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Annotation

The thesis presents results obtained by the author in the area of verification
of systems. One part of the thesis concentrates on questions of complexity of
equivalence checking, , i.e., of deciding behavioral equivalences on transition
systems. The other part concentrates on practical use of model checking
on real time database systems. Model checking means deciding validity of
temporal logic formulae which express properties of a system.

In the first part, several results on deciding bisimulation equivalence are
shown. All these results concern with so called Basic Parallel Processes
(BPP). The first of presented algorithms decides bisimulation equivalence
between a BPP and a finite-state system. There is also presented time com-
plexity analysis of this algorithm which shows up an upper bound O(n4).
The second algorithm decides bisimulation equivalence between two normed
BPPs in O(n3). The third algorithm decides for a given BPP whether
there exists some equivalent finite-state system with respect to bisimula-
tion equivalence. This problem is called Regularity of BPP. Presented al-
gorithm works in polynomial space which, together with previously known
PSPACE-hardness of regularity of BPP, gives PSPACE-completeness of this
problem. The last presented equivalence checking algorithm decides bisimu-
lation equivalence between a normed BPP and a normed BPA system. This
algorithm is polynomial, its detailed analysis leads to an upper boundO(n7).

The second part of the thesis shows some possibilities how verification tool
Uppaal can be used on modeling and verification of real-time database
systems. Presented models are focused on concurrency control used in
databases to avoid inconsistency when several transactions can be executed
in parallel. There are models of several well known variants of pessimistic
and optimistic protocols presented and some simple demanded properties
of those protocols expressed as temporal logic formulae are checked on the
models.
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Anotace

Tato disertačńı práce prezentuje výsledky dosažené autorem v oblasti veri-
fikace systémů. Jedna část práce se zaměřuje na otázky složitosti problémů
ověřováńı ekvivalenćı (equivalence checking), tzn. rozhodováńı behaviorál-
ńıch ekvivalenćı na přechodových systémech. Druhá část práce se zabývá
praktickým využit́ım ověřováńı model̊u (model checking) na real-time da-
tabázových systémech. Ověřováńı model̊u znamená rozhodováńı platnosti
formuĺı v nějaké temporálńı logice popisuj́ıćıch nějakou vlastnost systému.

V prvńı části je uvedeno několik výsledk̊u týkaj́ıćıch se rozhodováńı bisi-
mulačńı ekvivalence. Všechny tyto výsledky se týkaj́ı takzvaných základńıch
paralelńıch proces̊u (Basic Parallel Processes – BPP). Prvńı prezentovaný al-
goritmus pracuj́ıćı v čase O(n4) rozhoduje bisimulačńı ekvivalenci mezi BPP
a konečně stavovým systémem. Druhý algoritmus rozhoduje bisimulačńı
ekvivalenci mezi dvěma normovanými BPP v čase O(n3). Třet́ı algoritmus
rozhoduje v polynomiálńım prostoru pro BPP, jestli existuje nějaký bis-
imulačně ekvivalentńı konečně stavový systém. Tento problém se nazývá
regularita BPP a spolu s dř́ıve známou PSPACE-obt́ıžnost́ı dostáváme jeho
PSPACE-úplnost. Posledńı prezentovaný algoritmus z oblasti ověřováńı ekvi-
valenćı rozhoduje bisimulačńı ekvivalenci mezi normovaným BPP a normo-
vaným BPA systémem. Tento algoritmus je polynomiálńı, jeho podrobněǰśı
analýza vede k odhadu O(n7).

Druhá část práce ukazuje nějaké možnosti, jak může být použit verifikačńı
nástroj Uppaal pro modelováńı a verifikaci real-time databázových systémů.
Prezentované modely se zaměřuj́ı na ř́ızeńı souběžného př́ıstupu k dat̊um,
které je v databáźıch použ́ıváno pro zabráněńı nekonzistence v př́ıpadě para-
lelńıho zpracováváńı v́ıce transakćı současně. Jsou uvedeny modely několika
(známých) variant pesimistických a optimistických protokol̊u a následně je
na těchto modelech ověřeno několik jednoduchých, po protokolech vyžado-
vaných, vlastnost́ı vyjádřených ve formě formuĺı temporálńı logiky.
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Chapter 1

Introduction

Recently, software and hardware systems are ubiquitous, complicated, and
extensive and every bug can have serious and expensive consequences. In
traffic control systems, nuclear power plant control system, etc. an error can
cost many lives. Other examples of systems where we would like to avoid
errors are operating systems, network communication protocols, micropro-
cessors and other chips, automotive systems and many others. Much effort
is for that reason devoted to ensure correctness of such systems. Correct-
ness usually means that the implementation of some system behaves exactly
as it is described in some specification of a desired behavior. A process of
checking whether the given implementation satisfies the given specification
is called verification.

Widely used techniques for verification are testing and simulation. Testing
means that a system runs with selected inputs and a behavior of it is ob-
served. There are many possibilities how inputs for testing can be chosen,
e.g. random values, all possible values, some boundary values etc. When
simulation is provided, some model of system is tested instead of implemen-
tation itself. Inputs for simulation can be chosen similarly as for testing.
A merit of a simulation is that running model of a system can be easier,
cheaper and often in the same time interval more test values can be pro-
cessed than by testing. A drawback of the simulation is that a real system
(implementation) can contain more errors than its model and this errors can
not be detected in this way.

Both, testing and simulation, can be used in all stages of system develop-
ment and are able to discover many possible errors and bugs in the system.
They are very effective in the early stages of development because the design

1



2 Chapter 1. Introduction

is usually infested with multiple bugs. But their effectiveness drops quickly
as the design becomes cleaner. Then they need very large amount of time to
uncover the more subtle bugs. Their common important drawback is that
they usually can not ensure correctness under all possible situations. The
number of inputs, possible interactions with environment etc. is usually so
big (and often even infinite) that we are not able to try them all during tests
or simulations. This problem become even worse for systems composed of
several components running in parallel which is nowadays, with the support
of multicore CPUs, fast nets between computers and other common means,
very frequent. Interaction between those concurrently running components
causes that the behavior of a system as a whole can be non-deterministic.
The number of possible behaviors grows very fast with every added compo-
nent and it can be difficult even to reproduce bugs in these systems since
they can occur only under some rare circumstances.

The alternative to testing and simulation are formal methods or formal ver-
ification that conducts an exhaustive exploration of all possible behaviors
to ensure correctness.

Formal methods provide some theoretical means for a construction of a rig-
orous mathematical proof of the correctness of the system. This can be done
by hand, which is very laborious and error prone, or done with help of some
software tools. The latter approach is called computer aided verification and
is usually more effective. A problem is that the process can not be fully au-
tomated in general because many problems concerning behavior of computer
programs are undecidable. For example even such simple question whether
a program will eventually stop or not is well known undecidable problem
(called Halting problem).

In general, there are three main approaches to verification that allow to
ensure correctness for all possible behaviors of the system:

• Theorem proving

• Equivalence checking

• Model checking

Theorem proving is based on a construction of formal proof of correctness
of a system. This can be assisted by software tools called theorem provers.
This tools demand a guidance of their user to do the crucial steps of the
proofs. A theorem prover helps with some simple, but laborious, steps, but
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the main responsibility to lead the proof is on its user. This requires a lot
of knowledge, skills and practice from the user.

Model checking and equivalence checking can be fully automated and do
not require much interaction from the user. But this methods can not be
applied to arbitrary systems due to the undecidability of checked properties.
Therefore, usually not computer programs are checked but instead models
in some formalism that does not have the full expressive power of Turing
machines are verified. This techniques are based on automata and formal
languages theory because this theory offers means for finite description of
infinite languages and many properties of languages are decidable.

In the case of equivalence checking the question is whether two (descriptions
of) systems are equivalent in some sense. Usually, it is compared whether
a specification and an implementation have the same (or equivalent) behav-
ior.

In the case of model checking we have only one (description of) a system
and some desired property of it expressed as a formula of some (temporal)
logic. The goal of model checking tools and algorithms is to check whether
the system satisfies the given property. Equivalence checking is often used in
practise for verification of hardware circuits and chips and model checking is
more common in software verification. See [9, 11, 40, 4] for more information
about model checking and temporal logic.

Systems for model checking and equivalence checking can be expressed in
many different ways and formalisms. Models with a great expressive power
cannot be verified automatically, and models that are too restrictive do not
allow to model many aspects of real systems. As well properties for model
checking can be expressed in the variety of logics and there are many possible
equivalences suitable for equivalence checking. Combinations of this possibil-
ities form a big amount of verification problems. The research concentrates
on decidability and complexity of those problems. One active area of re-
search concentrates on the question which model checking and equivalence
checking problems are decidable, and where exactly lies the dividing line
between decidable and undecidable problems. Another important question
is what is the exact computational complexity of decidable verification prob-
lems. Some verification problems can be solved theoretically but (known or
even all) algorithms can be used in practice only for small instances due to
its computational complexity. One well known phenomenon which makes
design of verification algorithms harder is so called ‘state space explosion’.
This problem appears when several components with reasonably small state
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spaces compose a system which as whole can have the state space exponen-
tially larger then its components. This problem shows up unavoidable in
some cases but there are also lots of techniques that avoid it in other cases
or at least deal with it to some degree.

In this thesis we concentrate on two, quite different, types of problems. In
the first part we will concentrate on complexity of some equivalence checking
problems, and some results obtained and published by the author in this
area will be presented there. In the second part we will concern on model
checking. There is a much research effort devoted to the area of real-time
database systems but almost none to verification of designed systems and
suggested algorithms and protocols. We will describe some possibilities of
using existing verification (model checking) tool Uppaal on such type of
system.

Some of the results presented here are joint work with other authors – Petr
Jančar and Zdeněk Sawa.

It is assumed that the reader is familiar with formal languages, basics of
mathematical logic and of complexity theory.

1.1 Goals of the Thesis

There are two main goals of this thesis. The first is to contribute with some
new results in the area of equivalence checking. Questions of algorithmic de-
cidability and computational complexity of deciding different equivalences
on different types of systems are the point of interest of quite many re-
searchers. But there are still many open problems, many upper bounds on
complexity are immoderate. The goal of this thesis is to contribute with
some new results in this area. We mainly focused on computational com-
plexity of selected equivalence-checking problems involving so called Basic
Parallel Processes.

The second goal is a bit like case study of using verification tool Uppaal on
concurrency control protocols used in real-time database systems. There are
only rare attempts to use formal verification methods on real-time databases.
Existing verification tools does not have direct support for database systems.
Regardless of it, the goal is to show that verification tools can be used and
verify some demanded properties of database systems. The part of those
system controlling concurrent access to data is one of the most important.
Hence, concurrency control protocols were chosen for illustration. Uppaal
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was selected from all available verification tool because of its support for
real-time systems.

Most people dealing with real-time databases (researchers and practical
users) do not have experience with verification tool and do not know pos-
sibilities of this tools. Therefore, they were not able to identify proper-
ties that were interesting for them and that are manageable to verify us-
ing a verification tool (questions as “Which protocol is better” or “How
much transactions will be restarted” are in the author’s opinion not suit-
able for verification). Hence the goal is to examine possibilities of modeling
of different versions of protocol for concurrency control and identify possi-
ble abstractions and simplifications so that the models were manageable by
verification algorithms of the tool. This can help authors of new protocols
to verify them. And mainly, our models and simple verified properties can
later serve for illustration of possibilities of verification tools to database
system users and researchers in order to identify really interesting questions
for verification.

1.2 Overview of the Results

The following subsections describe shortly the main results presented in this
thesis.

1.2.1 Selected Equivalence Checking Problems

Systems for equivalence checking can be expressed in many different ways.
Some possible formalisms used for description of verified systems were or-
ganized into so called (α, β)-PRS hierarchy ([34], see Subsection 2.2.4 for
more informations). We are especially interested in three simplest classes
from the hierarchy - finite state systems, basic parallel processes and basic
process algebra.

We can understand those classes intuitively as follows (see Section 2.2 for
exact definitions). Finite state systems (FS), as the name suggests, are
systems with (explicitly or implicitly) given finite number of states. The
state of the system can be changed using one of defined transitions. Basic
process algebra (BPA) can model simple sequential systems with procedure
calls. The state of BPA system is given as a content of a stack and the
behavior is given by a set of rules which describe how the symbol on top of
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the stack can be changed. Basic parallel processes (BPP) can model simple
parallelism without communication between parallel components. A state
of BPP is a multiset of symbols and a behavior is given by a set of rules
which describe how an element from the multiset can be changed for some
other elements. In this thesis we will deal with such systems only, where
every change of a state is accompanied by an externally observable action
from some finite set of possible actions.

Elements of all three mentioned classes can be normed. This means that
from every state there is a special ‘empty’ state reachable where no further
action is possible.

There are also many possible equivalences suitable for model checking. We
concern with one of most well known and important equivalence - bisimilar-
ity or bisimulation equivalence. It can be understand as follows – whenever
one of two equivalent systems can change a state using a rule with some
assigned action the other system must be able to change its state using
a rule with the same action and resulting states of both systems have to be
equivalent again.

In chapter 2 we show some results concerning BPP, BPA and FS and bisim-
ulation equivalence. In the Section 2.3, an algorithm which decides bisim-
ilarity between BPP and FS systems is described. This algorithm works
in time O(n4). This result was published in [26]. The next Section 2.4
contains an algorithm deciding bisimilarity between two normed BPP sys-
tems. A working time of this algorithm is O(n3). This was published in [17].
Both mentioned algorithms are based on the technique of DD-functions in-
troduced in [16] and are variations on the algorithm presented there for
deciding bisimilarity between two BPP systems.

Third result in this area (in Section 2.5, published in [22]) is a polynomial
space algorithm deciding for a BPP system whether there is some bisimilar
finite-state system. This problem, called regularity of BPP, was known to
be PSPACE-hard hence we obtained PSPACE-completeness.

The last result in the Section 2.6 is an algorithm deciding bisimilarity be-
tween a normed BPA system and a normed BPP system. An exponential
algorithm was known for this problem and we have shown in [19, 18] a poly-
nomial time algorithm. Exact analysis of the complexity of this algorithm
leads to an upper bound O(n7). There are also several side results: an al-
gorithm transforming normed BPP into a special form where bisimilarity
coincides with identity (in time O(n3)); an algorithm deciding for a normed
BPP whether there exists some bisimilar BPA (in time O(n3)); an algorithm
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deciding bisimilarity between a normed BPA system and a finite-state sys-
tem (in time O(n4)).

1.2.2 Model Checking of Real-Time Database Systems

Real-time database systems are based on well known techniques and algo-
rithms from conventional database systems. In addition to efficient data
storage, database query maintenance etc. they are able to provide some
bounds on response time which is very important in real-time systems. To
this aim they use priorities, deadlines and other mechanisms.

Concurrency control is one of the most important parts of all database sys-
tems that allow concurrent access of several transactions to data. In real-
time databases, modifications of concurrency control protocols known from
conventional databases are used. The modifications are needed to deal with
priorities and deadlines.

In chapter 3 we try to use model checking to verify some important proper-
ties of real-time concurrency control protocols. We use a software verification
tool to this aim. A protocol is modeled as a net of timed automata (a mod-
eling language of Uppaal) and demanded properties expressed as temporal
logic formulae are then automatically checked on those models. The main
goal was to show possibilities of using an existing verification tool on type of
systems (i.e. databases) that it was not mentioned to be used on. Therefore,
the main accent is laid on models of protocols and verified properties are
more or less for illustration.

We suggest models of concurrency control from two views. In the Section
3.5 it is as a part of a whole database system and in the Section 3.6 some
selected protocols itself are modeled. Presented models are not the only
possible or the best in any way. But they can give some ideas and possible
abstractions to help with modeling of parts of real-time databases when
some newly suggested protocol or algorithm will need to be verified.
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Chapter 2

Problems Related to

Bisimilarity on Basic Parallel

Processes

2.1 Introduction

In this chapter we will talk about problems related to bisimilarity on Basic
Parallel Processes. As we stated previously, BPP are one class from (α, β)-
PRS hierarchy. The bisimilarity on classes from this hierarchy is one of
often studied problems in the area of equivalence checking. Some nice tech-
niques and algorithms for equivalence checking are described in [6], recently
updated overview of already known bisimilarity results is in [39].

Our research in this area was motivated by [16] where Jančar presented
an algorithm deciding bisimilarity of Basic Parallel Processes in polynomial
space. With previously published PSPACE-hardness result ([37]) it gives
PSPACE-completeness of this problem.

This problem can be formulated as follows (for definitions of used notions
see next section):

Problem: BPP-BISIM

Instance: BPP processes (M1,∆1) and (M2,∆2).

Question: Is M1 ∼M2 (in the disjoint union of ∆1 and ∆2)?

9
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Jančar in [16] introduced a notion of so called DD-functions and this idea
was suitable for solution of some subproblems of bisimilarity on Basic Par-
allel process (bisimilarity of BPP process with finite state process described
in Section 2.3 and bisimilarity of two normed BPP processes described in
Section 2.4) and for some related problems (regularity of BPP in Section 2.5
and bisimilarity of a normed BPP and a normed Basic Process Algebra in
Section 2.6).

2.2 Basic Notions and Definitions

This section contains some basic definitions that are used in the remaining
sections of this chapter.

2.2.1 Notation Conventions

At first we need to make clear some mathematical notation. IN denotes the
set of natural numbers {0, 1, 2, . . . }. ω is used as a symbol for infinity. We
stipulate that for each x ∈ N, x < ω, ω + x = x + ω = ω + ω = ω − ω =
−ω + ω = ω, ω · 0 = 0 · ω = 0, and for each x ≥ 1, ω · x = x · ω = ω.

Given a set X, by P(X) we denote the set of all subsets of X.

We use |X| to denote the cardinality of a set X. We stipulate min ∅ = ω,
using ω as a symbol for infinite amount;

X+ denotes the set of nonempty sequences of elements of X, and X∗ =
X+ ∪ {ε} where ε is the empty sequence. The length of a sequence α ∈ X∗

is denoted by |α| (|ε| = 0). We use xk (where x ∈ X∗, k ∈ N) to denote
the sequence xx · · · x where x is repeated k times (in particular x0 = ε).
Let α ∈ X∗ be a sequence and x ∈ X. Then |α|x denotes the number of
occurrences of element x in α.

2.2.2 Labelled Transition Systems

There are many possibilities how to model or describe systems for verifi-
cation purposes, for example different types of automata, grammars, Petri
nets, process rewriting systems, process algebras etc. Labelled transition
systems (LTS) are a concept which is underlying all of those formalisms.

An LTS is formally defined as a triple (S,A,−→) where:
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• S is a (possibly infinite) set of states

• A is a finite set of actions (or action labels)

• −→⊆ S ×A× S is a transition relation.

.

Less formally, S is the set of all possible states of the system. A is a set of
externally observable actions (or their names) which can be performed by
the system. Transition relation represents behavior of the system.

Instead of (s, a, s′) ∈−→ we will use s
a

−→ s′, this can be read as: “the
system in the state s can perform the action a and go to the state s′”. The
notation s

a
−→ s′ can be extended in a natural way to sequences of actions.

Let w ∈ A∗, w = a1, a2, . . . , an. We write s
w

−→ s′ iff there is a sequence of
states s0, s1, . . . , sn such that s0 = s, sn = s′ and si−1

ai−→ si for each i such
that 1 ≤ i ≤ n.

A state s′ is reachable from a state s (written s −→∗ s′) iff there is some
w ∈ A∗ such that s

w
−→ s′.

Given an LTS (S,A,−→), we define the distance from state s to state t by

dist(s, t) = min
{

|w| | w ∈ A∗ and s
w

−→ t
}

.

2.2.3 Bisimulation Equivalence

The equivalence-checking approach to the formal verification of systems is
based on the following scheme: the specification S (i.e., the intended behav-
ior) and the actual implementation I of a system are defined as states in
transition systems, and then it is shown that S and I are equivalent.

There are many possible ways how equivalence of processes can be defined.
The most prominent of equivalences defined in the literature were organized
by van Glabbeek into the hierarchy called linear time – branching time spec-
trum [42]. We will discuss just the finest equivalence from this spectrum -
bisimulation equivalence (also known as bisimilarity). It is of special im-
portance, as its accompanying theory has found its way into many practical
applications.

Let (S,A,−→) be a labelled transition system. A binary relation R ⊆ S×S
is a bisimulation iff for every pair of states (s, t) ∈ R and every action a ∈ A
the following conditions hold:
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• If there is some s′ ∈ S such that s
a

−→ s′, then there is some t′ ∈ S

such that t
a

−→ t′ and (s′, t′) ∈ R.

• If there is some t′ ∈ S such that t
a

−→ t′, then there is some s′ ∈ S

such that s
a

−→ s′ and (s′, t′) ∈ R.

(It is said that s
a

−→ s′ is matched by t
a

−→ t′, resp. t
a

−→ t′ is matched by
s

a
−→ s′.)

States s, t are bisimilar, written s ∼ t, iff there exists some bisimulation R
such that (s, t) ∈ R. The relation ∼ is called bisimulation equivalence or
bisimilarity.

It is not difficult to show that ∼ is reflexive, symmetric and transitive.
Notice that a union of a several bisimulation relations is also a bisimulation
relation. This implies that ∼ which is the union of all bisimulations is the
maximal bisimulation.

Bisimulation equivalence can also relate states of different transition sys-
tems, because we can consider two transition systems to be a single one by
taking the disjoint union of them.

Let ∆1,∆2 be (descriptions of) labelled transition systems with distin-
guished initial states s and t. ∆1 ∼ ∆2 iff s ∼ t. Two processes are related
by ∼ iff their underlying LTSs are related by ∼.

The bisimulation equivalence on LTS (S,A,−→) can be alternatively de-
scribed in terms of a bisimulation game played by two players called Spoiler
and Duplicator. The positions in the game are the pairs (s, t) ∈ S ×S. The
game proceeds in rounds. In a position (s, t), Spoiler chooses one of states
s and t (say s) and some transition from the chosen state (say s

a
−→ s′).

