Modeling Real-Time Database Concurrency Contrc
Protocol Two-Phase-Locking in Uppaal

Martin Kot
Center for Applied Cybernetics
Dept. of Computer Science,
Technical University of Ostrava
17. listopadu 15,708 33 Ostrava - Poruba, Czech Republic
Email: martin.kot@vsb.cz

Abstract—Real-time database management systems (RT-algorithm checks whether the property holds for the model of
DBMS) are recently subject of an intensive research. Model g system. There are quite many automated verification tools
checking algorithms and verification tools are of great concern which implement model checking algorithms. Those tools

as well. In this paper we show some possibilities of using a dif t deling | f i d diffe
verification tool Uppaal on some variants of pessimistic concur- use difrerent modeling languages or formalisms and difere

rency control protocols used in real-time database management logics. . .))
systems. We present some possible models of such protocols The idea of the research described in this paper came

expressed as nets of timed automata, which are a modelingfrom authors of V4DB. They were interested in using a
language of Uppaal. verification tool on their system. They would like to verify

I. INTRODUCTION and compare different variants of algorithms and protocols
used in RTDBMS. To our best knowledge, there are only rare
aﬂempts of automated formal verification of real-time date
system. In fact we know about one paper ([9]) only where
{lhOI’S suggested a new pessimistic protocol and verified it
ng Uppaal. They presented two small models covering only
ir protocol.
There is not any verification tool intended directly for
real-time database systems. We have chosen the tool Uppaal
Hcause itis designed for real-time systems. But, it is asgg
to be used on so-called reactive systems, which are quite
different from database systems. So we need to solve the
L . roblem of modeling data records of the database and some
system called V4DB [6], which is suitable for study of rea ther problems. Then we would like to check some important
time transaction processing. The system is still in furth%rroperties of used protocols and algorithms, for example:
development but some important results were ObtainEEOIereaabsence of a deadlock when using an algorith;n which should

Formal verification is of great interest recently and ﬁndﬁvoid deadlock in the transaction processing, processimg+

its way quickly from theoretical papers into a real live. 4nc action with bigger priority instead of transactions withadtar
prove that a system (or more exactly a model of a system) fity and so on

a desired behavior. The difference between testing andaor Big problem of verification tools is so called state space

verification is that during testing only some possible cotapu explosion. Uppaal is not able to manage too detailed models.

tions are chosen. Formal verification can prove correctniasson the other hand, too simple models can not catch important

all possible computations. A drawback of formal Ve”f'cm'o%operties of a real system. So we need to find a suitable level

Many real-time applications need to store some data in
database. It is possible to use traditional database mareate
systems (DBMS). But they are not able to guarantee a
bounds on a response time. This is the reason why so-cal
real-time database management systems (RTDBMS) emerge

Research in RTDBMS focused on evolution of transaction
processing algorithms, priority assignment strategiescm-
currency control techniques. But the research was based e
cially on simulation studies. Hence at Technical univgrsit
Ostrava, \&clav Kiol, Jindiich Cernohorsi and Jan Pokogn
designed and implemented an experimental real-time dsgab

is that for models with high descriptive power are almogf ,pstraction
al] problems un.deC|dabIe.. IF IS important to find a modg One of the most important and crucial parts of RTDBMS
with an appropriate descriptive power to capture a behaviqr

f ¢ t with algorithmically decidabl ificali IS concurrency control. There were many different concur-
gro?alesr):wssem, yet with aigorithmically decidable venticatio rency control protocols suggested. In this paper, we will

. . . concentrate on variants of a pessimistic protocol calleg- tw

In this paper we consider sglcaliled model checking (Sﬁﬂase—locking (2PL). First variant is basic 2PL protochérnt
€.9. [3]’. [8]). This form of verification uses a model of %j htly modified version where deadlines are used to abort
system in some form_ahsm and a property_expressed “5“6‘_” gqiting transactions and finally 2PL — high priority where a
the form of formula in some temporal logic. Model CheCk'nQransaction with higher priority can restart a transacticth

