

Reasoning Methods

Our focus - search and elimination

Search

("guessing" assignments, reasoning by assumptions)

- Branch-and-bound (optimization)
- Backtracking search (CSPs)
- Cycle-cutset (CSPs, belief nets)
- Variable elimination

(inference, "propagation" of constraints, probabilities, cost functions)

- Dynamic programming (optimization)
- Adaptive consistency (CSPs)
- Joint-tree propagation (CSPs, belief nets)

Search: Backtracking Search

Bucket Elimination

 $Bucket(E): E \neq D, E \neq C, E \neq B$ $Bucket(D): D \neq A \parallel R_{DCB}$ $Bucket(C): C \neq B \parallel R_{ACB}$ $Bucket(B): B \neq A \parallel R_{AB}$ $Bucket(A): R_{A}$

 $Bucket(A): A \neq D, A \neq B$ $Bucket(D): D \neq E \parallel R_{DB}$ $Bucket(C): C \neq B, C \neq E$ $Bucket(B): B \neq E \parallel R^{D}_{BE}, R^{C}_{BE}$ $Bucket(E): \parallel R_{E}$

Complexity : $O(n \exp(w^*(d)))$, $w^*(d)$ - *induced width along ordering d*

DR versus DPLL: complementary properties

Exact CSP techniques: complexity

	Backtracking	Elimination
Worst-case time	O(exp(n))	$O(n \exp(w^*))$ $w^* \le n$
Average time	better than worst-case	same as worst-case
Space	O(n)	$O(n \exp(w^*))$ $w^* \leq n$
Output	one solution	knowledge compilation

The cycle-cutset effect

- A cycle-cutset is a subset of nodes in an undirected graph whose removal results in a graph with no cycles
- An instantiated variable cuts the flow of information: cuts a cycle.
- If a cycle-cutset is instantiated the remaining problem is a tree and can be solved efficiently

Complexity of the cycle-cutset scheme

Theorem: Algorithm cycle-cutset decomposition has time complexity of $O((n-c)k^{(c+2)})$ where n is the number of variables, c is the cycle-cutset size and k is the domain size. The space complexity of the algorithm is linear.

a linear space search guided by a tree-decomposition

- Given a tree network, we identify a node x_1 which, when removed, generates two subtrees of size n/2 (approximately).
- T_n is the time to solve a binary tree starting at x_1. T_n obeys recurrence

•
$$T_n = k 2 T_n/2, T_1 = k$$

- We get:
 - T_n = n k^{logn +1}
- Given a tree-decomposition having induced-width w* this generalizes to recursive conditioning of tree-decompositions:

 $T_n = n k^{(w^*+1)} \log n$

 because the number of values k is replaced by the number of tuples k[^]w^{*}

Alternative views of recursivesearch

- Proposition 1: Given a constraint network R= (X,D,C), having graph G, a tree-decomposition T = (X, chi,Psi) that has induced-width w*, having diameter r (the longet path from cluster leaf to cluster leaf, then there exists a DFS tree dfs(T) whose depth is bounded by O(log r w*).
- Proposition 2: Recursive-conditioning along a treedecomposition T of a constraint problem R= (X,D,C), having induced-width w*, is identical to backjumping along the DFS ordering of its corresponding dfs(T).
- Proposition 3: Recursive-conditioning is a depth-first search traversal of the AND/OR search tree relative to the DFS spanning tree dfs(T).

Example

• Consider a chain graph or a k-tree.

Hybrid: conditioning first

- Generalize cycle-cutset: condition of a subset that yield a bounded inference problem, not necessarily linear.
- **b-cutset**: a subset of nodes is called a b-cutset iff when the subset is removed the resulting graph has an induced-width less than or equal to b. A **minimal b-cutset** of a graph has a smallest size among all b-cutsets of the graph. A cycle-cutset is a 1-cutset of a graph.
- Adjusted induced-width: The adjusted induced-width with of G respect to V is the induced-width of G after the variable set V is removed.

Elim-cond(b)

- **Idea:** runs backtracking search on the b-cutset variables and bucket-elimination on the remaining variables.
- Input: A constraint network R = (X,D,C), Y a b-cutset, d an ordering that starts with Y whose adjusted induced-width, along d, is bounded by b, Z = X-Y.
- **Output:** A consistent assignment, if there is one.
- 1. while {y} ← next partial solution of Y found by backtracking, do
 - a) $z \leftarrow solution found by adaptive-consistency(R_y).$
 - B) **if** z is not *false*, return solution (y,z).
- 2. endwhile.
- **return**: the problem has no solutions.