Duplicator then chooses some transition from the other state with the same
label as the transition chosen by Spoiler (say t

a
−→ t′). The game then

continues by the next round in the position (s′, t′). If one of players is stuck
(he has no possible move) in some position, the other player wins. The case
when the game is infinite is considered as a win of Duplicator.

Fact 2.1

s ∼ t iff Duplicator has a winning strategy in the bisimulation game starting
in the position (s, t).
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2.2.4 Process Rewrite Systems

In this thesis we will discuss bisimilarity on several formalisms. They can
be all viewed as so called Process Rewrite Systems (PRS). This notion was
defined by Mayr in [34].

Process rewrite systems are defined as follows. Let A = {a, b, c, . . .} be
a countably infinite set of atomic actions and Var = {X,Y,Z, . . .} be a
countably infinite set of process variables. Process terms are defined by the
following abstract grammar

P ::= ε | X | P1.P2 | P1 ‖ P2

where:

• ε is the empty term,

• X is a process variable,

• ‘.’ denotes the sequential composition

• ‘‖’ denotes the parallel composition.

The sequential composition is associative and the parallel composition is
associative and commutative. We always work with equivalence classes of
terms modulo associativity of the sequential composition and modulo asso-
ciativity and commutativity of the parallel composition. We further define
that ε.P = P.ε = P and P ‖ ε = P .

Process rewrite system is a finite set of rules ∆ containing rules of the form
t1

a
−→ t2 where t1 and t2 are process terms and a ∈ A is an atomic action.

By Var(∆) we will denote the set of process variables occurring in ∆ and
by A(∆) the set of atomic actions occurring in ∆.

Process rewrite system ∆ produces a corresponding labelled transition sys-
tem (S,A,−→) where S is the set of process terms that contain only vari-
ables from Var(∆), A′ = A(∆), and the transition relation is the smallest
relation satisfying the following inference rules where t1, t2, t

′
1, t

′
2 are process

terms:
(t1

a
−→ t2) ∈ ∆

t1
a

−→ t2

t1
a

−→ t′1

t1.t2
a

−→ t′1.t2

t1
a

−→ t′1

t1 ‖ t2
a

−→ t′1 ‖ t2

t2
a

−→ t′2

t1 ‖ t2
a

−→ t1 ‖ t′2
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Note that Var(∆) and A(∆) are finite. Since ∆ is finite, the generated la-
belled transition system is finitely branching, which means that the number
of outgoing transitions is finite for every state.

Note that there is no operator for non-deterministic choice (‘+’), because
nondeterminism can be encoded in the set of rules ∆ which can contain
more rules with the same term on the left side.

There can be defined different types of subclasses of process rewrite systems.
We can define four classes of process terms:

• 1 – terms consisting of a single process variable (e.g., X),

• S – terms consisting of ε, a single variable, or a sequential composition
of process variables (e.g., X.Y.Z),

• P – terms consisting of ε, a single variable, or a parallel composition
of process variables (e.g., X ‖ Y ‖ Z),

• G – all process terms without any restriction (e.g., X.(Y ‖ Z)).

From description of those classes follows 1 ( S, 1 ( P, S ( G, and P ( G.
Classes S and P are incomparable and S ∩ P = 1 ∪ {ε}.

Let α, β ∈ {1,S,P,G} be classes of process terms such that α ⊆ β. We define
(α, β)-PRS as a finite set of rules ∆ where in every rewrite rule (l

a
−→ r) ∈ ∆

the term l is from class α and l 6= ε and the term r is from class β (and r

can be ε).

The hierarchy of (α, β)-PRS models is depicted in Figure 2.1. Each model
in the hierarchy has a name shown also in the figure and many of these
(α, β)-PRS correspond to well-known classes of infinite state systems studied
in the literature. A line from a higher model to a lower model means that
the higher model is more general than the lower one. It is known that the
hierarchy is strict with respect to bisimilarity [34].

The classes of process rewrite systems correspond to the following following
formalisms:

• FS – finite-state systems,

• BPA – Basic Process Algebra [5],

• BPP – Basic Parallel Processes [8],
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(1, 1)-PRS
FS

(1,S)-PRS
BPA

(1,P)-PRS
BPP

(S,S)-PRS
PDA

(S,P)
PA

(P,P)
PN

(S,G)-PRS
PAD

(P,G)-PRS
PAN

(G,G)-PRS
PAN

Figure 2.1: Hierarchy of process rewrite systems

• PDA – Pushdown Automata,

• PA – Process Algebra [2],

• PN – Petri nets

• PRS – Process Rewrite Systems

Classes PAD and PAN were introduced in [33] to naturally complete the
hierarchy. Class PAD is the ‘smallest’ common generalization of classes
PDA and PA and PAN is the ‘smallest’ common generalization of classes
PA and PN.

2.2.5 BPA and BPP

As was said in the subsection 2.2.4, many classes from (α, β)-PRS hierarchy
were known and studied before definition of process rewrite systems. In this
thesis we will discus mainly BPA and BPP. Both classes may be defined in
several different ways, besides the PRS definition, for example as subclasses
of Process Algebra (introduced in [2]). The following definitions are most
suitable for our purposes.

A BPA system, or BPA for short, can be viewed as a context-free grammar
in Greibach normal form. Formally, it is a triple Σ = (VΣ,AΣ,ΓΣ), where:

• VΣ is a finite set of variables (nonterminals),
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. . .

A AB ABB ABBB . . .

ε B BB BBB . . .

b b b b

a a a a

b b b b

Figure 2.2: Part of LTS corresponding to the BPA from example

• AΣ is a finite set of actions (terminals),

• ΓΣ ⊆ VΣ ×AΣ × V ∗
Σ is a finite set of rewrite rules.

We often use V,A,Γ without subscripts when the underlying BPA is clear
from context. We also write X

a
−→ α instead of (X,a, α) ∈ Γ.

A BPA process is a pair (α,Σ) where Σ is a BPA system and α ∈ V ∗;
we write just α when Σ is clear from context. A BPA Σ gives rise to the
LTS SΣ = (V ∗,A,−→) where −→ is induced from the rewrite rules by the
following (deduction) rule: if X

a
−→ α then Xβ

a
−→ αβ for every β ∈ V ∗.

Example. Suppose the following BPA system:

V = {A,B}
A = {a, b}

A
b

−→ ε

A
b

−→ AB

B
a

−→ ε

The LTS corresponding to this BPA is infinite. A part of it containing states
reachable from A is diagrammatically shown on Figure 2.2.

A BPP system, or BPP for short, can be defined in a similar way, as a
triple ∆ = (V∆,A∆,Γ∆). The only difference is the deduction rule for the
associated LTS S∆: if X

a
−→ α then γXδ

a
−→ γαδ for any γ, δ ∈ V ∗

(thus any occurrence of a variable can be rewritten, not just the first one).
From the definition follows that BPP processes α, β with the same Parikh
image (i.e., containing the same number of occurrences of each variable)
are bisimilar. Hence BPP processes can be read modulo commutativity of
concatenation and interpreted as multisets of variables; in the rest of the
thesis we interpret BPP processes in this way whenever convenient. This
also suggests to identify a BPP system ∆ with a BPP net, a labelled Petri
net in which each transition has exactly one input place (also known as
communication-free Petri net).
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Formally, a BPP net is a tuple ∆ = (P∆,Tr∆,pre∆, F∆,A∆, l∆) where:

• P∆ is a finite set of places,

• Tr∆ is a finite set of transitions,

• pre∆ : Tr∆ → P∆ is a function assigning an input place to each
transition,

• F∆ : (Tr∆ × P∆) → N is a flow function,

• A∆ is a finite set of actions,

• l∆ : Tr∆ → A∆ is a labelling function.

We will use P,Tr,pre, F,A, l if the underlying BPP net is clear from context.
We note that a transition t ∈ Tr can be viewed as the rewrite rule p

a
−→ α

where pre(t) = p and F (t, p′) is the number of occurrences of p′ in α, for
each p′ ∈ P .

For each grammar representation (V,A,Γ) of a BPP ∆ there is an equivalent
BPP net representation (V,Tr,pre, F,A, l) where for each rule A

a
−→ α

(A ∈ V , α ∈ V ∗, a ∈ A) there is a transition t ∈ Tr such that pre(t) = A,
F (t,X) = |α|X and l(t) = a.

A BPP process is thus, in fact, a marking, i.e. a function M : P → N

which associates a finite number of tokens to each place. We will use pk to
denote the marking M where all k tokens are in one place p (M(p) = k and
M(p′) = 0 for each p′ 6= p); p0 = ε represents the zero marking (M(p) = 0
for all p ∈ P ).

A transition t is enabled at marking M if M(pre(t)) ≥ 1. An enabled
transition t may fire from M , producing a marking M ′ defined by

M ′(p) =

{

M(p) − 1 + F (t, p) if p = pre(t)
M(p) + F (t, p) otherwise

.

This is denoted by M
t

−→ M ′; the notation is extended to M
σ

−→ M ′ for
sequences σ ∈ T ∗. We write M

σ
−→ if M

σ
−→M ′ for some M ′.

In the above sense, a BPP ∆ gives rise to the LTS S∆ = (M∆,A,−→)
where M∆ = NP is the set of all markings (of the respective BPP net), and

M
a

−→M ′ iff there is some t ∈ Tr such that l(t) = a and M
t

−→M ′.

Example. A simple BPP net with two places (A,B) and three transitions
can be described using the following graphical representation:
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...
...

...
...

(2, 0) (2, 1) (2, 2) (2, 3) . . .

(1, 0) (1, 1) (1, 2) (1, 3) . . .

(0, 0) (0, 1) (0, 2) (0, 3) . . .

b b b b

a a a a

b b b b

a a a a

b b b b

b b b b

a a a a

b b b b

Figure 2.3: LTS corresponding to the BPP from example

A B

b ab

The LTS corresponding to this BPP is shown on Figure 2.3.

A corresponding grammar representation of the same BPP is:

V = {A,B}
A = {a, b}

A
b

−→ ε

A
b

−→ AB

B
a

−→ ε

A place p ∈ P is unbounded in (M0,∆) iff for each c ∈ N there is a marking
M ′ such that M0 −→∗ M ′ and M ′(p) > c.

We define Tok(M) =
∑

p∈P M(p) and Car(M) = {p ∈ P |M(p) ≥ 1}.

In the rest of the thesis we use symbols α, β, . . . for both BPA processes and
BPP processes, and M1,M2, . . . only for the latter.

We say that a BPA system Σ (a BPP net ∆) is normed iff α −→∗ ε for each
state α of SΣ (S∆). We use nBPA (nBPP) for normed BPA (normed BPP).

Let α be a state (of SΣ or S∆). The norm of α, denoted norm(α), is the
length of the shortest w ∈ A∗ such that α

w
−→ ε. Note that this also defines

norm norm(X) for each variable (place) X.

We now note some obvious properties of norms.



2.2 Basic Notions and Definitions 19

• If α 6= ε then norm(α) > 0 for any state α.

• In each nBPA (or nBPP), there is at least one variable (place) with
norm 1.

• If a rule X
a

−→ α is used in a transition β
a

−→ β′ then norm(β′) −
norm(β) = norm(α) − norm(X).

• norm(αβ) = norm(α) + norm(β) (for the BPP-net representation
it means norm(M1 +M2) = norm(M1) + norm(M2) where the sum
M1 +M2 is defined componentwise).

• If α ∼ β then norm(α) = norm(β).

Note also that if α1 ∼ α2, w ∈ A∗ and α1
w

−→ α′
1 then there must be a

matching sequence α2
w

−→ α′
2 such that α′

1 ∼ α′
2 (and thus also norm(α′

1) =
norm(α′

2)).

For two states α1, α2 we write α1 −→R α2 if α1 −→ α2 and norm(α2) =
norm(α1)−1. Such a step is called a norm-reducing step and the respective
rule (transition) is also called norm reducing. We write α1 −→∗

R α2 if
there is a sequence (called norm reducing sequence) of norm reducing steps
leading from α1 to α2. For each variable (place) X there is at least one
norm-reducing rule (transition) X −→R α.

For a marking M and a set Q ⊆ P we define normQ(M), the norm of M

wrt Q, as the length of the shortest w ∈ A∗ such that M
w

−→ M ′ where
M ′(p) = 0 for all p ∈ Q. In fact, normQ(M) =

∑

p∈Q cp · M(p) where
cp = normQ(p).

A set of places R ⊆ P of a Petri net is a trap iff

∀t : pre(t) ∈ R⇒ (R ∩ succ(t) 6= ∅)

Intuitively this means that every t removing tokens from a trap also adds
some tokens to it, so ‘marked’ trap, i.e., a trap with at least one token, can
not get unmarked.
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2.3 Bisimilarity between BPP and Finite-State Sys-

tem

2.3.1 Introduction

In this section we present an algorithm for the problem of deciding bisimilar-
ity on special case of BPP-BISIM where one of (unnormed) BPP processes
is a finite-state process. This was published previously in [26].

The running time of the algorithm is O(n4) where n is the size of the in-
stance. The result implies that it is possible to verify in polynomial time
whether a system implemented as a finite-state automaton is equivalent to
a ‘specification’ given as a BPP. The algorithm also generates for each state
of the finite-state system a ‘symbolic’ semilinear representation of bisimilar
BPP states.

A finite-state system (FS) is traditionally defined as an LTS (S,A,−→)
where S is finite, but for technical convenience we define it as a BPP where
for each t ∈ Tr there is exactly one p ∈ P such that F (t, p) = 1 and
F (t, p′) = 0 if p′ 6= p. For p ∈ P we define a marking Mp such that
Mp(p) = 1 and Mp(p

′) = 0 for p′ 6= p. We call such marking an FS marking.

Our problem can be defined as follows:

Problem: BPP-FS-BISIM

Instance: A BPP systems ∆1 and ∆2, markings M1 ∈ M∆1
,M2 ∈ M∆2

such that ∆1 is a finite-state system and M1 is an FS marking..

Question: Is M1 ∼M2 ?

We assume that BPPs in the instance are encoded as lists of places and
transitions, where the encoding of each transition t contains a list of all
p ∈ succ(t) together with values F (t, p). We assume that numbers are
encoded in binary.

In the rest of this section ∆ = (P,Tr,pre, F, λ) is the disjoint union of the
BPP and the FS from the instance of BPP-FS-BISIM, M denotes its set
of markings, PFS and TrFS are the sets of places and transitions of the FS
from this instance (PFS ⊆ P , TrFS ⊆ Tr), and Mp where p ∈ PFS denotes
the marking such that Mp ∈ M, Mp(p) = 1 and Mp(p

′) = 0 for p′ 6= p. We
define MFS = {Mp | p ∈ PFS}.
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2.3.2 Notions and Claims from Jančar’s Paper on BPP Bisim-

ilarity

Let (S,A,−→) be an LTS, and let C : S → D be a mapping assigning to
each state a value from some domain D. We say the mapping C is bis-
necessary if for each s, s′ ∈ S, s ∼ s′ implies C(s) = C(s′). If we have a set
of functions {C1, C2, . . . Cl} where Ci : S → Di, we say the set is bis-necessary
iff every Ci is bis-necessary. A predicate P on S can be viewed as a mapping
P : S → {0, 1}, and so we can also talk about bis-necessary predicate. Note
that if P is bis-necessary, then ¬P is also bis-necessary.

Let P be a predicate on S. We define the mapping dist(P) : S → Nω where
dist(P)(s) is the length of the shortest w such that s

w
−→ s′ and P(s′), and if

there is no such w, dist(P)(s) = ω. Intuitively, dist(P) represents ‘distance’
to P.

Claim 2.2

If P is bis-necessary then dist(P) is bis-necessary.

Proof: Let us assume without loss of generality that there are states s1, s2
such that s1 ∼ s2 and dist(P)(s1) < dist(P)(s2). Then there is some short-
est w ∈ A∗ such that s1

w
−→ s′1 and P(s′1). Because s1 ∼ s2, there must be

some s′2 such that s2
w

−→ s′2 and s′1 ∼ s′2. But |w| < dist(P)(s′2), and so
¬P(s′2), which means that P is not bis-necessary. �

Let us now consider the BPP ∆ = (P,Tr,pre, F,A, l) from the instance
of BPP-BISIM. Let T ⊆ Tr. We say T is disabled in M if every t ∈ T

is disabled in M . Notice that if T is the set of all transitions t such that
λ(t) = a for some a ∈ A, then ‘T is disabled’ is a bis-necessary predicate.
Notice also that T is disabled iff each place in pre(T ) is empty. These leads
to the following formal definitions. Let Q ⊆ P be a set of places. We define
the predicate zero(Q) on M such that zero(Q)(M) iff ∀p ∈ Q : M(p) = 0.
We define norm of Q as the function normQ = dist(zero(Q)).

Every norm can be expressed as a linear function L : M → Nω of the form

L(x1, x2, . . . , xk) = c1x1 + c2x2 + · · · + ckxk

where ci ∈ Nω and k is the number of places, see [16] for details. Coefficients
c1, c2, . . . , ck of L for the given Q can be computed by the algorithm in
Figure 2.4. Intuitively, ci is the minimal number of transitions that remove
one token in pi from Q. In the algorithm, Q′ is the set of unprocessed
places and T is the set of unprocessed transitions. We write cp instead of ci
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for each p ∈ P do

if p ∈ Q then cp := ω else cp := 0
Q′ := Q

T := {t ∈ Tr | pre(t) ∈ Q′}
while Q′ 6= ∅ do

let pmin refer to some p ∈ Q′ with minimal cp
for each t ∈ T such that succ(t) ∩Q′ = ∅ do

remove t from T

p := pre(t); R := succ(t)
dt := 1 +

∑

q∈R cq · F (t, q)

if dt < cp then cp := dt

if cp < cpmin
then pmin := p

end for

if cpmin
= ω then break;

Q′ := Q′ − {pmin}
remove from T every t such that pre(t) = pmin

end while

Figure 2.4: Computing coefficients of normQ function

where p = pi. Places that are not in Q′ are places for which cp was already
determined. The algorithm computes for each unprocessed transition t that
stores tokens only to places out of Q′ the value dt, a possible candidate for
cp where p = pre(t), and chooses between these candidates the one with
the minimal value.

We define Ω-carr(L) = {pi ∈ P | ci = ω}. Note that L(M) = ω iff
M(p) > 0 for some p ∈ Ω-carr(L). It is not hard to show that Ω-carr(L)
is a trap. From the properties of traps follows the following claim:

Claim 2.3

If L = normQ for some Q ⊆ P and L(M) = ω, then L(M ′) = ω for every

M ′ such that ∃w ∈ A∗ : M
w

−→M ′.

For a linear function L we can compute for each t ∈ Tr the value

δL
t = −ci +

∑

1≤j≤k

cj · F (t, pj) (2.1)

where pre(t) = pi. The value δL
t represents the ‘change’ on the value of L

when the transition t is performed.
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Claim 2.4

If M
t

−→ M ′ then L(M) + δL
t = L(M ′). If L(M) < ω and δ 6= δL

t then
L(M) + δ 6= L(M ′).

2.3.3 The Algorithm

The basic idea is to construct a series of norm functions that are used for
approximation of the bisimulation equivalence. The construction stops when
no other function can be added, and at this point the approximation is exact.

The algorithm for BPP-FS-BISIM works similarly as algorithm for BPP-

BISIM described in [16]. It constructs a set of linear functions L = {L1, L2, . . .}
such that each Li represents norm of some set of places and where each Li

is bis-necessary. The algorithm starts with L = ∅, successively adds linear
functions to L and stops when no new linear function can be added. For
L we define the equivalence ≡L on M such that M ≡L M ′ iff ∀L ∈ L :
L(M) = L(M ′). Since each L ∈ L is bis-necessary, L is also bis-necessary,
and M 6≡L M ′ implies M 6∼ M ′. On the other hand, we show that if
M ∈ MFS and M ′ ∈ M then M ≡L M

′ implies M ∼M ′.

The main algorithm looks as follows:

1. Set L = ∅.

2. For each p ∈ PFS perform Step described below.

3. If L has changed in the previous step, go to 2.

The Step looks as follows: For the given p we define the set F ⊆ L such
that L ∈ F iff L(Mp) < ω. For F we define the equivalence ∼=F on Tr such
that t ∼=F t′ iff λ(t) = λ(t′) and ∀L ∈ F : δL

t = δL
t′ . Let [t] denote the

equivalence class of ∼=F containing t. Let T1 = {[t] | t ∈ succ(p)}, and let
T0 = Tr −

⋃

T∈T1
T . We define the set T as T = T1 ∪ {T0}, respectively

as T = T1 when T0 is empty. Note T is a partition of Tr. We extend the
definition of Ω-carr to sets of linear functions and define

Ω-carr(F) =
⋃

L∈F

Ω-carr(L)

The algorithm now computes the function L = normpre(T )∪Ω-carr(F) for
each T ∈ T and adds it to L.

We now show that the algorithm is correct.
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Lemma 2.5

Every L added to L by the algorithm is bis-necessary.

Proof: We proceed by induction on the number of steps. The proposition
is trivially true at the start. Assume now the algorithm performs Step

for some p ∈ PFS and adds normQ to L for some T ∈ T where Q =
pre(T )∪Ω-carr(F). Due to Claim 2.2 it is sufficient to show that zero(Q)
is bis-necessary. Let us assume without loss of generality that M1 ∼ M2,
¬zero(Q)(M1), and zero(Q)(M2). By induction hypothesis, ∀L ∈ L :
L(M1) = L(M2). Let R = Ω-carr(F). Since zero(R)(M2), we have
∀L ∈ F : L(M2) < ω, and zero(R)(M1), since otherwise there is some
L ∈ F such that L(M1) = ω 6= L(M2). From this and ¬zero(Q)(M1) we
have ¬zero(pre(T ))(M1). This means there is some transition t ∈ T such

that M1
t

−→ M ′
1. Because M1 ∼ M2 there is some t′ such that M2

t′
−→ M ′

2

whereM2 ∼M ′
2 and λ(t) = λ(t′), but necessarily t′ 6∈ T . This means there is

some L ∈ F such that δL
t 6= δL

t′ . By Claim 2.4 this implies L(M ′
1) 6= L(M ′

2),
a contradiction. �

Since every L added to L is normQ for some Q ⊆ P , and P is finite,
it is obvious that the algorithm stops after some finite number of steps.
The following lemma shows that ≡L corresponding to L computed by the
algorithm coincides with ∼ on pairs of markings where one of markings is
from MFS .