Author acknowledges the support by the Czech Ministry of daion, & smaller priority. We will show that it is pOSSIb|§ to mOde_l
Grant No. 1M0567. those protocols, to some level of abstraction, using modeli

language of Uppaal. These examples will show possibilidfes z:int[0,5]

modeling other similar pessimistic protocols and even some X>=5 &&hyI::O

other parts of RTDBMS. The models are inspired by the A Xiéf]yczzr' B c
RTDBMS system V4DB in some way. V4DB is experimental @ @ @
so it has some simplifications which we can use to obtain x<=15

simpler models yet with important behavior covered (as V4DB
has). But it is possible to use ideas shown in this paper for
verification of concurrency control algorithms in general.

We will also mention a few simple formula with an Uppaal’s
answer to show model checking possibilities on suggestedFigure 1 shows how the described notions are represented
models. graphically in Uppaal. There are 3 locations namded and

C. LocationA is initial andB is committed. MoreoveA has an
Il. 'V ERIFICATION TOOL UPPAAL invariantx<=15 with the meaning that the automaton could be

Uppaal ([2], [4]) is a verification tool for real-time system in this location only when the value of the clock variaklés
It is jointly developed by Uppsala University and Aalbordess or equall5. The edge betweeA and B has the select
University. It is designed to verify systems that can be nfedle z: i nt [0, 5] — it nondeterministically chooses an integer
as networks of timed automata extended with some furthealue from the range O to 5 and stores it in variableThis
features such as integer variables, structured data tyises, edge also has the guasd=5 && y==0. This means that
defined functions, channel synchronization and so on. it can be fired only when the value of the clock variable

A timed automaton is a finite-state automaton extended wixthis greater or equab and the integer variablg has the
clock variables. A dense-time model, where clock variableg@lue 0. Data types of variables are defined in a declaration
have real number values and all clocks progress synchrbynousection. Further it has synchronization lalssinchr! and
is used. In Uppaal, several such automata working in paraln assignmentx=0, y=z reseting the clock variablg and
form a network of timed automata. setting the value of to the integer variablg.

An automaton has locations and edges. Each location hadJppaal has some other useful features. Templates are au-
an optional name and invariant. An invariant is a conjumrcticomata with parameters. These parameters are substititted w
of side-effect free expressions of the form< e or z < e given arguments in the process declaration. This enabs ea
where z is a clock variable and evaluates to an integer.construction of several alike automata. Moreover, we can us
Each automaton has exactly one initial location. bounded integer variables (with defined minimal and maximal

Particular automata in the network synchronize using chavalue), arrays and user defined functions. These are defined i
nels and values can be passed between them using shaegaration sections. There is one global declarationisect
variables. A state of the system is defined by the locationswhere channels, constants, user data types etc. are specifie
all automata and the values of clocks and discrete variablésich automaton template has own declaration section, where
The state can be changed in two ways - passing of tinweal clocks, variables and functions are specified. Andlfina
(increasing values of all clocks) and firing an edge of sontbere is a system declaration section, where global vasabl
automaton (possibly synchronizing with another automaion are declared and automata are created using templates.
other automata). Uppaal’'s query language for requirement specification is

Some locations may be marked as committed. If at ledsased on CTL (Computational Tree Logic, [5]). It consist
one automaton is in a committed location, time passing is noit path formulae and state formulae. State formulae describ
possible, and the next change of the state must involve iadividual states and path formulae quantify over paths or
outgoing edge of at least one of the committed locations. traces of the model.

Each edge may have a select, a guard, a synchronizatiod\ state formula is an expression that can be evaluated for
and an assignment. Select gives a possibility to choose nanstate without looking at the behavior of the model. For
deterministically a value from some range. Guard is a sidexample it could be a simple comparison of a variable with
effect free expression that evaluates to a boolean. Thedguarconstanx <= 5. The syntax of state formulae is similar
must be satisfied when the edge is fired. Synchronization labe the syntax of guards. The only difference is that in a state
is of the form Expr! or Expr? where Expr evaluates to a formula disjunction may be used.
channel. An edge witl! synchronizes with another edge (of There is a special state formutead| ock. It is satisfied
another automaton in the network) with lake&l Both edges in all deadlock states. The state is deadlock if there is ngt a
have to satisfy all firing conditions before synchronizatio action transition from the state neither from any of its gela
There are urgent channels as well — synchronisation througjiccessors.
such a channel have to be done in the same time instanPath formulae can be classified irmachability, safety and
when it is enabled (it means, time passing is not allowdtleness. Reachability formulae ask if a given state formula
if a synchronisation through urgent channel is enabled). As satisfied by some reachable state. In Uppaal we use syntax
assignment is a comma separated list of expressions witle€> ¢ wherey is a state formula.
side-effect. It is used to reset clocks and set values cabbas. Safety properties are usually of the form: “something bad

