
1

��������	�
�����������	�������������������	�
�����������	�������������

����������		

����������		

chapter 10chapter 10

Fall 2003 ICS 275A - Constraint Networks 2

���������	
�����

� ����������	 �
������
��������

� �
����

����
������������
�����
��������������������

� �����	��	������������������

� ��� ���� ����
������!�"��

� !���
	����
��!�"����
��
��
���

� #������
�
���������
���
�
�
��
����������������

� $������������������������������

� %�����&
�������
����!�"��

� '���	��

�������������!�"����
��
��
���

Fall 2003 ICS 275A - Constraint Networks 3

�������	
������������	������

 O(exp(n)) :Complexity

(

Fall 2003 ICS 275A - Constraint Networks 4

���������������	���������	�� ������

))exp((:space and timeDR
))(exp(||

*

*

wnO
wObucketi =

�
����)���
*����

Fall 2003 ICS 275A - Constraint Networks 6

������	���� �������

 d ordering along widthinduced -(d)
 ,

*

*

w
(d)))exp(w O(n :Complexity

≠
≠≠

≠

≠

≠

E

D

A

C

B

}2,1{

}2,1{}2,1{

}2,1{ }3,2,1{

:)(
AB :)(
BC :)(
AD :)(

BE C,E D,E :)(

ABucket
BBucket
CBucket
DBucket
EBucket

≠
≠
≠

≠≠≠

%

+

$

!

�

:)(
EB :)(

EC , BC :)(
ED :)(

BA D,A :)(

EBucket
BBucket
CBucket
DBucket
ABucket

≠
≠≠

≠
≠≠

+

%

$

!

�

|| RD
BE ,

|| RE

|| RDB

|| RDCB

|| RACB

|| RAB

RA

RC
BE

Fall 2003 ICS 275A - Constraint Networks 7

��	������	�����	��� ��� ������	 �� ������

,������������-	!./�
�����
�����
��0�����

� ���	��

��-	!./�

�����
������
��0�����

Fall 2003 ICS 275A - Constraint Networks 8

�!���	"��	������#����	��� ��!���	

Fall 2003 ICS 275A - Constraint Networks 10

$��	�����%������ ������
� A cycle-cutset is a subset of nodes in an undirected graph

whose removal results in a graph with no cycles
� An instantiated variable cuts the flow of information: cuts a

cycle.
� If a cycle-cutset is instantiated the remaining problem is a

tree and can be solved efficiently

Fall 2003 ICS 275A - Constraint Networks 11

��� ����������	�����%������ ����� �

Fall 2003 ICS 275A - Constraint Networks 12

"�� ��!���	��	���		�����%������ ����� �

Theorem: Algorithm cycle-cutset decomposition has
time complexity of where n is the number
of variables, c is the cycle-cutset size and k is the
domain size. The space complexity of the algorithm is
linear.

))(()2(+− ckcnO

Fall 2003 ICS 275A - Constraint Networks 13

���������%�������	
�	������	� ���	������	����	��	�	����%���� �������

� Given a tree network, we identify a node x_1 which, when
removed, generates two subtrees of size n/2 (approximately).

� T_n is the time to solve a binary tree starting at x_1. T_n obeys
recurrence
• T_n = k 2 T_n/2, T_1 = k

� We get:
• T_n = n k^{logn +1}

� Given a tree-decomposition having induced-width w* this
generalizes to recursive conditioning of tree-decompositions:
• T_n = n k^({w*+1} log n)

� because the number of values k is replaced by the number of
tuples k^w*

Fall 2003 ICS 275A - Constraint Networks 14

&����������	���' �	��	���������%

������

� Proposition 1: Given a constraint network R= (X,D,C), having
graph G, a tree-decomposition T = (X, chi,Psi) that has
induced-width w*, having diameter r (the longet path from
cluster leaf to cluster leaf, then there exists a DFS tree dfs(T)
whose depth is bounded by O(log r w*).

� Proposition 2: Recursive-conditioning along a tree-
decomposition T of a constraint problem R= (X,D,C), having
induced-width w*, is identical to backjumping along the DFS
ordering of its corresponding dfs(T).