Complexity of elim-cond(b)

 Theorem: Given R= (X,D,C), if elim-cond(b) is applied along ordering d when Y is a b-cutset then the space complexity of elim-cond(b) is O(n exp(b)), and its time complexity is O(n exp (|Y|+b)).

Finding a b-cutset

- Verifying a b-cutset can be done in polynomial time
- A simple greedy: use a good induced-width ordering and starting at the top add to the b-cutset any variable with more than b parents.
- Alternative: generate a tree-decomposition, then select a b-cutset that reduce each cluster below b.

Time-space tradeoff using b-cutset

- There is no guaranteed worst-case time improvement of elimcond(b) over pure bucket-elimination.
- The size of the smallest cycle-cutset (1-cutset), c_1 and the smallest induced width, w*, obey:
 - c_1 >= w* 1. Therefore, 1 +c_1 >= w*, where the left side of this inequality is the exponent that determines time complexity of elim-cond(b=1), while w* governs the complexity of bucketelimination.
- c_i-c_(i+1) >= 1
- $1+c_1 \ge 2+c_2 \ge \dots b+c_b, \dots \ge w^*+c_w^* = w^*$
- We get a hybrid scheme whose time complexity decreases as its space increases until it reaches the induced-width.

Resolve if $w^*(x_i) < b$,

condition otherwise

DCDR(b): empirical results

Adjustable trade - off :

b < 0: pure DPLL, $b \ge w^*$: pure DR, $0 \le b \le w^*$: hybrid

Time $\exp(b + c _ b)$, space $\exp(b)$

Hybrid, inference first: The super cluster tree elimination

- Algorithm CTE is time exponential in the cluster size and space exponential in the separator size.
- Trade space for time by increasing the cluster size and decreasing the separator sizes.
 - Join clusters with fat separators.

A primary and secondary treedecompositions

Sep-based time-space tradeoff

- Let *T* be a tree-decomposition of hypergraph *H*. Let S_0, S_1, \dots, S_n be the sizes of the separators in *T*, listed in strictly descending order. With each separator size S_i we associate a secondary tree decomposition T_i , generated by combining adjacent nodes whose separator sizes are strictly greater than S_j .
- Let \mathcal{V}_i the largest set of variables in any cluster of
- Note that as s_i decreases, γ_i increase.
- **Theorem:** The complexity of CTE when applied to each T_i is O(n exp(r_i)) time, and O(n exp(S_i)) space.

Super-buckets

From a bucket-tree to a join-tree to a super-bucket tree

Nonseparable components: a special case of tree-decomposition

- A connected graph G=(V,E) has a separation node v if there exist nodes a and b such that all paths connecting a and b pass through v.
- A graph that has a separation node is called separable, and one that has none is called nonseparable. A subgraph with no separation nodes is called a non-separable component or a biconnected component.
- A dfs algorithm can find all non-separable components and they have a tree structure

Decomposition into nonseparable components

Assume a constraint network having unary, binary and ternary constraints
:R = { R_AD,R_AB, R_DC,R_BC, R_GF,D_G,D_F,R_EHI,R_CFE }.

Complexity

• **Theorem:** If *R* = (X,D,C) is a constraint network whose constraint graph has nonseparable components of at most size r, then the super-bucket elimination algorithm, whose buckets are the nonseparable components, is time exponential O(n exp(r)) and is linear in space.

Hybrids of hybrids

hybrid(b_1,b_2):

• First, a tree-decomposition having separators bounded by b_1 is created, followed by application of the CTE algorithm, but each clique is processed by elim-cond(b_2). If c^*_{b_2} is the size of the maximum b_2-cutset in each clique of the b_1-tree-decomposition, the algorithm is space exponential in b_1 but time exponential in c^*_{b_2}.

• Special cases:

- hybrid(b_1,1): Applies cycle-cutset in each clique.
- b_1 = b_2. For b=1, hybrid(1,1) is the non-separable components utilizing the cycle-cutset in each component.
- The space complexity of this algorithm is linear but its time complexity can be much better than the cycle-cutsets scheme or the non-separable component approach alone.

Case study: combinatorial circuits: benchmark used for fault diagnosis and testing community

Problem: Given a circuit and its unexpected output, identify faulty components. The problem can be modeled as a constraint optimization problem and solved by bucket elimination.

Case study: C432

Join-tree of C3540 (1719 vars) max sep size 89

Fall 2003

Time-space tradeoffsTime/Space tradeoff Time is measured by the maximum of the separator size and the cutset size and space by the maximum separator size.