Fig. 1. Graphical representation of a timed automaton in Uppaa

will never happen”. In Uppaal they are defined positively: rls_chlrec_id]? JU”X'OCKEd rls_ch[rec_id]?
“something good is always true”. We ug¢] ¢ to express, Q

that a state formulg should be true in all reachable states,
andE[] ¢ to say, that there should exist a maximal path such
that ¢ is always true. wrt_ch[rec_id]?

There are two types of liveness properties. Simpler is of rd_ch[rec_id]?
the form: “something will eventually happen”. We use&>
 meaning that a state formulais eventually satisfied. The
other form is: “leads to a response”. The syntaxis - > ¢
with the meaning that wheneveris satisfied, then eventually
1 will be satisfied.

The simulation and formal verification are possible in Up- i ses
paal. The simulation can be random or user assisted. It is e
more suitable for verification whether the model corresgond
with the real system. Formal verification should confirm
that the system has desired properties expressed using the
qguery language. There are many options and settings for
verification algorithm in Uppaal. For example we can change Ry
representation of reachable states in memory. Some of the
options lead to less memory consumption, some of them speed
up the verification. But improvement in one of these two [Scieareel
characteristic leads to a degradation of the other usually. lockedlreq_recl=READ

For more exact definitions of modeling and query languages
and verification possibilities of Uppaal see [2].

ReadLock WriteLock

Fig. 2. Automaton representing a record in a database

real_locks>0
req_rec=next()

oper_time>=MIN_OPER_TIME

Working
oper_time<=MAX_OPER_TIME

locks==OPERATIONS locked[req_rec]==UNLOCKED
oper_time=0 locks++, real_locks++,
locked[req_rec]=WRITE

locked[req_rec]!=
UNLOCKED

locks++

locks<OPERATIONS
rec:rec_id_t

IlIl. PESSIMISTIC PROTOCOL TWGPHASE-LOCKING req_rec=rec

locked[req_rec]==READ
locks++,
locked[req_rec]=WRITE

In this section we suggest one model of pessimistic con-

currency control protocol. Of course, it is not the only one locked[req_recj==

. UNLOCKED
possible.

Two-phase-locking protocol is based on data locks. Before
access to data the transaction must have a lock. All locks
granted to a transaction are released after all operatibns o
this transaction are executed. There are two types of locks -
for read and write. The first is used for the operation select
and the latter for update, delete and insert. Either oneewrit
lock or several read locks can be on a particular record (for
simplicity, in our model will be only one read lock allowed fo After successful end of a transaction the same automaton
one record). If a transaction can not get a lock for a requéépresents some other transaction.
it is placed in a queue of this record. After an existing logk i For simplicity, all transactions are supposed to have
released, a new lock is granted to the first transaction in tifee same number of operations (given by a constant
gueue. OPERATI ONS). Each operation accesses one record (i.e. needs

The suggested model consists of several timed automat® lock). A type of operations and an accessed record is for a
created using two templates. One type of automata repsesgatl RTDBMS in fact random because it is determined outside
data records in a database. The template is shown on the RTDBMS. We do not need to model concrete operations,
Figure 2. Each record automaton has an integer ID storedoinly locks. The record is chosen nondeterministically gsin
rec_i d. There are three locations corresponding to two typeslectrec: rec_i d_t . The operation is then immediately
of locks and to an unlocked state. Channeds ch[x] and (due to a committed location) chosen nondeterministiciayly
wrt _ch[x] are used for requests for read and write locks aising one of three possible edges. If a transaction owns the
recordz. Channel | s_ch[x] is for release (unlock) request.demanded type of a lock on the accessed record, it does not

