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 O(exp(n))  :Complexity
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� A cycle-cutset is a subset of nodes in an undirected graph 

whose removal results in a graph with no cycles
� An instantiated variable cuts the flow of information: cuts a 

cycle.
� If a cycle-cutset is instantiated the remaining problem is a 

tree and can be solved efficiently
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Theorem: Algorithm cycle-cutset decomposition has 
time complexity of                       where n is the number 
of variables, c is the cycle-cutset size and k is the 
domain size. The space complexity of the algorithm is 
linear. 

))(( )2( +− ckcnO
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� Given a tree network, we identify a node x_1 which, when 
removed, generates two subtrees of size n/2 (approximately). 

� T_n is the time to solve a binary tree starting at x_1. T_n obeys 
recurrence
• T_n = k 2 T_n/2,  T_1 = k

� We get:
• T_n = n k^{logn +1}

� Given a tree-decomposition having induced-width w* this 
generalizes to recursive conditioning of tree-decompositions:
• T_n = n k^({w*+1} log n)

� because the number of values k is replaced by the number of 
tuples k^w*
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� Proposition 1: Given a constraint network R= (X,D,C), having 
graph G,  a tree-decomposition T = (X, chi,Psi) that has 
induced-width w*,  having diameter r (the longet path from 
cluster leaf to cluster leaf, then there exists a DFS tree dfs(T) 
whose depth is bounded by O(log r w*). 

� Proposition 2: Recursive-conditioning along a tree-
decomposition T of a constraint problem R= (X,D,C), having 
induced-width w*, is identical to backjumping along the DFS 
ordering of its corresponding dfs(T). 

� Proposition 3: Recursive-conditioning is a depth-first search 
traversal of  the  AND/OR search tree relative to the DFS 
spanning tree dfs(T). 
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� Consider a chain graph or a k-tree.
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� Generalize cycle-cutset: condition of a subset that yield a 
bounded inference problem, not necessarily linear.

� b-cutset: a subset of nodes is called a b-cutset iff when the 
subset is removed the resulting graph has an induced-width 
less than or equal to b. A minimal b-cutset of a graph has a 
smallest size among all b-cutsets of the graph. A cycle-cutset is 
a 1-cutset of a graph.

� Adjusted induced-width: The adjusted induced-width with of G 
respect to V is the induced-width of G after the variable set V is 
removed.
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� Idea: runs backtracking search on the b-cutset variables and 
bucket-elimination on the remaining variables.

� Input: A constraint network R = (X,D,C),  Y a b-cutset, d an 
ordering that starts with Y whose  adjusted induced-width, 
along d, is bounded by b, Z = X-Y.

� Output: A consistent assignment, if there is one.
� 1.  while {y} � next partial solution of Y found by backtracking, 

do
• a)  z � solution found by adaptive-consistency(R_y).
• B)  if z  is not false, return solution (y,z).

� 2. endwhile.
� return: the problem has no solutions.
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� Theorem: Given R= (X,D,C), if elim-cond(b) is 
applied along ordering d when Y is a b-cutset
then the space complexity of elim-cond(b) is 
O(n exp(b)), and its time complexity is O(n exp 
(|Y|+b)).
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� Verifying a b-cutset can be done in polynomial 
time

� A simple greedy: use a good induced-width 
ordering and starting at the top add to the b-
cutset any variable with more than b parents.

� Alternative: generate a tree-decomposition, 
then  select a b-cutset that reduce each 
cluster below b.
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� There is no guaranteed  worst-case time improvement of elim-
cond(b) over pure bucket-elimination.

� The size of the smallest cycle-cutset (1-cutset), c_1 and the 
smallest induced width, w*, obey: 
• c_1 >=  w* - 1 . Therefore, 1 +c_1 >=  w*, where the left side of 

this inequality is the exponent that determines time complexity of 
elim-cond(b=1), while w* governs the complexity of bucket-
elimination.

� c_i-c_(i+1) >= 1

� 1+c_1 >=  2+c_2 >=   ... b+c_b,... >=  w*+c_w* = w*
� We get a hybrid scheme whose time complexity decreases as 

its space increases until it reaches the induced-width.
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� Consider the theory:
� (~C v E)(A v B v C v D)(~A v B v E v D)(B v C v D)
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� Algorithm CTE is time exponential in the 
cluster size and space exponential in the 
separator size.

� Trade space for time by increasing the 
cluster size and decreasing the 
separator sizes.

� Join clusters with fat separators.
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� Let T be a tree-decomposition of hypergraph H. Let                 
be the sizes of the separators in T, listed in strictly descending 
order. With each separator size       we associate a  secondary 
tree decomposition     , generated by combining adjacent nodes 
whose separator sizes are strictly greater than       .

� Let      the largest set of variables in any cluster of     .
� Note that as s_i decreases,         increase. 

� Theorem: The complexity of CTE when applied to each      is 
O( n exp(r_i)) time, and O( n exp(    )) space.is iT
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� A connected graph G=(V,E) has a separation node v 
if there exist nodes a and b such that all paths 
connecting a and b pass through v. 

� A graph that has a separation node is called 
separable, and one that has none is called non-
separable.  A subgraph with no separation nodes is 
called a non-separable component or a bi-
connected component.

� A dfs algorithm can find all non-separable 
components and they have a tree structure
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� Assume a constraint network having unary, binary and ternary constraints 
:R = { R_AD,R_AB, R_DC,R_BC, R_GF,D_G,D_F,R_EHI,R_CFE }.
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� Theorem: If R = (X,D,C) is a constraint 
network whose constraint graph has 
nonseparable components of at most 
size r, then the super-bucket elimination 
algorithm, whose buckets are the 
nonseparable components, is time 
exponential O(n exp(r)) and is linear in 
space.
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� hybrid(b_1,b_2):
� First, a tree-decomposition having separators bounded by b_1 

is created, followed by application of the CTE algorithm, but 
each clique is processed by elim-cond(b_2). If c^*_{b_2} is the 
size of the maximum  b_2-cutset in each clique of the b_1-tree-
decomposition, the algorithm is space exponential in b_1 but 
time exponential in c^*_{b_2}.

� Special cases: 
• hybrid(b_1,1):  Applies cycle-cutset in each clique.
• b_1 = b_2. For b=1, hybrid(1,1) is the non-separable components 

utilizing the cycle-cutset in each component. 
� The space complexity of this algorithm is linear but its time 

complexity can be much better than the cycle-cutsets scheme 
or the non-separable component approach alone.
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Problem: Given a circuit and its unexpected output, identify faulty components. 

The problem can be modeled as a constraint optimization problem and 

solved by bucket elimination. 
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A circuit’s primal graph
For every gate we connect
inputs and outputs

Join-tree of c432
Seperator size is 23
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