Lemma 2.6

Let L be the set computed by the algorithm. Then for every M1 ∈ MFS

and M2 ∈ M, M1 ≡L M2 implies M1 ∼M2.

Proof: We show that ≡L ∩(MFS ×M) is a bisimulation. Let us consider
M1 ∈ MFS and M2 ∈ M such that M1 ≡L M2. Let F = {L ∈ L | L(M1) <
ω} and let R = Ω-carr(F). Note that M1 = Mp for some p ∈ PFS and
the same F would be produced when the algorithm would perform Step

for p. Notice that zero(R)(M1) since otherwise there is some L ∈ F such
that L(M1) = ω. Also zero(R)(M2) is true, because otherwise there is
some L ∈ F such that L(M2) = ω which means L(M1) 6= L(M2). Let T be
defined for F correspondingly as in Step.

At first consider a transition M1
t

−→ M ′
1. Let T be the class from T

such that t ∈ T . Obviously T ∈ T1. Consider now the function L1 =
normR∪pre(T ). It must be the case that L1 ∈ L, otherwise L1 could
be added to L and the algorithm has not finished yet. So L1(M1) =
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L1(M2). From this, from ¬zero(pre(T ))(M1), and from zero(R)(M2) we

have ¬zero(pre(T ))(M2) and there is some t′ ∈ T such that M2
t′

−→ M ′
2,

λ(t) = λ(t′), and ∀L ∈ F : δL
t = δL

t′ . From this and Claim 2.4 we obtain
∀L ∈ F : L(M ′

1) = L(M ′
2). For each L ∈ L − F is L(M1) = L(M2) = ω,

and, by Claim 2.3, L(M ′
1) = L(M ′

2) = ω. This means M ′
1 ≡L M

′
2.

Now consider a transition M2
t′

−→ M ′
2. This case similar to the previ-

ous case, but we must also consider the possibility t′ ∈ T0. Let L0 =
normR∪pre(T0). Since L0 ∈ L (otherwise the algorithm has not finished
yet), L0(M1) = L0(M2). Because L0(M1) = 0, we obtain L0(M2) = 0, and
zero(pre(T0))(M2), so t′ is not enabled in M2, a contradiction. �

2.3.4 Time Complexity of the Algorithm

In this section we show that the running time of the algorithm is O(n4). In
the rest of the Section 2.3 n denotes the size of the input instance.

The running time of the algorithm depends on implementation details of
Step. In Subsection 2.3.3 we described how to, for the given p ∈ PFS ,
compute in Step sets F , Ω-carr(F), and T . It is more efficient not to re-
compute these sets every time, but instead to store their values and perform
necessary changes on them when new L is added to L. So the algorithm
maintains for each p ∈ PFS values of the corresponding Ω-carr(F) and
T . Note that T always contains at most |succ(p)| + 1 equivalence classes.
The algorithm also maintains for each T ∈ T and for Ω-carr(F) a boolean
flag indicating whether it has changed since the last invocation of Step and
adds a new function L = normΩ-carr(F)∪T to L only when Ω-carr(F) or
T is new or has actually changed.

Addition of L to L includes the following steps:

1. Compute coefficients c1, c2, . . . , ck of L.

2. Compute δL
t for each t ∈ Tr.

3. Partition Tr according to values of δL
t and λ(t).

4. For each p ∈ PFS such that L(Mp) < ω:

• Add Ω-carr(L) to the corresponding Ω-carr(F).

• Modify the corresponding T using the partition computed in step 3.
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In the proof we need the following well-known fact:

Fact 2.7

Let U be a non-empty finite set, and let U1,U2, . . . be a sequence of partitions
of U such that each Ui+1 is a refinement of Ui. Then the total number of
different classes in all these partitions is less then 2 · |U |.

Proof: It is simple induction on |U |. �

Lemma 2.8

The number of functions added to L is in O(n2).

Proof: Let us consider all invocations of Step for one p ∈ PFS . In invoca-
tions where Ω-carr(F) has changed, the algorithm adds a new function to
L for each T ∈ T . If Ω-carr(F) has not changed, a new function is added
for each T ∈ T that has changed.

Ω-carr(F) can only grow, so the number of invocations of Step when
Ω-carr(F) has changed is O(|P |). Because |T | is at most h + 1 where
h = succ(p), the number of functions added in such invocations is at most
(h+ 1) ·O(|P |).

Consider now the possible changes of T . Either some t was added to T0,
or some T ∈ T1 was split, or some combination of these possibilities has
occurred. Since T0 can only grow, the first possibility can occur only O(|Tr|)
times. It remains to estimate the total number of classes from T1. It is in
O(|Tr|) as follows from Fact 2.7, since sequence of values of T1 in subsequent
invocations of Step can be extended to a sequence of refined partitions by
adding some classes to each T1.

Let us sum now the numbers of functions added to L for all p ∈ PFS . In
invocations where Ω-carr(F) has changed it is at most

∑

p∈PFS

(|succ(p)| + 1) ·O(|P |) = O(|P | · |TrFS |)

The number of function added in the remaining invocations is in O(|PFS | ·
|Tr|), so we obtain that the total number of functions is in O(|P | · |Tr|).

�

Now we consider the complexity of computation of coefficients of L =
normQ for some Q ⊆ P . For x ∈ Nω, size(x) denotes the number of
bits of x when encoded in binary. We suppose that size(x + y) = 1 +
max{size(x), size(y)}, size(x · y) = size(x) + size(y), and size(ω) = O(1).



2.3 Bisimilarity between BPP and Finite-State System 27

Proposition 2.9

For each p ∈ P , size(cp) is in O(n).

Proof: Let p1, p2, . . . , pl be the sequence of places from Q ordered by the
order in which the algorithm determines their coefficients, let ci be the co-
efficient of pi, and let ti be the transition used for computation of ci, i.e.,
the transition such that pre(ti) = pi and ci = di, where we write di instead
of dti . Let size(t) be the number of bits of representation of t ∈ T , i.e.,

size(t) = O((1 + |R|) · size(|P |)) +
∑

p∈R

size(F (t, p))

where R = succ(t).

By induction on i we prove the following proposition from which the result
directly follows: For each i, 1 ≤ i ≤ l, size(ci) ≤

∑

1≤j≤i size(tj). This
holds trivially for i = 1 because c1 is always 1 or ω, so suppose i > 1. Let
R = succ(ti). Note that

di = 1 +
∑

q∈R

cq · F (ti, q) ≤ 1 +
i−1
∑

j=1

cj · F (ti, pj)

because when di is computed, each cq is known and finite, and so it is either 0
or one from c1 to ci−1.

size(cj · F (ti, pj)) = size(cj) + size(F (ti, pj)). The sum of all such products
can be written in the size of maximal of them plus some number less then
their count (overflow caused by addition). This size is less then size(max{cj |
1 ≤ j < i}) +

∑i−1
j=1 size(F (ti, pj)). The second summand (the sum) is less

then size(ti). By induction hypothesis maximal cj can be written in the
count of bits needed for first i − 1 transitions. Therefore di (and hence ci
too) can be written in the space needed for representations of transitions
t1, . . . , ti. �

Proposition 2.10

All coefficients of L = normQ are computed in O(n2).

Proof: The most time-consuming step is computation of all di. In com-
putation of this, multiplications are more time-consuming than additions.
Hence it suffices to show that aggregated complexity of all multiplications
is in O(n2).

In our algorithm, each di is computed only once. During computation of di

we need to determine all products F (ti, pj) · cj where pj ∈ succ(t). From
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Proposition 2.9 we know that size(cj) is in O(n) for every cj . Hence one
product is computed in O(n ·size(F (ti, pj))). If we sum complexities of such
products for all transitions and places to which transitions give tokens, we
get the aggregated complexity of all multiplications

O(
∑

i,j

(n · size(F (ti, pj)))) = O(n ·
∑

i,j

size(F (ti, pj))) = O(n2)

. �

Proposition 2.11

For given L = normQ, changes δL
t caused by all transitions can be computed

in time O(n2).

Proof: For each transition t, the value δL
t is computed using expression 2.1

from Subsection 2.3.3. If some cj is infinite then δt is infinite too. Hence
we do computation of the sum only for finite values. The complexity of
additions is dominated by the complexity of multiplications cj · F (t, pj).
Each such product is computed only once. From Proposition 2.9 we know
that each cj is in O(n). Each F (t, pj) is used only once and is part of our
representation of BPP. Hence we can similarly as in Proposition 2.10 for
coefficients deduce that aggregated complexity of all multiplications is in
O(n2), from which the result follows. �

Lemma 2.12

The algorithm adds one L to L in time O(n2).

Proof: As follows from Propositions 2.10 and 2.11, the running time of
steps 1 and 2 is O(n2). The running time of step 3 is also O(n2) using
one of standard algorithms for lexicographic sorting of strings (see [1, 36]),
because values of δt can be represented as binary numbers, i.e., as strings
of 0 and 1. Also the running time of step 4 is O(n2) if it is implemented
carefully. �

Theorem 2.13

There is an algorithm solving BPP-FS-BISIM with running time O(n4).

Proof: We have described the algorithm. Lemmas 2.5 and 2.6 ensure the
correctness of the algorithm. Since the addition of new L to L is the most
time consuming operation of the algorithm, it follows from Lemmas 2.8
and 2.12 that the running time of the algorithm is O(n4). �
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2.4 Bisimilarity of Normed BPP

It was mentioned in the Section 2.1 that BPP-BISIM is PSPACE-complete
and in the Section 2.3 that a subproblem BPP-FS-BISIM of this problem
where one of two systems is finite-state can be decided in O(n4). Now we will
discuss another subproblem of BPP-BISIM, the nBPP-BISIM problem.
There are two (possibly infinite state) BPP systems given at the instance
but both of them must be normed. If we take, as usual, disjoint union of
those two systems, our problem can be formulated as follows:

Problem: nBPP-BISIM

Instance: A normed BPP system ∆, markings M1,M2 ∈ M∆.

Question: Is M1 ∼M2 ?

Hirshfeld, Jerrum and Moller [15] developed a specific algorithm for nBPP-

BISIM which works in polynomial time; they did not analyze the degree of
the polynomial. The straightforward analysis leads to something like O(n5),
maybe O(n4) could be possible with some deep insight.

The algorithm presented in this subsection was published in [17]. It is a more
detailed version of Jančar’s algorithm from [16] specialized only for the case
of nBPP which enables worst case estimation time O(n3). The result holds
(even) for the case when the numbers in specification of F and in initial
marking (or equivalently the numbers of occurrences of variables in the right-
hand sides of rules and in the initial sequence) are given in binary.

The result presented in Section 2.3 was published later than algorithm for
deciding bisimilarity of normed BPP and it was using some complexity es-
timations from it. But algorithm for bisimilarity between BPP and FS uses
several subprocedures in (just slightly) more general version and this gen-
eralization does not affect its time complexity. Therefore the section with
more general results was presented first in the previous section and in this
section we will make references to it and point on possible simplifications
caused by using it only on normed systems.

Our main algorithm again performs a stepwise decomposition of the set Tr
of transitions, i.e., it constructs a sequence of decompositions of Tr, where
each new decomposition refines the old one.

For each subset (a decomposition class) T ′ ⊆ Tr, notation Pre(T ′) is used
for the set {p | p = pre(t), t ∈ T ′}.
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The process starts with the (initial) decomposition according to action la-
bels: transitions t1, t2 are in the same class iff l(t1) = l(t2).

The iterated step of the main algorithm refines a current decomposition of Tr
according to the changes which the rules cause on the functions normPre(T ′),
for all current decomposition classes T ′. (For the initial decomposition we
can observe that normPre(T ′) is dda for the respective action a.)

This surely finishes, with a decomposition denoted decomp(Tr). Results
of [16] guarantee that M1 and M2 are bisimilar iff normPre(T ′)(M1) =
normPre(T ′)(M2) for each class T ′ in decomp(T ).

It is useful to realize that the decomposition problem is the crucial problem
for us; the bisimilarity problem can be easily reduced to it:

Having a BPP system and two states M1, M2 we can add two fresh places
p1, p2 and transition t1, t2 such that pre(t1) = p1, pre(t2) = p2, F (t1, p) =
M1(p), F (t2, p) = M2(p) for all p ∈ P and l(t1) = l(t2) = a for any chosen
action a. It is clear that M1 ∼ M2 in the original system iff Mp1

∼ Mp2

in the new system (recall that Mp means marking where M(p) = 1 and
M(p′) = 0 for all p′ ∈ p, p′ 6= p). Moreover, it can be readily verified that
Mp1

∼Mp2
iff t1, t2 are in the same class of decomp(Tr).

For complexity analysis, we have to make precise the way of presenting
(normed) BPP-systems and determining their size w.r.t. which the com-
plexity is measured. We will generally assume that a (normed) BPP-system
is encoded in the same way as in the previous section, i.e., as a list of places
and transitions, where the encoding of each transition t contains a list of all
p ∈ P for which F (t, p) > 0 together with values F (t, p). We assume that
numbers are encoded in binary.

For computation of coefficients of the (linear) function normQ, the algo-
rithm from Figure 2.4 (in Section 2.3) can be used. The only difference is
that for normed BPP systems we do not need a row

if cpmin
= ω then break;

The algorithm will work with it, but the condition will never be satisfied,
hence the break will never be performed.

Propositions 2.9 and 2.10 presented in Section 2.3 hold in the case of normed
BPPs as well. It means that the size of each coefficient of norm function is
in O(n) and all coefficients of a norm function are computed in time O(n2).
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Compute T = {T1, T2, . . . Tp} as the decomposition of the set Tr
according to the action labels.

Let UIS contain all (different) sets Pre(T1), Pre(T2), . . . , Pre(Tp)
PIS := ∅
while UIS 6= ∅ do

for each Q ∈ UIS do

compute all coefficients cY of normQ

for each transition t appearing in a non-singleton class of T do

δ(t) := −cpre(t) +
∑

p∈P cpF (t, p)

end for

decompose each (non-singleton) class in T
according to the computed values δ(t)

let T refer to the newly arisen decomposition
end for

PIS := PIS ∪ UIS
UIS := ∅
for each (newly arisen) class T ′ of T do

if Pre(T ′) 6∈ PIS then UIS := UIS ∪ {Pre(T ′)}
end for

end while

Figure 2.5: The decomposition algorithm

We already sketched at the beginning of this section the ideas of the main
algorithm decomposing the set Tr of transitions. The algorithm is show
on Figure 2.5 and uses the following data structures, with the intended
meanings

T ... a decomposition of the set Tr of all transitions

UIS ... a set of unprocessed (important) sets of places (the norms of such
sets correspond to DD-functions)

PIS ... a set of processed (important) sets of places (for each Q here, the
current decomposition T already separates each two transitions which cause
different changes on normQ)

Theorem 2.14

The decomposition algorithm for normed BBPs runs in O(n3). (Hence
bisimilarity for nBPP is decidable in O(n3).)
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Proof: The Fact 2.7 implies that at most 2 · |Tr| subsets of Tr can appear in
the stepwise decomposition performed by the algorithm. This means that
only O(n) subsets Q of variables are processed (and put in PIS).

By Proposition 2.10, coefficients of each normQ can be computed in O(n2).
For each normQ, the aggregated complexity of computing the changes δr
and the respective refinement of decomposition T can be also shown to be
in O(n2) (similarly as in Section 2.3.4).

We can thus readily derive that the decomposition algorithm runs in time
O(n3). �

2.5 Regularity of BPP

In the section 2.3 we have discussed problem of deciding bisimilarity between
a given BPP system and a given finite-state system. It can be also inter-
esting to know whether there exists some (not specified) finite state system
bisimilar with given BPP system. In this section we will concern with this
problem, called regularity of BPP :

Problem: BPP-REG

Instance: BPP process (M0,∆).

Question: Is (M0,∆) regular ?

This problem was known to be PSPACE-hard ([37]). In [22] was published
an algorithm for this problem working in PSPACE which concludes PSPACE-
completeness. In the following, the mentioned polynomial space algorithm
will be described.

In this subsection we assume some fixed BPP system ∆ = (P,Tr,pre, F, l)
from the instance of BPP-REG.

According to [16], there is an algorithm working in polynomial space gen-
erating a set D ⊆ P(P ) such that for every markings M,M ′ is M ∼ M ′ iff
normQ(M) = normQ(M ′) for all sets Q ∈ D. In the rest of the section we
denote this set D∆.

We define

reach∆(M) = {M ′ |M −→∗ M ′ in ∆} .

(We often write reach instead of reach∆ when ∆ is clear from context.)
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We say a function d : M∆ → Nω is bounded on (M0,∆) if there is some
k ∈ N such that d(M) ≤ k or d(M) = ω for each M ∈ reach(M0) (i.e., d
takes only finitely many different values on markings from reach(M0)).

Proposition 2.15

A BPP process (M0,∆) is regular iff dQ is bounded on (M0,∆) for each
Q ∈ D∆) .

Proof: (⇒) If (M0,∆) is regular then there is some FS process (q0,∆fs)
such that M0 ∼ q0. The system ∆fs has k states, so the distance from any
state of ∆fs to any other state is either less than k or ω. All markings from
reach(M0) can be mapped to bisimilar states of ∆fs (and markings from
M(∆) − reach(M0) are not reachable from markings in reach(M0)) so the
values of dQ(M) must be also less then k or ω for any M ∈ reach(M0) and
Q ∈ D∆.

(⇐) Since D∆ is finite it is obvious that if dQ for Q ∈ D∆ takes only finitely
many values on the elements of reach(M0) then the number of non-bisimilar
markings in reach(M0) is finite. �

Since all sets from D∆ can be enumerated (one by one) using only polynomial
space, all we need to obtain a polynomial space algorithm is a procedure
that in polynomial space tests for given Q ∈ D∆ whether dQ is bounded on
(M0,∆) or not. In fact, this test can be done in polynomial time.

Proposition 2.16

Given a set Q ⊆ P , it can be tested in polynomial time (wrt the size of
(M0,∆)) if dQ is bounded on (M0,∆).

Proof: Let dQ(M) = c1x1 + c2x2 + · · · + ckxk.

Obviously, we can ignore markings M where dQ(M) = ω and consider only
markings where dQ(M) is finite. Let

RF = {M ∈ reach(M0) | dQ(M) < ω}

be the set of such reachable markings.

Note that dQ is unbounded on (M0,∆) iff there is some p ∈ P such that:

1. 0 < cp < ω, and

2. the set {M(p) |M ∈ RF} is infinite.
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(Otherwise on each place p such that 0 < cp < ω there is some bound and
the maximal value of dQ on markings from RF can be bounded by some
constant.)

If dQ(M0) = ω then RF = ∅ and the part (2) of the condition does not hold.
So assume that dQ(M0) < ω. In this case, the part (2) of the condition
holds iff pi is unbounded in (M0,∆

′) where ∆′ is the BPP system obtained
from ∆ by removing each transition t ∈ Tr such that δQ(t) = ω. (Just note
that reach(M0,∆

′) = RF .)

The test if p is unbounded in (M0,∆
′) can be easily done in polynomial time

and we can perform this test for each p such that 0 < cp < ω. �

Theorem 2.17

The problem BPP-REG is PSPACE-complete.

Proof: The polynomial space algorithm for BPP-REG works as follows:
it generates all Q ∈ D∆ one by one (in polynomial space) and tests each of
those sets whether dQ is bounded on (M0,∆).

PSPACE-hardness of BPP-REG was shown by Srba [37] �

2.6 Bisimilarity between Normed BPP and Normed

BPA

In this section we present a polynomial time algorithm for deciding bisim-
ilarity between normed BPA and normed BPP processes. This result was
published at conference [19] and in extended and improved version in journal
[18].

2.6.1 Introduction

One long-standing open problem is the decidability question for the class
PA (process algebra), which comprises “context-free” rewrite systems using
both sequential and parallel composition. For the subcase of normed PA,
a procedure working in doubly-exponential nondeterministic time was shown
by Hirshfeld and Jerrum [13].

More is known about the “sequential” subclass called BPA (Basic Process
Algebra) and the “parallel” subclass called BPP (Basic Parallel Processes)
(which we discussed in previous sections). In the case of BPA, the best
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known algorithm for deciding bisimilarity seems to have doubly-exponential
upper bound [7, 6]; the problem is known to be PSPACE-hard [38]. A
polynomial-time algorithm for normed BPA was shown in [14] (with an
upper bound O(n13)); more recently, an algorithm with running time in
O(n8polylog n) was shown in [32].

The most difficult part of the above mentioned algorithm for normed PA [13]
deals with the case when (a process expressed as) sequential composition is
bisimilar to (a process expressed as) parallel composition. A basic sub-
problem is to analyze when a BPA process is bisimilar to a BPP process.
Černá, Křet́ınský, Kučera [43] have shown that this subproblem is decidable
in the normed case; their suggested algorithm is exponential. Decidability
in the general (unnormed) case was shown in [20], without providing any
complexity bound.

In [19] and [19] we revisited the normed case, and we presented a polynomial
algorithm deciding whether a given normed BPA process α is bisimilar to
a given normed BPP process M . This result will be described in what
follows.

One part of our algorithm (see subsection 2.6.3) is a new algorithm,based
on dd-functions, which transforms the normed BPP process M into a spe-
cial form, which we call “prime form”, where bisimilarity coincides with
equality. Time complexity of this transformation is O(n3). Such a trans-
formation could be based on the prime decompositions from [15] but with
worse complexity (which was, in fact, not analyzed in [15]).

A main idea of our algorithm is to derive a polynomial bound on a “finite-
state core” of the transition system generated by the (transformed) BPP
process M (see Subsection 2.6.4). If the size of the constructed finite-state
core exceeds the derived bound, our decision algorithm answers negatively;
otherwise it constructs a BPA process α′ which is bisimilar to M , and the
final step is to decide if the BPA processes α and α′ are bisimilar.