The second template shown on the Figure 3 is intendedasks the lock again. If it has only a read lock, it can ask chang
create automata representing active transactions in #teray to a write lock. In the array ocked is stored the information
In V4DB is a number of active transactions bounded (pr@bout owned locks, variableocks contains the number of
dispatcher module of RTDBMS holds the queue of incomingperations for which locks are gained aneal _| ocks the
transactions and passes them to a dispatcher in such a way fienber of records locked by this transaction.
it avoids overloading). So it is possible to represent orize@c If the transaction has all necessary locks, the automaton is
(i.e. currently in execution) transaction as one automatan a locationWér ki ng. This represents execution of database

locked[req_rec]!=WRITE

wrt_ch[req_rec]!

=©

ReadRequest

WriteRequest

Fig. 3. Transaction automaton for two-phase-locking protoc

rls_ch[req_rec]!
locked[req_rec]=
UNLOCKED.
real_locks--

real_locks>0
req_rec=next()

real_locks==0
oper_time>=MIN_OPER_TIME

Working
0per7time<=MAX70PER7TIME

Inactive

locks==OPERATIONS
oper_time=0 tr_time=0,
locks=0

locked[req_rec]==UNLOCKED
locks++, real_locks++,
locked[req_rec]=WRITE

rd_ch[req_rec]!
locks++, real_locks++,
locked[req_rec]=READ

locks<OPERATIONS
recirec_id_t
req_rec=rec

locked[req_rec]!=
UNLOCKED

locked[req_rec]==READ
locks++,
locked[req_rec]== locked[req_rec]=-WRITE

UNLOCKED locked[req_rec]'=WRITE

WriteRequest

ReadRequest erﬁch[reqirec]!/@

tr_time>DEADLINE tr_time>DEADLINE

real_locks==0

rls_ch[req_rec]!
locked[req_rec]=
UNLOCKED,

req_rec=next()
real_locks--

real_locks>0

Fig. 4. Transaction automaton for modification of two-phameking protocol

operations. The time spent in this location is bounded by
constantsM N_OPER _TI ME and MAX_OPER TI ME. After

restart[lock_holder]!
locked[rec_id]=FREE,
lock_type[rec_id]=FREE,
lock_holder=req_trans,
restarted=false

¢

rd_ch[rec_id]? locked[rec_id]=
lock_holder+1,

lock_type[rec_id]=READ

ReadLockr

grant!

locked[rec_id]=FREE,
lock_type[rec_id]=FREE

lock_holder=req_trans,
locked[rec_id]=req_trans+1,
lock_type[rec_id]=READ
rls_ch[rec_id]?

rd_ch[rec_id]?
restarted=true

locked[rec_id]=FREE,
lock_type[rec_id]=FREE
rls_ch[rec_id]?
Unlocked

restarted=true
wrt_ch[rec_id]?

lock_holder=req_trans,
locked[rec_id]=req_trans+1,
lock_type[rec_id]=WRITE \iteLock

grant!

lock_holder==req_trans
lock_type[rec_id]=WRITE

wrt_ch[rec_id]?

rd_ch[rec_id]?

grant!

locked[rec_id]=
lock_holder+1,
lock_type[rec_id]=WRITE

grant!

wrt_ch[rec_id]?

C
1I{ckiho\der':rethrans

restart[lock_holder]!
locked[rec_id]=FREE,
lock_type[rec_id]=FREE,
lock_holder=req_trans,
restarted=false

the execution, all locks are released instantly (using ciitach Fig. 5. Automaton representing a record in a database fork#PIprotocol

states and edges between them).

The described model simulates basic variant of 2PL protocol

where a deadlock can arise when some transactions Wallans that deadlock is reachable in the model and this

mutually for locks granted to other transactions. A sm

roperty is not satisfied. Hence it is verified that the system

modification where transactions exceeding their deadliag Mg yeadlock-free.

be aborted can solve the problem with deadlocks.

