value from the range 0 to 5 and stores it in variablez. This
edge also has the guardx>=5 && y==0. This means that
it can be fired only when the value of the clock variable
x is greater or equal5 and the integer variabley has the
value 0. Data types of variables are defined in a declaration
section. Further it has synchronization labelsynchr! and
an assignmentx=0, y=z reseting the clock variablex and
setting the value ofz to the integer variabley.

Uppaal has some other useful features. Templates are au-
tomata with parameters. These parameters are substituted with
given arguments in the process declaration. This enables easy
construction of several alike automata. Moreover, we can use
bounded integer variables (with defined minimal and maximal
value), arrays and user defined functions. These are defined in
declaration sections. There is one global declaration section
where channels, constants, user data types etc. are specified.
Each automaton template has own declaration section, where
local clocks, variables and functions are specified. And finally,
there is a system declaration section, where global variables
are declared and automata are created using templates.

Uppaal’s query language for requirement specification is
based on CTL (Computational Tree Logic, [5]). It consist
of path formulae and state formulae. State formulae describe
individual states and path formulae quantify over paths or
traces of the model.

A state formula is an expression that can be evaluated for
a state without looking at the behavior of the model. For
example it could be a simple comparison of a variable with
a constantx <= 5. The syntax of state formulae is similar
to the syntax of guards. The only difference is that in a state
formula disjunction may be used.

There is a special state formuladeadlock. It is satisfied
in all deadlock states. The state is deadlock if there is not any
action transition from the state neither from any of its delay
successors.

Path formulae can be classified intoreachability, safety and
liveness. Reachability formulae ask if a given state formula
is satisfied by some reachable state. In Uppaal we use syntax
E<> ϕ whereϕ is a state formula.

Safety properties are usually of the form: “something bad

will never happen”. In Uppaal they are defined positively:
“something good is always true”. We useA[] ϕ to express,
that a state formulaϕ should be true in all reachable states,
andE[] ϕ to say, that there should exist a maximal path such
that ϕ is always true.

There are two types of liveness properties. Simpler is of
the form: “something will eventually happen”. We useA<>
ϕ meaning that a state formulaϕ is eventually satisfied. The
other form is: “leads to a response”. The syntax isϕ --> ψ

with the meaning that wheneverϕ is satisfied, then eventually
ψ will be satisfied.

The simulation and formal verification are possible in Up-
paal. The simulation can be random or user assisted. It is
more suitable for verification whether the model corresponds
with the real system. Formal verification should confirm
that the system has desired properties expressed using the
query language. There are many options and settings for
verification algorithm in Uppaal. For example we can change
representation of reachable states in memory. Some of the
options lead to less memory consumption, some of them speed
up the verification. But improvement in one of these two
characteristic leads to a degradation of the other usually.

For more exact definitions of modeling and query languages
and verification possibilities of Uppaal see [2].

III. PESSIMISTIC PROTOCOL TWO-PHASE-LOCKING

In this section we suggest one model of pessimistic con-
currency control protocol. Of course, it is not the only one
possible.

Two-phase-locking protocol is based on data locks. Before
access to data the transaction must have a lock. All locks
granted to a transaction are released after all operations of
this transaction are executed. There are two types of locks -
for read and write. The first is used for the operation select
and the latter for update, delete and insert. Either one write
lock or several read locks can be on a particular record (for
simplicity, in our model will be only one read lock allowed for
one record). If a transaction can not get a lock for a request
it is placed in a queue of this record. After an existing lock is
released, a new lock is granted to the first transaction in the
queue.

The suggested model consists of several timed automata
created using two templates. One type of automata represents
data records in a database. The template is shown on the
Figure 2. Each record automaton has an integer ID stored in
rec_id. There are three locations corresponding to two types
of locks and to an unlocked state. Channelsrd_ch[x] and
wrt_ch[x] are used for requests for read and write locks on
recordx. Channelrls_ch[x] is for release (unlock) request.

The second template shown on the Figure 3 is intended to
create automata representing active transactions in the system.
In V4DB is a number of active transactions bounded (pre-
dispatcher module of RTDBMS holds the queue of incoming
transactions and passes them to a dispatcher in such a way that
it avoids overloading). So it is possible to represent one active
(i.e. currently in execution) transaction as one automaton.

ReadLock WriteLock

Unlockedrls_ch[rec_id]? rls_ch[rec_id]?

wrt_ch[rec_id]?

rd_ch[rec_id]?