To derive polynomiality, the mentioned final step can be handled by referring
to [14] or [32]. To get a better complexity upper bound, namely O(n7), we
suggested a simple self-contained algorithm, which exploits the fact that α′

is “almost” a finite-state process (Subsection 2.6.6, it is not published in
[19], only in [18]).

It can be interesting to know, if for a given BPP process there exists a bisim-
ilar BPA process. A polynomial time algorithm testing this was shown in
[43] with no bound on the polynomial degree. Our algorithm tests it for
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a given BPP as well and in time O(n3).

In the Section 2.3 we discussed bisimilarity between a BPP and a finite
state process. For a similar problem of bisimilarity between a normed BPA
and a FS we get an algorithm with running time O(n4) as a side result
of our algorithm for bisimilarity between normed BPA and normed BPP.
Polynomiality of this problem was already shown by Kučera, Mayr [29]. In
fact, they provided an O(n12) algorithm for the more general case of weak
bisimilarity; the complexity for the special case of (strong) bisimilarity was
not analyzed.

2.6.2 Definitions and Simple Observations

Our central problem is defined as follows:

Problem: nBPA-nBPP-BISIM

Instance: A normed BPA-process (α0,Σ), a normed BPP-process (M0,∆).

Question: Is α0 ∼M0 (in the disjoint union of SΣ and S∆) ?

As the size n of an instance of nBPA-nBPP-BISIM we understand the
number of bits needed for its (natural) presentation; in particular we con-
sider the numbers F (t, p) in ∆ and the numbers in M0 to be written in
binary.

In the rest of this section we assume a fixed nBPA Σ and a fixed nBPP ∆.

We will later use the following straightforward propositions.

Proposition 2.18

The norms norm(X), norm(p) for X ∈ VΣ, p ∈ P∆ can be written in
O(n) bits, thus all of them together in O(n2) bits. All these norms can be
computed in time O(n3).

Proposition 2.19

For every Q ⊆ P and t ∈ Tr there is δ ∈ N−1 such that M
t

−→ M ′ implies
normQ(M ′) = normQ(M) + δ (for all M,M ′).

A place p is called a single final place, an SF-place, if all transitions that
take a token from p are of the form p

a
−→ pk, k ≥ 0 (they can only put

tokens back to p). It is easy to see that norm(p) = 1 for every SF-place p
(since ∆ is normed). We say that p is a non-SF-place if it is not an SF-place.
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2.6.3 Normed BPP Systems in Prime Form

We say that a BPP net ∆ is in the prime form if bisimilarity coincides with
identity on the generated LTS, i.e., M ∼ M ′ iff M = M ′. (In this case,
each place p is a “prime” since it is not equivalent to a composition of other
places.) The prime form is technically convenient for developing our main
algorithm; this subsection shows a relevant transformation (Theorem 2.26).

It follows from the unique decomposition results in [15] that for each normed
BPP system ∆ there is an equivalent normed BPP system ∆′ in the prime
form, and that ∆′ can be constructed from ∆ in a polynomial time using the
algorithm, described in [15], which computes certain prime decompositions
of BPP-variables (i.e., BPP-net places); it is a polynomial time algorithm
but its precise complexity has not been analyzed. We proceed in another
way, based on the dd-functions, which yields a transformation with time
complexity O(n3).

The main idea can be sketched as follows. Given a normed BPP system
∆ = (P,Tr,pre, F,A, l), let Ta ⊆ Tr be the set of transitions with label
a ∈ A. It is clear that M ∼ M ′ implies that the distance to disabling
Ta is the same in both M and M ′; by this distance in M we mean the
length of the shortest w such that M

w
−→ M1 and all t ∈ Ta are disabled

in M1. In other words, we must have normpre(Ta)(M) = normpre(Ta)(M
′)

when M ∼ M ′. (pre(T ) = {pre(t) | t ∈ T}.) Now suppose, e.g., that
T ⊆ Ta consists of all transitions with label a such that performing any t ∈ T

changes the norm wrt pre(Ta) by +3 and the norm wrt pre(Tb) by −1, for

some b ∈ A (M1
t

−→ M2 implies normpre(Ta)(M2) = normpre(Ta)(M1) + 3
and normpre(Tb)(M2) = normpre(Tb)(M1) − 1). Then M ∼ M ′ necessarily
implies normQ(M) = normQ(M ′) for Q = pre(T ). These observations
have been refined in [16] to devise an algorithm for general BPP, which was
then instantiated to normed BPP in [17].

Given a normed BPP system ∆ = (P,Tr,pre, F,A, l), of size n, the algo-
rithm from [17] finishes in time O(n3) and constructs a partition

T = {T1, T2, . . . , Tm}

of the set Tr of transitions; denoting di(M) = normpre(Ti)(M), it holds that

M ∼M ′ iff di(M) = di(M
′) for all i = 1, 2, . . . ,m .

Moreover, each class Ti is characterized by its unique pair (ai, δi) where ai



38 Chapter 2. Problems Related to Bisimilarity on Basic Parallel Processes

is the label of all t ∈ Ti and

δi = (δi1, δi2, . . . , δim)

is the vector in (N−1)
m capturing the following change, for any M,M ′:

if M
t

−→M ′ for t ∈ Ti then d(M ′) = d(M) + δi

where d(M) denotes the vector (d1(M), d2(M), . . . , dm(M)). For conve-
nience, we say transition (of the type) ti when meaning any transition t ∈ Ti.

Using similar thoughts as those for deriving Proposition 2.18, we can obtain
the following fact (proven in detail also in [17]).

Proposition 2.20

Each δij can be written in space O(n), and thus all pairs (ai, δi) together in
space O(n3).

Due to the normedness, for every class Ti (i ∈ {1, 2, . . . ,m}) there is at least
one transition tj (j ∈ {1, 2, . . . ,m}) which decreases di (when tj is enabled
in M , which also entails di(M) > 0); this is concisely captured by the next
proposition.

Proposition 2.21

∀i∃j : δji = −1.

We say that ti is a key transition if it decreases some component of d, i.e.
some dj . Formally we define

KEY = {i | δij = −1 for some j} .

Proposition 2.22

∀i ∈ KEY : δii = −1.

Proof: If ti (an element of Ti) decreases some dj then for each M there is

the greatest ℓ such that M
(ti)ℓ

−→. The last firing of ti necessarily decreases
di. Hence δii = −1. �

Thus for each i ∈ KEY, di(M) is the greatest ℓ such that M
(ti)

ℓ

−→. (A
shortest way to disable transitions in Ti is to fire them as long as possible.)

We say that ti reduces tj iff δij = −1. Formally we define the following
relation RED on KEY:
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for i, j ∈ KEY we put i RED j iff δij = −1 .

Proposition 2.23

RED is an equivalence relation.

Proof: Reflexivity follows from Proposition 2.22.

To show symmetry, assume i, j ∈ KEY (so δii = δjj = −1) such that
δij = −1 but δji ≥ 0 (for the sake of contradiction). Then firing tj from
M with di(M) > 0 as long as possible results in M ′ with dj(M

′) = 0 and

di(M
′) > 0. Thus M ′ ti−→, which is a contradiction since dj can not be

decreased.

Transitivity follows similarly: Assume i, j, k ∈ KEY and suppose i RED j

and j RED k but ¬(i RED k). So all δii, δjj , δkk, δij , δji, δjk, δkj are −1 but
δik ≥ 0. Starting from M with dk(M) > 0, we fire ti as long as possible

and thus get M ′ with di(M
′) = dj(M

′) = 0 and dk(M
′) > 0. Thus M ′ tk−→,

which is a contradiction since dj can not be decreased. �

The following two propositions will help us later to show the size of the
constructed BPP in the prime form equivalent to a given one. To simplify
the notation, we put Qi = pre(Ti) and note that di(M) = normQi

(M).

Proposition 2.24

There are at most |P | classes of equivalence RED.

Proof: Let TN ⊆ Tr be some set of norm reducing transitions such that for
each p ∈ P there is exactly one t ∈ TN with pre(t) = p (i.e. |TN | = |P |). It
is thus sufficient to show that for each class C of RED there exists i ∈ C

and t ∈ TN ∩ Ti. Since the net can be emptied by using only the transitions
from TN , for each i ∈ KEY there is t ∈ TN which decreases the norm wrt
Qi; thus t = tj for some j ∈ KEY. Hence j RED i, and therefore j belongs
to the class of i. �

Proposition 2.25

Let Tz be a class of the partition T containing non-key transitions. The
number of classes C of equivalence RED such that ti decreases dz for some
i ∈ C is at most |Tz |.

Proof: Let Tk1
, Tk2

, . . . , Tkx
be all classes of the partition T such that tki

decreases dz. Let TK = Tk1
∪ . . . ∪ Tkx

and QK = Qk1
∪ . . . ∪ Qkx

. Since
the transitions from TK have to be able to decrease dz to 0 (to empty the
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set Qz), it holds Qz ⊆ QK . Each transition from Tki
reduces dz, and so

its input place is from Qz. It follows that Qki
⊆ Qz for each ki, and so

QK ⊆ Qz. Therefore QK = Qz and thus |QK | ≤ |Tz|.

To complete the proof, we need to show that the number of classes of RED

containing some ki is at most |QK |. The idea is similar as in the proof of
Proposition 2.24. We can take some set TN ⊆ TK such that for each p ∈ QK

there is exactly one transition t ∈ TN for which pre(t) = p. Note that
each t ∈ TN reduces dz and |TN | = |QK |. Using only the transitions from
TN , the set QK can be emptied and all dk1

, dk2
, . . . , dkx

set to 0. For each
i ∈ {k1, k2, . . . , kx} there is t ∈ TN which decreases the norm wrt Qi. It
follows from the definition of TN that t = tj for some j ∈ {k1, k2, . . . , kx}.
Hence j RED i, and therefore j belongs to the class of i. �

Theorem 2.26

There is an algorithm, with time complexity O(n3), which transforms a given
normed BPP system ∆ = (P,Tr,pre, F,A, l) into ∆′ = (P ′,Tr′,pre′, F ′,A, l′)
in the prime form, and any given state (marking) M of ∆ into M ′ of ∆′ such
that M ∼ M ′. Moreover, |Tr′| ≤ |Tr|, |P ′| ≤ |P |, and ∆′ is represented in
space O(n3).

Proof: In the first phase we compute the partition T = {T1, T2, . . . , Tm} as
discussed above. We easily verify that Qi = Qj for i, j ∈ KEY iff i RED j

(and so j RED i).

The crucial idea is that ∆′ will have a place pC for each class C of the
equivalence RED. For any M of ∆, the number M ′(pC) will be equal to
normQi

(M) for each i ∈ C. Proposition 2.24 implies |P ′| ≤ |P |.

For every i ∈ KEY, we add a transition t′i in ∆′ such that pre(t′i) = pC

where i ∈ C; t′i is labelled with ai and it realizes the (nonnegative) change
on the other places pC′ according to δi (restricted to KEY). The number of
transitions of ∆′ added in this step is at most equal to the number of key
transitions of ∆.

A non-key transition ti (with δi ≥ (0, 0, . . . , 0)) is enabled precisely when
a (key) transition decreasing di is enabled (recall Proposition 2.21). Thus
for each pC where C contains j with δji = −1 we add a transition t with
label ai and pre(t) = pC which (gives a token back to pC and) realizes the
change δi (restricted to KEY). Proposition 2.25 implies that at most |Ti|
transitions are added to ∆′ for every class Ti of non-key transitions.

A transition t can possibly increase all di. Therefore, an equivalent transition
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t′ can have |P ′| output edges. The multiplicity of each output edge can be
written in space O(n) (recall Proposition 2.20).

Summing up, ∆′ = (P ′,Tr′,pre′, F ′,A, l′) can be constructed in time O(n3)
and represented in space O(n3). The correctness of the construction is
obvious. �

In the following text we only consider BPP systems in the prime form, if
not stated otherwise.

2.6.4 A Bound on the Number of “not-all-in-one-SF” Mark-

ings

In this section we prove the following theorem.

Theorem 2.27

Assume a normed BPA system Σ, with the set V of variables, and a normed
BPP system ∆ in the prime form, with the set P of places. The number of
markings M of ∆ such that α ∼M for some α ∈ V + and M does not have
all tokens in one SF-place is at most 4y2, where y = max{|V |, |P |}.

We start with a simple observation and then we bound the total number of
tokens in the markings mentioned in the theorem.

Proposition 2.28

If Aα ∼M where α ∈ V ∗ and |Car(M)| ≥ 2 then norm(A) ≥ 2.

Proof: From M with |Car(M)| ≥ 2 we can obviously perform two different
norm-reducing steps resulting in two different, and thus nonbisimilar, mark-
ings. On the other hand, any Aα with norm(A) = 1 has a single outcome
(namely α) of any norm-reducing step. �

Proposition 2.29

If |Car(M)| ≥ 2 and α ∼M for α ∈ V + then Tok(M) ≤ |V |.

Proof: In fact, we prove a stronger proposition. To this aim, we order
the variables from V into a sequence A1, A2, . . . , A|V | so that norm(Ai) ≤
norm(Aj) for i ≤ j. We now show the following claim: if Aiα ∼ M , where
|Car(M)| ≥ 2 (and α ∈ V ∗), then Tok(M) ≤ i.

For the sake of contradiction, suppose a counterexample Aiα ∼M , Tok(M) ≥
i+1, for minimal i. Proposition 2.28 shows that norm(Ai) ≥ 2, hence also



42 Chapter 2. Problems Related to Bisimilarity on Basic Parallel Processes

Tokens are

Number of reachable places with norm 1

Place with norm 1 is
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Figure 2.6: Partitioning of markings into 4 classes

i ≥ 2 (since necessarily norm(A1) = 1); therefore Tok(M) ≥ i+1 ≥ 3.
There are two possible cases — Car(M) = 2 or Car(M) ≥ 3. In the first
case, at least one of the two marked places contains at least two tokens and
so it can not be emptied in one step by a norm-reducing transition taking
a token from this place, and it is obvious that the other marked place also
remains marked after this step. In the second case, a norm-reducing step
from an arbitrary marked place leads to a marking where at least two orig-
inally marked places remain marked. Hence there is at least one possible
norm-reducing step M −→R M ′ such that |Car(M ′)| ≥ 2, Tok (M ′) ≥ i.
This step is matched by Aiα −→R Ajβα, Ajβα ∼ M ′, where necessarily
norm(Aj) < norm(Ai) and thus j < i. This contradicts the minimality of
our counterexample. �

From the definition of a non-SF-place follows that a token from any such
place may be moved (not necessarily by a norm-reducing step) to another
place in such a way that the total number of tokens is not decreased by this
step. From this fact and from the previous proposition, we get the following
corollary.

Corollary 2.30

If α ∼M then M(p) ≤ |V | for every non-SF-place p.

We now partition the markings in the theorem into four classes (possibly
tree-like description on Figure 2.6 can be more comprehensible):
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Class 1. Markings M with all tokens in one (non-SF) place (|Car(M)| = 1).

Class 2. Markings M with |Car(M)| ≥ 2 where at least two different places
with norm 1 are reachable; this necessarily means M −→∗ M ′ for
some M ′ satisfying M ′(p1) ≥ 1, M ′(p2) ≥ 1 for some p1 6= p2 and
norm(p1) = norm(p2) = 1.

Class 3. Markings M with |Car(M)| ≥ 2 and with exactly one reachable
(“sink”) place p with norm 1, where p is a non-SF-place.

Class 4. Markings M with |Car(M)| ≥ 2 and with exactly one reachable
(“sink”) place p with norm 1, where p is an SF-place.

We will show that each class contains at most y2 markings by which we
prove the theorem. (In fact, our bound is a bit generous, allowing to avoid
some technicalities.)

Proposition 2.31

The number of markings in Class 1 is bounded by |V | · |P | ≤ y2.

Proof: According to Corollary 2.30 there can be at most |V | tokens in any
non-SF-place and there are at most |P | non-SF-places. It follows that Class
1 contains at most |V | · |P | ≤ y2 markings. �

Proposition 2.32

If α ∼M for M from Class 2 then α = A for some A ∈ V . Thus the number
of markings in Class 2 is at most |V | ≤ y.

Proof: For the sake of contradiction, suppose Aα ∼M where α ∈ V + and
M is from Class 2. We take a counterexample with the minimal length ℓ of
a sequence v such that M

v
−→ M ′ where M ′(p1) ≥ 1, M ′(p2) ≥ 1 for two

different p1, p2 with norm 1. We note that norm(A) ≥ 2 by Proposition 2.28,
and first suppose ℓ > 0. It is easy to verify that there is a move M −→
M ′′, matched by Aα −→ Bβα, Bβα ∼ M ′′, where |Car(M ′′)| ≥ 2 and
the respective length ℓ decreased; this would be a contradiction with the
assumed minimality. Thus ℓ = 0, which means M(p1) ≥ 1, M(p2) ≥ 1.
But then M certainly allows M −→∗

R M1, M −→∗
R M2 where norm(M1) =

norm(M2) = norm(α) ≥ 1 and M1 6= M2, and thus M1 6∼ M2. On the
other hand, Aα can offer only α as the result of matching such sequences;
hence Aα 6∼M . �



44 Chapter 2. Problems Related to Bisimilarity on Basic Parallel Processes

Proposition 2.33

If Aα ∼ M for α ∈ V + and M from Class 3 or 4 then M −→∗
R pnorm(α)

where p is the sink place. Thus α ∼ pnorm(α).

Proof: We prove the claim by induction on the norm norm(A). Suppose
Aα ∼ M as in the statement. Proposition 2.28 implies norm(A) ≥ 2. M
necessarily has a token in a place p′ 6= p with the least norm greater than 1.
Performing a norm-reducing transition with this token corresponds to some
M −→R M ′, and this must be matched by Aα −→R Bβα, Bβα ∼M ′, where
norm(B) < norm(A). Either |Car(M ′)| = 1, in which case necessarily
M ′ = pnorm(Bβα), or |Car(M ′)| ≥ 2, and then M ′ −→∗

R pnorm(βα) due to
the induction hypothesis. Since obviously pnorm(Bβα) −→∗

R pnorm(βα) −→∗
R

pnorm(α), we are done. �

Proposition 2.34

If Aα ∼M where norm(α) ≥ 2 then M is not from Class 3.

Proof: For the sake of contradiction, suppose Aα ∼M with norm(α) ≥ 2,
M from Class 3, i.e. M has exactly one reachable sink place p which is
a non-SF-place. Further assume norm(A) minimal possible; norm(A) ≥ 2
by Proposition 2.28.

If there was a step M −→R M ′ with |Car(M ′)| ≥ 2, the matching Aα −→R

Bβα would lead to a contradiction with minimality of norm(A). Since
|Car(M)| ≥ 2, the only remaining possibility is the following: Tok(M) = 2,
M(p) = 1 and M(p′) = 1 where p′ −→R pk for k = norm(A) + norm(α) −
2 ≥ 2.

Since the sink place p is a non-SF-place, it must be in a cycle C with at
least two places. Moving a token along C cannot generate new tokens, due
to Corollary 2.30, so p′ is not in C. On the other hand, C contains some p′′

with norm(p′′) = 2. Starting in M , we can move the token from p to p′′, the
norm being greater than norm(M) = norm(Aα) along the way. For the
resulting M ′ we obviously have M ′ −→∗

R M ′′ for M ′′ satisfying M ′′(p′′) = 1
and norm(M ′′) = norm(α). Aα can match this only by reaching α but
α ∼ pnorm(α) according to Proposition 2.33 and thus α 6∼M ′′. �

We can thus have Aα ∼ M for M from Class 3 only when norm(α) ≤ 1,
and it is thus easy to derive the following corollary.

Corollary 2.35

The number of markings in Class 3 is at most |V |2 ≤ y2.
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Proposition 2.36

The number of markings in Class 4 is at most |V | · |P | ≤ y2.

Proof: Let Aα ∼ M for M from Class 4, p being the respective SF-sink
place. Using Proposition 2.33, we derive α ∼ Ik where k = norm(α) and
I ∈ V , I ∼ p (such I must exist since M −→∗ p). Thus AIk ∼ M but
AIk 6∼ Im for any m since Im ∼ pm and pm 6∼ M (note that pm 6= M and
∆ is in the prime form).

Since M −→∗
R pm for some m, there must be a (shortest) norm-reducing

sequence A
w

−→ Bβ where β ∼ Inorm(β), B 6∼ Inorm(B) but all norm-
reducing transitions B

a
−→ γ satisfy γ ∼ Inorm(γ). The sequence Aα

w
−→

Bβα (where Bβα ∼ BInorm(βα)) must be matched by some M
v

−→ M ′

where M ′ does not have all tokens in p but every norm-reducing transition
from M ′ results in M ′′ with all tokens in p ; it follows that M ′ has a single
token (so we have at most |P | possibilities for M ′).

This easily implies that there are at most |V | · |P | ≤ y2 markings in Class 4.
�

2.6.5 Problem nBPA-nBPP-BISIM is in PTIME

In this section we describe a polynomial time algorithm for nBPA-nBPP-

BISIM.

In Subsection 2.6.5 we specify conditions, which a normed BPP process
(M0,∆) satisfies iff there exists some normed BPA process (α0,Σ) such
that α0 ∼ M0. The conditions can be easily checked in a time polynomial
with respect to the size of (M0,∆). If (M0,∆) satisfies them, such (α0,Σ)
can be constructed but its size can be exponential with respect to the size
of (M0,∆).

A basic idea of an algorithm for nBPA-nBPP-BISIM is to construct an
nBPA process bisimilar to a given nBPP process (if it exists) and then to
use some (polynomial time) algorithm for deciding if this constructed nBPA
process is bisimilar to the nBPA process from the instance of nBPA-nBPP-

BISIM. The complexity of such algorithm would be exponential in general,
but in Subsection 2.6.5 we show how results from Section 2.6.4 can be applied
to obtain a polynomial time algorithm.
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Deciding if there exists nBPA process bisimilar to a given nBPP

process

We start with some technical notions concerning unbounded places that will
be useful for the characterization of an nBPP process, for which a bisimilar
nBPA process exists.