IV. M ODIFICATION OF A MODEL OF TWO-PHASELOCKING
PROTOCOL

V. PESSIMISTIC PROTOCOL TWGPHASE-LOCKING

HIGH-PRIORITY

The last modification of our model is for a protocol two-

A template for database record automata remains the sapfi@se-locking high-priority (2PL-HP). If a lock is requesst
as in the previous model (Figure 2). A changed transactiG¥ & transaction with a higher priority the transaction vath
automata template is shown on Figure 4. lower priority holding this lock may be restarted.

There is a clock variabler _ti me added. It measures time

For this model we change both automata templates. A new

from the beginning of transaction execution. If a trangacti template for database record automata is depicted on Figure

is waiting for a lock and it reaches its deadline (for simipjic
same for all transactions given by a constBEADLI NE), it

In the global declarations are defined two arraysoeked

can be aborted. This means that all locks previously grant®gd | ©Ck_type. The first one contains information about
to this transaction are released. transactions holding locks for particular records and #itet

We can use Uppaal to verify that this solution is really SuTgne contains information about types of particular locks.

ficient to avoid deadlock. For Uppaal, reachability projesrt
are more suitable. So the formula

ock_hol der is a local variable of one record automaton
used for the ID of transaction holding the lock on this record

As almost all is chosen nondeterministically (including th
E<> deadl ock order of activating particular transaction automata), vae c

tls_ch[req_rec]!
real_locks-- real_locks>0

req_rec=next()

oper_time>=MIN_OPER_TIM real_locks==0

Working

?
restart{trans_id]? b oper_time<=MAX_OPER_TIME

real_locks--

locks==OPERATIONS
oper_time=0

locks=0

&& restarted
grant?

restart[trans_id]?
real_locks--

lock_type[req_rec]==FREE

locks++, real_locks++ locks++, real_locks++

locks<
OPERATIONS
recirec_id_t
req_rec=rec

restarted
grant?

locked[req_rec]==trans_id+1
locks++

locked[req_rec]!=
trans_id+1

lock_type[req_rec]==
READ
&& restarted

grant?

trans_id+1> locks++

locked[req_rec]

rd_ch[req_rec]!
req_trans=trans_id lock_type[req_rec]==FREE ||

(lock_type[req_rec]==READ &&
locked[req_rec]==trans_id+1)

ReadRequest .

WriteRequest
trans_id+1>=locked[req_rec
wrt_ch[req_rec]!

restart[trans_id]?

real_locks-- req_trans=trans_id

restart[trans_id]?
real_locks--

real_locks>0
req_rec=next()

rls_ch[req_rec]!
restarted=true real_locks--

real_locks==0

Fig. 6. Transaction automaton for 2PL-HP protocol

model priorities using ID numbers of transaction automata

higher ID means higher priority.

from all locations where an automaton can be during pass-
ing of time. All those edges have synchronization label
restart[trans_id]. In this way a transaction (with an

ID stored in a variablé r ans_i d) can be restarted anytime
by a record automaton. In the locati®est art all previ-
ously gained locks are released and the waiting transaction
with higher priority is notified using global boolean vairiab
restarted. A function next () returns the smallest ID
number of a record on which is the transaction actually mgidi

a lock.

Requests for locks are guarded. A requested record (speci-
fied by the variable eq_r ec) has to be unlocked or locked
by a transaction with smaller priority. It comes handy to use
0 (constantFREE is defined a9)) in the arrayl ocked]]
for unlocked records and ID of transaction automaton (he. t
priority of transaction) plus one for a lock holder. Than the
guard

trans_id+1 > | ocked[req_rec]

is true whenever the lock areq_r ec is hold by a transaction
with a smaller priority or this record is unlocked.d by a
transaction with a smaller priority or this record is unledk

As in the previous case, although for this model Uppaal can
verify that it is deadlock-free. We can use the same formula

E<> deadl ock

and the answer is negative (i.e. no deadlock is reachable).