Fig. 2. Automaton representing a record in a database

ReadRequest

Working
oper_time<=MAX_OPER_TIME

WriteRequest

rd_ch[req_rec]!
locks++, real_locks++,
locked[req_rec]=READ

locked[req_rec]==
UNLOCKED

locked[req_rec]==UNLOCKED
locks++, real_locks++,
locked[req_rec]=WRITE

rls_ch[req_rec]!
locked[req_rec]=
UNLOCKED,
real_locks-- real_locks>0

req_rec=next()

real_locks==0
locks=0

oper_time>=MIN_OPER_TIME

locks==OPERATIONS
oper_time=0

locked[req_rec]==READ
locks++,
locked[req_rec]=WRITE

locked[req_rec]!=
UNLOCKED

locks++

locked[req_rec]!=WRITE

rec:rec_id_t
locks<OPERATIONS

req_rec=rec

wrt_ch[req_rec]!

Fig. 3. Transaction automaton for two-phase-locking protocol

After successful end of a transaction the same automaton
represents some other transaction.

For simplicity, all transactions are supposed to have
the same number of operations (given by a constant
OPERATIONS). Each operation accesses one record (i.e. needs
one lock). A type of operations and an accessed record is for a
real RTDBMS in fact random because it is determined outside
the RTDBMS. We do not need to model concrete operations,
only locks. The record is chosen nondeterministically using
selectrec:rec_id_t. The operation is then immediately
(due to a committed location) chosen nondeterministicallyby
using one of three possible edges. If a transaction owns the
demanded type of a lock on the accessed record, it does not
asks the lock again. If it has only a read lock, it can ask change
to a write lock. In the arraylocked is stored the information
about owned locks, variablelocks contains the number of
operations for which locks are gained andreal_locks the
number of records locked by this transaction.

If the transaction has all necessary locks, the automaton is
in a locationWorking. This represents execution of database

Abort

Inactive

ReadRequest

Working
oper_time<=MAX_OPER_TIME

WriteRequest

real_locks==0

rls_ch[req_rec]!
locked[req_rec]=
UNLOCKED,
real_locks-- real_locks>0

req_rec=next()

tr_time>DEADLINEtr_time>DEADLINE

real_locks==0

tr_time=0,
locks=0

rd_ch[req_rec]!
locks++, real_locks++,
locked[req_rec]=READ

locked[req_rec]==
UNLOCKED

locked[req_rec]==UNLOCKED
locks++, real_locks++,
locked[req_rec]=WRITE

rls_ch[req_rec]!
locked[req_rec]=
UNLOCKED,
real_locks--

real_locks>0
req_rec=next()

oper_time>=MIN_OPER_TIME

locks==OPERATIONS
oper_time=0

locked[req_rec]==READ
locks++,
locked[req_rec]=WRITE

locked[req_rec]!=
UNLOCKED

locks++

locked[req_rec]!=WRITE

rec:rec_id_t
locks<OPERATIONS

req_rec=rec

wrt_ch[req_rec]!

Fig. 4. Transaction automaton for modification of two-phase-locking protocol

operations. The time spent in this location is bounded by
constantsMIN_OPER_TIME and MAX_OPER_TIME. After
the execution, all locks are released instantly (using committed
states and edges between them).

The described model simulates basic variant of 2PL protocol
where a deadlock can arise when some transactions wait
mutually for locks granted to other transactions. A small
modification where transactions exceeding their deadline may
be aborted can solve the problem with deadlocks.

IV. M ODIFICATION OF A MODEL OF TWO-PHASE-LOCKING

PROTOCOL

A template for database record automata remains the same
as in the previous model (Figure 2). A changed transaction
automata template is shown on Figure 4.

There is a clock variabletr_time added. It measures time
from the beginning of transaction execution. If a transaction
is waiting for a lock and it reaches its deadline (for simplicity
same for all transactions given by a constantDEADLINE), it
can be aborted. This means that all locks previously granted
to this transaction are released.