� Proposition 3: Recursive-conditioning is a depth-first search
traversal of the AND/OR search tree relative to the DFS
spanning tree dfs(T).

Fall 2003 ICS 275A - Constraint Networks 15

�!�� ��

� Consider a chain graph or a k-tree.

Fall 2003 ICS 275A - Constraint Networks 16

(�����	�����������	�����

� Generalize cycle-cutset: condition of a subset that yield a
bounded inference problem, not necessarily linear.

� b-cutset: a subset of nodes is called a b-cutset iff when the
subset is removed the resulting graph has an induced-width
less than or equal to b. A minimal b-cutset of a graph has a
smallest size among all b-cutsets of the graph. A cycle-cutset is
a 1-cutset of a graph.

� Adjusted induced-width: The adjusted induced-width with of G
respect to V is the induced-width of G after the variable set V is
removed.

Fall 2003 ICS 275A - Constraint Networks 17

���� %���)�*

� Idea: runs backtracking search on the b-cutset variables and
bucket-elimination on the remaining variables.

� Input: A constraint network R = (X,D,C), Y a b-cutset, d an
ordering that starts with Y whose adjusted induced-width,
along d, is bounded by b, Z = X-Y.

� Output: A consistent assignment, if there is one.
� 1. while {y} � next partial solution of Y found by backtracking,

do
• a) z � solution found by adaptive-consistency(R_y).
• B) if z is not false, return solution (y,z).

� 2. endwhile.
� return: the problem has no solutions.

Fall 2003 ICS 275A - Constraint Networks 18

"�� ��!���	��	���� %���)�*

� Theorem: Given R= (X,D,C), if elim-cond(b) is
applied along ordering d when Y is a b-cutset
then the space complexity of elim-cond(b) is
O(n exp(b)), and its time complexity is O(n exp
(|Y|+b)).

Fall 2003 ICS 275A - Constraint Networks 19

+�����	�	�%������

� Verifying a b-cutset can be done in polynomial
time

� A simple greedy: use a good induced-width
ordering and starting at the top add to the b-
cutset any variable with more than b parents.

� Alternative: generate a tree-decomposition,
then select a b-cutset that reduce each
cluster below b.

Fall 2003 ICS 275A - Constraint Networks 20

$�� �%� ���	�������	�����	�%������

� There is no guaranteed worst-case time improvement of elim-
cond(b) over pure bucket-elimination.

� The size of the smallest cycle-cutset (1-cutset), c_1 and the
smallest induced width, w*, obey:
• c_1 >= w* - 1 . Therefore, 1 +c_1 >= w*, where the left side of

this inequality is the exponent that determines time complexity of
elim-cond(b=1), while w* governs the complexity of bucket-
elimination.

� c_i-c_(i+1) >= 1

� 1+c_1 >= 2+c_2 >= ... b+c_b,... >= w*+c_w* = w*
� We get a hybrid scheme whose time complexity decreases as

its space increases until it reaches the induced-width.

Fall 2003 ICS 275A - Constraint Networks 22

�!�� ��	��	�����������	��	&

� Consider the theory:
� (~C v E)(A v B v C v D)(~A v B v E v D)(B v C v D)

Fall 2003 ICS 275A - Constraint Networks 23

otherwise condition
,)(w* bxi < if Resolve

Fall 2003 ICS 275A - Constraint Networks 25

�"��)�*�	�� ������	�������

)exp(space),_exp(Time
hybrid :0 DR,pure : DPLL,pure : 0

:off- tradeAdjustable
**

bbcb

wbwbb

+
≤≤≥<

Fall 2003 ICS 275A - Constraint Networks 26

(����,	���������	������

$��	�� ��	�������	����	���� �������

� Algorithm CTE is time exponential in the
cluster size and space exponential in the
separator size.

� Trade space for time by increasing the
cluster size and decreasing the
separator sizes.

� Join clusters with fat separators.

