Constraint Processing

Rina Dechter,

Constraint Processing, Morgan Kaufmann

- A constraint network is defined by:
 - A set of variables
 - A domain of values for each variable
 - A set of constraints

Crossword puzzle

- Variables: x₁, ..., x₁₃
- Domains: letters
- Constraints: words from

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	

{HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US}

Map coloring; k-colorability

- Variables: A, B, ..., G
- Domains: k colors
- Constraints: Adjacent nodes should be different

Configuration and design

- Want to build: recreation area, apartments, houses, cemetery, dump
 - Recreation area near lake
 - Steep slopes avoided except for recreation area
 - Poor soil avoided for developments
 - Highway far from apartments, houses and recreation
 - Dump not visible from apartments, houses and lake
 - Lots 3 and 4 have poor soil
 - Lots 3, 4, 7, 8 are on steep slopes
 - Lots 2, 3, 4 are near lake
 - Lots 1, 2 are near highway

Configuration and design

- Variables: Recreation, Apartments, Houses, Cemetery, Dump
- Domains: {1, 2, ..., 8}
- Constraints: derived from conditions

Highway

Lot 5

Lot 6

Lake

Lot 7

Lot 4

Lot 8

Mathematical background

- Sets, domains, tuples
- Relations
- Operations on relations
- Graphs
- Complexity

Operations with relations

- Intersection
- Union
- Difference
- Selection
- Projection
- Join
- Composition

Figure 1.8: Example of set operations intersection, union, and difference applied to relations.