We first note that if moving a token along a cycle C in a BPP system ∆
generates new tokens in a place p and C is reachable (markable) from M0

then p is primarily unbounded (in M0). Any place which is unbounded is
either primarily unbounded, or secondarily unbounded, which means reach-
able from a primarily unbounded place. Thus any unbounded place has at
least one corresponding pumping cycle.

We say that an SF-place p is growing if there is a transition p
a

−→ pk for
k ≥ 2.

Lemma 2.37

For (M0,∆), ∆ being a normed BPP in the prime form, there exists a normed
BPA process (α0,Σ) such that α0 ∼M0, iff the following conditions hold:

1. each non-SF-place is bounded,

2. there is no M such that M0 −→∗ M , |Car(M)| ≥ 2 and M(p) ≥ 1 for
some growing SF-place p,

3. each non-growing SF-place p is bounded.

Proof: (⇒) If 1. is violated then we cannot have α0 ∼M0 (for any Σ with
a finite variable set V ) due to Corollary 2.30. If 2. or 3. is violated then, for
any c ∈ N, M0 −→∗ M with |Car(M)| ≥ 2 and Tok(M) > c. (Any pumping
cycle for p in 3. contains p′ 6= p.) Hence we cannot have α0 ∼ M0 due to
Proposition 2.29.

(⇐) Suppose we have an nBPP process (M0,∆) where the conditions 1.,2.,3.
are satisfied. We show how an appropriate (α0,Σ) can be constructed. Since
all three conditions hold, the only unbounded places in (M0,∆) are growing
SF-places. Moreover, if some growing SF-place p is reachable from M0 then
Tok(M0) = 1 and each transition sequence reaching p just moves the token
into p without creating new tokens on the way.

We can construct the usual reachability graph for M0, with the exception
that the “all-in-one-SF” markings pk are taken as “frozen” – we construct no
successors for them. The thus arising basic LTS is necessarily finite, and we
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can view its states as BPA-variables; each non-frozen marking M is viewed
as a variable AM , with the obvious rewriting rules.

To finish the construction, we introduce a variable Ip for each SF-place p
together with appropriate rewriting rules.

More formally, for (M0,∆) we could construct nBPA system Σ = (F ∪
I,A,Γ) where F = {AM | M ∈ Muf } (where Muf = {M1,M2, . . . ,Mm}
is the set of non-frozen markings reachable from M0), I = {Ip | p ∈ PSF}
(where PSF = {p1, p2, . . . , pℓ} is the set of SF-places of ∆), and Γ contains
the corresponding rewriting rules.

Note that each rule in Γ is of one of the following three forms: AM
a

−→ AM ′ ,
AM

a
−→ (Ip)

k, or Ip
a

−→ (Ip)
k, where AM , AM ′ ∈ F , Ip ∈ I, and k ∈ N (this

includes also rules of the form AM
a

−→ ε and Ip
a

−→ ε). Configuration α0

corresponding to M0 will be AM0
(or (Ip0

)k when all k tokens in M0 are in
one SF-place p0). Note that each configuration α reachable from α0 is either
of the form AM or (Ip)

k, and we have (α0,Σ) ∼ (M0,∆). �

We note that the conditions in Lemma 2.37 can be checked by straightfor-
ward standard algorithms, linear in the size of ∆ in the prime form (which
means O(n3) if ∆ is not in the prime form). We thus have the following
corollary.

Corollary 2.38

The problem to decide if a given normed BPP process (not necessarily in
the prime form) is bisimilar to some (unspecified) normed BPA process can
be solved in time O(n3).

Polynomial Algorithm for nBPA-nBPP-BISIM

Assume an instance of nBPA-nBPP-BISIM, i.e., nBPA process (α0,Σ)
and nBPP process (M0,∆). The polynomial algorithm for nBPA-nBPP-

BISIM works as follows.

It first transforms (M0,∆) to bisimilar (M ′
0,∆

′) where ∆′ is in the prime
form; recall Theorem 2.26. Note that nothing special is assumed about
(α0,Σ) and it is not transformed to any special form. The algorithm then
starts to build nBPA Σ′ for (M ′

0,∆
′) as described in the proof of Lemma 2.37

by building the set Muf of non-frozen states. If it discovers that the number
of elements of Muf exceeds 4y2, where y is the maximum of {|VΣ|, |P∆′ |},
then the algorithm stops with the answer α0 6∼ M0; this is correct due
to Theorem 2.27. Note that it is not necessary to test the conditions of
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Lemma 2.37 explicitly in the algorithm because if any of these conditions is
violated, the number of non-frozen markings is infinite, which means that
the number of constructed elements of Muf necessarily exceeds 4y2 and the
algorithm stops with the correct answer.

Remark 2.39

Generally the size of ∆′ is O(n3) in the size n of the nBPA-nBPP-BISIM-
instance. But since |P∆′ | ≤ |P∆| (recall Theorem 2.26), the bound 4y2 is in
O(n2).

If the number of elements of Muf does not exceed 4y2, the algorithm finishes
the construction of Σ′. However, it does not construct Σ′ explicitly but
rather a succinct representation of it where the right hand sides of rules of
the form (Ip)

k are represented as pairs (Ip, k) where k is written in binary
(note that O(n) bits are sufficient for k).

Our aim is to apply the polynomial time algorithm from [14] or [32] to
decide if α0 ∼ α′

0. However, there is a small technical difficulty since this
algorithm expects “usual” nBPA, not nBPA in the succinct form described
above. This can be handled by adding special variables I1

p , I2
p , I4

p , I8
p , . . .

I2m

p for each Ip ∈ I and sufficiently large m (in O(n)); the rules are adjusted
in a straightforward way (note that there will be at most O(m) variables on
the right hand side of each rewriting rule after this transformation).

The size of the constructed nBPA is clearly polynomial with respect to the
size of the original instance of the problem and the algorithm from [14]
or [32] can be applied.

So we obtained our main theorem:

Theorem 2.40

There is a polynomial-time algorithm deciding whether (α0,Σ) ∼ (M0,∆)
where Σ is a normed BPA and ∆ a normed BPP.

Since (α′
0,Σ

′) is in a very special form (it is a finite state system (FS)
extended with “SF-tails”), it is in fact not necessary to use the above men-
tioned general algorithm. Instead we can use a specialized and more efficient
algorithm described in the next section.

2.6.6 An Algorithm Deciding nBPA-nBPP-BISIM in O(n7)

The aim of this section is to provide a self-contained algorithm for nBPA-

nBPP-BISIM. It is inspired by the ideas used, e.g., in the proofs in [29,
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30, 32]; being tailored to our specific setting, the algorithm allows to derive
the upper bound O(n7). In Subsection 2.6.6 we fix some notation and in
Subsection 2.6.6 we deal with the simple subcase of the “single final” con-
figurations. Section 2.6.6 can be seen as an adaptation of the bisimulation
base construction from, e.g., [29, 30]. Section 2.6.7 recalls a useful fact on
boolean equation systems, which was also used in [32]; the respective ap-
plication to our case is described in Subsection 2.6.8. Subsection 2.6.9 then
presents the overall algorithm.

Notation

Assume we have an nBPA process (α0,Σ) and an nBPP process (M0,∆) (not
necessarily in the prime form) from the instance of nBPA-nBPP-BISIM,
and the nBPA process (α′

0,Σ
′) obtained from (M0,∆) as described in the

previous section (with VΣ′ = F ∪I) stored using the succinct representation
described above (the right hand sides of the form (Ip)

i are stored as pairs
(Ip, i) with i represented in binary).

In the rest of the section, we assume the following:

• n is the size (in bits) of the original instance of nBPA-nBPP-BISIM,

• m is the size of Σ (note that m < n, |VΣ| < m, and m is greater than
the sum of lengths of the right hand sides of the rules of Σ),

• k = |VΣ′ | = |F| + |I|,

• ℓ is the total number of the rules of Σ′,

It is clear from the previous discussion that |F| ∈ O(n2), |I| < n, and
k ∈ O(n2). Since each reachable configuration α of (α′

0,Σ
′) is bisimilar to

some marking of ∆, the number of transitions enabled in α is bounded by
the number of transitions of ∆, and so it is less than n. This means that
ℓ ∈ O(n3).

Recall that all reachable configurations of (α′
0,Σ

′) are either of the form AM

or (Ip)
i (AM ∈ F , Ip ∈ I). We denote the set of all such configurations by

Conf (Σ′), i.e.,

Conf (Σ′) = F ∪ {(Ip)
i | Ip ∈ I, i ≥ 0} .

Without loss of generality we assume I 6= ∅, which ensures that ε ∈ Conf (Σ′).
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Let Vall = VΣ ∪ VΣ′ . We easily note that the values norm(X), norm(α) for
each X ∈ Vall , and each α such that X −→ α can be written in O(n) bits.

Characterization of Configurations Bisimilar to (Ip)
i

The following proposition allows us to characterize the set of configurations
from V ∗

all bisimilar to (Ip)
i where Ip ∈ I and i ≥ 0.

Proposition 2.41

For each Ip ∈ I there is a set Class(Ip) ⊆ Vall such that for each α ∈ V ∗
all

we have α ∼ (Ip)
i iff α ∈ Class(Ip)

∗ and norm(α) = i.

Proof: We construct a set Class(Ip) as the maximal subset of Vall such
that each X ∈ Class(Ip) can perform exactly the same actions with the same
changes on norm as Ip, and can be rewritten only to variables from Class(Ip)

(i.e., X
a

−→ β implies β ∈ (Class(Ip))
∗, and Ip

a
−→ (Ip)

i iff X
a

−→ β for
some β ∈ (Class(Ip))

∗ such that norm(β) − norm(X) = i− 1). �

Note that the classes Class(Ip) for Ip ∈ I can be easily computed in poly-
nomial time and can be precomputed at the beginning. This gives us a fast
(polynomial) test for checking if α ∼ (Ip)

i.

Bisimulation Base

We start with some observations leading to the technical notions defined
below. Suppose we want to check if α ∼ AM for some α ∈ V ∗

all and AM ∈ F
where α = Xα′ for some X ∈ Vall . If Xα′ ∼ AM then any norm reducing
sequence Xα′ −→∗

R α′ must be matched by some norm reducing sequence
AM −→∗

R β such that α′ ∼ β. Obviously, β is either of the form AM ′

(for some AM ′ ∈ F) or (Ip)
i (for some Ip ∈ I). Since α′ ∼ β and ∼ is

a congruence, we have Xβ ∼ AM . On the other hand, from Xβ ∼ AM and
α′ ∼ β follows Xα′ ∼ AM . So we see that Xα′ ∼ AM iff there is some
β ∈ Conf (Σ′) such that Xβ ∼ AM and α′ ∼ β.

This allows us to construct a bisimulation base, i.e. a succinct representation
of ∼ on pairs of (reachable) configurations of (α0,Σ) and (α′

0,Σ
′). The base

is a finite set (of polynomial size) containing some bisimilar pairs from which
all other bisimilar pairs can be generated.
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We start by defining (an overapproximation)

B0 = {(Xα,A) | X ∈ VΣ, α ∈ Conf (Σ′), A ∈ F , norm(Xα) = norm(A)}
∪ {(α,A) | α ∈ Conf (Σ′), A ∈ F , norm(α) = norm(A)} .

Note that B0 is finite since i in (XIi, A) ∈ B0 is determined by X, I,A

and the requirement norm(XIi) = norm(A) and i can be computed as
i = norm(A) − norm(X) (and similarly i in (Ii, A) ∈ B0). So B0 contains
at most (|VΣ| + 1) · (|F| + |I|) · |F| = O(mk2) elements.

For each B ⊆ B0 we define the set Closure(B) as the least subset of {(γα, α′) |
γ ∈ VΣ, α, α

′ ∈ Conf (Σ′)} satisfying the following properties:

(1) B ⊆ Closure(B).

(2) Let X ∈ VΣ, γ ∈ V +
Σ , α ∈ Conf (Σ′), and A ∈ F . Then (Xγα,A) ∈

Closure(B) iff ∃α′ ∈ Conf (Σ′) : (Xα′, A) ∈ B ∧ (γα, α′) ∈ Closure(B).

(3) Let γ ∈ V ∗
Σ , α ∈ Conf (Σ′), I ∈ I, and i ≥ 0. Then (γα, Ii) ∈ Closure(B)

iff γα ∼ Ii.

The aim of the algorithm is to find the bisimulation base

B∼ = {(α,A) | (α,A) ∈ B0, α ∼ A}

which can be used as a finite representation of bisimilar pairs in the sense
of the following proposition.

Proposition 2.42

Closure(B∼) coincides with the set {(γα, β) | γ ∈ V ∗
Σ , α, β ∈ Conf (Σ′), γα ∼

β }.

Proof (idea): Follows directly from the definition of Closure(B∼) using
induction on |γ|. � �

Remark 2.43

Note that for each γ ∈ V ∗
Σ and β ∈ Conf (Σ′) we have (γ, β) ∈ Closure(B∼)

iff γ ∼ β.

Given a set B ⊆ B0 and a pair (α,α′) ∈ B, we say (α,α′) satisfies expansion
in B if the two following conditions are satisfied for each a ∈ A:

• ∀β : α
a

−→ β ⇒ (∃β′ : α′ a
−→ β′ ∧ (α′, β′) ∈ Closure(B)), and
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• ∀β′ : α′ a
−→ β′ ⇒ (∃β : α

a
−→ β ∧ (α′, β′) ∈ Closure(B)).

By E(B) we denote the set of those pairs in B that satisfy expansion in B.
Notice that the mapping E is monotonic, i.e., B ⊆ B′ implies E(B) ⊆ E(B′).
Note also that B∼ = E(B∼). Consider now the sequence

B0 ⊇ B1 ⊇ B2 ⊇ · · ·

where Bi+1 = E(Bi) for i ≥ 0. Since B∼ ⊆ B0 and due to monotonicity of E
we obtain B∼ ⊆ Bi for each i ≥ 0.

Since B0 is finite, there must be a fixpoint Bi = E(Bi) for some i ≥ 0. As
follows from the following proposition (which can be easily checked), this
fixpoint coincides with B∼:

Proposition 2.44

If B = E(B) then Closure(B) is a bisimulation.

In fact, it is not necessary to compute the sequence B0,B1,B2, . . . as it was
done in [29, 30]. Instead, we can use the idea from [32] of a reduction to the
problem of finding a (unique) maximal solution of a certain set of boolean
equations, which was used there in the algorithm for deciding bisimilarity on
normed BPA. The idea considerably simplifies the complexity analysis and
gives a better complexity bound than would be obtained by a straightforward
analysis of the algorithm based on the computation of the fixpoint.

2.6.7 Boolean Equation Systems

Let Var = {x1, x2, . . . , xr} be a (finite) set of boolean variables. A boolean
equation system is a set of equations of the form

xi = ϕi(x1, x2, . . . , xr)

where each ϕi is a monotonic boolean formula over Var , i.e., a boolean
formula constructed using variables from Var , and symbols ∧, ∨, ⊤, and
⊥ (symbols ⊤ and ⊥ denote the formulas that are always true or always
false, respectively). In particular, the negation ¬ can not be used in ϕi.
A valuation ν is a mapping ν : Var → {true, false}; it can be extended
to formulas in the obvious manner. A valuation ν is a solution of a given
boolean equation system if ν(xi) = ν(ϕi) for each i.

On valuations we can define the partial order ⊑ such that ν ⊑ ν ′ iff ν(x) =
true implies ν ′(x) = true (for each x ∈ Var). A valuation ν is the maximal
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solution of a boolean equation system if it is the solution of the equation
system and it is maximal wrt ⊑. It follows from the well-known Knaster-
Tarski fixpoint theorem [41] that every boolean equation system has a unique
maximal solution.

The following simple fact, also used in [32], is crucial for obtaining an efficient
algorithm for the computation of B∼:

Proposition 2.45

Given a boolean equation system, its maximal solution can be found in time
linear wrt the size of the system.

Proof (idea): One possibility, how to get a linear time algorithm for finding
the maximal solution of a boolean equation system, is to construct a boolean
circuit whose inputs correspond to variables in Var and outputs to values
of ϕi for each i, to assign true to all gates except those that correspond
to ⊥, and then propagate values false through the circuit. In particular,
when the output corresponding to some ϕi is set to false, the input gate
corresponding to xi is set to false. � �

2.6.8 Construction of the Boolean Equation System for Find-

ing B∼

We describe how to construct a boolean equation system BES such that the
maximal solution νmax of BES represents B∼. Variables of BES correspond
to pairs (α, β) of configurations; the variable corresponding to (α, β) is de-
noted x(α,β). The system BES is constructed so that for each variable x(α,β)

of BES , νmax (x(α,β)) = true iff α ∼ β.

There are variables of two types in BES :

Type 1: For each (α, β) ∈ B0 there is a boolean variable x(α,β).

Type 2: For each γ ∈ V +
Σ , α ∈ Conf (Σ′) and A ∈ F such that norm(γα) =

norm(A) and γ is a suffix of the right hand side of some rule of Σ
(i.e., (X

a
−→ δγ) ∈ ΓΣ for some X and δ) such that |γ| > 1, there

is a boolean variable x(γα,A)

Note that there are |B0| = O(mk2) variables of type 1, and since the number
of suffixes of the right-hand sides of rules of Σ′ is less than m, there can be
at most mk2 variables of type 2.
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Before defining formulas for all variables in BES , we define auxiliary formu-
las g(α, β) for each α, β where norm(α) = norm(β) (formulas g(α, β) are
used as subformulas in formulas in BES ):

• If β is of the form Ii for some I ∈ I: if α ∼ β then g(α, β) = ⊤ else
g(α, β) = ⊥. (Recall α ∼ Ii iff α ∈ Class(I)∗ and norm(α) = i.)

• If β ∈ F then g(α, β) = x(α,β). (Assuming that the variable x(α,β)

exists in BES , which will be ensured in the following constructions.)

The system BES contains the following equation for each variable x(α,β) of
type 1:

x(α,β) =
∧

α
a

−→α′

















∨

β
b

−→β′

where a=b and
norm(α′)=norm(β′)

g(α′, β′)

















∧
∧

β
b

−→β′















∨

α
a

−→α′

where a=b and
norm(α′)=norm(β′)

g(α′, β′)















The equation expresses that every transition α
a

−→ α′ enabled in α must be
matched by some transition β

a
−→ β′ enabled in β and vice versa, recall the

definition of E . (Note that all subformulas g(α, β) are defined correctly in
the above formula.)

For each variable x(Xα,A) of type 2 (where necessarily X ∈ VΣ and α starts
with a symbol from VΣ), the system BES contains the equation

x(Xα,A) =
∨

B∈F
s.t.

norm(B)=
norm(α)

(g(XB,A) ∧ g(α,B)) ∨
∨

I∈I

(

g(XInorm(α), A) ∧ g(α, Inorm(α))
)

.

This formula directly corresponds to point (2) of the definition of Closure(B).

To estimate the sizes of the formulas in BES , it is obviously sufficient to
estimate the number of occurrences of subformulas g(α, β) in these formulas.
(Note that the size of each g(α, β) is O(1).)

Let us consider formulas for variables of type 1 of the form x(Xα,A) where
X ∈ VarΣ. The rules that can be used for possible transitions in Xα

depend only on X. If we count the total number of pairs of rules X
a

−→ γ

and A
a

−→ β for all X ∈ VΣ, A ∈ F , we can see that there is at most mℓ
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such pairs of rules. Each such pair is used in at most k formulas (there
are at most k possible values of α), and it is used at most twice in each
formula. So the total size of formulas for the variables of type 1 of the above
mentioned form is at most O(mℓk). Similarly, the total size of formulas for
the variables of type 1 of the form x(α,A) where α ∈ Conf (Σ′) is at most
O(ℓ2).

It is clear that the size of each formula for a variable of type 2 isO(|F|+|I|) =
O(k). Since there are at most mk2 variables of type 2, the total size of their
formulas is O(mk3).

Summing the sizes of the formulas in BES we obtain:

Proposition 2.46

The size of BES is O(mk3 +mℓk + ℓ2) = O(n7).

2.6.9 The Overall Algorithm

Theorem 2.47

There is an algorithm solving nBPA-nBPP-BISIM in time O(n7).

Proof: The algorithm works as described above. It transforms the given
nBPP (M0,∆) into the prime form and generates (a succinct representation
of) nBPA (α′

0,Σ
′) from it. If the construction of (α′

0,Σ
′) is finished (i.e.,

the algorithm does not stop with the negative answer), the corresponding
boolean equation system BES of size O(n7) (recall Proposition 2.46) is con-
structed and the algorithm finds its maximal solution νmax in time O(n7) (re-
call Proposition 2.45). The algorithm then checks if νmax (x(α0,α′

0
)) = true

(without loss of generality we can assume that α0 ∈ VΣ, α′
0 ∈ F and so

BES contains the variable x(α0,α′

0
)) which gives the answer for the original

instance of nBPA-nBPP-BISIM.

Before the construction of BES , the rules of Σ and Σ′ can be partitioned
according to their labels and the changes on norms they cause. Norms for
all X ∈ Vall and for all suffixes of right hand sides of rules of Σ can be
precomputed. Note that there are at most O(n5) different subformulas of
the form g(α, β) that occur in formulas for variables of type 2 and that for
every such pair the subformula g(α, β) can be precomputed in time O(n2).
Using all this precomputed information, the system BES can be constructed
in time O(n7).

All other steps of the algorithm (the transformation to the prime form, the
generation of Σ′, the precomputation of the sets Class(I) for all I ∈ I and
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the precomputation of all other necessary information described above) can
be obviously done in time O(n7). �

After νmax has been computed, it can be used for fast deciding if γ ∼ A for
all γ ∈ VΣ, A ∈ F . Just note that for each suffix γ′ of γ we can quickly
find all β ∈ Conf (Σ′) such that γ′ ∼ β (in fact there is always at most
one such β due to the fact that all configurations in Conf (Σ′) are pairwise
non-bisimilar) assuming this information was already computed for all its
proper suffixes.