Furthermore we can check e.g. if the transaction with
the highest priority could be possibly restarted. The num-
ber of transaction automata is given using a constant
TRANSACTI ONS. Hence the greatest ID number (this means
priority too) is TRANSACTI ONS- 1. The formula is

E<> Transacti on(TRANSACTI ONS- 1) . Rest art

and it is not satisfied, i.e. this transaction could not b&arésd.

For all other transactions the formula

If the automaton is in the locatiodnl ocked, all requests E<> Transacti on(x). Restart

passed through channelsl_ch andwrt _ch are answered
immediately through a channglr ant ed and informations
about this lock are saved to above mentioned arrays and

variable.

If the automaton is in the location¥itelLock or

is satisfied.

VI. CONCLUSION

In the previous sections, several timed automata were

ReadLock and a new request arrives, it has to restart shown. They form models of three variants of pessimistic
transaction holding the lock (priorities are checked befine concurrency control protocols used in real-time databame-m
request in a transaction automaton). Restarted transactioagement systems. Of course, this were not the only possible

is contacted using a chanmeést art [x] . Then the lock is
granted to a requesting transaction using chagnelnt . If a
write lock is requested from the locatidteadLock, there is
a possibility to grant it without any other activity (excefpr
the change of a type of lock ihock_t ype array). This is
done when requesting transactiare_t r ans) is the same

as the current holder of the read lodkock hol der).

models. The purpose was to show that some important aspects
of the real-time database system such as a concurrencyktontr
can be modeled using such a relatively simple model as nets
of timed automata are. The models can be extended in many
different ways to capture more behavior of those protocols
and thus allow many properties to be described as a formula
in the logic of Uppaal and then checked using its verification

The transaction automata template has to be changedalgorithms. Even on presented models (without any extessio

well. The modified version is depicted on the Figure 6.
There are added edges leading to a new locd®est ar t

or modifications) different properties have been checkeadl an
some simple samples of them were presented in this paper.

Some properties can not be expressed using Uppaal's mod-
ification of CTL. The possible solution to this problem is to
try some other verification tool with other query language.

Other parts of real-time database system or other concur-
rency control protocols can be modeled too. For example
priority assignment algorithms have significant influenece o
performance database management system. This is our poten-
tial future work.

REFERENCES

[1] Alur, R., Dill, D.L.: Automata for modeling real-time systes. Proc. of
Int. Colloquium on Algorithms, Languages, and Programmindume
443 of LNCS, pages 322-335, 1990.

[2] Behrmann, G., David, A., Larsen, K. G.: A Tutorial on Uppaévail-
able on-line at http://lwww.it.uu.se/research/group&lpapers/texts/new-
tutorial.pdf (September 7, 2007)

[3] Berard, B., Bidoit, M., Petit, A., Laroussinie, F., P&tci, L., Schnoebe-
len, P.: Systems and Software Verification, Model-Checkirghhiques
and Tools. ISBN 978-3540415237, Springer, 2001.

[4] David, A., Amnell, T.: Uppaal2k: Small Tutorial. Availa@lon-line at
http://www.it.uu.se/research/group/darts/uppaaitiat.ps (September 7,
2007)

[5] Henzinger, T.A.: Symbolic model checking for real-time tgyss. Infor-
mation and computation, 111:193-244, 1994.

[6] Krél, V.: Metody owfovari vlastnost real-time datahzoveho systmu
s pouzitim jeho experimer@niho modelu. Dissertation thesis. VSB -
Technical university of Ostrava, 2006 (in Czech).

[7] Krél, V., Pokorry, J., Cernohorsk, J.: The VADB project - support
platform for testing the algorithms used in real-time databa¥VSEAS
Transactions on Information Science & Applications, IssOe \Iolume
3, October 2006.

[8] McMillan, K. L.: Symbolic Model Checking. ISBN 978-07923801,
Springer, 1993.

[9] Nystrom, D., Nolin, M., Tesanovic, A., Norgim, Ch., Hansson, J.:
Pessimistic Concurrency-Control and Versioning to Suppatabase
Pointers in Real-Time Databases. Proc. of th&*IBuromicro Conference
on Real-Time Systems, pages 261-270, IEEE Computer Sociedyg,. 20