We can use Uppaal to verify that this solution is really suf-
ficient to avoid deadlock. For Uppaal, reachability properties
are more suitable. So the formula

E<> deadlock

ReadLock

WriteLock

Unlocked

lock_holder==req_trans

grant!
lock_type[rec_id]=WRITE

grant!
locked[rec_id]=
lock_holder+1,
lock_type[rec_id]=WRITE

grant!
locked[rec_id]=
lock_holder+1,
lock_type[rec_id]=READ

wrt_ch[rec_id]?

rd_ch[rec_id]?

lock_holder!=req_trans
restart[lock_holder]!

locked[rec_id]=FREE,
lock_type[rec_id]=FREE,
lock_holder=req_trans,
restarted=false

wrt_ch[rec_id]?

restart[lock_holder]!
locked[rec_id]=FREE,
lock_type[rec_id]=FREE,
lock_holder=req_trans,
restarted=false

grant!
lock_holder=req_trans,
locked[rec_id]=req_trans+1,
lock_type[rec_id]=READ

rd_ch[rec_id]?

wrt_ch[rec_id]?
restarted=true

grant!

lock_holder=req_trans,
locked[rec_id]=req_trans+1,
lock_type[rec_id]=WRITE

rd_ch[rec_id]?
restarted=true

rls_ch[rec_id]?

locked[rec_id]=FREE,
lock_type[rec_id]=FREE

rls_ch[rec_id]?

locked[rec_id]=FREE,
lock_type[rec_id]=FREE

Fig. 5. Automaton representing a record in a database for 2PL-HP protocol

means that deadlock is reachable in the model and this
property is not satisfied. Hence it is verified that the system
is deadlock-free.

V. PESSIMISTIC PROTOCOL TWO-PHASE-LOCKING

HIGH-PRIORITY

The last modification of our model is for a protocol two-
phase-locking high-priority (2PL–HP). If a lock is requested
by a transaction with a higher priority the transaction witha
lower priority holding this lock may be restarted.

For this model we change both automata templates. A new
template for database record automata is depicted on Figure
5.

In the global declarations are defined two arrays –locked
and lock_type. The first one contains information about
transactions holding locks for particular records and the latter
one contains information about types of particular locks.
lock_holder is a local variable of one record automaton
used for the ID of transaction holding the lock on this record.
As almost all is chosen nondeterministically (including the
order of activating particular transaction automata), we can

Restart

ReadRequest

Working
oper_time<=MAX_OPER_TIME

WriteRequest

restart[trans_id]?
real_locks--

real_locks==0
restarted=true

rls_ch[req_rec]!
real_locks--

real_locks>0
req_rec=next()

restarted
grant?

locks++, real_locks++

trans_id+1>
locked[req_rec]

rd_ch[req_rec]!
req_trans=trans_id

restart[trans_id]?
real_locks--

restart[trans_id]?
real_locks--

restart[trans_id]?
real_locks--

real_locks==0

locks=0

locked[req_rec]!=
trans_id+1

lock_type[req_rec]==FREE
&& restarted

grant?

locks++, real_locks++

rls_ch[req_rec]!
real_locks-- real_locks>0

req_rec=next()

oper_time>=MIN_OPER_TIME

locks==OPERATIONS
oper_time=0

lock_type[req_rec]==
READ
&& restarted

grant?
locks++

locked[req_rec]==trans_id+1
locks++

lock_type[req_rec]==FREE ||
(lock_type[req_rec]==READ &&
locked[req_rec]==trans_id+1)

rec:rec_id_t

locks<
OPERATIONS

req_rec=rec

trans_id+1>=locked[req_rec]
wrt_ch[req_rec]!

req_trans=trans_id

Fig. 6. Transaction automaton for 2PL-HP protocol

model priorities using ID numbers of transaction automata –
higher ID means higher priority.

If the automaton is in the locationUnlocked, all requests
passed through channelsrd_ch and wrt_ch are answered
immediately through a channelgranted and informations
about this lock are saved to above mentioned arrays and
variable.

If the automaton is in the locationWriteLock or
ReadLock and a new request arrives, it has to restart a
transaction holding the lock (priorities are checked before the
request in a transaction automaton). Restarted transaction x

is contacted using a channelrestart[x]. Then the lock is
granted to a requesting transaction using channelgrant. If a
write lock is requested from the locationReadLock, there is
a possibility to grant it without any other activity (exceptfor
the change of a type of lock inlock_type array). This is
done when requesting transaction (req_trans) is the same
as the current holder of the read lock (lock_holder).

The transaction automata template has to be changed as
well. The modified version is depicted on the Figure 6.