Remark 2.48

The above algorithm can be used for deciding bisimilarity between a given
nBPA (of size m) and a finite state system (with k states and ℓ transitions)
and the running time of the algorithm is O(mk3 +mℓk+ ℓ2) = O(n4) in this
case (where n is the size of the whole instance). In fact, the algorithm can
be easily adapted for the case when the BPA and the FS in the instance are
not required to be normed (as in [29, 30]) without affecting its complexity.
The more general problem of deciding weak bisimilarity on a given BPA
and FS process was considered in [29] and the algorithm presented there
has running time O(m5(k + ℓ)7) = O(n12). The special case of the strong
bisimilarity was not analyzed there and we are not aware of any tighter
results concerning its complexity.



Chapter 3

Modeling and Verification of

Real Time Database

Management Systems Using

Uppaal

In this chapter we will concern with a practical use of the model checking
tool Uppaal on modeling and verification of real-time database system and
its parts. The models are designed from two different perspectives:

• Concurrency control of existing real-time database management sys-
tem V4DB – This is approach is presented in Section 3.5 and was
published in [23]

• Individual concurrency control protocols – It is presented in Section
3.6 and was published in [24] and [25].

Before the sections with models, there is some introduction and motivation
in Section 3.1, a short description of real time database systems in Sec-
tion 3.2, a mention of existing real time database system V4DB and some
of its properties in Section 3.3 and finally the Section 3.4 is devoted to a
verification tool Uppaal.
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Systems Using Uppaal

3.1 Introduction

A number of used real-time systems and their importance grows every year.
Many of them work with large amount of data. For examples in the following
areas are timing requirements stringent stock exchange systems, telephone
switching, radar tracking etc. Traditionally, each real time software man-
ages data in its own, application dependent, structure. A drawback of this
is that during a creation of such systems similar problems are solved again
and again. For traditional (non-real-time) systems, analogous problem was
solved using database management systems (DBMS). In recent years, there
has been an interest in using, during years well-developed, database tech-
nology in real-time systems.

Traditional DBMS provide efficient storage of data and means for manipula-
tion with stored information. Real-time systems are usually associated with
some time constraints and DBMS can not guarantee any bound on response
time. This is the reason why so-called real-time database management sys-
tems (RTDBMS) emerged ([31, 21]). They should merge some algorithms
from traditional DBMS which proved to be effective in the course of time
and add some real-time possibilities.

Typical use of RTDBMS is in systems where some values from various sen-
sors are stored and using queries, an operator or a controlling part of the
system can search in those values and control the system using the results.
It means that RTDBMS are not the main controlling or functional part of
real-time system, they only provide the support as data store for other parts
of system.

Systems where RTDBMS could be useful can be basically divided into 2
groups:

• Real-time control systems – they work with large amount of data and
have strict claims on time. Examples are production lines with com-
puter control, telecommunication systems, defense systems, air and
ground traffic control etc.

• Classical information systems where at least some operations have
some critical deadline of execution, for example stock-exchange or bank
systems.

The mentioned two categories have different demands on system. Appli-
cations from the first category have really strict demands on response to
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queries (e.g. late emergency stop in case of problems can by costly), validity
and information value of stored data decrease in the course of time (current
values from sensors have bigger influence on control of system than val-
ues several minutes or hours old), insertions and queries are often periodic.
Applications from the second category have usually less strict demands on
response but operations are often aperiodic and more complex.

Research in the area of RTDBMS began in the 1990’s and focused on evo-
lution of transaction processing algorithms, priority assignment strategies,
concurrency control techniques, etc. Algorithms from traditional DBMS
are adapted to use in real-time environment or some completely new al-
gorithms were suggested. The research was based especially on simulation
studies. Hence at Technical university of Ostrava, Václav Król, Jindřich
Černohorský and Jan Pokorný designed and implemented an experimental
real-time database system called V4DB [27], which is suitable for study of
real-time transaction processing. The system is still in further development
but some important results were obtained already.

3.2 An Overview of Real-Time Database Systems

In this section we look more in detail on RTDBMS, their parts, used algo-
rithms and protocols etc. This section is mainly based on informations from
[21] and [27].

RTDBMS use transactional model usually. A transaction is unit of work
performed against a database and treated in a coherent and reliable way
independent of other transactions. Transactions help in two main ways:

• To recover from failures – Before and after transaction a database
should be consistent with reality and inconsistence is allowed during
transaction processing only. If a transaction ended successfully, the
database is surely consistent. If a transaction processing is interrupted
a consistent state from the time before the start of the transaction is
restored.

• To deal with concurrent access – Several transactions may be executed
in parallel. It should be guaranteed that the state of the database
after a successful end of all parallel transactions is the same as if
those transactions were executed sequentially in some order – so called
serializability.
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The transaction processing usually works using a pattern similar to the
following:

1. Begin the transaction

2. Execute operations of the transactions

3. If an error occurs rollback all changes made by the transaction so far
and end the transaction

4. If all operations are successfully ended commit the transaction and
end it

The described characteristics of transactions are the same in the case of
traditional DMBS as well as in the case of real-time DBMS. To deal with
time constraints in RTDBMS some more information may be available and
used by scheduler or concurrency control unit:

1. Timing constraints

2. Criticalness

3. Value function

4. Resource requirements

5. Expected execution time

6. Data requirements

7. Periodicity

8. Time of occurrence of events

9. Other informations

The first three properties are related. A deadline is the time when the
transaction should end. But for different transaction, a criticality of missing
the deadline may be different. A value function measures how valuable it
is to complete the transaction at some point of time. This value usually
falls significantly after the deadline. Resource requirements (number of in-
put/output operations, expected CPU time, etc.), an expected execution
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time and data requirements may help to choose for execution those trans-
actions which have the biggest chance to meat their deadline. A periodicity
means a period of transactions which occur repeatedly in regular intervals.

A big part of RTDBMS research concerns with scheduling of jobs in a
multiprogramming environment. Transaction scheduling is not based only
on CPU scheduling as it is common in other environments. Conventional
scheduling algorithms make an effort to balance the number of CPU-bound
and I/O-bound jobs to maximize system utilization and throughput. They
try to ensure that each process gets its fair share of system resources.
But transactions should be scheduled according to their criticalness and
the tightness of their deadlines. Real-time database scheduling algorithms
give more time and resources to transactions which are very critical and
with stringent timing constraints. A popular method is to assign a priority
(usually a natural number) to each transaction – a transaction with higher
priority is given more CPU time and resources.

Many attributes of transaction may affect its priority. The most relevant to
a RTDBMS are:

• Criticalness – more critical transactions have higher priority

• Deadline – transactions with earlier deadline have higher priority

• Amount of unfinished work – transaction with small amount of un-
finished work can have higher priority. Especially a transaction in
validation phase should have high priority to end as soon as possible
because it has small amount of work to be done and after the finish
can potentially release some resources.

• Amount of computation already invested – transactions that already
have a large amount of computation done may be given a higher pri-
ority.

• Age – transactions could get priorities according to their arrival to the
system, older transaction gets higher priority

• Slackness – a measure, how long an execution of transaction can be
delayed while still making it possible to meet its deadline.

It this worth to combine more of the mentioned parameters to determine
the real priority of a particular transaction.
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Other part of RTDBMS which is given much attention in the research is
concurrency control. It is the control of interaction among concurrent trans-
actions in such a way that consistency of a database is not destroyed. The
interaction between transactions is mainly realized by reads and writes of
data items. Concurrency control is quite well solved in conventional DBMS
as a result of an intensive research in last decades.

The main correctness criterion in concurrency control is so called serializ-
ability. A sequence of database operations is considered serializable if its
effect is equivalent to a serial transaction schedule. In RTDBMS, it can be
in some situations useful to improve performance of database system sacri-
ficing serializability. But more often, the serializability remains the choice
for ensuring database consistency in real time case too.

Protocols used for concurrency control in RTDBMS are either modifications
of protocols used in conventional DBMS or newly created especially for
RTDBMS. Mostly used are the following types of protocols:

• Pessimistic protocols

• Optimistic protocols

and from conventional databases as well known but in real-time environment
less frequently used:

• Speculative protocols

• Multiversion protocols

• Protocols based on dynamic adaptation of serial control

In the following we will consider only pessimistic and optimistic protocols.

The most common pessimistic protocol used in conventional databases is two
phase locking (2PL). The execution of a transaction consists of two phases.
During the first phase, locks are acquired and can not be released. In the
second phase, locks are only released and can not be acquired. Transaction
have to wait if it is requesting a lock that is currently being held by an-
other transaction. Conventional version of 2PL protocol is not suitable for
real time database systems. Two main problems are deadlocks and priority
inversion.

Priority inversion is the situation when transaction with higher priority
needs a lock currently held by transaction with lower priority. It means that
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the transaction with higher priority waits till the transaction with lower pri-
ority ends. As transaction with lower priority get less CPU time and other
resources, the delay for transaction with higher priority could be really big
and possibly cause a miss of its deadline. There are several possible solu-
tions to this problem, i.e. variants of 2PL protocol, which prevent priority
inversion or minimize effect of priority inversion:

• Wait Promote – Priority of the lock holder transaction is raised to
the priority of the requester. It means that transaction with (origi-
nally) higher priority will still wait, but the time needed to finish the
transaction holding a lock can be significantly reduced.

• High Priority – A lock holder transaction with lower priority is aborted
and the lock is granted to a requester with higher priority. It is suitable
in the case when abort of lock holder is not too expensive. Priority
inversion is not problem any more but a problem can be with some
priority assignment strategies – aborted transaction is restarted with
newly set priority which could be higher (deadline of the transaction
is nearer etc.) and restarted transaction can possibly cause abort of
the transaction which originally killed it. This leads to a problem of
cyclic restart.

• High Priority without cyclic restart – before a lock holder transaction
is aborted due to a request by a transaction with higher priority, the
systems checks whether the next incarnation of the aborted transaction
will have also a lower priority then the requesting transaction. If it
is not the case there is no abort and transaction with higher priority
waits.

• Conditional Restart – To avoid too many restarts, an abort of a trans-
action can be conditioned by some other criteria, not just the priority.
For example, if there is high probability that requesting transaction
will meet its deadline even if it is waiting for a lock held by a transac-
tion with lower priority, an abort need not to be necessary.

The second main problem of protocols based on locks is the possibility of
deadlock. Deadlock occurs when a set of transactions is involved in a circu-
lar wait (first transaction is waiting for a lock held by second transaction,
second waits for third, ..., n-th transaction waits for first). There are several
possible solutions. Mainly they are based on abort of some transaction (or
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transactions) to enable successful finish of the other involved transactions.
The victim may be chosen in several ways:

• Abort a transaction that already passed its deadline

• Abort a transaction with longest deadline

• Abort the least critical transaction

• Abort the transaction with lowest priority

Pessimistic protocols based on data locks are widely used in commercial
DBMS. For real-time DBMS can optimistic protocols be suitable because
they are non-blocking and deadlock free.

Execution of a transaction with optimistic concurrency control can be basi-
cally divided into three phases:

1. read – data are read into memory, new values are computed

2. validation – check for conflicts

3. write – changes and computed values are stored into database

During validation phase two rules are checked against all other concurrent
transactions:

1. R/W rule

2. W/W rule

Suppose that a transaction T1 is serialized before a transaction T2. The
first rule means that data items written by T1 have not already been read
by T2. The second rule says that each write of T1 should not overwrite
any write of T2. If some of this rules is violated conflict must be resolved.
This usually involves abort of one or more transactions. There were several
possibilities suggested how to choose transactions for restart if a conflict
occurs:

• Broadcast commit – A validating transaction is always committed and
all conflicting transactions are restarted.
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• Sacrifice – If a validating transaction has lower priority than some of
conflicting transactions, the validating transaction is restarted.

• Wait – If a validating transaction T has lower priority than some of
conflicting transactions, T waits for some time. It gives a chance
for conflicting transactions with higher priority to end before their
deadline. If all conflicting transactions with higher priority exceed
their deadlines, T is committed.

Some other problems have to be solved in RTDBMS as well. This involves
for example memory management and data buffering, I/O scheduling, sup-
port of operating system etc. As this problems were not considered in our
modeling and verification, we will skip their description.

3.3 Real-Time Database System V4DB

The main goal of the V4DB project ([28, 27]) was to design and implement
real-time database system suitable for study of real-time transaction pro-
cessing. The system is still in development. I will slightly describe how it
looked in the time when I started with its modeling and when a PhD thesis
[27] appeared. Later changes in V4DB are not present in our models for
Uppaal yet.

An experimental RTDBMS called V4DB is implemented as an integrated set
of the most important functional parts of a veritable real-time database sys-
tem. It enables testing and performance analysis of different algorithms for
particular functional parts to understand the effect on system performance.

V4DB works under a real-time operating system VxWorks. The database is
stored in memory to eliminate the influence of accesses to hard disk on the
results of tests and analysis. The system consists of several parts working
in parallel. The behavior of those parts could be changed easily by setting
before start. Main executive parts are transaction generator, predispatcher,
dispatcher and transaction execution including concurrency control. Those
parts use data dictionary and database.

To study the database transaction processing, transactions should have
known properties that can be set in advance. Hence they are generated by
an internal generator. There are two different generators – periodic and ran-
dom. Periodic generator creates transaction with predefined period, random
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generator has defined minimal and maximal interval between transactions.
Generated transactions contain the following operations:

• Select – selection and read of a record

• Update – modification of a record

• Insert – insertion of new record into a table

• Delete – removal of a record

From the generator, the transaction is passed to predispatcher. This pro-
cess avoids system overloading and creates the structure fully describing the
transaction. This structure is used by all other functional blocks. Dispatcher
then extracts the transaction parameters and dispatches transactions for ex-
ecution according the priority assignment policy.

The transaction scheduled for an execution is parsed into particular com-
mands and then the commands are processed by the command executor. To
obtain a reasonable performance, multiple transactions must be able to ac-
cess data concurrently. Hence there is concurrency control component that
synchronizes access to the stored data. The modularity of V4DB allows to
use many different concurrency control protocols. Basically, all optimistic
and pessimistic protocols described in Section 3.2 are implemented and can
be used. The selection of one of them is made at the start of V4DB system.

The database of V4DB is very simple. There are several tables. Each table
has given number of records and each record is one value of a given size.
Records that are object of some operation (select, update, etc.) are specified
just by a name of a table and numerical order of the record in the table.

3.4 Verification Tool Uppaal

To our best knowledge, there is not any verification tool intended directly
for real-time database systems. We have chosen the tool Uppaal because
it has at least a support for real-time, it is freely available and models
specified graphically as finite automata are quite easy to understand for
people occupied by real-time databases and not experienced in verification.

Uppaal ([3, 10]) is a verification tool for real-time systems. It is jointly
developed by Uppsala University and Aalborg University. It is designed to
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verify systems that can be modeled as networks of timed automata extended
with some further features such as integer variables, structured data types,
user defined functions, channel synchronization and so on.

A timed automaton is a finite-state automaton extended with clock vari-
ables. A dense-time model, where clock variables have real number values
and all clocks progress synchronously, is used. In Uppaal, several such au-
tomata working in parallel form a network of timed automata.

An automaton has locations (known as states in the automata theory) and
edges (transitions in the automata theory). Each location has an optional
name and invariant. An invariant is a conjunction of side-effect free expres-
sions of the form x < e or x ≤ e where x is a clock variable and e evaluates
to an integer. Each automaton has exactly one initial location.

Particular automata in the network synchronize using channels and values
can be passed between them using shared (global) variables. A state of
the system is defined by the locations of all automata and the values of
clocks and discrete variables. Valid are only states such that invariants of
actual locations of all automata are evaluated to true when using actual
values of clocks. The state can be changed in two ways – passing of time
(increasing values of all clocks by the same amount) and firing an edge of
some automaton (possibly synchronizing with another automaton or other
automata).

Some locations may be marked as committed. If at least one automaton is
in a committed location, time passing is not possible, and the next change
of the state must involve an outgoing edge of at least one of the committed
locations.

Each edge may have a select, a guard, a synchronization and an assignment.
Select gives a possibility to choose nondeterministically a value from some
range. Guard is a side-effect free expression that evaluates to a boolean.
The guard must be satisfied when the edge is fired. It can contain not only
clocks, constants and logical and comparison operators but also integer and
boolean variables and (side-effect free) calls of user defined functions.

Synchronization label is of the form Expr! or Expr? where Expr evaluates
to a channel. An edge with c! synchronizes with another edge (of another
automaton in the network) with label c?. Both edges have to satisfy all
firing conditions before synchronization. Sometimes we say that automaton
firing an edge labeled by c! sends a message c to the automaton firing an
edge labeled by c?. There are urgent channels as well – synchronization
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CBA

x<=15

z:int[0,5]
x>=5 && y==0

synchr!
x=0,y=z

Figure 3.1: Graphical representation of a timed automaton in Uppaal

through such a channel have to be done in the same time instant when it is
enabled (it means, time passing is not allowed if a synchronization through
urgent channel is enabled) – and broadcast channels (any number of c?
labeled edges are synchronized with one c! labeled edge) . An assignment is
a comma separated list of expressions with a side-effect. It is used to reset
clocks and set values of variables.

Figure 3.1 shows some of the described notions are represented graphically
in Uppaal. There are 3 locations named A, B and C. Location A is initial and B

is committed. Moreover A has an invariant x<=15 with the meaning that the
automaton can be in this location only when the value of the clock variable
x is less or equal 15. The edge between A and B has the select z:int[0,5]

– it nondeterministically chooses an integer value from the range 0 to 5 and
stores it in variable z. This edge also has the guard x>=5 && y==0. This
means that it can be fired only when the value of the clock variable x is
greater or equal 5 and the integer variable y has the value 0. Data types of
variables are defined in a declaration section. Further it has synchronization
label synchr! and an assignment x=0, y=z reseting the clock variable x

and setting the value of z to the integer variable y. Second edge has only
synchronization label synchr? hence it can be fired only when some other
automaton (possibly of the same template) has an edge labeled synchr!

enabled.

Uppaal has some other useful features. Templates are automata with param-
eters. These parameters are substituted with given arguments in the pro-
cess declaration. This enables easy construction of several alike automata.
Moreover, we can use bounded integer variables (with defined minimal and
maximal value), arrays and user defined functions. These are defined in dec-
laration sections. There is one global declaration section where channels,
constants, user data types etc. are specified. Each automaton template
has own declaration section, where local clocks, variables and functions are
specified. And finally, there is a system declaration section, where global
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variables are declared and automata are created using templates.

Uppaal’s query language for requirement specification is based on CTL
(Computational Tree Logic, [12]). It consist of path formulae and state for-
mulae. State formulae describe individual states and path formulae quantify
over paths or traces of the model.

A state formula is an expression that can be evaluated for a state without
looking at the behavior of the model. For example it could be a simple com-
parison of a variable with a constant x <= 5. The syntax of state formulae
is similar to the syntax of guards. The only difference is that in a state
formula disjunction may be used.

There is a special state formula deadlock. It is satisfied in all deadlock
states. The state is deadlock if there is not any action transition from the
state neither from any of its delay successors.

Path formulae can be classified into reachability, safety and liveness. Reach-
ability formulae ask if a given state formula is satisfied by some reachable
state. In Uppaal we use F♦ϕ where ϕ is a state formula and we write it as
E<> ϕ .

Safety properties are usually of the form: “something bad will never hap-
pen”. In Uppaal they are defined positively: “something good is always
true”. We use A�ϕ (written as A[] ϕ) to express, that a state formula ϕ
should be true in all reachable states, and E�ϕ (E[] ϕ) to say, that there
should exist a maximal path such that ϕ is always true.

There are two types of liveness properties. Simpler is of the form: “some-
thing will eventually happen”. We use A♦ϕ (A<> ϕ) meaning that a state
formula ϕ is eventually satisfied. The other form is: “leads to a response”.
The formula is ϕ ψ (written as ϕ --> ψ) with the meaning that whenever
ϕ is satisfied, then eventually ψ will be satisfied.

The simulation and formal verification are possible in Uppaal. The simula-
tion can be random or user assisted. It is more suitable for the user of the
tool to see if a model is behaving like he wants and like it corresponds to the
real system. Formal verification should confirm that the system has desired
properties expressed using the query language. There are many options and
settings for verification algorithm in Uppaal. For example we can change
representation of reachable states in memory or the order of search in the
state space (breadth first, depth first, random depth first search). Some of
the options lead to less memory consumption, some of them speed up the
verification. But improvement in one of these two characteristic leads to a
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degradation of the other, usually.

For more exact definitions of modeling and query languages and verification
possibilities of Uppaal see [3].

3.5 Modeling of V4DB

First our attempts on modeling and verification of real-time database sys-
tems were concerned with models of V4DB parts with emphasis on concur-
rency control. Uppaal is supposed to be used on so-called reactive systems,
which are quite different from database systems. So we need to solve the
problem of modeling data records of the database and some other problems.
Then we would like to check some important properties of used protocols
and algorithms, for example: absence of a deadlock when using an algo-
rithm which should avoid deadlock in the transaction processing, processing
transaction with bigger priority instead of transactions with smaller priority
and so on.

Big problem of verification tools is so called state space explosion. Uppaal
is not able to manage too detailed models. On the other hand, too simple
models can not catch important properties of a real system. So we need to
find a suitable level of abstraction.

Concurrency control is one of the most important and crucial parts of all
database management systems allowing concurrent access to data records.
Some of used protocols are described in Section 3.2.

In this section, we will concentrate on a pessimistic protocol called Two
phase locking (2PL) (Subsection 3.5.1) and one optimistic protocol called
Sacrifice (3.5.2). In the Subsection 3.5.3 we will then discuss some possible
formula expressed in query language of Uppaal which can be checked on the
suggested models. All this results were published in [23].

3.5.1 Pessimistic Protocol Two Phase Locking

In this subsection we will show one possible model of pessimistic concurrency
control protocol. But the ideas used to create this model are general and
can be used for creation of models of other protocols as well.