Fall 2003 ICS 275A - Constraint Networks 27

�!�� ��

Fall 2003 ICS 275A - Constraint Networks 28

&	 ��� ���	��	��������	����%

���� ��������

Fall 2003 ICS 275A - Constraint Networks 29

�� %����	��� �%� ���	�������

� Let T be a tree-decomposition of hypergraph H. Let
be the sizes of the separators in T, listed in strictly descending
order. With each separator size we associate a secondary
tree decomposition , generated by combining adjacent nodes
whose separator sizes are strictly greater than .

� Let the largest set of variables in any cluster of .
� Note that as s_i decreases, increase.

� Theorem: The complexity of CTE when applied to each is
O(n exp(r_i)) time, and O(n exp()) space.is iT

nsss ,,, 10 ⋅⋅⋅

js
is

iT

ir
ir

Fall 2003 ICS 275A - Constraint Networks 30

�� ��%�������
+��� 	�	������%����	��	�	-���%����	��	�	�� ��%������	����

Fall 2003 ICS 275A - Constraint Networks 31

.���� ������ ��� �������	�	� �����	

����	��	����%���� �������

� A connected graph G=(V,E) has a separation node v
if there exist nodes a and b such that all paths
connecting a and b pass through v.

� A graph that has a separation node is called
separable, and one that has none is called non-
separable. A subgraph with no separation nodes is
called a non-separable component or a bi-
connected component.

� A dfs algorithm can find all non-separable
components and they have a tree structure

Fall 2003 ICS 275A - Constraint Networks 32

����� �������	����	

����� ������ ��� ������

� Assume a constraint network having unary, binary and ternary constraints
:R = { R_AD,R_AB, R_DC,R_BC, R_GF,D_G,D_F,R_EHI,R_CFE }.

Fall 2003 ICS 275A - Constraint Networks 33

�!�������	&$")&� ����	����	�����������*

Fall 2003 ICS 275A - Constraint Networks 34

"�� ��!���

� Theorem: If R = (X,D,C) is a constraint
network whose constraint graph has
nonseparable components of at most
size r, then the super-bucket elimination
algorithm, whose buckets are the
nonseparable components, is time
exponential O(n exp(r)) and is linear in
space.

Fall 2003 ICS 275A - Constraint Networks 35

(�����	��	������

� hybrid(b_1,b_2):
� First, a tree-decomposition having separators bounded by b_1

is created, followed by application of the CTE algorithm, but
each clique is processed by elim-cond(b_2). If c^*_{b_2} is the
size of the maximum b_2-cutset in each clique of the b_1-tree-
decomposition, the algorithm is space exponential in b_1 but
time exponential in c^*_{b_2}.

� Special cases:
• hybrid(b_1,1): Applies cycle-cutset in each clique.
• b_1 = b_2. For b=1, hybrid(1,1) is the non-separable components

utilizing the cycle-cutset in each component.
� The space complexity of this algorithm is linear but its time

complexity can be much better than the cycle-cutsets scheme
or the non-separable component approach alone.

Fall 2003 ICS 275A - Constraint Networks 37

"���	�����	��� ����������	���������	������ ���	

���	���	�����	��������	��	�������	��� � �����

Problem: Given a circuit and its unexpected output, identify faulty components.

The problem can be modeled as a constraint optimization problem and

solved by bucket elimination.

Fall 2003 ICS 275A - Constraint Networks 38

"���	�����	"/01

A circuit’s primal graph
For every gate we connect
inputs and outputs

Join-tree of c432
Seperator size is 23

Fall 2003 ICS 275A - Constraint Networks 39

2���%����	��	"03/4)5657	����*

� �!	�� 	��8�	97

Fall 2003 ICS 275A - Constraint Networks 40

��������	�����	���	"/01

Fall 2003 ICS 275A - Constraint Networks 41

$�� �%� ���	��������$�� �:� ��� �������	$�� �	��	

� ������	�����	� �!�� �� 	��	���	�� ������	��8�	��	���	

������ ��8�	��	� ���	��	���	� �!�� �� 	�� ������	��8�;