There are added edges leading to a new locationRestart

from all locations where an automaton can be during pass-
ing of time. All those edges have synchronization label
restart[trans_id]. In this way a transaction (with an
ID stored in a variabletrans_id) can be restarted anytime
by a record automaton. In the locationRestart all previ-
ously gained locks are released and the waiting transaction
with higher priority is notified using global boolean variable
restarted. A function next() returns the smallest ID
number of a record on which is the transaction actually holding
a lock.

Requests for locks are guarded. A requested record (speci-
fied by the variablereq_rec) has to be unlocked or locked
by a transaction with smaller priority. It comes handy to use
0 (constantFREE is defined as0) in the arraylocked[]
for unlocked records and ID of transaction automaton (i.e. the
priority of transaction) plus one for a lock holder. Than the
guard

trans_id+1 > locked[req_rec]

is true whenever the lock onreq_rec is hold by a transaction
with a smaller priority or this record is unlocked.d by a
transaction with a smaller priority or this record is unlocked.

As in the previous case, although for this model Uppaal can
verify that it is deadlock-free. We can use the same formula

E<> deadlock

and the answer is negative (i.e. no deadlock is reachable).
Furthermore we can check e.g. if the transaction with

the highest priority could be possibly restarted. The num-
ber of transaction automata is given using a constant
TRANSACTIONS. Hence the greatest ID number (this means
priority too) is TRANSACTIONS-1. The formula is

E<> Transaction(TRANSACTIONS-1).Restart

and it is not satisfied, i.e. this transaction could not be restarted.
For all other transactionsx the formula

E<> Transaction(x).Restart

is satisfied.

VI. CONCLUSION

In the previous sections, several timed automata were
shown. They form models of three variants of pessimistic
concurrency control protocols used in real-time database man-
agement systems. Of course, this were not the only possible
models. The purpose was to show that some important aspects
of the real-time database system such as a concurrency control
can be modeled using such a relatively simple model as nets
of timed automata are. The models can be extended in many
different ways to capture more behavior of those protocols
and thus allow many properties to be described as a formula
in the logic of Uppaal and then checked using its verification
algorithms. Even on presented models (without any extensions
or modifications) different properties have been checked and
some simple samples of them were presented in this paper.

Some properties can not be expressed using Uppaal’s mod-
ification of CTL. The possible solution to this problem is to
try some other verification tool with other query language.

Other parts of real-time database system or other concur-
rency control protocols can be modeled too. For example
priority assignment algorithms have significant influence on
performance database management system. This is our poten-
tial future work.

REFERENCES

[1] Alur, R., Dill, D.L.: Automata for modeling real-time systems. Proc. of
Int. Colloquium on Algorithms, Languages, and Programming, volume
443 of LNCS, pages 322-335, 1990.

[2] Behrmann, G., David, A., Larsen, K. G.: A Tutorial on Uppaal. Avail-
able on-line at http://www.it.uu.se/research/group/darts/papers/texts/new-
tutorial.pdf (September 7, 2007)

[3] Berard, B., Bidoit, M., Petit, A., Laroussinie, F., Petrucci, L., Schnoebe-
len, P.: Systems and Software Verification, Model-Checking Techniques
and Tools. ISBN 978-3540415237, Springer, 2001.

[4] David, A., Amnell, T.: Uppaal2k: Small Tutorial. Available on-line at
http://www.it.uu.se/research/group/darts/uppaal/tutorial.ps (September 7,
2007)

[5] Henzinger, T.A.: Symbolic model checking for real-time systems. Infor-
mation and computation, 111:193-244, 1994.

[6] Kr ól, V.: Metody ov̌ěrováńı vlastnost́ı real-time datab́azov́eho syst́emu
s poǔzitı́m jeho experimentálńıho modelu. Dissertation thesis. VSB -
Technical university of Ostrava, 2006 (in Czech).

[7] Kr ól, V., Pokorńy, J., Černohorsḱy, J.: The V4DB project - support
platform for testing the algorithms used in real-time databases. WSEAS
Transactions on Information Science & Applications, Issue 10, Volume
3, October 2006.

[8] McMillan, K. L.: Symbolic Model Checking. ISBN 978-0792393801,
Springer, 1993.

[9] Nyström, D., Nolin, M., Tesanovic, A., Norström, Ch., Hansson, J.:
Pessimistic Concurrency-Control and Versioning to SupportDatabase
Pointers in Real-Time Databases. Proc. of the 16th Euromicro Conference
on Real-Time Systems, pages 261-270, IEEE Computer Society, 2004.