Protocol called Two phase locking (2PL) is based on data locks. The trans-
action must have a lock before access to a data record. All locks granted
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to a transaction are released after all operations of this transaction are exe-
cuted. There are two types of locks – for read and write. The first is used
for the operation select and the latter for update, delete and insert. Either
one write lock or several read locks can be on a particular record (for sim-
plicity, in our model will be only one read lock allowed for one record). If
a transaction can not get a lock for a request it is placed in a queue of this
record. After an existing lock is released, a new lock is granted to the first
transaction in the queue.

Deadlock can arise in the described protocol when some transactions wait
mutually for locks acquired by other transactions. This can be avoided in
several different ways. The one used in V4DB is time limit for waiting in a
queue for a lock. After the limit, transaction is restarted or aborted if its
critical time has passed. Both, restart and abort of the transaction, release
all locks granted to this transaction in the past and some other waiting
transactions can get them.

The model consists of several timed automata. Each of them represents
a part of RTDBMS. Generator and dispatcher are not in our focus hence
they are modeled as one, quite simple, automaton. We only need to catch
a transaction creation.

In V4DB, there is a maximal number of active transactions at the same time.
Predispatcher avoids overload of the system in such a way that transactions
beyond the limit are put into the buffer and executed when the execution
of some other transactions terminates. If the buffer is full, incoming (in
experimental system generated) transactions are discarded.

First automaton represents a dispatcher together with random generator. It
is depicted on Figure 3.2 and is quite simple.

The variable waiting counts transactions waiting for an execution in the
buffer. Two edges represent generation of a new transaction. One of them
adds this transaction to a buffer if it is not full. The other one is intended as
a representation of the situation where buffer is full and transaction is dis-
carded without processing. The constants MIN_INTERVAL and MAX_INTERVAL

determine minimal and maximal time between generation of two consecu-
tive transactions. If both constants have the same value, the generator is
periodic. a is a clock variable which measures the interval between two trans-
actions. A created transaction should have some data describing database
operations. But, as they are chosen in random, we can afford in this model
to choose particular operations randomly during the execution.
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Ready
a <= MAX_INTERVAL

waiting>=BUFFER_LEN && 
a >=MIN_INTERVAL

a=0

waiting>0
begin_tran!

waiting--

waiting<BUFFER_LEN && 
a >= MIN_INTERVAL
waiting++, a=0

end_tran?

Figure 3.2: Dispatcher automaton

The other two transitions are used for communication with transaction man-
ager. Communication through the channel begin_tran represents passing of
transaction to the manager. However the transaction is not really generated
in the dispatcher/generator automaton and therefore the synchronization
without any data passing is enough. The second channel is intended as no-
tification of the end of a transaction to the dispatcher. In the actual model
it has no real meaning, it is there only for more realistic behavior and for
use in other models (not presented in this thesis, focused on other aspects
of Two phase locking protocol).

As number of concurrently active transactions is bounded, we can model
each active transaction as one automaton. We use the template shown on
Figures 3.3 and 3.4. In Uppaal it is one big automaton template, locations
with the same name on both figures are the same in the template. Several
copies of this automaton are created in the system declaration. Each copy
has an unique integer identification value stored in the variable id. There
are several user defined functions used in this template. For illustration,
the definition of them (from declaration section of this Uppaal template)
is shown on Figure 3.5. In the following we will just describe intention of
functions in other models without presentation of the full code of them.

An automaton representing transaction starts in the location Free. The
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Execution
End

AbortWorking
x<MAX_OT

AskedForWrite

WaitingForWrite
x<=MAX_DT

Free

canBeWaitingForWrite()
grant_writes?

op==0
comm!
tr_cc=id

grant_writes?
x=0, writeGranted()

rollback!
tr_cc=id

x>MAX_DT &&
trx_time<MAX_TT

rollback!
op=OP_COUNT, tr_cc=id

x>=MIN_OT
op--

access_denied?
x=0

access_granted?
x=0

trx_time>=MAX_TT

op>0
write!

tr_cc=id

end_tran!begin_tran?
trx_time=0, 
op=OP_COUNT

Figure 3.3: Transaction automaton for Two phase locking protocol
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WaitingForRead
x<=MAX_DT

Execution
End

Abort

Working
x<MAX_OT

AskedForRead

Free

trx_time>=MAX_TT

grant_reads?

x=0, readGranted()

canBeWaitingForRead()
grant_reads?

x>MAX_DT &&
trx_time<MAX_TT

rollback!
op=OP_COUNT, tr_cc=id

access_denied?

x=0

op==0
comm!
tr_cc=id

rollback!
tr_cc=id

x>=MIN_OT
op--

access_granted?
x=0

op>0
read!

tr_cc=id

end_tran!

begin_tran?
trx_time=0, 
op=OP_COUNT

Figure 3.4: Second part of a transaction automaton for Two phase locking
protocol
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bool canBeWaitingForRead(){

return (write_count>1 || (write_count==1 && !write_list[id]));

}

bool canBeWaitingForWrite(){

return (read_count>1 || (read_count==1 && !read_list[id]) ||

write_count>1 || (write_count==1 && !write_list[id]));

}

void readGranted(){

if(!read_list[id]) read_count++;

read_list[id]=true;

}

void writeGranted(){

if(!write_list[id]) write_count++;

write_list[id]=true;

}

Figure 3.5: Definitions of functions used in the template for transactions

edge to the location Execution synchronizes with dispatcher automaton.
This ensures that the transaction automaton gets active only when some
transaction is waiting for an execution. The clock variable trx_time will
contain the time of the whole execution of the transaction. For the sim-
plicity, we can assume that each transaction contains the same number of
operations. This number is given by the constant OP_COUNT in the model.
An integer variable op is used as a counter of already executed operations.

If an automaton is in the location Execution and all operations were exe-
cuted (the value of the variable op is 0) the transaction could end. It has
to release all granted locks hence it synchronizes with concurrency control
automaton using the channel comm. The variable tr_cc is shared between
transaction and concurrency control. Transaction which ends sets its iden-
tification to this variable. Therefore the concurrency control knows which
transaction it is synchronizing with.

The proper database operation is not important in our model. We only
have to differentiate between the two types of locks. Hence we consider two
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operations – read and write. Through the channels read and write the
transaction asks concurrency control for locks. It is in fact random for a
particular transaction whether there is a lock on the record already. There-
fore we do not need to represent particular records and pass an identification
of record to the concurrency control. We only get a response through the
channel access_granted if a lock was granted or access_denied in the
opposite case.

If a lock has been granted, the transaction is in the location Working. This
location represents execution of one database operation. We could have
more states for different operations, but, from our actual point of view, all
operations are similar. Hence the execution of an operation is modeled as a
time delay only. The time of an execution is measured using a clock variable
x and an automaton can leave this location only when the time spent there
is greater or equal to MIN_OT and less than MAX_OT (MINimal and MAXimal
Operation execution Time).

Locations WaitingForRead and WaitingForWrite represent the situation
when transaction could not get a lock and is waiting for it. The clock vari-
able x is intended for measuring time spent in those locations. When the
limit MAX_DT is exceeded, the transaction is restarted or aborted. Abort
comes on when the transaction has exceeded its critical time. This is, for
simplicity, for all transactions MAX_TT time units since the start of the trans-
action execution. Transaction which is aborting synchronizes with concur-
rency control using rollback channel. This ensures that all locks, which
were granted to the transaction previously, are removed. Then the transac-
tion automaton can represent other transaction. Restart synchronizes with
concurrency control too. Hence all previously gained locks are removed as
well. The count of operations is set back to OP_COUNT. It is not important
that in the next run of the restarted transaction other operations may be
chosen. In properties we usually ask for something to hold on all possi-
ble execution paths – hence the path with the same order of operations is
considered too.

A transaction waiting for a lock can get it when some other transaction ends
or is restarted. The information about the end of the other transaction is
passed to a waiting one through the broadcast channels grant_reads() and
grant_writes(). The demanded record can be free or not. We represent
those eventualities using nondeterminism. There are two different edges with
the label grant_reads() or grant_writes(), one leads back to a waiting
location and the other to the location Working. In the case that finished
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transaction removed all remaining locks, the edge leading back to the waiting
location is not enabled because of the guard canBeWaitingForRead() or
canBeWaitingForWrite(). Those functions return true when some locks
granted to the other transactions exist.

The last automaton in our model of Two phase locking protocol is concur-
rency control. It is depicted on the figure 3.6. The initial location Ready

is the only one where time delay is possible. All other locations are com-
mitted what prevents time delay. It means, that answers to all requests are
immediate.

The first possible demand is for a read lock. It is passed through the chan-
nel read. We suppose that the database is much greater than the count of
active transactions. Hence there are unlocked records every time. Therefore
it is always possible to grant access to a transaction through the channel
access_granted. The lock can be refused only when some other transac-
tion has a write lock. Concurrency control maintains two boolean arrays
(read_list and write_list) where it stores for each transaction automa-
ton if it has some read or write lock. The function canDenyRead() has
identification of transaction as an argument. It checks whether some other
transaction has an active write lock and returns answer as a boolean value.
When the lock is granted, the function addRead() stores information about
this lock to read_list.

The solution for a write lock demand through the channel write is similar.
The only difference is in the function canDenyWrite(). This function has to
check read locks too. If there is some read or write lock granted to a trans-
action other than the asking one, the lock can be refused. It corresponds to
a real situation when accessed record is the locked one.

The last part of concurrency control is responsible for commits and roll-
backs of transactions. In the real system, all changes made by a transaction
before abort or restart are taken back. We do not have data in our model
hence rollback is the same as commit. The only thing to be done is a release
of all locks granted to the transaction. After the release, waiting transac-
tions should be informed that the accessed record could be free now. If
the transaction had only read locks, transactions waiting for a write lock
are informed because read lock can not block read. If the transaction had
both types of locks or some read locks, all waiting transactions are informed
through the broadcast channels grant_writes() and grant_reads(). The
function removeWrite() stores information about released write locks and
returns true if there was any such lock. The function removeRead() is sim-
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Ready

!write_list[cc_tr] && 
!read_list[cc_tr]

!read_list[cc_tr] 
&& !removed

rollback?

grant_writes!

!write_list[cc_tr] && 
read_list[cc_tr]

removeRead(cc_tr)

read_list[cc_tr] || removed
removeRead(cc_tr)

grant_reads!

write_list[cc_tr]
removed=removeWrite(cc_tr)

comm?

canDenyWrite(cc_tr)
access_denied!

write?read?

canDenyRead(cc_tr)
access_denied!

access_granted!
addWrite(cc_tr)

access_granted!
addRead(cc_tr)

Figure 3.6: Concurrency control manager automaton for Two phase locking
protocol
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ilar for read locks.

One copy of generator, dispatcher and concurrency control automata and
several copies of transaction generator are created using described templates
in the system declaration. This completes our model of a simple real-time
database system with Two phase locking concurrency control protocol.

3.5.2 Optimistic Protocol Sacrifice

Optimistic concurrency control protocols are quite different from pessimistic
protocols. In this section we will show that they can be also modeled to
some level of approximation using timed automata of Uppaal. We have
chosen the protocol called Sacrifice. Using this protocol, all operations of
the transaction are executed. If a conflict is detected in the validation phase
and the validating transaction has a smaller priority, it is restarted and all
previously made changes of data should be taken back. As in the case of
Two phase locking protocol, we will not have any data modeled and rollback
is almost the same as commit for us.

Transaction generator and dispatcher are independent on the chosen con-
currency control protocol. We can use, in our model of a system with the
protocol Sacrifice, dispatcher automata which has been described in the
previous section.

An automaton representing transaction (depicted on the figure 3.7) starts
in the state Free. Edges labeled begin_tran? and end_tran! synchronize
with dispatcher exactly in the same way as in the case of Two phase locking.

The state Working represents an execution of one database operation. We
could have more states for different operations but from our actual point of
view all operations are similar. We use constants MinOT and MaxOT as bounds
on execution time of an operation to model time consumed by database
operations in real systems. The integer variable op is used as a counter
of executed operations. We consider a constant number of operations in
transaction. This number is given by OP_COUNT again.

When a number of non-executed operations is zero the edge to the location
Validation may be used. The transaction is done and it has to be vali-
dated. Database records accessed by operations of a transaction are chosen
randomly by the generator in V4DB. Hence it is in fact random situation
that two transactions access the same record and a conflict occurs. In our
automaton, we have two edges to represent both situations. The edge to
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ValidationConflict

Validation ReportingConflict

InConflict

Working
x <= MAX_OT

BetweenOp

Free

trx_time>MAX_TT
end_tran!

t1==id
restart?

op=OP_COUNT

t1==id
solved? ccconflict!

conflict?
t2=id

conflict!
t1=id

end_tran!

op==0

conflict?
t2=id

t1==id
restart?

op=OP_COUNT

t1==id
solved?

op--

x >= MIN_OT
op--

op!=0
x=0

begin_tran?
op=OP_COUNT, trx_time=0

Figure 3.7: Transaction automaton for Sacrifice protocol
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Free means that validation was successful.

The other edge from Validation represents a conflict situation. A conflict
occurs only when some other, not yet validated, transaction accessed the
same record during the execution of the validating transaction. Hence in our
model there has to be some transaction automaton in the location Working

or BetweenOpwith nonzero count of executed operations. It is ensured by the
use of synchronization through the channel conflict. The validating trans-
action automaton passes its identification to concurrency control manager
automaton using a shared variable t1. The conflicting transaction passes its
identification using a variable t2. Only one synchronization is permitted for
an edge and we need not to synchronize only two transaction automata, but
concurrency control automaton should be synchronized as well. Therefore, a
committed location is used and the edge synchronizing with the concurrency
control through the channel ccconflict is fired without any time delay.

Concurrency control manager automaton sends its responses through the
channels solved and restart. An identification of an automaton for which
the response is intended is in the variable t1. Synchronization through
solved means that conflict was successfully solved and transaction can con-
tinue the validation or the execution. Synchronization through restart

means that the transaction will be restarted. In this case op is set back to
OP_COUNT because all operations should be executed again.

A clock variable trx_time measures the time of an execution of the trans-
action. It is reseted on the first transition of each transaction execution. If
a deadline of a transaction is exceeded the transaction is aborted (transi-
tion from BetweenOp to Free). For simplicity, deadline is the same for all
transactions – it is stored in a constant MAX_TT.

Last automaton of our simple model is concurrency control manager de-
picted on the Figure 3.8. We model Sacrifice protocol, hence the transac-
tion with smaller priority is sacrificed (restarted) when a conflict occurs. In
V4DB, priorities are randomly set by the generator. In the model, we could
choose priority randomly when transaction automaton begins simulation of
the execution. But particular automaton is chosen nondeterministically and
it has unique identification number. Hence we can consider identification to
be the priority. A bigger identification number means a bigger priority.

Concurrency control automaton synchronizes with validating transaction
through the channel ccconflict. When this synchronization occurs, an
identification of validating transaction is in the variable t1 and an iden-
tification of conflicting transaction is in t2. Concurrency control sets the
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Solving

WithoutConflict

restart!

solved!
t1 = pom

t1 <= t2
pom = t1, t1 = t2

restart!

solved!
t1 = t2

t1 > t2

ccconflict?

Figure 3.8: Concurrency control manager automaton
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bigger of those identifications to t1 and sends solved! and then sets the
smaller identification to t1 and sends restart!. Hence one transaction is
restarted and one continues the execution. All three edges between locations
Solving and WithoutConflict are fired without any time delay because of
committed locations.

3.5.3 Verification

The main purpose of a use of verification tools such as Uppaal is verification,
not the modeling. In this section we describe some properties that can be
checked on our models.

In the query language of Uppaal we can express properties containing time
constraints hence it is possible to express exceeding of critical time of trans-
action. We can use bounded integer values hence we can ask questions about
priorities of transactions. But the language has not full expressivity of CTL
logic – there are not operators ‘Until’ and ‘Next’, nested path formula are not
allowed. Hence it is not possible to express all properties we are interested
in.

A problem is also so called state-space explosion. The state is given by
the location of all automata and values of all variables. Hence a number of
reachable states is very large even for relatively simple model. There are
many techniques for a state-space reduction. But they are not perfect and
the problem remains. So it is important to choose proper level of abstraction
such that model captures desired behavior and the state space is manageable
by Uppaal.

Both our models approximate real system in such a way that database
records and data are not captured. So we can not formulate queries such
as if two transactions are changing same record concurrently. But we can
check some other properties.

In the case of Two phase locking protocol, the usual problem are deadlocks.
The modification of this protocol modeled in section 3.5.1 uses time limit on
waiting time which should avoid deadlock. We can check if this modification
is really deadlock-free. Corresponding formula in Uppaal’s query language
is

A[] not deadlock

This property is satisfied on the model. Because of the state-space explosion,
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the answer is given only for a small number of transaction automata (checked
for 3 automata) and small number of operations in each transaction (checked
for 2 operations).

We can ask if some transaction could exceed its deadline. The query is

E<> transactions(0).trx_time > MAX_TT

and this property is satisfied.

In the case of the protocol Sacrifice we can ask whether a non-validating
transaction can be in conflict when no other transaction is in validation
phase. For the simplicity, let us consider a model with two transaction
automata only. The query is

E<> transactions(0).InConflict &&

!(transactions(1).Validation ||

transactions(1).ReportingConflict ||

transactions(1).ValidationConflict)

and this property is not satisfied. We can also ask whether a transaction
with smaller priority can be validated successfully and completed when it
was in conflict with a transaction with bigger priority. If this situation could
occur, there was a state reachable in the model where transaction automaton
with bigger priority is in the location InConflict and the other automaton
is in the location Validation. Hence the query is

E<> transactions(1).InConflict &&

transactions(0).Validation

and it is not satisfied.

Other formulation of the query is if the transaction with the biggest prior-
ity may be restarted. To check this we can slightly modify the model. We
add new location called Restart of transaction automaton and transition
from the location ValidationConflict with a guard t1==id and a syn-
chronization restart? is redirected to the new location. Then the query
is

E<> transactions(2).Restart
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This property is not satisfied too.

We tried more queries on those models. For some queries some small modifi-
cations were needed. For other queries the model have to be changed almost
completely, because chosen abstraction does not capture the demanded be-
havior. It is not possible to create a model of RTDBMS such that it captures
all interesting properties and behavior and all queries on it are manageable
by Uppaal.

3.6 Modeling of Concurrency Control Protocols

In the previous section we presented some models of V4DB system with
emphasis on concurrency control. There were several parts of the system
modeled which are not so important for concurrency control protocols but
they are important for RTDBMS system. The problem is that every added
automaton increases the state space. This caused that even for small amount
of transaction automata some properties were not manageable by Uppaal.

In this section we describe some models that concern just with concurrency
control protocol itself. Techniques used in the models can be used in future
by authors of new concurrency control to verify their design. In [35] authors
also used Uppaal for verification of their new pessimistic protocol, but their
models were quite simple aimed on this concrete protocol and does not
suggest any ideas and possibilities for modeling of other protocols.

For the models of protocols we have chosen pessimistic 2PL protocol (Sub-
section 3.6.1), its modification that avoids deadlocks (Subsection 3.6.2) and
modification called 2PL High priority (Subsection 3.6.3) and two optimistic
protocols – Broadcast commit (Subsection 3.6.4) and Sacrifice (Subsection
3.6.5). Mentioned models of pessimistic protocols were previously published
at a conference [24] and all models (pessimistic and optimistic) in journal
[25].

3.6.1 Pessimistic Protocol Two Phase Locking

The protocol Two phase locking (2PL) was modeled from other perspective
in Section 3.5.1 and there is also short description of its properties. Now we
will show one possible model of this protocol itself without other parts of
RTDBMS system as dispatcher or transaction generator are.



86
Chapter 3. Modeling and Verification of Real Time Database Management

Systems Using Uppaal

ReadLock WriteLock

Unlockedrls_ch[rec_id]? rls_ch[rec_id]?

wrt_ch[rec_id]?

rd_ch[rec_id]?

Figure 3.9: Automaton representing a record in a database

Of course, presented model is not the only one possible. It consists of several
timed automata created using two templates. One type of automata (i.e. one
template) represents data records in a database. A graph of the automaton
of this template is shown on the Figure 3.9. From the concurrency control
point of view, the value stored in a record is not important. Hence we will
not catch it in our model. We need only representation of locks on records.

Each record automaton has an integer ID stored in rec_id. There are three
locations corresponding to two types of locks and to an unlocked state.
Channels rd_ch[x] and wrt_ch[x] are used for requests for read and write
locks on record x. Channel rls_ch[x] is for release (unlock) request.

The graph of automaton of the second template is shown on the Figure
3.10 is intended to create automata representing active transactions in the
system. In almost all existing database systems, there is a bounded number
of active transactions (predispatcher module of RTDBMS holds the queue
of incoming transactions and passes them to a dispatcher in such a way
that it avoids overloading). So it is possible to represent one active (i.e.
currently in execution) transaction as one automaton. After successful end
of a transaction the same automaton represents some other transaction.

For simplicity, all transactions are supposed to have the same number of
operations (given by a constant OPERATIONS). Each operation accesses one
record (i.e. needs one lock). A type of operations and an accessed record
is for a real RTDBMS in fact random because it is determined outside of
the RTDBMS. We do not need to model concrete operations, only locks.
The record is chosen nondeterministically using select rec:rec_id_t. The
operation is then immediately (due to a committed location) chosen nonde-
terministically by using one of three possible edges. If a transaction owns
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ReadRequest

Working
oper_time<=MAX_OPER_TIME

WriteRequest

rd_ch[req_rec]!
locks++, real_locks++,
locked[req_rec]=READ

locked[req_rec]==
UNLOCKED

locked[req_rec]==UNLOCKED
locks++, real_locks++,
locked[req_rec]=WRITE

rls_ch[req_rec]!
locked[req_rec]=
UNLOCKED,
real_locks-- real_locks>0

req_rec=next()

real_locks==0
locks=0

oper_time>=MIN_OPER_TIME

locks==OPERATIONS
oper_time=0

locked[req_rec]==READ
locks++,
locked[req_rec]=WRITE

locked[req_rec]!=
UNLOCKED

locks++

locked[req_rec]!=WRITE

rec:rec_id_t
locks<OPERATIONS

req_rec=rec

wrt_ch[req_rec]!

Figure 3.10: Transaction automaton for Two phase locking protocol
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the demanded type of a lock on the accessed record, it does not asks the
lock again. If it has only a read lock, it can ask a change to a write lock.
In the global array locked is stored the information about owned locks,
local variable locks contains the number of operations for which locks are
gained and local variable real_locks the number of records locked by this
transaction.

If the transaction has all necessary locks, the automaton is in a location
Working. This represents execution of database operations. The time
spent in this location is bounded by the constants MIN_OPER_TIME and
MAX_OPER_TIME. After the execution, all locks are released instantly (using
committed states and edges between them).

The described model simulates basic variant of 2PL protocol where a dead-
lock can arise when some transactions wait mutually for locks granted to
other transactions. A small modification where transactions exceeding their
deadline may be aborted can solve the problem with deadlocks.

3.6.2 Modification of a Model of Two Phase Locking Proto-

col

It is common in real-time databases that a transaction has some deadline.
If this deadline is missed, transaction could get (nearly) useless and can be
aborted for the sake of other transactions to meat their deadline. This we
can use in the modification of 2PL protocol to avoid deadlocks – some of
transactions causing a deadlock reaches its deadline, it is aborted, its locks
are released and some waiting transaction can possibly finish successfully.

A template for database record automata for a model of this protocol re-
mains the same as in the previous model (Figure 3.9). A changed transaction
automata template is shown on Figure 3.11.

There is a local clock variable tr_time added. It measures time from the
beginning of transaction execution. If a transaction is waiting for a lock and
it reaches its deadline (for simplicity same for all transactions given by a
constant DEADLINE), it can be aborted. This means that all locks previously
granted to this transaction are released. It is done by added state Abort

and edges guarded by tr_time>DEADLINE leading to this state. Function
next() returns the smallest identification number of a record for which this
transaction is holding a lock.

We can use Uppaal to verify that this solution is really sufficient to avoid
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Figure 3.11: Transaction automaton for modification of Two phase locking
protocol
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deadlock. For Uppaal, reachability properties are more suitable. So the
formula

E<> deadlock

means that deadlock is reachable in the model and this property is not
satisfied. Hence it is verified that the system is deadlock-free. Of course,
the same formula is not satisfied for the previous model and Uppaal can
show a trace leading to a deadlocked state as a counter-example.

3.6.3 Pessimistic Protocol Two Phase Locking High Priority

The last modification of our model is for a protocol Two phase locking high-
priority (2PL–HP). If a lock is requested by a transaction with a higher prior-
ity, the transaction with a lower priority holding this lock may be restarted.

For this model we change both automata templates. A graph of automaton
of the template representing database records is depicted on Figure 3.12.

Two arrays – locked and lock_type – are defined in the global declara-
tions. The first one contains information about transactions holding locks
for particular records and the latter one contains information about types of
particular locks. lock_holder is a local variable of one record automaton
used for the ID of transaction holding the lock on this record. As almost
all is chosen nondeterministically (including the order of activating partic-
ular transaction automata), we can model priorities using ID numbers of
transaction automata – higher ID means higher priority.

If the automaton is in the location Unlocked, all requests passed through
channels rd_ch and wrt_ch are answered immediately through a channel
granted and informations about this lock are saved to above mentioned
arrays and variable.

If the automaton is in the location WriteLock or ReadLock and a new request
arrives, it has to restart a transaction holding the lock (priorities are checked
before the request in a transaction automaton). Restarted transaction x

is contacted using a channel restart[x]. Then the lock is granted to a
requesting transaction using channel grant. If a write lock is requested
from the location ReadLock, there is a possibility to grant it without any
other activity (except for the change of a type of lock in lock_type array).
This is done when requesting transaction (req_trans) is the same as the
current holder of the read lock (lock_holder).
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ReadLock

WriteLock
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grant!
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Figure 3.12: Automaton representing a record in a database for 2PL-HP
protocol
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The transaction automata template has to be changed as well. The modified
version is depicted on the Figure 3.13.

There are added edges leading to a new location Restart from all locations
where an automaton can be during passing of time. All those edges have
synchronization label restart[trans_id]. In this way a transaction (with
an ID stored in a variable trans_id) can be restarted anytime by a record
automaton. In the location Restart all previously gained locks are released
and the waiting transaction with higher priority is notified using global
boolean variable restarted. A function next() returns the smallest ID
number of a record on which is the transaction actually holding a lock.

Requests for locks are guarded. A requested record (specified by the variable
req_rec) has to be unlocked or locked by a transaction with smaller priority.
It comes handy to use 0 (constant FREE is defined as 0) in the array locked[]

for unlocked records and ID of transaction automaton (i.e. the priority of
transaction) plus one for a lock holder. Than the guard

trans_id+1 > locked[req_rec]

is true whenever the transaction holding a lock on req_rec has a smaller
priority or this record is unlocked.

As in the previous case, although for this model Uppaal can verify that it is
deadlock-free. We can use the same formula

E<> deadlock

and the answer is negative (i.e. no deadlock is reachable).

Furthermore we can check e.g. if the transaction with the highest priority
could be possibly restarted. The number of transaction automata is given
using a constant TRANSACTIONS. Hence the greatest ID number (this means
priority too) is TRANSACTIONS-1. The formula is

E<> Transaction(TRANSACTIONS-1).Restart

and it is not satisfied, i.e. this transaction could not be restarted. For all
other transactions x the formula

E<> Transaction(x).Restart

is satisfied.
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Figure 3.13: Transaction automaton for 2PL-HP protocol
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3.6.4 Optimistic Protocol Broadcast Commit

Optimistic concurrency control protocols are quite different from pessimistic
protocols. In this section we will show that they can be also modeled to some
level of approximation using timed automata of Uppaal. First we have cho-
sen the protocol called Broadcast commit. Using this protocol, all operations
of the transaction are executed on a local copy of records. Then a validation
phase comes. If a conflict is detected with some running transaction, the
running transaction is restarted and all previously made changes of data
should be taken back. Validating transaction then writes all its changes on
records to the global copy of database. So every transaction which reaches
validation phase is finished successfully and cannot be restarted.

For the model of this protocol we use only one template. An automaton
representing transaction (depicted on the figure 3.14) starts in the state
Free.

The state Working represents execution of one database operation. We could
have more states for different operations but from our actual point of view
all operations are similar. We use constants MinOT and MaxOT as bounds
on execution time of an operation to model time consumed by database
operations in real systems. The integer variable op is used as a counter
of executed operations. We consider constant number of operations in a
transaction. This number is given by OP_COUNT.

When the number of non-executed operations is zero, the edge to the lo-
cation Validation may be used. The transaction is done and it has to be
validated. Database records accessed by operations are given from outside
of concurrency control unit (by incoming transactions in the real system
or randomly by the transaction generator in experimental DBMS V4DB).
Hence, for concurrency control protocol, it is in fact random situation that
two transactions access the same record and a conflict occurs. In our au-
tomaton, we have two edges to represent both situations. The edge to Free

means that validation was successful. Boolean variable success is set to
true in this case. This variable can be used for verification purposes – we
can ask whether particular transaction finished successfully. As we do not
represent actual stored data, we can also skip commit operation (transfer of
changes from local copy of database to the global one).

The other edge (loop) from Validation represents conflict situation. Con-
flict occurs only when some other, not yet validated, transaction accessed
the same record. Hence in our model there has to be some transaction
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conflict!

trx_time>MAX_TT

conflict?

success=true

op==0

conflict?

op=OP_COUNT,
restarted=true

x >= MIN_OT
op--

op!=0
restarted=false,
x=0
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Figure 3.14: Transaction automaton for optimistic protocol Broadcast com-
mit
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automaton in the location Working or BetweenOp with nonzero count of
executed operations. It is ensured by the use of synchronization through
the channel conflict. The other transaction (receiving signal through the
channel conflict?) is restarted and the validating transaction continues its
validation process. A transaction could be in conflict with more than one
other transactions and our model enables this (communication through the
channel conflict can be done more times).

A clock variable trx_time measures time of execution of the transaction.
It is reseted on the first transition of each transaction execution. If a dead-
line of a transaction is exceeded the transaction is aborted (transition from
BetweenOp to Free). For simplicity, deadline is the same for all transactions
– it is stored in a constant MAX_TT.

3.6.5 Optimistic Protocol Sacrifice

Protocol Sacrifice is a modification of Broadcast commit. It introduces sac-
rifice of a transaction according to its priority. If a conflict is detected
in a validation phase and validating transaction has smaller priority, it is
restarted and all previously made changes of data should be taken back.
If the validating transaction has at least the same priority, the conflicting
transaction is restarted. As in the case of Two phase locking protocol or
Broadcast commit, we will not have any data modeled and rollback (taking
back all changes done by the transaction) is almost the same as commit for
us.

A graph of an automaton of a template representing transaction in our model
of this protocol is depicted on the Figure 3.15.

This protocol is modification of Broadcast commit hence automata for those
two protocols are quite similar. As in the case of 2PL-High priority proto-
col, we will for simplicity represent priorities using the id variable of the
automaton.

If a conflict is detected in a validation phase, the automaton reaches a state
ValidationConflict. There are two possibilities (i.e. outgoing edges).
The one with a guard id>=conflicted means that the validating trans-
action has bigger priority than the conflicting one (its ID is stored in the
variable conflicted) and nothing happens. In the opposite case, validating
transaction is restarted. In our simplification it means that we set the num-
ber of nonexecuted operations (variable op) back to the initial number and
we store the information about restart into the boolean variable restarted.
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Figure 3.15: Transaction automaton for optimistic protocol Sacrifice
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The counterpart for the transaction in execution phase conflicted with some
transaction in the validation phase is realized using the state InConflict

and its adjacent edges. If the running transaction has bigger priority, noth-
ing happens (represented by the edge with a guard id>validating where
validating is global variable containing id of the validating transaction). In
the opposite case, this transaction is restarted. This is represented similarly
as in the case of restart of validating transaction.

Also for optimistic protocols, it gives sense to verify that they are deadlock-
free. The formula remains the same as for pessimistic protocols:

E<> deadlock

and the answer is negative for both modeled optimistic protocols (i.e. no
deadlock is reachable).

Furthermore we can check e.g. if the transaction with the highest priority
could possibly be restarted. The number of transaction automata is again
given using a constant TRANSACTIONS. Hence the greatest ID number (this
means priority too) is TRANSACTIONS-1. We use also our boolean variable
restarted. The formula is

E<> Transaction(TRANSACTIONS-1).restarted

It is satisfied for Broadcast commit and not satisfied for Sacrifice. Using
similar queries we can show, that transactions with any priority can possibly
be restarted using Broadcast commit. In the case of protocol Sacrifice, the
transaction with the greatest priority (ID) can not be restarted in any run.

For both protocols we can verify that all transactions can finish successfully
at the same time using formula (in the case of 3 transactions):

E<> Transaction(0).success &&

Transaction(1).success &&

Transaction(2).success



Chapter 4

Conclusion

This thesis concentrates on two quite different areas of formal verification.
The first area is complexity of some equivalence-checking problems, i.e.,
the problems where, for given (descriptions of) transition systems, we ask
whether they are equivalent with respect to some notion of equivalence. We
concerned with one of the most important equivalences – the bisimulation
equivalence and with systems specified primarily as Basic Parallel Processes.

The second area is a practical use of model checking tool Uppaal on some
parts of real time database system.

In the next section is an overview of the results presented in the thesis and
it is followed by some open problems and suggestions on further research.

4.1 Summary of the Results

Basic Parallel Processes (BPP) were studied in Chapter 2. Using techniques
inspired by Jančar’s paper [16], some new algorithms were suggested to some
problems:

• A polynomial time algorithm for deciding bisimulation equivalence be-
tween a BPP and a finite-state system (with time complexity O(n4)).

• O(n3) algorithm for deciding bisimilarity of two normed BPPs. This
problem was known to be polynomial but without known degree of
polynomial.
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• A polynomial space algorithm for regularity of BPP. This problem was
known to be decidable and PSPACE-hard.

Moreover we presented a polynomial time algorithm for deciding bisimilarity
between normed BPP and normed BPA with time complexity O(n7). The
best previously known algorithm for this problem was exponential.

In Chapter 3 we were interested in modeling of concurrency control protocols
used in real-time database system using a verification tool Uppaal and in
checking some simple properties expressed as temporal logic formula on
modeled protocols. Several models of different pessimistic and optimistic
protocols were suggested. Presented models show some general possibilities
how to model parts of real-time database systems in verification tools using
modeling language not directly intended for database systems.

4.2 Open Problems and Further Research

In the area of deciding bisimilarity are still some interesting open problems.
For example the problem of decidability of weak bisimulation equivalence on
BPP remains open. There are also some questions concerning complexity.
For example the problem of bisimilarity of BPP and BPA processes in gen-
eral (in this thesis we discussed normed subcase) is known to be decidable
but there are not any complexity estimations. We have even some prelimi-
nary results for this problem leading to triple exponential upper bound, we
hope to improve it.

We prepare a journal article containing summary of our contributions to
problems related to bisimilarity of BPP. An algorithm for bisimilarity of BPP
and finite state system should be improved there to allow time complexity
O(n3 log n). The analysis of this algorithm in the case of normed BPP and
finite state system seems to lead to time complexity O(n2 log n).

In the area of model checking of real-time database systems, there are also
many possibilities for further research. It is, e.g., possible to model and
verify other parts of RTDBMS or use other verification tool. In the long-
term research, it is possible to design some new verification tool specialized
on (real-time) databases.



Kapitola 5

Závěr

Tato práce se zaměřuje na dvě, docela rozd́ılné, oblasti formálńı verifikace.
V prvńım př́ıpadě jde o složitost některých problémů z oblasti ověřováńı
ekvivalenćı, tj. problémů, kde se pro dané popisy systémů ptáme, jestli
jsou ekvivalentńı vzhledem k nějaké zvolené ekvivalenci. Zaměřili jsme se na
jednu z nejvýznamněǰśıch ekvivalenćı – bisimulačńı ekvivalenci a na systémy
specifikované předevš́ım jako základńı paralelńı procesy.

Druhou oblast́ı je praktické využit́ı verifikačńıho nástroje Uppaal na některé
části real-time databázových systémů.

V následuj́ıćıch sekćıch budou shrnuty konkrétńı, v práci prezentované, výs-
ledky. Poté následuje sekce věnovaná otevřeným problémům a možnostem
daľśıho výzkumu.

5.1 Přehled výsledk̊u

V kapitole 2 jsme se zabývali základńımi paralelńımi procesy (Basic Parallel
Processes – BPP). S využit́ım technik inspirovaných DD-funkcemi z článku
[16] jsme navrhli nové algoritmy pro některé problémy:

• Algoritmus pracuj́ıćı v polynomiálńım čase (s horńım odhadem časové
složitosti O(n4)) pro rozhodováńı bisimulačńı ekvivalence mezi BPP
a konečně stavovým systémem.

• Algoritmus pracuj́ıćı v čase O(n3) pro rozhodováńı bisimilarity mezi
dvěmi normovanými BPP systémy. Pro tento problém již byl znám
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polynomiálńı algoritmus (založený na jiných myšlenkách), ale nebyl
k dispozici žádný přesný odhad stupně polynomu.

• Algoritmus rozhoduj́ıćı regularitu BPP v polynomiálńım prostoru. Pro-
tože byla známa PSPACE obt́ıžnost tohoto problému, tak jsme dostali
jeho PSPACE úplnost.

Dále byl prezentován polynomiálńı algoritmus pro rozhodováńı bisimulačńı
ekvivalence mezi normovanými BPP a normovanými BPA procesy s časovou
složitost́ı O(n7). Nejlepš́ı předt́ım známý algoritmus pro tento problém byl
exponenciálńı.

V kapitole 3 jsme se zabývali modelováńım protokol̊u pro ř́ızeńı souběžného
př́ıstupu k dat̊um v real-time databázových systémech. Modelováńı prob́ıhalo
v nástroji Uppaal, který potom za použit́ı metod ověřováńı model̊u umožnil
ověřit nějaké jednoduché vlastnosti vyjádřené jako formule temporálńı lo-
giky. Bylo navrženo několik model̊u r̊uzných verźı pesimistických i optimis-
tických protokol̊u. Prezentované modely ukazuj́ı nějaké obecné možnosti,
jak mohou být modelovány r̊uzné části real-time databáźı v modelovaćıch
jazyćıch verifikačńıch nástroj̊u, které nejsou př́ımo určeny k práci s da-
tabázovými systémy.

5.2 Otevřené problémy a daľśı výzkum

V oblasti rozhodnutelnosti bisimulačńı ekvivalence jsou stále některé zaj́ıma-
vé otevřené problémy. Např́ıklad rozhodnutelnost problému tzv. slabé bisi-
mulačńı ekvivalence na BPP je stále otevřená, i když pro (silnou) bisimulačńı
ekvivalenci je na stejných systémech známá PSPACE úplnost. Zaj́ımavé jsou
také některé otázky složitosti problémů, jejichž rozhodnutelnost je známá.
Např́ıklad bychom se v budoucnu chtěli věnovat problému rozhodováńı bisi-
milarity obecných BPA a BPP systémů (v práci byl tento problém prezen-
tován jen pro normovaný př́ıpad těchto systémů). Tento problém je znám
jako rozhodnutelný, ale neńı znám žádný odhad složitosti. Máme v tomto
směru nějaké předběžné výsledky vedoućı k trojitě exponenciálńımu horńımu
odhadu časové složitosti, ale doufáme ještě v daľśı zlepšeńı.

Připravujeme také článek do časopisu shrnuj́ıćı náš př́ınos v oblasti spojené
s bisimilaritou na BPP. Algoritmus pro bisimilaritu mezi BPP a konečně
stavovým systémem by v tomto článku měl být vylepšen, aby umožnil odhad
časové složitosti O(n3 log n). Analýza tohoto algoritmu pro př́ıpad, kdy dané
BPP je normované, povede ke složitosti asi O(n2 log n).
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V oblasti použit́ı metod ověřováńı model̊u na real-time databázové systémy
se také nab́ıźı mnoho možnost́ı daľśıho výzkumu. Je např́ıklad možné zku-
sit modelovat a verifikovat jiné části real-time databázových systémů nebo
využ́ıt jiný verifikačńı nástroj. V dlouhodoběǰśım výhledu je možné navrh-
nou i nějaký verifikačńı nástroj specializovaný na (real-time) databáze.
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Appendix A

List of Publications

The following list contains reviewed publications of the author in the chrono-
logical order:

• Jančar, P., Kot, M., Bisimilarity on normed Basic Parallel Processes
can be decided in time O(n3), in: Proceedings of the Third Interna-
tional Workshop on Automated Verification of Infinite-State Systems
- AVIS2004, Barcelona, 2004 [17]

• Kot, M., Some Problems Related to Bisimilarity on BPP, in: Pro-
ceedings of Movep’04, Universit Libre de Bruxelles, Brussels, 2004, p.
96-102

• Kot, M., Sawa, Z., Bisimulation equivalence of a BPP and a finite-state
system can be decided in polynomial time, in: Electronic Notes in The-
oretical Computer Science, 2005, vol. 138, issue 3 (Proceedings of the
6th International Workshop on Verification of Infinite-State Systems
–INFINITY 2004), p. 49-60, ISSN 1571-0661 [26]

• Kot, M., Complexity of some Bisimilarity Problems between BPP and
BPA or Finite-State System, in: Proceedings of Movep’06, University
of Bordeaux-1, Bordeaux, 2006, p. 318-323

• Kot, M., Notes on Modeling of Real-Time Database System V4DB in
Verification Tool Uppaal, in: MEMICS proceedings (MEMICS 2007 -
Third Doctoral Workshop on Mathematical and Engineering Methods
in Computer Science), Brno, 2007, p. 82-89, ISBN 978-80-7355-077-6
[23]
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• Jančar, P., Kot, M., Sawa, Z., Normed BPA vs. Normed BPP Revis-
ited, in: Proceedings of CONCUR 2008 - Concurrency Theory, 19th
International Conference, CONCUR 2008, Toronto, Canada, Lecture
Notes in Computer Science 5201, Springer, 2008, p. 434-446, ISBN
978-3-540-85360-2, ISSN 0302-9743 (Print), ISSN 1611-3349 (On-
line), Best paper award [19]

• Kot, M., Modeling Real-Time Database Concurrency Control Protocol
Two-Phase-Locking in Uppaal, in: Proceedings of the International
Multiconference on Computer Science and Information Technology,
Volume 3 (2008), IEEE Computer Society Press, 2008, p. 673-678,
ISBN 978-83-60810-14-9, ISSN 1896-7094 [24]

• Kot, M., Modeling selected real-time database concurrency control pro-
tocols in Uppaal, in: Innovations in Systems and Software Engineering,
Volume 5, Number 2, June 2009, Springer, London, p. 129-138, ISSN
1614-5046 (Print), ISSN 1614-5054 (Online) [25]

• Jančar, P., Kot, M., Sawa, Z., Complexity of Deciding Bisimilarity
between Normed BPA and Normed BPP, in: Information and Compu-
tation, Elsevier, 28 p., ISSN 0890-5401, to appear [18]

Some results were also presented at student workshop:

• Kot, M., Onderek, O., Two known algorithms for checking bisimilarity
of normed BPPs, in: Sborńık semináře Wofex 2003, Ostrava, 2003

• Kot, M., Complexity of deciding bisimilarity of nBPP and bisimilarity
of BPP with finite-state system, in: Proceedings of the 2nd annual
workshop WOFEX 2004, Ostrava, 2004, p. 310-315, ISBN 80-248-
0596-0

• Kot, M., Regularity of BPP is PSPACE-complete, in: Proceedings of
the 3nd annual workshop WOFEX 2005, Ostrava, 2005, p. 393-398,
ISBN 80-248-0866-8 [22]
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